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ABSTRACT

We propose and study a realistic Continual Learning (CL) setting where learn-
ing algorithms are granted a restricted computational budget per time step while
training. We apply this setting to large-scale semi-supervised Continual Learn-
ing scenarios with sparse label rate. Previous proficient CL methods perform
very poorly in this challenging setting. Overfitting to the sparse labeled data
and insufficient computational budget are the two main culprits for such a poor
performance. Our new setting encourages learning methods to effectively and
efficiently utilize the unlabeled data during training. To that end, we propose a
simple but highly effective baseline, DietCL, which utilizes both unlabeled and
labeled data jointly. DietCL meticulously allocates computational budget for both
types of data. We validate our baseline, at scale, on several datasets, e.g., CLOC,
ImageNet10K, and CGLM, under constraint budget setup. DietCL outperforms,
by a large margin, all existing supervised CL algorithms as well as more re-
cent continual semi-supervised methods. Our extensive analysis and ablations
demonstrate that DietCL is stable under a full spectrum of label sparsity, compu-
tational budget and various other ablations. Our code is available here: https:
//github.com/wx-zhang/continual-learning-on-a-diet

1 INTRODUCTION

In the era of abundant information, data is not revealed in its entirety but rather sequentially from
a non-stationary environment. For example, social media platforms, such as YouTube, TikTok,
Snapchat, and Facebook, receive huge amounts of data every day. The content of the data and its
distribution depend greatly on social trends and focuses on existing platforms (e.g., Facebook, Snap,
Twitter), thus shift over time. For instance, Snapchat, in 2017, reported the influx of over 3.5 billion
short videos daily from users across the globe (Snap). These videos had to be instantly processed for
various tasks, from image rating and recommendation to hate speech and misinformation detection.

Continual learning attempts to address such challenges, focusing on designing training algorithms
that accommodate new data streams while preserving previously acquired knowledge. Diverse so-
lutions have emerged, spanning from regularization-based (Kirkpatrick et al., 2017), architecture-
based (Ebrahimi et al., 2020), to memory-based methods (Chaudhry et al., 2019b).

Nevertheless, the huge scale of data in most practical applications needs to be processed in real
time. Such constraint imposes budget limitations on the continual learning algorithms. To better
demonstrate these constraints, imagine if a learning algorithm takes 10 days to learn from a dataset
of 3.5 billion samples (accumulated in a single day for Snapchat). The ongoing data stream would
have generated 35 billion new samples during the training period. This reality renders the model
severely outdated by the time it’s put to practical use. Such time constraints on processing pose
limitations not only on the number of labels but also on the computation time for the algorithm.
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Figure 1: DietCL considers the computation budget due to effective computational time restrictions
and very sparse label rate due to annotation cost. At each time step, we propose to allocate sufficient
computation for labeled data and utilize the diverse unlabeled data with remaining computation to
migrate the overfitting.

Existing literature has recognized the problem and put effort into finding solutions. While some
online continual learning approaches attempt to formulate the online data stream (Chaudhry et al.,
2019a; Cai et al., 2021), they prioritize the formulation in batch-wise training and evaluation, and
often overlook the regularization of computation and time in these algorithms. Additionally, the
majority of online continual learning works assume that a full set of labels is accessible. On the
other hand, certain advancements in offline continual learning have been achieved by incorporating
unlabeled data (Pham et al., 2021; Fini et al., 2022). These approaches often require a full pass of
the unlabeled data, thereby neglecting the expensive computational demands associated with large
amounts of unlabeled data. Only recently, some work started to consider budgeted continual learning
(e.g., (Prabhu et al., 2023)), which aims to regularize the computational requirements for each task
to enable the applicability of continual learning algorithms under the aforementioned real-world
scenarios. Nevertheless, these endeavors still concentrate on a fully labeled data stream.

In this work, we extend the budgeted continual learning to a semi-supervised manner. This scenario
is marked by constrained computational resources and sparse labeling; hence we term it “CL on
Diet”. The crux of the challenge is illustrated in Figure 1, where substantial data volumes are un-
veiled during each time step; however, only a fraction of this data is accompanied by labels. Subse-
quently, the learning algorithms train on these data under the constraint of time use of computational
resources, contingent on the time interval of data reception.

Under CL on Diet, we first study the capacity of existing methods to cope with such a challenging
setting. Indeed, our findings reveal that current solely supervised methods tend to overfit to the
limited labels available. On the other hand, approaches utilizing unlabeled data require extensive
computational resources to perform multiple full passes over the vast unlabeled dataset, leading to a
significant degradation in performance when computational restrictions are imposed.

To address these challenges, we present our effective baseline, named DietCL. It incorporates a
computation budget allocation mechanism to harmonize the learning of current and prior distribu-
tions. Moreover, we introduce a unified training strategy that assimilates insights from labeled and
unlabeled data concurrently. The efficacy of our baseline is substantiated through evaluations on
prominent large-scale continual learning datasets, namely ImageNet10k, CLOC, and CGLM. Our
results showcase state-of-the-art performance in this realistic scenario. Additionally, we demon-
strate the robustness of our baseline across varying stream lengths, computational constraints, and
label rates. Our contributions can be summarized in three folds:

1. We proposed a challenging large-scale semi-supervised continual learning setting, dubbed
“CL on Diet”, under sparse label scenario and constrained computation budget. We explore
problems of the existing methods in this setting.

2. We propose DietCL, a continual learning baseline that utilizes budget efficiently with joint
optimization of labeled and unlabeled data.

3. We conduct extensive experiments in large-scale datasets, ImageNet10k, CLOC, and
CGLM in data and class incremental settings. Our experiments demonstrate that our sim-
ple solution, DietCL, outperforms both supervised and semi-supervised continual learning
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algorithms in sparsely labeled streams by 2% to 4%. We also show superior this baseline
in varying levels of stream length, label ratio, computational budget.

2 RELATED WORK

Semi-supervised Continual Learning. Following the recent success of self-supervised learning
for pretraining, an increasing body of work is now studying their application for continual learning.
Caccia & Pineau showed that self-supervised loss outperformed supervised loss in the meta-learning
stage for continual learning. Fini et al. (2022) performed self-supervised pretraining for each task in
offline continual learning. Gomez-Villa et al. (2022); Pham et al. (2021); Boschini et al. (2022) used
unlabeled data for distillation or regularization loss to migrate forgetting. Most approaches validate
their methods on small datasets with a moderate labeled-unlabeled split. They do not consider
the computational expense incurred, and often treat labeled and unlabeled data points equally in
computation allocation. When we scale up these approaches to cope with the vast amount of real-
world unlabeled data and sparse labels, as we shall show in section 3.2, we observe difficulties in
learning meaningful label-related information due to their limited computation allocated to labeled
data. Additionally, these approaches struggle to learn from unlabeled features due to the constraints
of total available computation.

Scenarios and Budget Constraint in Continual Learning. Conventional continual learning ba-
sically focuses on task incremental learning, class incremental learning, and domain incremental
learning. Due to the diversity of the real-world data flow, there has been a lot of work exploring
how to eliminate specific constraints in continual learning (Wang et al., 2024), thus making them
applicable. Some work considers releasing the task boundary constraint and explores algorithms
with unknown boundaries (Aljundi et al., 2019) or blurry task boundaries (Koh et al., 2021). Others
consider cases where data is on the fly, and tasks arrive as a one-pass data stream (Chaudhry et al.,
2019a). Most of these considerations start from the format of data arrival. In this paper, however, we
consider constraints originating from the relation between the processing agent and the data flow.

Only from recent, a question was posed regarding the time limit for training in continual learning.
It is demonstrated that if each task can be trained for an unlimited amount of time, a non-continual
algorithm can achieve comparable results with continual learning algorithms (Prabhu et al., 2020;
Ghunaim et al., 2023). While some online continual learning methods (Koh et al., 2021) report
performance based on a fixed number of updates, this is mainly for fair comparisons and not fully
explore the impact of the training budget on the algorithm. Recent work (Prabhu et al., 2023) has
demonstrated the effectiveness of offline continual learning under limited budgets, showing that
learning from a balanced distribution is helpful when budgets are insufficient. Motivated by this, we
propose to impose constraints on the training time for semi-supervised continual learning. However,
in our work, the budgeted setup is in conjunction with the sparse labeled setting of the stream, which
poses a novel more challenging but realistic problem.

3 CONTINUAL LEARNING ON A DIET

3.1 PROBLEM FORMULATION

In the semi-supervised continual learning under budget, we seek to learn a function fθ : X → Y
parameterized by θ that maps images x ∈ X to class labels y ∈ Y . At each time step t, the stream
samples nt images {xti}n

t

i=1 ∼ X t and then only reveals the ntl labels of them to fθ. In contrast
to prior work, continual learning algorithms seek to update the parameters θ with a per time step
predefined computational budget such that fθ performs well on all seen distributions. Throughout
this paper, we define the computational budget in terms of the total FLOPs normalized in terms
of the number of forward-backward passes, i.e., the training iterations for a given batch size. The
computation budget amounts to all FLOP iterations the training requires, from forward-backward
pass updating model parameters to any other operations, e.g., importance weights as in Aljundi
et al. (2018). We follow Prabhu et al. (2023) for the storage assumption in budgeted continual
learning, where the buffer is large enough to store all labeled data while the amount of data used
every time is constrained according to the computational budget.
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Figure 2: Average accuracy of ER, CaSSLe, and DietCL on 1% labeled ImageNet10k with varying
computational steps. Left: supervised method, ER, starts to overfit after 400 steps. Right: semi-
supervised method, CaSSLe, converges slowly. DietCL converges fast and alleviates overfitting.

3.2 OPPORTUNITIES FOR IMPROVEMENT

Most prior supervised and semi-supervised continual learning works presume sufficient computa-
tional resources and labels as they need. Nevertheless, such assumptions may not always be satisfied
in some real-world scenarios, including the diet scenario that we propose in this paper. In this sec-
tion, we explore the potential bottleneck of existing supervised method, ER, and semi-supervised
method, CaSSLe, in diet scenario with experiments of varying computational budget per time step
on 20-split ImageNet10k, as shown in Figure 2. We compare their performances against our pro-
posed algorithm, DietCL, which shall be introduced in Section 4. Each point of the figure shows the
average accuracy at the end of a continual learning stream following Chaudhry et al. (2019a), given
the corresponding per time step budget.

How does Supervised CL behave under a Low Budget? As shown in region (a) in Figure 2 left
where the per step computational budget is less than 400, ER has large performance degradation as
the budget goes down. This is partially due to the stability gap (Lange et al., 2023) in ER; during
the learning of the new task, the model overfits to the new data first and then recovers knowledge
from replayed data of previous tasks. See more details of this phenomenon in Appendix C.1. In
the low-budget scenario, the training for the next time step could start before the finish of previous
knowledge recovery. Furthermore, the limited number of available labels can also lead to the model
capturing a narrow distribution of the current task. Our semi-supervised continual learning method
can effectively eliminate overfitting and stability gap issues with the unlabeled data as a regularizer,
resulting in improved continual learning performance.

Can Supervised CL Fully Utilize the Available Computational Budget? Supervised CL not only
struggles to learn efficiently under a limited budget, but suffers overfitting, particularly with a large
computational budget, as illustrated in region (b) in Figure 2 when the budget exceeds 400. However,
the behavior is different in the semi-supervised method, where overfitting does not happen as much.
This encourages us to effectively spend the redundant computational resources on unlabeled data.

Is Unlabeled Data Necessary? We demonstrate that even when the computational budget does not
reach the maximum capacity for a supervised learning algorithm, e.g., in Figure 2 left, region (a)
when the budget is less than 400, we can achieve better results by leveraging unlabeled data to im-
prove generalization when labeled data is limited. Additionally, when the budget is far from enough,
e.g., as in Figure 2 left region (b) when the budget is bigger than 400, a purely supervised continual
learning algorithm may not fully utilize the computational budget. In this scenario, allocating extra
budget to unsupervised data can help capture the current distribution.

Challenges Facing CaSSLe. Learning from unlabeled data can be computationally expensive,
CaSSLe, as an instance, originally proposed to train for 500 epochs per task. Our experiments
reveal how CaSSLe greatly suffers with low budgets in large-scale datasets. As shown in Figure 2
right, the accuracy of CaSSLe remains very low even when we increase the budget to 2500 steps
(around 3 epochs). In contrast, the required budget for DietCL to converge is only about 500 steps.

4 PROPOSED SOLUTION: DIETCL

We now present our approach that learns from labeled data and unlabeled data jointly to efficiently
use budget and capture the shifting distribution. Throughout, we assume that we learn a model fθ
which can be decomposed to feature encoder fθe : X → Z , where Z is the feature space, and a
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classification head fθc : Z → Y , i.e., fθ = fθc ◦ fθe . The learning of each task is constrained
with total budget B = Bu +Bl, where Bu is the budget for unlabeled data and Bl is the budget for
labeled data.

Learn In Distribution Relationship. In a large-scale data stream, each time step corresponds to a
diverse distribution, which requires a significant effort to learn the in-distribution relationships. To
achieve this, we take use of unlabeled data from the current distribution by self-supervised learning
(SSL). We discuss how to integrate SSL and which type of SSL to integrate in CL now.

SSL pre-training can be expensive in CL, as observed in Figure 2 (right). Upon further examination
in Appendix C.2, we found that the features learned purely from unsupervised loss evolve extremely
slowly and are not oriented towards the labels. To address this, we jointly learn from the current
unlabeled and labeled data, where the dense unlabeled data acts as a regularizer to prevent overfitting
to the sparse labeled data. In terms of the specific SSL algorithms, contrastive learning and masked
modeling are two mainstreams. Contrastive learning algorithms typically necessitate augmenting
input images into dual views and updating gradients for two distinct backbones. Consequently, with
a budget of Bu for unlabeled data, only Bu/2 gradient steps are feasible, leading to a significant
budget underutilization. As such, we employ an efficient masked modeling method, MAE (He et al.,
2022), to capture the current distribution by reconstructing the masked patch of input image. We add
a reconstruction head to the encoder, denoted as fθr : Z → X , which maps the encoded features to
the image space. At each time step t, we use the unlabeled stream samples {xti}ni=nl+1 to compute
the reconstruction loss as

Lr =
∑

∀xu∈{xt
i}

n
i=nl+1

∑
p∈Ip

∥∥∥fθr ◦ fθe(ψp (xu))− ψp(xu)
∥∥∥2

, (1)

where the operator ψp extracts the pth patch from the set of masked patches Ip from every xu.

Furthermore, as proposed by Caccia et al. (2022) that continual learning benefits from learning the
current distribution in isolation, we mask out the logits of classes that are not shown in the current
time step and compute the following loss function on the labeled data from the current distribution:

Lm =
1

bl

∑
{(xt

i,y
t
i)}

nl
i=1

CE(fθc ◦ It(fθe(x
t
i)), y

t
i), (2)

where It indicate a mask function that zeros out all indices of classes that are not introduced in the
current time step t and here CE indicates a cross entropy loss.

To overcome the forgetting problem, we further maintain a task balanced buffer M that contains
only labeled data from the current and previous time steps. The loss can be expressed as follows:

Lb =
1

bm

∑
(xi,yi)∼M

CE(fθ(xi), yi) , (3)

To that end, our final joint loss function to train under budgeted sparsely labeled stream is:
L = αrLr + Lm + Lb. (4)

Here αr is the scaling factor to adjusting the mean square loss L to match the scale of the entropy
loss Lm. In the experiment, we fix it to 50.0.

Budget allocation. In our final loss function Equation 4, the model is trained on the unlabeled
data from the current time step (Lr), labeled data from the current time step (Lm), and labeled
data from the balanced buffer (Lb), all jointly. As shown in Figure 2, classic methods have two
stages as the budget goes up, i.e., learning stage in the region (a) and overfitting stage in the region
(b). The main reason for the overfitting with the second stage is the overuse of the very sparse
labeled data of the current task. Therefore, we allocated different training budgets to each data
source according to the total budget. We divide it equally among the labeled (Lm), unlabeled (Lr),
and buffer data (Lb) if the budget is less than a threshold B. Our algorithm converges quickly in
this budget, and extending the training duration does not yield significant improvement for current
classes. Consequently, we opt to invest the extra budget solely on the buffer data with Equation 3
as our loss function. This stage mainly balances the learning of current and previous classes; refer
to Appendix C.3 for detailed analyses. In practice, we choose the threshold B by cross validation;
more details are in Appendix B.3. Please refer to Appendix A for the overall training procedure and
semantic code.
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Figure 3: Accuracy at each time step of the baselines on ImageNet10k, CLOC, and CGLM dataset.
Our algorithm surpasses the supervised methods by using unlabeled data and outperforms semi-
supervised methods due to effective allocation of budgets.

5 EXPERIMENTS

In this section, we conduct experiments on various large-scale datasets with our proposed setting,
CL on Diet, that the stream is partially labeled and algorithms are granted a limited computational
budget per time step. We start with explaining the experimental setup, then we present the com-
parison of our proposed DietCL against several other methods. At last, we demonstrate that our
proposed approach is robust under varying label rate, computational budget and stream length.

5.1 EXPERIMENT SETUP

Benchmark and Metrics. We use three large-scale continual learning datasets, ImageNet10k,
CLOC, and CGLM following Prabhu et al. (2023) to evaluate the performance of DietCL along
with other methods. We split ImageNet10k into 20 class-incremental tasks and split CLOC and
CGLM into 20 tasks according to the image uploading time shown in the meta information of each
image. All the detailed statistics of the datasets can be found in Appendix B.1.

We report the accuracy in the last time step and the average accuracy across the stream. That is to
say, let at = 1

t

∑t
k=1

1
n

∑
i 1{fθ(xi

k)=yi
k}, where n is the number of samples per time step, be the

accuracy of the model trained after time t on the valid data until time t. Then, we report the accuracy
of the union test sets in the last time step T as A(T ) = aT following Chaudhry et al. (2019a); Fini
et al. (2022); Wang et al. (2022). We further report the averaged performance A = 1

T

∑T
t=1 at to

show the trend along the whole stream, following (Douillard et al., 2022).

Training. Throughout all experiments, we use the ViT model (Dosovitskiy et al., 2020) for classi-
fication and the MAE decoder (He et al., 2022) for reconstruction. Both models are pre-trained on
the ImageNet1k dataset, released by (He et al., 2022). We set the base learning rate to 10−4 with a
base batch size of 256, and scale the learning rate linearly according to the effective batch size. We
use multiple Nvidia A100 GPUs for training, with batch size 256 on each device. We accumulate
the loss and perform the backward step when the accumulated batch size reaches 1024. All other
learning parameters are adopted from (He et al., 2022). .

Baselines. We compare against supervised and semi-supervised continual learning methods in our
setting. Supervised methods include ER (Chaudhry et al., 2019b; Prabhu et al., 2023), EWC (Kirk-
patrick et al., 2017), MAS (Aljundi et al., 2018), GDumb (Prabhu et al., 2020), L2P (Wang et al.,
2022). Semi-supervised methods include CaSSLe (Fini et al., 2022), DualNet (Pham et al., 2021),
and CCIC (Boschini et al., 2022). Implementation details of all these methods are left for Ap-
pendix B.2. We use balanced sampling for ER; discussions of sampling is in Appendix B.2. We also
compare against the joint training, where pre-training and fine-tuning are performed on the whole
dataset, following (Hu et al., 2021) to show the upper bound. The per-time-step computational
budget for all baselines is the same.
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Table 1: Accuracy at the last step of the continual learning sequence. DietCL shows superior perfor-
mance over the supervised methods when evaluating both the last model and the whole sequence.

ImageNet10k CLOC CGLM

A(T ) A A(T ) A A(T ) A

Upper Bound 18.23 - 8.56 - 38.15 -

EWC (Kirkpatrick et al., 2017) 2.19 7.69 1.83 2.28 6.16 9.28
MAS (Aljundi et al., 2018) 6.73 11.81 1.65 2.03 1.73 3.47
Replay (Chaudhry et al., 2019b) 14.89 22.84 4.64 4.59 22.81 19.40
GDumb (Prabhu et al., 2020) 4.64 16.25 3.15 3.3 8.81 10.11
ER-ACE (Caccia et al., 2022) 10.72 21.28 4.57 4.53 21.55 19.28
L2P (Wang et al., 2022) 6.30 10.23 2.68 2.43 16.69 13.57

DualNet (Pham et al., 2021) 0.50 0.92 0.80 0.83 5.20 3.97
CaSSLe (Fini et al., 2022) 5.78 13.25 1.52 1.60 7.10 6.67
CCIC (Boschini et al., 2022) 0.20 0.62 1.32 0.72 4.27 4.02

DietCL 16.82 24.90 5.63 4.98 24.34 20.26

5.2 MAIN RESULTS

We conduct experiments on 20-split ImageNet10k with 1% label rate and 500 computational steps,
20-split CLOC with 0.5% label rate and 1000 computational steps, and 20-split CGLM with 5%
label rate and 600 computational steps for main comparison. The results of DietCL and the base-
lines described in Section 5.1 are shown in Figure 3 and Table 1. The figure shows the evaluation
accuracy A(t) at each step, and the table shows the accuracy of the last step A(T ) and the averaged
performance A.

DietCL against Supervised CL. The first row in Figure 3 shows the comparison between DietCL
and supervised CL methods. DietCL consistently outperforms all the supervised methods we com-
pared across all datasets, namely ImageNet10K, CLOC, and CGLM. The most competitive method
among the supervised ones is Replay, which involves jointly utilizing current labeled data and pre-
viously labeled data uniformly sampled from memory for supervised training. However, the incor-
poration of unlabeled data in DietCL significantly enhances performance, resulting in accuracy of
16.82%, 5.98%, and 24.34%, on the respective datasets, as shown in Table 1.

This demonstrates that DietCL can effectively leverage the unlabeled data even under the restricted
per step computation towards improving the learning in the stream.

DietCL against Semi-Supervised CL. The second row in Figure 3 shows the comparison of Di-
etCL against recent semi-supervised continual learning methods and SSL upper bounds. These
semi-supervised methods were originally proposed without computational constraint, and encounter
a large performance drop with fixed computational budget. Among them, as shown in Table 1, the
best performing, CaSSLe, achieves only 5.78% Average Accuracy at the last task on ImageNet10k
dataset compared to ours of 16.82%. CaSSLe originally proposed to perform 500 epochs of unla-
beled training on their evaluated benchmarks, which roughly equals 50,000 steps in our setting. Our
limited 500-step budget causes their performance to collapse. Furthermore, when evaluating semi-
supervised baselines in our large-scale dataset, we find some methods, that rely on the inter-class
relationship, such as DualNet and CCIC, struggle to cope with such a large number of classes. At
the same time, as shown in Figure 3, our fine performance on the three datasets is much closer to the
joint training performance than other semi-supervised methods.

Learning trend. In the class-incremental benchmark of ImageNet10k, which has around 10K
classes, the model is required to learn about 500 new classes at each time step. This poses a signifi-
cant challenge for most methods to remember the previous massive classes while learning this large
amount of new classes. While in the time-incremental benchmark of CGLM and CLOC, the data
volume and content of each class vary over time. This requires the model to learn the essence of
the category rather than overfitting to the most recent training distribution to overcome the inference
bias in the recognition of previous tasks. The overall learning trend of various methods can be seen
from the slope of the curves in Figure 3 and the A in Table 1. Notably, certain methods depicted in
the Figure, such as EWC, MAS, and CaSSLe, experience a significant drop in accuracy in the first
several tasks, while DietCL avoids large performance declines and gradually enhances accuracy in
the CLOC and CGLM datasets. In the table, our method still maintains the highest A on all three
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Figure 4: Varying the Computation per Time Step. Accuracy of DietCL, CaSSLe, and GDumb
with different computational steps at each time step in 1% ImageNet10k. The top right boxes show
the average accuracies of DietCL in corresponding computational step settings.

Figure 5: Varying the Label Rate per Time Step. Accuracy of DietCL, CaSSLe, and GDumb in
data streams with different label rates in 20-split ImageNet10k, with 500 computational steps for
each experiment. The top right boxes show the average accuracy of DietCL in corresponding label
settings.

Figure 6: Varying the Number of Time Steps. Accuracy of DietCL, CaSSLe, and GDumb with
different number of time steps in 1% labeled ImageNet10k. We keep the total computational bud-
get the same for each experiment. The top right boxes show the average accuracy of DietCL in
corresponding computational time step settings.

datasets, which are 24.9%, 4.98%, and 20.26%. We believe this is due to the proper allocation of
budgets on current and previous data, which allows our method to efficiently leverage the available
resources and adapt to the new classes.

Taking the Snap example we mentioned in the introduction, we further connect the results to the
real-world problem in Appendix D.

5.3 ABLATING EQUATION 4

Replay Lm Balanced Buffer Lr Avg. Acc.

✓ 14.97
✓ ✓ 15.83
✓ ✓ ✓ 15.96
✓ ✓ ✓ ✓ 16.82

Table 2: Ablation study of our loss function Equa-
tion 4. We use 1% labeled stream with 500 com-
putational steps on ImageNet10k.

We conduct ablation study of Equation 4 under
500 computational steps in 1% labeled 20-split
ImageNet10k benchmark in Table 2. We start
with a Replay baseline, and show the effect by
adding the masked classification loss, the bal-
anced buffer, and the reconstruction loss. By
adding masked classification loss, the final ac-
curacy increased by 0.9%. By maintaining the
balanced buffer, the final accuracy increased by
0.13%. With the help of unlabeled data, the fi-
nal accuracy increased by 0.86%. This demon-
strates that the learning of current distribution
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in isolation, both with masked loss and with unlabeled data, contributes most to the scenario with a
limited training budget. We perform ablation with other orders in Appendix B.4

5.4 COMPUTATIONAL BUDGET AND LABEL RATE

We study the stability DietCL along with the most robust supervised method GDumb and the best
performed semi-supervised method CaSSLe on ImageNet10k against a varying level of label rate,
computational budgets, and stream length.

Varying the Computational Budget. We conduct experiments with varying the computational
budget (100, 500, 1500, 2500) iterations per time step. Across all following experiments, we keep
all other parameters unchanged as before, i.e., a label rate of 1% for 20 time steps. The results are
summarized in Figure 4.

When the budget is reduced to 100 iterations per step, we can clearly observe a significant decline
in performance across all methods. This effect is most pronounced in the case of the supervised
method, GDumb, highlighting the minimum resource requirements for achieving satisfactory perfor-
mance in supervised learning is relatively large. However, it’s worth noting that DietCL outperforms
the other two methods even under this tight budget constraint, and maintains a stable performance
across various budgets, including the scenario of a per-time-step budget of 2500 iterations. Al-
though 2500 iterations might be considered large for DietCL to converge, it remains a constrained
setup, particularly in comparison to semi-supervised learning approaches like CaSSLe. As previ-
ously mentioned, CaSSLe initially proposed a training regimen involving 50,000 steps, which is 20
times larger than the maximum number of steps we examined. Consequently, expecting CaSSLe to
complete its training within just 5% of its original budget is clearly an impractical expectation.

Varying Label Rate. Figure 5 shows experiments with various levels of sparsity of the of labeled
samples in the data stream, i.e., 0.5%, 1%, 5%, 10%. We keep the computational budgets to 500
steps per time step over 20 time steps. We observe that when raising the label rate from 0.5% to 1%,
and from 1% to 5%, we can see obvious increment of the average accuracy in our method, although
the computational budget remains the same. However, the performance of GDumb and CaSSLe
do not improve a lot. Additionally, the performance gaps between our methods and others are also
becoming large, which indicates that our use of labeled data is more efficiently thanks to unlabeled
data. When we involve more labeled samples from 5% to 10% in our method, where the budgets
are insufficient for the later stream, we do not observe the performance improvement. We conclude
that when the budget is sufficient, the labeled data can serve as a better guide for the unsupervised
training, and thus allows for improved performance.

Varying the Number of Time Steps. We examine the role of the length of the stream on Ima-
geNet10k with experiments on the spectrum of 10, 20, 50, and 100 time steps. This mimics the
speed at which data is presented. We use label rate 1% for these experiments. Among the experi-
ments with different stream length, we keep the total number of computational iterations identical to
previous experiments by proportionally reducing or increasing the per time step budgets accordingly,
so as the total iterations are equal to 20 × 500. The results are shown in Figure 6. With the same
number of passes of the labeled data, the average accuracies of DietCL of over the sequence are
similar, i.e., 24.4%, 24.9%, 23.7%, 22.2%. However, when the task length is longer, both GDumb
and CaSSLe have worse performance. This implies that our method is capable of dealing with
small-batch high-frequency streams compared to previous methods.

6 CONCLUSIONS

We rethink the computational budgets and the sparsity of labels in the real world, which did not
get much attention in previous continual learning works. To solve this challenge, we designed
an efficient and effective continual learning algorithm, DietCL, that trains the model with labeled
and labeled data jointly. We benchmark the setting with large-scale benchmarks ImageNet10k,
ImageNet2k, and CGLM. Our method surpasses classic methods and achieves double of the average
accuracy of those methods. We also show the superior performance of our method on two other
hard benchmarks and analyze the influence of computational budget, the length of the data stream,
and the sparsity of the labeled data on the method. We believe DietCL can serve as a starting point
towards exploring new CL algorithms under limited computational budget and sparse labels.
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A SEMANTIC CODE OF THE ALGORITHM

See Algorithm 1 for the overall training procedure. Here, during ModifyClassificationHead, we
expand the last layer of the classification head according to the total number of current seen classes,
and initialize the previous dimensions with previously learned weights. During SplitBudget, we split
the total budget to joint training stage and fine-tuning stage.

Algorithm 1 Diet Continual Learning

procedure DIETCL(S, T , D1:T ) ▷ Input computational steps per time step S, total time step T ,
distributions D1:T

M← {} ▷ Init Buffer
for all t ∈ {1, . . . , T} do

Dl,Du ← Dt ▷ Get offline data
ModifyClassificationHead(Dl)
M←M∪Dl ▷ Update Balanced Buffer
S1, S2 = SplitBudget(S)
for all s ∈ {1, . . . , S1} do

Bl ∼Dl ▷ Unlabeled batch Bu, memory batch Bm

Bu ∼Du ▷ Unlabeled batch Bu

Bm ∼M ▷ Memory batch Bm

θ ← θ −∇L(Bl, Bu, Bm) ▷ Update model parameters by loss function (4)
end for
for all s ∈ {1, . . . , S2} do ▷ Optionally fine-tune stage

Bm ∼M
θ ← θ −∇L(Bm) ▷ Update model parameters by loss function (3)

end for
end for

end procedure

B MORE DETAILS OF EXPERIMENT

B.1 BENCHMARK STATISTICS

ImageNet10k: class-incremental. We created a large-scale, sparsely labeled ImageNet10k bench-
mark from the ImageNet21k V2 dataset (Ridnik et al., 2021). To eliminate the possibility of bias
to ImageNet1k, particularly when using pretrained models, we first remove the classes present in
ImageNet 1k (Deng et al., 2009) from ImageNet 21k V2. To that end, the resulting ImageNet10k
benchmark contains 9459 classes with a total of 9,822,675 labeled images. We then split the bench-
mark into T splits representing T time steps of a stream. We randomly select a fixed ratio of each
class in each split as separate labeled data. This procedure of CL data set construction is standard
in prior work Chaudhry et al. (2019a); Fini et al. (2022). In each of the time steps, since we assume
the stream is only partially labeled, we only use 1% of the labels in each time step.

CLOC: domain-incremental We evaluate the domain adaptation ability of our method on CLOC
(Cai et al., 2021). This benchmark contains 10788 classes and a total of 38m images for the geo-
localization tasks. The images are ordered according to the timestamps at when they were taken,
mimicking a natural distribution shift. the stream from this dataset is presented over 20 time steps,
with per step 0.5% of the labels are available. That is to say, the stream reveals around 1.9m images,
only 1000 of which are labeled.

CGLM: domain-incremental. We evaluate the domain adaptation ability of our method on
CGLM (Prabhu et al., 2023). This benchmark contains 10788 classes and a total of 581,100 of land-
marks from Google Map. The images are ordered according to the timestamps at when they were
taken, mimicking a natural distribution shift. Similarly, the stream from this dataset is presented over
20 time steps with per step 5% of the labels are available.1 That is to say, the stream reveals around

1We increase the label rate in CGLM to 5% since CGLM is a long tail distribution, and 30% of the classes
will only have less than 3 images in 1% labeled stream.
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30k images, only 600 of which are labeled. In Table 3, we show the statistics of ImageNet10k and
ImageNet2k, and compare them with other popular semi-supervised continual learning benchmarks.
Both benchmarks have much larger scales and sparser labels than the previous benchmark. In Ta-
ble 4, we show the statistics of CGLM and compare it with other recent semi-supervised domain
incremental benchmarks, where the domain shifts according to the time. CGLM has a much larger
number of classes and sparser labels, and thus is much harder than CLEAR10 and CLEAR100.

Dataset Split Classes
per split

Labeled data
per split

Unlabeled data
per split

Inference data
per split

CIFAR100-semi 10 10 1.5k 14k 1k

ImageNet10k 20 473 5k 500k 12k
CLOC 20 712 1k 1.9m 19k

Table 3: Statistics of ImageNet10k with 1% label rate, and comparison with previous class-
incremental semi-supervised benchmarks.

Dataset Split Classes Labeled data
per split

Unlabeled data
per split

Inference data
per split

CLEAR10 11 10 3k 700k 0.5k
CLEAR100 11 100 10k 3.6m 5k

CGLM 20 10788 0.6k 30k 3k
CLOC 20 713 1k 1.9m 19k

Table 4: Statistics of 20-split CGLM with 5% label rate, 20-split CLOC with 0.5% label rate, and
comparison with previous domain-incremental semi-supervised benchmarks.

B.2 IMPLEMENTATION DETAILS OF BASELINES

• ER (Chaudhry et al., 2019b). The original proposed methods are one-epoch algorithm. We
follow Algorithm 2 Reservoir sampling update in Chaudhry et al. (2019b) to sample from
and update the replay buffer for the first epoch of every time step in our training. We assume
the buffer size is sufficient large that can store all the training samples. For the remaining
epochs, we sampled from the buffer without update. Prabhu et al. (2023) highlighted the
uniformly sampling in ER. We compared uniformly sampling and balanced sampling in
Table 5 and finally chose to perform balanced sampling that samples 50% data points from
the buffer in every mini-batch.

• ER-ACE (Caccia et al., 2022). We use the same buffer update strategy as in ER. We adopt
the masking strategy and metric learning method for the classification head from the origi-
nal paper.

• EWC (Kirkpatrick et al., 2017) and MAS (Aljundi et al., 2018). We follow Avalanche
library (Lomonaco et al., 2021) to implement offline EWC and MAS. We searched the
hyperparameters and presented the best results.

• GDumb (Prabhu et al., 2020). We follow the standard implementation of the original paper.
The mask is set to the seen classes up to the current time step.

• L2P (Wang et al., 2022). The original paper used model weights pre-trained on ImageNet
21k and fine-tuned on ImageNet 1k. We load the ImageNet1k pre-trained weights and

Method Uniformly Sampling Balanced Sampling

A(T ) 12.73 14.97

Table 5: Different sampling strategies in ER. Experiments are on 20-split 1% labeled ImageNet10k
benchmark with 500 steps computational budget.
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Supervised Budget 300 350 400 450

Task 2 32.44 32.7 32.91 32.75
Task 3 29.30 29.75 29.80 30.02
Task 4 26.81 27.10 27.44 27.09

Table 6: Average Accuracy up to the corresponding task under varying budget. No matter which
task is used for selecting budget threshold, the budget threshold is always set around 400-450.

find suddenly performance drops. The authors proposed to train 5 epochs for every time
step without replay buffer, and provided limited buffer size cases as well. However, we
find that when we modify the model in our setting to have unlimited replay buffer but
limited gradient steps, the performance is even better. The results we present is the modified
version.

• CaSSLe (Fini et al., 2022). We chose the Barlow Twins SSL baseline to report the results.
The original paper proposed to pre-train for 400 epochs and fine-tune for 100 epochs on
ImageNet100. We adopt this ratio 4 : 1 of pretraining and finetuning steps in our set-
tings where the total budget is fixed. In the finetuning stage, we adopt CaSSLe in a class
incremental way by training one linear classifier for all the classes seen so far for a fair
comparison. The performance drop comes from the class incremental classifier and limited
computation.

• DualNet (Pham et al., 2021). Given that the slow net comprises only a few convolutional
layers, we solely load the ImageNet 1k pre-trained weight for the fast net. In the original pa-
per’s semi-supervised implementation, the author employed a variable sampling approach
to determine whether to use the supervised or unsupervised loss for the current batch, based
on a comparison with the label rate. This method substantially augmented the diversity of
labeled data. In our implementation, we first segregate the current data into labeled and
unlabeled subsets and then adopt the variable sampling approach of the original paper to
decide whether to sample from the labeled or unlabeled subset. We determine the thresh-
old to be 0.5, which yields the best results, but lower than the original ones. Additionally,
we include all the gradient steps, including the two view transformation of the contrastive
loss, in the computation and fix the total number of gradient steps, which leads to fur-
ther performance degradation. Although the original paper proposed task-agnostic and
task-free training strategies, we experimented with both but evaluated the model in a class-
incremental manner. Neither strategy yielded favorable results in the context of large-scale
class-incremental streams with limited computational resources.

• Upper bound (He et al., 2022). In particular, SSL Joint Training trains through self super-
vision on all the unlabeled data once and then fine-tunes on all the available labeled data.
The total computational budget given is the effective budget of continual learners, which is
20 time steps× budget per time step. 80% of this budget is spent on self supervision, while
the other is for fine-tuning.

B.3 BUDGET THRESHOLD

We chose to conduct cross validation to choose the threshold B to separate the balanced training
stage and learning on buffer stage. The cross validation is only on the initial three tasks out of 20
tasks; this is standard and widely accepted in the field of continual learning (Chaudhry et al., 2019a).

To show the robustness of such selection, we performed experiments in ImageNet10k benchmark
with different supervised budgets and compared their performance in tasks 2, 3, and 4 in Table 6.
We present the average accuracy up to the corresponding task. When choosing the supervised budget
from either task 2, 3 or 4, the chosen budget threshold is consistently similarly from 400 to 450.

B.4 ABLATION WITH OTHER ORDER

Here in ablation study, we show different orders as well as the observations and report the average
accuracy of the last model.
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Table 7: Ablation study with different orders in 20-split ImageNet10k benchmark

Replay Lm Balanced Buffer Lr Avg. Acc.

✓ 14.97
✓ ✓ 15.01
✓ ✓ ✓ 15.96
✓ ✓ ✓ ✓ 16.82

Replay Lm Balanced Buffer Lr Avg. Acc.

✓ 14.97
✓ ✓ 15.01
✓ ✓ ✓ 15.24
✓ ✓ ✓ ✓ 16.82

The first table shows that the task-balanced buffer can marginally improve the Replay method. Then,
both Lm and Lr can improve the algorithm by around 1%. This is consistent with our original
observation.

The second table shows that without masked loss, the unlabeled data can only marginally improve
the performance. This further validates the point that the loss of the unlabeled data should be guided
by proper supervised loss, as stated in section 4.

C ANALYSIS

C.1 ER AND DIETCL IN LOW COMPUTATIONAL BUDGETS

In Figure 7, we present the validation loss and accuracy of classes originally introduced from time
steps 0, 1, and 2, during the training of time step 2 for DietCL and ER when the total computational
step is 300. Our results indicate that the classical continual learning algorithm, ER, exhibits the
stability gap phenomenon, as proposed by Lange et al. (2023). Specifically, during the learning of
new classes, the accuracy of previously learned classes initially drops, before eventually resuming
an upward trend once the learning of new classes stabilizes. Notably, in ER, although the accuracy
of current classes initially rises to approximately 40%, it subsequently declines significantly at a
later time step, before gradually improving again. Moreover, when the budget is fully expended, the
learning of previous classes remains unfinished.

However, in our algorithm, the accuracies of previously learned classes, as depicted by the blue
curves in the figure, do not exhibit a significant drop, and the learning of new classes is smoother. In
other words, the accuracy of current classes does not undergo the “up-and-down detour” observed
in ER, which results in significant budget savings. We postulate that in ER, since the labeled data is
sparse, the model is more susceptible to overfitting to the space represented by the sparse data from
current classes. Conversely, the incorporation of unlabeled data in our algorithm guides the learning
towards a more generalized space, thereby eliminating the overfitting issue and the stability gap. As
a consequence, our algorithm is efficient in learning under low-budget scenarios, especially when
the labeled data is sparse.

Figure 7: Validation Loss and Accuracy of classes introduced from time step 0,1,2 during the train-
ing of time step 2. The training is conducted on ImageNet10k, with label rate 0.01 and a budget of
300 steps.
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C.2 DIRECTLY PERFORM PRE-TRAINING AND FINETUNING IN CL

We conducted an empirical study on the effectiveness of using SSL methods in continual learning.
One naive approach is to perform two-stage training iteratively, consisting of pre-training and fine-
tuning stages, which leverages unlabeled data in the pre-training stage. To establish baselines, we
implemented the OneStage and TwoStage methods, both of which replay all the labeled data
from the current time step. In the OneStage method, we randomly sample batches from all seen
classes and use cross-entropy loss for classification. In the TwoStage method, we first perform
MAE pre-training with the unlabeled data of the current time step using a fixed ratio of compu-
tational budgets, followed by fine-tuning the model with labeled data randomly sampled from the
buffer using the remaining budgets. We perform this experiment in an extremely sparse labeled
stream with a sufficient large computational budget. Note that this setting is already highly permis-
sive towards semi-supervised training compared to supervised training scenarios, as the budget is
relatively large and the amount of labeled data is extremely sparse.

Our results, as shown in Figure 8, reveal that an extra unlabeled stage training in the TwoStage
method improves the classification accuracy of the samples from the new classes, which are the
exact classes from which the unlabeled images used in the pre-training stage are obtained. This
observation is consistent with the success of self-supervised learning works (He et al., 2022). How-
ever, we did not observe any advantages of the pre-training stage when measuring the performance
among all seen classes. We hypothesize that the pre-training phase harms the label-related represen-
tations learned in previous time steps, resulting in a drop in the Average Accuracy of the TwoStage
method.

Figure 8: Accuracy of the One Stage MAE and Two MAE baseline on 0.5% labeled streams. Each
baseline has 2500 steps computational budget at each time steps.

C.3 EFFECT OF THE FINE-TUNING STAGE

In Figure 2, we utilize the initial 400 computational steps to perform joint training of the model using
labeled and unlabeled data along with data from the balanced buffer. For budgets that exceed 400,
the remaining steps are allocated for fine-tuning using solely data from the buffer. The selection
of 400 steps was based on the observation that classical methods tend to sacrifice performance
beyond this threshold, signifying that it is adequate for learning the current distribution. As an
illustration, we consider the experiment involving the 20-split ImageNet10k with a label rate of 0.01
and 600 computational steps, where we compare the training outcomes with and without fine-tuning
in Figure 9. The figure demonstrates that the balanced fine-tune applied during the final stages of
training leads to more balanced, thus improved, results.
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Figure 9: Accuracy of classes from each of the previous distribution after the training of the last time
step. After fine-tuning the model on the balanced buffer, the accuracies across the stream become
more balanced.

D CONNECTION TO REAL-WORLD PROBLEMS

We aim to study a scenario where we cannot conduct a full epoch on all incoming data, but can
allocate enough computation for the sparsely labeled data. Our algorithm discusses how to take use
of extra budget from labeled data and put it in unlabeled data.

In our experiment, we need (at least) 0.5 GPU hours on an 80G Nvidia A100 to train each task on the
1% labeled 20-split ImageNet10k stream. Each task contains a total of 1m images and 10k labeled
images, and we perform 500 gradient steps with a batch size of 1024.

Now, we want now to translate the computational requirement that we used in this paper (as detailed
above) to the scale of Snap example. As mentioned in the introduction, Snap receives around 3.5B
videos every day. Take the ranking tasks by classifying N snapshots of each video as an example,
there will be 3.5N billion image data every day. We assume there are L annotators for this task and
each can produce 4000 labels per day. To match our 500 computational steps, we expect the budget
to be at least B = 4000L/10000 ∗ 500 = 200L . As we need 0.5 GPU hours for 500 steps in our
experiment, this 200L amounts to around 100L GPU hours. That is, when B/L , the computation
budget per labeling labor, is around 100 GPU hours (almost a whole day running on 4 GPUs), our
algorithm can outperform other baselines in the pre-defined ranking tasks. And the upper bound for
the performance is related to the label rate 4000L/(3.5 ∗ 109N).

We note that the time required is closely related to the GPU type, as well as data loading time, GPU
communication time, and other factors. For instance, in a system with slow data loading, we may
need up to 18 GPU hours. Through collaboration with various experts in acceleration, the B/L
(budget per labeling labor for the algorithm to converge) can be further reduced.
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