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Abstract

Distribution shifts, in which the training distribution differs from the testing dis-
tribution, can significantly degrade the performance of Graph Neural Networks
(GNNs). We curate GDS, a benchmark of eight datasets reflecting a diverse range
of distribution shifts across graphs. We observe that: (1) most domain gener-
alization algorithms fail to work when applied to domain shifts on graphs; and
(2) combinations of powerful GNN models and augmentation techniques usually
achieve the best out-of-distribution performance. These emphasize the need for do-
main generalization algorithms tailored for graphs and further graph augmentation
techniques that enhance the robustness of predictors.

1 Introduction
Distribution shifts, in which training and testing distributions differ, often make machine learning sys-
tems fail in spectacular ways [1]. The over-reliance on the training distribution makes it challenging to
apply systems in practical scenarios where distribution shifts are common, such as graph classification
problems. Graphs are standard data structures that abstract complex systems of interacting objects,
such as molecular graphs [2], biological networks [3], and social networks [4]. Distribution shifts
arise naturally in many graph classification problems since it is infeasible to prepare a training set that
covers all domains of interest. In problems such as drug discovery and social media fact-checking,
molecular graph structures often differ at inference [5, 2], and news propagation graphs may grow
with time [6].

In this paper, we consider domain generalization on graphs (see Appendix A for detailed definition),
where training and test graphs are collected from related but different domains. Such domain shifts
challenge the out-of-distribution (OOD) generalization abilities of graph neural networks (GNNs),
as we often see that OOD test performance is usually significantly lower than in-distribution (ID)
test performance (see Fig. 1). Despite the real-world prevalence of distribution shifts on graphs, they
have not been thoroughly evaluated and discussed to the best of our knowledge. Graph learning
benchmarks such as [7] note the broad existence of distribution shifts on graphs and have considered
using domain information to split training and test sets. We further aim to (1) provide domain
labels separately from features which allows the applications of domain generalization algorithms;
(2) characterize the types of domain shifts exhibited in the datasets using statistical means; (3) and
evaluate what challenges such domain shifts impose on GNN models.

We curate GDS (Graph Distribution Shift), a benchmark of eight datasets reflecting a diverse
range of distribution shifts across graphs; see Fig. 1. To facilitate further research, we provide
an open-source package that administers the GDS benchmarks with modular combinations of popular
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Figure 1: GDS datasets and types of domain shifts, along with the out-of-distribution and in-distribution
generalization performance with Graph Isomorphism Network (GIN) and Empirical Risk Minimization (ERM).

Table 1: OOD generalization algorithms, augmentation techniques, and GNN models/techniques considered.

Types Domain Generalization and
Augmentation Algorithms

Baseline ERM

Distributionally Robust Optimization GroupDRO [8]

Invariant Risk Minimization IRM [9]

Distribution Matching DeepCORAL [10]
DANN [11] and DANN-Graph

Meta Learning MLDG [12]

Augmentation Techniques FLAG [13]
SA

Types GNN Models/Techniques
Baselines GIN [14]

MLP
GIN-Deep

Global-Context Techniques Virtual Node [15]

Spectral Convolution ChebNet [16]

WL-Isomorphism Hierarchy 3WL-GNN [17]

Structure-Aware Networks GSN [18]

domain generalization algorithms, graph augmentation techniques, and GNN backbone models. This
framework can streamline rigorous and reproducible experiments in the future.

Another major contribution of this work is a rigorous comparison of methods for improving OOD
generalization on graphs with respect to GDS. The three high-level categories considered are (1) ex-
isting OOD generalization algorithms; (2) augmentations for graph data; and (3) GNN models and
techniques that improve OOD generalization; see Table 1. The results of our comprehensive evalua-
tion support two primary conclusions (demonstrated in Tables 2 to 6): (1) most OOD generalization
algorithms fail to work when applied to domain shifts on graphs; and (2) combinations of best
performing GNN models and augmentation techniques usually achieve the best OOD performance.
These observations underscore the need for new OOD generalization algorithms tailored for domains
shifts on graphs or further graph augmentation techniques that make the predictor robust to more
types of spurious correlations.

2 Graph Distribution Shift (GDS) Datasets
We curate eight datasets reflecting a diverse range of distribution shifts across graphs; see Fig. 1 for
illustrations, Table 7 for statistics, and Appendix B for details.

• Maximum common subgraph: MOLHIV and MOLPCBA are two real-world molecular graph
datasets adopted from [2, 7]. The task is to predict molecular properties. The domains are defined
by scaffolds, the core structures of small molecules [19]. In Fig. 1, we see that molecular graphs
within a domain share a maximum common subgraph.

• Multi-hop neighborhoods: PPA is a real-world dataset of protein association networks adopted
from [3, 7], and the task is to predict which taxonomic group (out of 37 groups) a graph originates
from. Each graph in PPA is a subgraph sampled from the 2-hop neighborhood of a protein, where
the species of the center protein (1,581 species in total) defines the domain.

• Size growth: GOSSIPCOP is a real-world dataset consisting of news propagation graphs adopted
from [4, 20], which are abstractions of social engagement information (retweets between users).
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Table 2: Out-of-distribution generalization performance of GNN models/techniques on GDS datasets.

Types Baseline Global Spectral WL Isomorphism Structure
Models GIN MLP GIN-Deep Virtual Node ChebNet 3WL-GNN GSN

Algorithm ERM

MolPCBA 0.247±0.002 0.090±0.000 0.253±0.002 0.285±0.001 0.232±0.001 OOT 0.233±0.001
MolHIV 0.752±0.016 0.684±0.010 0.758±0.016 0.762±0.007 0.755±0.020 0.720±0.021 0.778±0.013
PPA 0.687±0.010 0.095±0.000 0.677±0.002 0.710±0.004 0.603±0.007 OOT OOT
GossipCop 0.626±0.008 0.497±0.010 0.624±0.004 0.499±0.078 0.831±0.004 0.784±0.031 0.614±0.011
Isolation 0.620±0.006 0.256±0.003 0.686±0.002 0.690±0.007 0.708±0.004 0.744±0.009 OOT
Environment 0.769±0.003 0.335±0.000 0.849±0.012 0.861±0.006 0.786±0.008 0.629±0.015 OOT
RotatedMNIST 0.766±0.003 0.333±0.007 0.852±0.003 0.799±0.003 0.854±0.001 0.602±0.039 0.780±0.005
ColoredMNIST 0.128±0.001 0.103±0.001 0.129±0.000 0.128±0.000 0.135±0.000 0.102±0.000 OOT

Table 3: In-distribution generalization performance of GNN models/techniques on the GDS datasets (where the
training, validation, and test sets are randomly sampled from all domains).

Types Baseline Global Spectral WL Isomorphism Structure
Models GIN MLP GIN-Deep Virtual Node ChebNet 3WL-GNN GSN

Algorithm ERM

MolPCBA 0.338±0.004 0.094±0.002 0.366±0.001 0.386±0.001 0.283±0.003 OOT 0.313±0.002
MolHIV 0.787±0.012 0.694±0.002 0.767±0.005 0.795±0.004 0.805±0.008 0.769±0.000 0.788±0.004
PPA 0.923±0.007 0.101±0.000 0.912±0.006 0.929±0.002 Diverged OOT OOT
GossipCop 0.842±0.001 0.493±0.007 0.835±0.001 0.847±0.002 0.882±0.003 0.893±0.001 0.838±0.003
Isolation 0.648±0.002 0.253±0.002 0.706±0.000 0.723±0.005 0.724±0.001 0.741±0.001 OOT
Environment 0.789±0.001 0.335±0.001 0.878±0.001 0.896±0.004 0.810±0.002 OOT OOT
RotatedMNIST 0.798±0.003 0.315±0.007 0.865±0.001 0.831±0.001 0.876±0.001 0.614±0.002 0.815±0.002
ColoredMNIST 0.688±0.002 0.613±0.001 0.697±0.000 0.693±0.002 0.715±0.000 0.609±0.004 OOT

Table 4: Performance of domain generalization algorithms and graph augmentation techniques with the Graph
Isomorphism Network (GIN) backbone model on the GDS datasets.

Type Baseline DRO IRM Distribution-Matching Meta-Learning Augmentation
Algorithms ERM GroupDRO IRM DeepCORAL DANN DANN-G MLDG FLAG SA

Model GIN

MolPCBA 0.247±0.002 0.211±0.004 0.145±0.002 0.152±0.002 NA NA OOT 0.251±0.004 0.241±0.001
MolHIV 0.752±0.016 0.735±0.006 0.719±0.013 0.707±0.027 NA NA 0.650±0.014 0.752±0.003 0.758±0.005
PPA 0.687±0.010 0.651±0.011 0.665±0014 0.681±0.016 NA NA OOT 0.712±0.004 0.702±0.009
GossipCop 0.626±0.008 0.633±0.006 0.636±0.005 0.636±0.012 0.632±0.002 0.633±0.004 0.643±0.002 0.635±0.006 0.623±0.005
Isolation 0.620±0.006 0.602±0.002 0.627±0.005 0.621±0.007 0.620±0.005 0.616±0.002 0.626±0.002 0.633±0.007 0.621±0.007
Environment 0.769±0.003 0.759±0.001 0.765±0.003 0.763±0.006 0.759±0.003 0.764±0.003 0.757±0.007 0.778±0.006 0.776±0.003
RotatedMNIST 0.766±0.003 0.761±0.004 0.771±0.001 0.756±0.002 0.764±0.002 0.765±0.005 0.773±0.005 0.703±0.001 0.789±0.003
ColoredMNIST 0.128±0.001 0.126±0.000 0.113±0.002 0.128±0.001 0.127±0.000 0.128±0.000 0.127±0.000 0.125±0.005 0.129±0.000

The task is to predict the credibility of news. We split the entire dataset into ten domains according
to graph sizes, where each domain corresponds to a decile (every 10% percentile group).

• Subgraph compositions: ISOLATION and ENVIRONMENT are two artificial graph datasets
generated with Stochastic Block Models (SBMs) [21], where each graph consists of communities,
each with a specific intra-community connection probability. In both datasets, the domain is
characterized by the composition of communities selected, but their prediction tasks differ. We
predict the extra-community connection probabilities in ISOLATION, and the composition with
respect to another set of communities in ENVIRONMENT.

• Structural distortion: ROTATEDMNIST is a collection of semi-artificial super-pixel graphs
converted from the “image Rotated MNIST [22] dataset” using the SLIC [23] pipeline. The task is
to classify digits, and the domain is defined by the rotation angle of the underlying image. The
rotation of the underlying image leads to a distortion in the super-pixel graph; see Fig. 1.

• Feature shift only: COLOREDMNIST is another semi-artificial graph dataset converted from the
“image Colored MNIST dataset [9]” using SLIC. The domain affects the true node-feature-to-label
correlations while having nothing to do with the graph structures, fooling the algorithms that only
learn from the node features.

3 Generalization Algorithms, Augmentation Techniques, and GNN Models
We consider a variety of (1) domain generalization algorithms; (2) graph augmentation techniques; and
(3) GNN models/techniques; see Table 1 for the list of algorithms and models considered, Section 3
for discussions, and Appendix C for details

• Domain generalization algorithms aim to bias a model towards learning statistical invariances
across the training distributions under the assumption that such invariances hold in unseen test
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Table 5: Performance of domain generalization algorithms and graph augmentation techniques with the best
performing GNN models/techniques on each of the GDS datasets.

Types Baseline DRO IRM Distribution-Matching Meta-Learning Augmentation
Algorithms Models ERM GroupDRO IRM DeepCORAL DANN DANN-G MLDG FLAG SA

MolPCBA Virtual Node 0.285±0.001 0.238±0.001 0.155±0.001 0.161±0.001 NA NA OOT 0.293±0.003 0.268±0.003
MolHIV Virtual Node 0.762±0.007 0.729±0.014 0.715±0.005 0.722±0.025 NA NA 0.693±0.019 0.769±0.017 0.777±0.022
PPA Virtual Node 0.710±0.004 0.692±0.004 0.609±0.004 0.492±0.008 NA NA OOT 0.724±0.002 0.717±0.001
GossipCop ChebNet 0.831±0.004 0.829±0.005 0.833±0.005 0.834±0.003 0.837±0.001 0.838±0.002 0.826±0.003 0.834±0.004 0.817±0.003
Isolation ChebNet 0.708±0.004 0.704±0.007 0.713±0.004 0.713±0.006 0.704±0.007 0.704±0.007 0.716±0.005 0.718±0.003 0.720±0.006
Environment Virtual Node 0.861±0.006 0.851±0.002 0.846±0.004 0.862±0.001 0.843±0.006 0.848±0.009 0.798±0.001 0.887±0.003 0.861±0.012
RotatedMNIST ChebNet 0.854±0.001 0.851±0.001 0.857±0.002 0.855±0.002 0.852±0.001 0.852±0.001 0.864±0.001 0.854±0.002 0.855±0.001
ColoredMNIST ChebNet 0.135±0.000 0.133±0.001 0.123±0.004 0.135±0.000 0.134±0.000 0.134±0.000 0.130±0.000 0.135±0.001 0.134±0.000

Table 6: In-distribution and out-of-distribution performance gaps of best combinations of algorithms & models.

Datasets MolPCBA MolHIV PPA GossipCop Isolation Environment RotatedMNIST ColoredMNIST
Models Virtual Node Virtual Node Virtual Node ChebNet ChebNet Virtual Node ChebNet ChebNet
Algorithms FLAG SA FLAG DANN-G SA FLAG MLDG FLAG

In-distribution generalization performance 0.384±0.001 0.814±0.005 0.936±0.001 0.885±0.000 0.726±0.007 0.909±0.001 0.874±0.03 0.706±0.000
Performance gaps ( ID − OOD ) 0.091±0.003 0.037±0.023 0.212±0.003 0.047±0.002 0.006±0.009 0.022±0.003 0.010±0.003 0.571±0.001

domains. These methods specify both a prior on the types of invariances desired and an algorithm
for estimating them from training samples. Since the specific statistical invariances these algorithms
learn may be highly dependent on the type of data and the network architectures to which they are
applied, each technique’s applicability to graph data and GNNs models is unclear.

• Data augmentation methods are a standard component in image classification pipelines, but
augmentation methods for graph data are not as well studied or prevalent in practice. We consider
two types of graph augmentations: (1) augmentations to node features following an adversarial-
based augmentation algorithm [13]; (2) and augmentations to graph structures using the node
dropping and edge perturbation operations proposed in [24].

• GNN models and techniques. The expressive power of the backbone model is also an important
factor for generalizing to unseen test data [25]. Some GNN models or techniques may improve
OOD generalization performance as they may be robust to certain domain shifts on graphs. For
example, ChebNet [16], a spectral graph convolution model, may perform well in terms of OOD
generalization when the domain shift is easier learned in the Fourier domain.

4 Experiments
OOD generalization performance of GNN models and techniques. Before evaluating general-
ization and augmentation algorithms, we want to understand the OOD generalization performance
of off-the-shelf GNN models and techniques. Table 2 summarizes the out-of-distribution (OOD)
generalization results of all GNN models, and Table 3 shows the corresponding in-distribution (ID)
generalization performance. Here, OOT means out of the 24-hour quota of training time. The
gap between the ID and OOD generalization performance will then be an indicator of the model’s
robustness to the domain shift.

• Virtual Node, ChebNet, 3WL-GNN, and GSN outperform baselines (GIN, MLP, and GIN-Deep)
both ID and OOD. Virtual Node excels on MOLPCBA, PPA, ENVIRONMENT, when long-range
correlation is critical or graphs are large (see Table 7 for statistics).

• GSN shows robustness to the domain shifts in MOLHIV: it is not the most performant in-distribution
but beats other models on the OOD generalization task. Similarly, ChebNet is robust to the shifts
in graph sizes on GOSSIPCOP.

• Finally, Virtual Node fails on GOSSIPCOP where it must generalize to test domains consisting of
larger graphs. The reported performance 0.499± 0.078 AUC is no better than random guessing
(0.5 AUC).

Performance of domain generalization and augmentation algorithms. We then evaluate the six
domain generalization algorithms and the two graph augmentation methods; see Table 4.

• Augmentation methods, FLAG, and SA, generally work much better than domain generalization
algorithms across the datasets (except for MLDG on GOSSIPCOP). This implies many of the
domain generalization algorithms proposed for tensor data are not well-suited to graph data and
GNNs out-of-the-box.

• On MOLPCBA, MOLHIV, and PPA, generalization algorithms (GroupDRO, IRM, DeepCORAL,
and MLDG) fail consistently compared to the ERM baselines.

4



• IRM does not outperform the other algorithms on our graph COLOREDMNIST dataset because of
the model selection criteria, similar to what was reported in [25].

Combinations of domain generalization algorithms or augmentation techniques with the best
performing GNN models. We then evaluate the OOD generalization performance of algorithms
combined with the best performing models selected from Table 2 for each dataset; see Table 5. We
also report the performance of these combinations when tested in-distribution; see Table 6.

• The differences in performance between domain generalization algorithms in Table 5 are slightly
larger than those in Table 4. And by comparing to Table 4, we see DANN-G outperforms MLDG
on GOSSIPCOP, and MLDG outperforms SA on ROTATEDMNIST when using ChebNet as the
backbone model.

Summary of observations. We summarize our observations from Tables 2 to 6 as follows:

• Most of the domain generalization algorithms fail when applied to graph distribution shift datasets;
as shown in Tables 4 and 5. Their performance is usually close to the corresponding ERM baseline
and can be even lower on the MOLHIV, MOLPCBA, and PPA datasets.

• The best performance on a dataset is usually achieved by the best performing GNN model with an
augmentation technique; see Table 5. This implies that graph augmentations are promising research
directions to improve OOD generalization on graphs further.

• Lastly, in Table 6, the gaps between in-distribution and out-of-distribution generalization perfor-
mance of the best-performing pairs varies across datasets. Most of the gaps are large, especially on
PPA, MOLPCBA, and COLOREDMNIST, addressing that there is still large room to improve the
OOD generalization on those datasets by designing tailored algorithms to capture their specific
statistical invariances.
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Supplementary Material
A Problem Definitions
Supervised learning on graphs and graph classification. The goal of supervised graph learning is
to train a featurizer φ : G → H which maps a graph G = (V,E) with node attributes Xv for v ∈ V
and edge attributes eu,v for (u, v) ∈ E to a representation vector hG, which can then be used to
predict the label y of graph G through a classifier ω : H → Y in graph classification problems. In the
supervised learning problem of graph classification, the training dataset S = {(Gi, yi)}ni=1 contains
i.i.d. samples from the joint probability distribution P (G, y). We choose a predictor f = ω ◦ φ
that minimizes the empirical risk 1

n

∑n
i=1 `(f(Gi), yi) [26], where ` : Y × Y → [0,∞) is the loss

function. The ubiquitous choice of hypothesis class for learning graph representations are Graph
Neural Networks (GNNs), which apply permutation-equivariant operations, e.g. message passing
between connected nodes, and a permutation-invariant graph-level pooling function to all nodes
representations to obtain hG.

Domain generalization on graphs. The problem of domain generalization on graphs is an extension
of supervised learning where the data distribution is a mixture of D domains {1, · · · , D}, each char-
acterized by a dataset Sd = {(Gdi , ydi )}nd

i=1 consisting of i.i.d. samples from distribution P (Gd, yd).
We train on the training domains {1, · · · , Dtrain}, and the goal is out-of-distribution (OOD) gener-
alization to Dtest test domains {Dtrain + 1, · · · , Dtrain +Dtest}. The test domains are not accessible
during training, which differs from unsupervised domain adaptation, where unlabeled data from test
domains are available during training. The sample space of graph structure is high dimensional and
discrete, exhibiting a different nature than the Euclidean space, Rd, of conventional vector features.
An OOD generalization algorithm that learns the statistical invariances of the training distributions
on graphs should also respect permutation symmetries, making the challenging OOD generalization
problem even harder on graphs. In the OOD generalization setting, the highly dimensional and
discrete nature of graph structure introduces added complexity as compared to structures like 2D
grids of continuous pixel values used to represent images. If we consider connected undirected
graphs without loops of size k, there are O(2(k

2)) different representations of adjacency matrices
A ∈ {0, 1}(

n
2), while there are only O(2(k

2)/k!) distinct graphs. The fact that a graph structure can
be encoded differently implies that the functions acting on graphs should satisfy the permutation
invariance given by the permutation group G = Σk, i.e., the outcomes of a function on any two
isomorphic graphs should be identical. If not mentioned otherwise in this work, we assumed the
featurizer φ was a permutation-invariant function (i.e., GNN with graph pooling), and the classifier ω
a Multi-Layer Perceptron (MLP). However, in other cases, the featurizer φ is permutation-equivariant,
and the classifier ω is permutation-invariant, where embeddings φ(G) are also attribute graphs.

B GDS Datasets
At the heart of our experiments is the design of graph datasets with rich distribution shifts; see Table 7
for more information and Fig. 1 for illustrations. For each dataset, we either prepare or recover the
domain information, and as an OOD generalization benchmark, the domain labels d for each sample
are included in the datasets.

Table 7: Statistics of the GDS datasets.
Dataset MolHIV MolPCBA PPA GossipCop Isolation Environment RotatedMNIST ColoredMNIST

Input mol-graph mol-graph protein-nets propagation-nets SBM graphs SBM graphs super-pixels super-pixels
Prediction mol-properties mol-properties protein-prop fake-news edge-prob composition digits digits
Domain scaffold scaffold species size composition composition rotation color
Metric AUC AP Accuracy AUC Accuracy Accuracy Accuracy AUC

Avg. Graph Size 25.5 26.0 243.4 57.5 58.5 147.7 66.0 67.0
# of Domains 19,089 120,084 1,581 10 10 4 6 3
# of Samples 41,127 437,929 158,100 5,464 20,000 60,000 70,000 70,000

Type real-world
Hu et al. [7]

real-world
Hu et al. [7]

real-world
Hu et al. [7]

semi-artificial
Dou et al. [4]

artificial artificial
semi-artificial

Ghifary et al. [22]
semi-artificial

Arjovsky et al. [9]

Maximum common subgraph: OGB-MOLHIV and OGB-MOLPCBA are two real-world
molecular graph datasets adopted from Wu et al. [2], Hu et al. [7]. Each graph is an abstraction of a
molecule, where nodes are atoms and edges are chemical bonds. The task is to predict molecular
properties, e.g., whether the given molecule inhibits HIV virus replication in OGB-MOLHIV. The
domains are defined by scaffolds, the core structures of small molecules [19], which can be translated
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Test domains

(a) OGB-MOLHIV

Training domain 0
Training domain 1
Training domain 2
Test domains

(b) OGB-MOLPCBA

Training domain 0
Training domain 1
Training domain 2
Test domain

(c) OGB-PPA

Training domain 0
Training domain 1
Training domain 2
Test domain

(d) UPFD-GOSSIPCOP

Figure 2: Scatter plots visualizing the training and test domain distributions of some GDS datasets, using the
embeddings learned by a Weisfeiler-Lehman (WL) subtree kernel.

into the language of graph theory as the maximal isomorphic subgraph. In Fig. 1, we see that
molecular graphs within a domain share a maximum common subgraph (i.e., the scaffold). They
differ from each other only on a few atoms added to different locations of the scaffold. The graph
edit distances [27] between graphs in the same domain are very small but can be unbounded across
domains. We have many domains in the training, validation, and test splits, as most of the domains
contain few samples. Each of the test domains in the two datasets has only a single sample, which
imposes yet another challenge to some OOD generalization algorithms such as DANN [11]; We
adopt the two molecule datasets from the OGB paper [7]. As the original paper already splits the
train, validation, and test sets using domain information (scaffold), we follow this practice to leave
the split unchanged.

Multi-hop neighborhoods: OGB-PPA is a real-world dataset of protein association networks
adopted from [3, 7]. The graphs in OGB-PPA are abstractions of protein-protein association relations
of 1, 581 species, and the task is to predict which taxonomic group (out of 37 groups) a graph
originates from. Each graph in OGB-PPA is a subgraph sampled from the 2-hop neighborhood of a
protein, where the species of the center protein defines the domain. Thus, graphs within a domain
share a common type of center node (center proteins are identical species). Although the center node
is always removed in sub-sampling, we believe the sampled neighborhoods around proteins of a
specific species exhibit sufficient similarity to be considered as a coherent domain. Similarly, as the
OGB-PPAdataset is also adopted from the OGB datasets, we follow the original practice to split the
train, validation, and test sets using the species information provided by the dataset.

Size growth: UPFD-GOSSIPCOP is a real-world dataset consisting of news propagation graphs
adopted from [4, 20]. The propagation networks are abstractions of social engagement information
(retweets between users) collected from Twitter, built according to fact-check information from
Gossipcop and extracted by FakeNewsNet [20]. Given this propagation network, the task is to predict
the credibility of news, either real or fake. We split the entire dataset into ten domains according to
graph sizes, where each domain corresponds to a decile (every 10% percentile group). The training
and validation sets are randomly selected from the 80% smallest graphs with a split ratio of 6:2, while
the test set is the 20% largest graphs. Domains constructed to simulate the scenario of training on
propagation graphs filtered to a specific range of sizes but then deploying to real-time fact-checking
systems facing an environment with propagation graphs of growing sizes. On the original dataset,
we find a multi-layer perceptron (MLP) can achieve 0.948 accuracy, which is even higher than the
accuracy of a Graph Isomorphism Network (GIN) with the same number of layers and parameters,
0.930. Thus, we replace all node features (which are user profile information) prepared in Dou et al.
[4] with random integers uniformly selected from a vocabulary of size 8, i.e., {0, · · · , 7}. We then
use the ROC-AUC metric to reflect false positives.

Subgraph compositions: SBM-ISOLATION and SBM-ENVIRONMENT are two artificial graph
datasets generated with Stochastic Block Models (SBMs) [21]. A SBM defines a random graph
which modulates the intra- and extra-community connection probabilities. In SBM-ISOLATION,
we randomly select 3 from the 5 total communities C1, · · · , C5 for each graph, with intra-edge
probability p1 = 0.5, · · · , p5 = 0.9 respectively, and we predict the number of communities
with relatively smaller extra-edge probability q′ = 0.1 (with default q = 0.3). The domain is
characterized by the composition of communities selected, for example, {C1, C3, C5}. While
in SBM-ENVIRONMENT, we define 7 communities {C1, · · · , C7} with intra-edge probabilities
p1 = 0.3, p2 = 0.4, · · · , p7 = 0.9 and set the extra-edge probability q to 0.1. For each graph, we
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select 3 communities from {C1, C3, C5, C7} and 2 communities from {C2, C4, C6}, and we use
the former selections to define the domain and the later selections as the prediction task. In one
sentence, SBM-ISOLATION and SBM-ENVIRONMENT are similar in their distribution shifts: graphs
in different domains consist of distinct community subgraphs, although their prediction tasks differ.
When generalizing to unseen test graphs, we have already seen all communities, but we have never
seen them appear in the same graph.

Structural distortion: SUPERPIXEL-ROTATEDMNIST is a collection of semi-artificial graphs
constructed from images in Rotated MNIST [22] using the super-pixel [23] pipeline. In Rotated
MNIST, handwritten-digit images are split into 6 equal folds and rotated counter-clockwisely by
0°, 15°, 30°, 45°, 60°, and 75°, respectively. Because super-pixels sampled near image boundaries
and on digits are not significantly affected by rotations, the super-pixel graphs converted from images
rotated with different angles can be thought of as graphs that undergo some “structure distortion”;
see Fig. 1 for visualizations. The task is to classify digits with 1-dimensional node features as the
super-pixel intensities. We train and validate on graphs converted from 0°, · · · , 60°-rotated images
and generalize to unseen 75° ones. For the generation process of the dataset, after we attain the images
which are rotated for certain degrees, we use the SuperPixel [23] image segmentation algorithm
to extract nodes that will represent small regions of homogeneous intensity. Then we construct
edges using k-nearest neighbor algorithm (we set k as 8 here), where distances are computed by the
2D coordinates of each node. We set the upper bound of the number of super-pixels to 75 and the
compactness of the SuperPixel [23] image segmentation algorithm to 0.25. We adopt the same setting
of the SuperPixel algorithm from Dwivedi et al. [28].

Feature shift only: SUPERPIXEL-COLOREDMNIST is another semi-artificial graph dataset
constructed using Colored MNIST images [9] using the same super-pixel method as above. In
Colored MNIST, the domain affects the true image-to-label correlations, fooling the algorithms
that try to learn this mapping directly. When converted to graphs, the super-pixel colors are used
as node features, and GNNs which only use the node features will fail on the test graphs, where
the feature-to-label correlation is reversed. However, GNNs that only learn the structure-to-label
mapping will generalize as if the test graphs are in-distribution. Domain shifts on SUPERPIXEL-
COLOREDMNIST only affect node features, making it a feature-shift-only dataset. For the Colored
MNIST dataset, we follow the original paper [9] to generate images with color shifts. Totally there
are three domains, where the first two form the train and validation sets, and the last one is the test
set. Firstly a temporary binary label ỹ is assigned to each image. For digits 0-4, ỹ = 0; for digits
5-9, ỹ = 1. Secondly, ỹ is randomly flipped with the probability 0.25 to get the label y. Then, we
paint red color to images with label y = 1 and green to whose y = 0. Lastly, the colors are randomly
flipped by the probability of 0.1, 0.2, and 0.9 for each domain, respectively. For graph construction,
the pipeline is exactly the same as that for the Rotated MNIST. The dataset is constructed this way so
that the models that rely heavily on the node features will fail.

In-distribution vs. out-of distribution validation set. An important fact we want to note is that,
among the eight datasets we curated, MOLHIV, MOLPCBA, and PPA’s validation sets are out-of-
distribution (i.e., not part of the training domains), while the rest five datasets’ validation set are
just randomly sampled from the training domains. We understand that both setups are acceptable.
Sampling the validation set from the training domains is just the standard model selection method
discussed in [25], while using an out-of-distribution validation set can sometimes improve the OOD
test performance as shown in [29]. We did a simple ablation study on MOLHIVand found that using
an in-distribution validation set, the OOD test performance of empirical risk minimization with a
Graph Isomorphism Network (GIN) is 0.767, a bit higher than the baseline model 0.752 selected
using the original out-of-distribution validation set.

Data analytics and visualization. To gain a qualitative understanding of the distribution shifts
defined for some of the datasets above, we visualize the domain distributions via scatter plots of
embeddings learned with a Weisfeiler-Lehman (WL) subtree kernel of 3 iterations; see Appendix D
for details. We see form Fig. 2, the graphs (dots) from different domains (represented by colors) in
MOLHIV, MOLPCBA are clearly separated. However, on PPA and GOSSIPCOP, there are still large
overlaps between the distributions of graphs from different domains.

C Baseline Algorithms and Models
We implement a collection of OOD generalization algorithms, graph augmentation methods, and
GNN models and techniques as shown in Table 1.
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OOD generalization algorithms. We implement the following six2 OOD generalization algorithms:

• Empirical Risk Minimization (ERM, [26]) means simultaneously minimizing the loss over allDtrain

datasets SdDtrain
d=1 combined, such that the objective becomes 1

Dtrain

1
nd

∑Dtrain
d=1

∑nd

t=1 `(f(Gdi ), y
d
i ).

• Group Distributionally Robust Optimization (GroupDRO, [8]) minimizes the empirical risk
on the training set while more heavily weighting domains with larger errors. Let Rd =
1
nd

∑nd

i `(f((Gdi ), y
d
i )) be the empirical risk over a single domain. Group Distributionally Robust

Optimization (GroupDRO) for domain generalization then solves min{maxd∈Dtrain Rd}, minimiz-
ing the worst case expected risk for all domains [8].

• Invariant Risk Minimization (IRM, [9]) seeks to learn a common parameterization of the linear
classifier ω that minimizes the empirical risks in every domain. It seeks to learn a featurizer ω : G →
H and classifier φ : H → Y , composed as predictor φ ◦ ω, such that a single parametrization for φ
minimizes the empirical loss in each domain,Rd(φ ◦ ω) for all domains, φ ∈ arg minφRd(φ ◦ ω)
for all d ∈ Dtrain

• Correlation Alignment for Deep Domain Adaptation (DeepCORAL, [10]) matches the mean and
covariance statistics of graph representations hG = φ(G) (after graph pooling) from different
domains. It penalizes the difference between each domain. Let Ci and Cj denote the feature
covariance matrices of domain i and j, that is Ci = 1

ni−1 (D>i Di − 1
ni

(1>Di)
>(1>Di)), where

ni is the number of samples and Di indicates the data example. The CORAL loss is defined as
l = 1

4d2 ‖Ci − Cj‖
2
F , d is the number of dimension of data and F is Frobenius norm.

• Domain-Adversarial Neural Networks: (DANN, [11]) use an adversarial network to match the
distributions of graph representations. During the training procedure, DANN encourages the
appearance of features, which are discriminative for the main learning task on the source domains
and indiscriminate with respect to the transfer between the domains. As mentioned in Appendix A,
we also consider a modified version, DANN-Graph, where the featurizer φ is a permutation-
equivariant GNN without graph pooling, and the classifier ω is a permutation-invariant GNN with
graph pooling. We investigate whether performing distribution matching on the graph embeddings
before pooling leads to an increase in performance.

• Meta-Learning for Domain Generalization (MLDG, [12]) learns how to generalize across domains
using the framework of MAML [32]. Meta-learning for Domain Generalization splits the Dtrain
domains datasets Sd into subsets meta-train and meta-test. During training, the loss is first
computed over the meta-train sets and a parameter update determined, and then the loss is computed
over the meta-test subsets with respect to model parameters after meta-train update is applied. This
bi-level optimization is performed using gradient descent, and the final parameters are evaluated on
the true test domains.

Augmentation methods. We implement two augmentation methods tailored for graphs:

• Adversarial Augmentation on Graphs (FLAG, [13]) iteratively augments node features with
gradient-based adversarial perturbations. With image data, rotations and crops are standard
examples of semantics preserving transformations, and these types of augmentations are not
considered to be domain-specific. However, the graphs we consider are abstracted from diverse
fields, and individual nodes, edges, and features are much more semantically relevant than individual
pixels in an image - i.e., nodes might represent atoms, and edges represent chemical bonds. Thus,
it is unclear what types of augmentation (in features and connective structure) work well for
which types of graphs and the domain shifts they are subject to. FLAG is one type of graph
adversarial-based augmentation algorithm that happens in the node feature space. Our experimental
results show that FLAG is effective, especially when the input node features are discrete categorical
features. In this work, we follow the original paper to do three steps of adversarial training. We only
carry out a rough hyperparameter search on the step size of gradient ascent from {0.01, 0.001},
which can make the results suboptimal compared with the original paper.

• Structural Augmentation (SA) performs randomized node dropping and edge perturbation to
increase the structural diversity of the graphs sampled from the training domains. You et al. [24]

2We note the recent development of graph-specific algorithms such as those by Yehudai et al. [30] (general-
izing across sizes using a self-supervised learning task) and Wu et al. [31] (a mix-up framework tailored for
class-imbalanced node classification). We do not implement them in our initial release of GDS because they are
recent papers, and the source code has not been made public.
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proposes a graph contrastive learning framework (GCL) for self-supervised pre-training of GNNs
based on minimizing the distance in latent space between two augmented views of the same graph
according to a contrastive loss (a formulation of the loss proposed in SimCLR [33], but for graph
data). The self-supervised pre-training plus supervised fine-tuning scheme they implemented for
solving transfer learning tasks was the closest application to the domain generalization present in
their evaluation. Inspired by the graph contrastive learning framework (GCL) for self-supervised
pre-training of GNNs proposed by You et al. [24], we select two of the structural augmentation
(SA) types that they use to generate contrastive pairs and simply apply them directly to the training
data while performing ERM. We consider Node dropping - randomly discarding a certain portion
of vertices V along with their connections, and Edge perturbation - perturbing the structure of G by
randomly adding or dropping a certain ratio of edges under the assumption that the graph semantics
are preserved under these transformations and that a model should be robust to variance in the
edge connectivity. The choice described in section Appendix C to omit this contrastive pre-training
in the main evaluation is motivated by empirical results suggesting that SA with ERM alone is
competitive and that GCL does not provide a performance benefit in the domain generalization
setting compared to the added computational cost of processing 2N augmented graphs per epoch
of pre-training.

GNN models and techniques. We implement eight GNN models and techniques reflecting a variety
of architectural features and inductive biases:

• Standard GNNs: Graph Isomorphism Network (GIN, [14]) and a 10-layer version GIN-Deep,
along with Multi-Layer Perceptron (MLP) as the ablation setup without structure learning.

• Global-Context Techniques: Virtual Node [15, 34] introduces a “virtual node” that is connected
to all the nodes in the graph, which helps to learn correlations at a distance and improves the
complexity of graph aggregations.

• Spectral Convolution Methods: ChebNet [16] applies spectral filtering in the Fourier domain
representations of node features.

• Weisfeiler-Lehman (WL) Expressive Power Hierarchy: 3WL-GNN [17] enjoys guaranteed 3-WL
expressiveness, which is strictly stronger than message passing GNNs.

• Structure-Aware GNNs: GSN [18] counts graph substructures isomorphic to some small query
graph and enhances the expressive power of message passing GNNs.

D More Experimental Details
D.1 Embedding Visualization

We provide some visualization results on the OOD generalization behavior of the DeepCORAL,
DANN, and DANN-G algorithms. The visualization shows the clustering behavior of the final
predictions with respect to the predictive labels on the test set. Results are shown in Fig.3. We can
see that DANN and DANN-G have better performances than DeepCORAL.

label0
label1
label2

(a) DeepCORAL

label0
label1
label2

(b) DANN

label0
label1
label2

(c) DANN-G

Figure 3: Visualization of the projected features by PCA of DeepCORAL, DANN, and DANN-G algorithms on
the SBM-ENVIRONMENT dataset.
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D.2 Domain Distributions Visualization of GOSSIPCOP

ChebNet is robust to the shifts in graph sizes on GOSSIPCOP. Considering scatter plots of the
GOSSIPCOP domain distributions like in Appendix B, but altered where the embeddings are extracted
from the graph Laplacian spectrum instead of the WL sub-tree kernel, the comparison between Fig. 4
and Fig. 2d, we see that domain shifts involving graph size may be easier learned in the Fourier
representation than the WL kernel space.

Train domain 0
Train domain 1
Train domain 2
Test domain

Figure 4: UPFD-GOSSIPCOP clustered using embeddings learned from Laplacian spectrums.

D.3 Loss Curves of Virtual Node with ERM on GOSSIPCOP

Virtual node fails on GOSSIPCOP where it must generalize to test domains consisting of larger graphs.
The reported performance 0.499± 0.078 AUC is no better than random guessing (0.5 AUC); see the
learning curves below in Fig. 5.
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Figure 5: Virtual Node fails catastrophically to generalize OOD on UPFD-GOSSIPCOP.

D.4 Hyperparameter Search

We search from the following hyperparameter sets for different algorithms. For each algorithm, we
choose at most one algorithm-specific hyperparameter to tune:

• IRM: the weight for IRM penalty loss is chosen from {1.0, 100.0}, IRM penalty anneals
per 500 iterations.

• MLDG: the hyper-parameter beta is chosen from {0.1, 1.0, 10.0}.
• FLAG: the inner gradient ascent step size for FLAG is chosen from {0.01, 0.001}.
• SA: the data augmentation ratio for SA is chosen from {0.1, 0.2, 0.3, 0.4}, the type of data

augmentations are randomly chosen from node drop and edge permutation.
• DeepCORAL: Coral penalty weight is chosen from {1.0, 10.0}.
• DANN: the DANN lambda value is chosen from {0.1, 1.0, 10.0}.
• DANN-G: similarly, the DANN lambda is chosen from {0.1, 1.0, 10.0}.
• GSN: the type of subgraph are cycles, and the maximum substructure size is 6.

Tables 8 to 10 present the results for different types of algorithms across different hyper-parameters.
We select the top-performing hyper-parameters from Tables 8 to 10. We summarize all the important
hyper-parameter selections in Table 11.
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D.5 Other experiment details

For all the implementations, we use the Adam optimizer, with a weight decay of 0. We also show the
batch size, the number of epochs, learning rate, the number of groups for each batch for every dataset
in Table 12. We use GNN base model GIN with five convolutional layers, dropout of 0.5, and the
RELU activation function. The dimension of the hidden layer is 300.

Table 8: The results for IRM and Meta-Learning type algorithms with different hyperparameters. Top results
are boldfaced.

IRM Meta-Learning
Alogorithms IRM IRM MLDG MLDG MLDG
Parameters 1.0 100.0 0.1 1.0 10.0

GIN
MolPCBA 0.112 0.066 NA NA NA
MolHIV 0.689 0.643 0.666 0.615 0.653
PPA 0.581 0.443 NA NA NA
GossipCop 0.642 0.599 0.64 0.639 0.638
Isolation 0.616 0.547 0.604 0.638 0.625
Environment 0.757 0.599 0.759 0.751 0.767
RotatedMNIST 0.766 0.377 0.779 0.761 0.768
ColoredMNIST 0.126 0.106 0.128 0.127 0.128

Table 9: The results for Data Augmentation type algorithms with different hyperparameters. Top results are
boldfaced.

Augmentation
Algorithms FLAG FLAG SA SA SA SA
Parameters 0.001 0.01 0.1 0.2 0.3 0.4

GIN
MolPCBA 0.251 0.257 0.244 0.232 0.227 0.227
MolHIV 0.76 0.747 0.732 0.78 0.786 0.766
PPA 0.699 0.695 0.704 0.699 0.675 0.688
GossipCop 0.63 0.632 0.62 0.613 0.62 0.614
Isolation 0.616 0.633 0.623 0.631 0.637 0.616
Environment 0.77 0.794 0.772 0.774 0.771 0.671
RotatedMNIST 0.695 0.698 0.787 0.781 0.784 0.782
ColoredMNIST 0.127 0.126 0.129 0.129 0.129 0.13

Table 10: The results for Distribution Matching type algorithms with different hyperparameters. Top results are
boldfaced.

Distribution-Matching
Algorithms DeepCORAL DeepCORAL DANN DANN DANN DANN-G DANN-G DANN-G
Paramerters 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

GIN
MolPCBA 0.152 0.145 NA NA NA NA NA NA
MolHIV 0.722 0.674 NA NA NA NA NA NA
PPA 0.704 0.694 NA NA NA NA NA NA
GossipCop 0.639 0.627 0.635 0.631 0.637 0.638 0.631 0.578
Isolation 0.639 0.613 0.608 0.611 0.602 0.605 0.606 0.576
Environment 0.766 0.761 0.75 0.755 0.754 0.755 0.759 0.74
RotatedMNIST 0.755 0.759 0.745 0.74 0.681 0.742 0.729 0.684
ColoredMNIST 0.128 0.129 0.126 0.125 0.125 0.127 0.125 0.125
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Table 11: The summary of the hyperparameters for different algorithms.

Datasets MolPCBA MolHIV PPA GossipCop Isolation Environment RotatedMNIST ColoredMNIST
GroupDRO 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
IRM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 100.0
MLDG NA 0.1 NA 0.1 1.0 10.0 0.1 0.1
FLAG 0.01 0.001 0.001 0.01 0.01 0.01 0.01 0.01
SA 0.1 0.3 0.1 0.1 0.3 0.2 0.1 0.1
DeepCORAL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DANN NA NA NA 0.1 1.0 1.0 0.1 0.1
DANN-G NA NA NA 0.1 1.0 1.0 0.1 0.1

Table 12: More hyperparameters for different datasets.

Datasets MolPCBA MolHIV PPA GossipCop Isolation Environment RotatedMNIST ColoredMNIST
Batch Size 128 128 32 128 128 128 128 128
# Epochs 250 200 150 150 150 200 150 100
Learning Rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
# Groups Per Batch 4 4 4 4 4 2 4 2
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