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Abstract

Hypervolume improvement (HVI) is commonly
employed in multi-objective Bayesian optimiza-
tion algorithms to define acquisition functions
due to its Pareto-compliant property. Rather than
focusing on specific statistical moments of HVI,
this work aims to provide the exact expression
of HVI’s probability distribution for bi-objective
problems. Considering a bi-variate Gaussian ran-
dom variable resulting from Gaussian process
(GP) modeling, we derive the probability dis-
tribution of its hypervolume improvement via a
cell partition-based method. Our exact expres-
sion is superior in numerical accuracy and com-
putation efficiency compared to the Monte Carlo
approximation of HVI’s distribution. Utilizing
this distribution, we propose a novel acquisition
function - e-probability of hypervolume improve-
ment (¢-PoHVI). Experimentally, we show that on
many widely-applied bi-objective test problems,
e-PoHVI significantly outperforms other related
acquisition functions, e.g., e-Pol, and expected
hypervolume improvement, when the GP model
exhibits a large the prediction uncertainty.

1. Introduction

For solving black-box multi-objective optimization prob-
lems (MOPs), the hypervolume indicator (HV) (Zitzler &
Thiele, 1999) is extensively employed for assessing the qual-
ity of the Pareto front approximation or guiding the search
direction. HV is defined as the Lebesgue measure of the sub-
set of R™ dominated by an approximation set to the Pareto
front. It is extensively applied in many multi-objective
optimization algorithms, e.g., indicator-based evolution-
ary algorithms (Beume et al., 2007; Deb et al., 2002) and
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Bayesian optimization (Emmerich et al., 2016; Yang et al.,
2019b; Daulton et al., 2020; Emmerich et al., 2020; Daulton
et al., 2020; 2021; Suzuki et al., 2020; Garrido-Merchan
et al., 2023; Zuluaga et al., 2016; Yang et al., 2016; 2022).
In multi-objective Bayesian optimization, HV induces the
famous hypervolume improvement (HVI) function (Em-
merich, 2005), which quantifies the benefit of appending
a new data point to the approximation set - the increment
of the HV value caused by the new point. HVI generalizes
the notion of “improvement” in the single-objective scenar-
ios, and therefore, it serves as the base of many successful
multi-objective acquisition functions, e.g., the probability
of improvement (Pol) (Emmerich et al., 2006; Keane, 2006)
that measures the chance of realizing nonzero HVI, e-Pol
that computes the probability of objective points having
least € distance to the approximation set, and the expected
hypervolume improvement (EHVI) (Emmerich et al., 2006;
Yang et al., 2019b) that generalizes expected improvement
(ED (Jones et al., 1998) from single-objective Bayesian
optimization.

Motivation At an unknown decision point, the predic-
tive/posterior distribution of its objective value follows a
multivariate normal distribution in Bayesian optimization.
Consequently, HVI defined on this predictive distribution
is a real-valued random variable. To the best of our knowl-
edge, the existing multi-objective acquisition functions ei-
ther only consider the first moment of HVI’s distribution,
e.g., EHVI for the mean, or completely disregard the dis-
tribution, e.g., e-Pol, which is not related to the quantile
of HVI’s distribution (see Sec. 4). However, when HVI
shows a large dispersion (e.g., large variance), only relying
on the mean of HVI makes the acquisition function less
trustworthy/meaningful. In this sense, higher moments or
at least the quantiles can help quantify the risk/uncertainty
of the acquisition value (Mehlawat et al., 2021; Schonlau
et al., 1998), which is difficult to obtain without the exact
expression of HVD’s distribution.

Contributions To answer the issue we raise above, we
aim to provide the exact distribution function of HVI and
demonstrate its usefulness in Bayesian optimization for
speeding up empirical convergence. Our contributions are
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summarized as follows:

1. We derive the exact expression of HVI’s distribution
function in the bi-objective optimization scenario and
numerically validate it against the Monte Carlo (MC)
method. The exact distribution exhibits better compu-
tational efficiency and numerical accuracy (Sec. 3)

2. We propose a novel acquisition function, e-Probability
of Hypervolume Improvement (-PoHVI), which uti-
lizes HVT’s distribution function directly. It computes
the probability of making at least € hypervolume im-
provement to the current approximation set (Sec. 4).

3. We compare e-PoHVI, £-Pol, and EHVI on 14 selected
test problems, where we observe e-PoHVI substantially
improves the empirical convergence of Bayesian opti-
mization over £-Pol and EHVI (Sec. 5).

2. Preliminaries

Multi-objective optimization A real-valued multi-
objective optimization problem (MOP) involves minimiz-
ing multiple objective functions simultaneously, i.e., f =
(fi, s fm) fi + & = R, X C R4 € [1.m]. For ev-
ery y() and y(® € R™, we say y(") weakly dominates
y @ (written as y(I) < y()) iff. yz(l) < ygz), i € [1..m].
The Pareto order < on R™ is defined: y») < y®) iff.
y® < y® and yM #£ y@ . A point x € X is ef-
ficient iff. x’ € X(f(x') < f(x)). The set of all ef-
ficient points of & is called the efficient set. The im-
age of the efficient set under f is called the Pareto front.
Multi-objective optimization algorithms often employ a fi-
nite multiset X = {x(), ... x(™} to approximate the ef-
ficient set, whose image under f is denoted by Y. The
non-dominated subset of Y is a finite approximation to the
Pareto front, which is denoted by P. Non-dominated space
w.r.t. P is the subset of R™ that is not dominated by P,
i.e., ndom(P) := {y € R™: Ip € P(p < y)}. Similarly,
the dominated space w.r.t. P, denoted by dom(P), is the
complement of ndom(7P).

Bayesian Optimization BO (Mockus, 1974; Jones et al.,
1998; Shahriari et al., 2016) is a sequential model-based
optimization algorithm for solving black-box optimization
problems that are expensive to evaluate. BO starts with sam-
pling a small initial set of data points X C X (with Latin
Hypercube Sampling). After evaluating X with f, it con-
structs a probabilistic model Pr(f | X,Y) (e.g., Gaussian
process regression). BO quantifies the quality of unseen
points with an acquisition function, which targets balanc-
ing exploration and exploitation of the search process. BO
chooses the next point to evaluate by maximizing the acqui-
sition function. Please see (Knowles, 2006; Emmerich et al.,
2016; 2020; Daulton et al., 2020; Belakaria et al., 2019;

Zhang & Golovin, 2020; Tu et al., 2022; Garrido-Merchédn
et al., 2023) for more details and developments on this topic.

Gaussian process regression In this work, we model each
objective function independently as the realization of a cen-
tered Gaussian process (GP) prior (Rasmussen & Williams,
2006), i.e., f; ~ gp(0,k;),i € [1..m], where k;: X x X —
R is a kernel function that models the auto-covariance of
fi, ¥x,x' € X, Cov{f;(x), fi(x")} = ki(x,x’). Given
adataset D = (X,Y), X = {xM,... . x("} c &, and
Y = {f(xM),...,f(x(™)}, the posterior GPs are inde-
pendent: fi | D ~ gp(fi,k:), where f; and k; are the
posterior means and kernel functions, respectively. Many
works have been devoted to model cross-correlations among
GPs (Alvarez etal., 2012), e.g., multi-task GP (Bonilla et al.,
2007) and dependent GP (Boyle & Frean, 2004).

Hypervolume Improvement The hypervolume (HV) in-
dicator of aset P C R™ is defined as the Lebesgue measure
A of the set that is dominated by PP and bounded from above
by a reference point r € R™, i.e., HV(P,r) = A\({y €
R™:y <rAdp € P,p <y}). The hypervolume indica-
tor is often taken as a performance metric for comparing the
empirical performance for multi-objective optimization al-
gorithms (Zitzler et al., 2003) or used in the indicator-based
optimization algorithms (Beume et al., 2007). In Bayesian
optimization, the set P is typically the approximation set -
the non-dominated subset of the data D. The contribution
of a single objective vector y to P can be quantified by the
well-known hypervolume improvement (HVI):

At (y;P,r) = HV(PU{y},r) —HV(P,r). (1)

Note that, for a dominated point, i.e., y € dom(P), its HVI
value is zero. Here, we introduce a “plus” symbol in AT
to indicate that HVI is non-negative. The purpose of this
notation shall become clear when we propose a generaliza-
tion to the definition of HVI (see Sec. 3). HVI underpins
many useful acquisition functions in Bayesian optimization.
For instance, Probability of Improvement (Pol) (Stuckman,
1988) is originally devised for single-objective optimiza-
tion cases and later generalized to multi-objective optimiza-
tion (Emmerich et al., 2006; Keane, 2006). It quantifies the
probability that y lies in the non-dominated space w.r.t. P:
Pol(x; P) = E{]lndorn(P)(Y) | D,x}. Also, e-Probability
of Improvement (e-Pol) is proposed recently (Emmerich
et al., 2020) to make the search less exploitative. It mea-
sures the probability of the non-dominated points that are at
least € away from the approximation set P:

e-Pol(x;P,e) = E {]lndom(P) (y +¢eln) | D, x} ,

where 1,,, is an m-dimensional vector of 1’s. The com-
putational complexity of e-Pol is O(nlogn) for m =
2,3 (Yang et al., 2017; Emmerich et al., 2020) and
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O(2m’1nL%J) for m > 4 (Yang et al., 2019a), where
n = |P|. Furthermore, Expected hypervolume improve-
ment (Emmerich et al., 2006) calculates the expectation
of the HVI value of a multivariate Gaussian random vari-
able: EHVI(x;P,r) = E{AT(y;P,r) | D,x}. The
time complexity of EHVI’s computation is ©(n log n) for
m = 2,3 (Emmerich et al., 2016; Yang et al., 2017; 2019a)
and O(melnL%J) for m > 4 (Yang et al., 2019a).

3. The Distribution of Hypervolume
Improvement

Generalized hypervolume improvement Prior to deriv-
ing the distribution functions, we first propose to generalize
the definition of HVI in Eq. (1) for assigning nonzero values
to the dominated points. We define the negative hypervol-
ume “improvement” of a dominated point y as the negative
volume of the intersection of the set that dominates y with
the set dominated by P, namely,

A (y)=-2({p eR™: p Xy} Ndom(P)),

which penalizes the dominated points that are located far
from P. In Fig. 1, we depict an example for the negative
HVI (point b). We claim that the negative HVI is desir-
able/useful to compute for two major reasons: (1) It makes
the acquisition optimization step more tractable when a
large subset of objective points are dominated by P w.h.p.,
typically when P is quite close to the Pareto front. Since
the HVI is nearly zero on this subset, the acquisition func-
tion defined on HVI (e.g., Pol and EHVI) will exhibit a
large plateau on its optimization landscape, making it harder
to maximize. The negative HVI practically mitigates this
issue by turning plateaus into valleys. (2) HVI is also exten-
sively employed in evolutionary multi-objective algorithms
(EMOASs) (Deb et al., 2002; Beume et al., 2007), where it
is necessary to assign nonzero values to dominated points
to move such points to the Pareto front. Our extension, the
negative HVI, facilitates a sensible comparison among dom-
inated points, which is a more natural extension compared
to other existing proposals (Wang et al., 2015). We combine
the negative HVI with Eq. (1), resulting in the generalized
hypervolume improvement:

Ay) = Lhdom(p) (}’)A+(Y)+]ld0m(79)(Y)A_(Y)- 2)

Importantly, if one wishes to focus only on the non-
dominated points, then the above generalization is exactly
the same with Eq. (1).

Assume a data set D = (X,Y) observed on the vector-
valued objective function. The approximation set P C R™
to the Pareto front is the non-dominated subset of Y. Also,
we assume a reference point r € R™. For the bi-objective
case (m = 2), we depict an example of the HVI in
Fig. 1. In this example, the random point y follows the

Figure 1. For a two-dimensional objective space, we picture
the augmented Pareto approximation set P by the black dots
,y™® and the attainment boundary by the red curve.
The posterior distribution of y at a point x € X is illus-
trated by the light gray ellipsoids. The generalized hypervol-
ume improvement of two realizations a and b are depicted in
the shaded area. The objective space [—oo, r| is partitioned into
cells (e.g., C'(1,0)). When restricting the random point y to
a cell, its hypervolume can always be expressed in four terms:
At (@)|oo,1) = A( A1) + A(Az ) + A(A3) + A(As) (A is
the Lebesgue measure on R?). When a point is dominated by P,
its negative hypervolume improvement can be written similarly:

y O ..

posterior distribution of a Gaussian process model, i.e.,
y | D,x ~ N(f(x),diag(ki (x, %), ka(x,x))). It can be
observed from the figure that the expression of A™(y) de-
pends on the subset of P that it dominates, indicating the
expression of A% (y) varies across realizations of y, which
brings the difficulty of deriving the distribution function.
Note that HVI on R™ is actually a piecewise-defined func-
tion. It suffices to first identify the set on which the restric-
tion of AT admits a fixed expression and then derive the
conditional distribution function of HVI on such a set. As
the first step, we provide a characterization of such a set.

Lemma 3.1. Given a Pareto approximation set P C R™
and a compact and connected set S C R™ that dominates
‘P. If every point in S dominates the same subset of P,
then the restriction A™ |g is not a piecewise function and is
continuous.
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Proof. Let U = {p € P:Vs € S,s < p}. Based on
the assumption that every point in S dominates the same
subset U of P, we could reformulate for every point s, its
hypervolume improvement, namely A*(s) = HV((P \
U) U {s}) —HV(P). Since P \ U and {s} are mutually
non-dominated by construction, HV((P \ U) U {s}) is not
piecewise-defined and continuous. O

Remark 3.2. Obviously, the largest sets satisfying
Lemma 3.1 are the hyperboxes constructed by the intersec-
tion of the m — 1 dimensional hyperplanes passing through
each point in P. It is easy to verify that the above lemma
also applies to the negative HVI. For the bi-objective case
(m = 2), we show an example of those cells in Fig. 1.

In the paper, we focus on the bi-objective case, and we use
the followmg notations for convenience: Vx € X, yu; =

F1(), 2 = fo(x), and 0F = ki (x,%), 03 = ky (. %).

Cell partition of the objective space In bi-objective sce-
narios, we partition the objective space w.r.t. the approxi-
mation points. For a finite approximation set P of n points,
we consider the extended real line R U {—o00, 0o} and use
it to augment P with two extreme points (—oo,72) " and
(r1,—o0) T, ie., P = PU{(r1, —00), (—o0,r2)}. Without
loss of generality, we index the approximation points of P
in the increasing order w.r.t. their first objective values, i.e.,
};(())7};(1)7 oo ’y("+1) where —oco = y%o) < yil) < <
y§n+1)

= r1. We denote by

0(17]) |:y§l ay§l+1)j| X [ygn_j+1), yén_j) ,'I:,j S [On],

the cell area bounded by axis-parallel lines that pass through
the points in P. For instance, in Fig. 1, where n = 3,
c(0,1) =y (0), ygl)] X [yé?’), y§2)}. In the following discus-
sion, we will use the minimum 149 and maximum u (%9

of C(i, 7), namely,

i,j % n—j T i i n—j T
109) = (y§)7y§ J“)) ,ulhd) = (zﬁ s J))

In this manner, the entire objective space is partitioned into
(n+1)% cells: [—oo, 1] = U; jeo..n]C (i, ). Note that, for
i4j < m, the union of the cells C'(%, j) represents the subset
that is not dominated by P, i.e., ndom(P) = Uit<nC(3,7)
while for ¢ 4+ j > n, it indicates the subset dominated by P.

Conditional probability density function Taking the cell
decomposition, we can express the distribution functions of
generalized HVI by marginalizing the conditional distribu-

tions over cells:

Fapp@®)= )

i,j€[0..n]

= 2 O [#a (187) o (57))

1,j€[0..n]

[ () ()] o

where F(l(’;) € {PDF(”) CDF(”)} denotes either
the cumulative dlstrlbutlon functlon (&DF) or the prob-
ability density function (PDF) of HVI conditioned on
cell C(i,7). Note that within a non-dominated cell
C(i,j) ¢ + j < mn), the conditional HVI takes it
value in [A+(u®7)), A*(14:9))]. Similarly, within dom-
inated cell C(i,5) (¢ + j > n), the HVI’s range is
[A~(u(®), A=(14:9))]. We shall proceed to derive the
conditional PDF as follows.

Fy2 (8)Pr(y € C(i,5) | D,x),

Theorem 3.3. Assume the above cell partition of the ob-
Jjective space w.r.t. augmented approximation set P. For
0 <i+j<mn, wherei,j € [0..n], the hypervolume im-
provement of y = (y1,92) " € R? restricted to cell C(i, j)
can be expressed as follows:

AT (Y)leg.g) = A A1) + A(Az ) + A((As ) + A(Ag),

where X is the Lebesgue measure on R? and

=]« ).

A, = {u 9y g+1>} {yg,ug"’j)},

=[] x [,
=do

o ({u9) i (7).

Proof. An illustration has been given in Fig. 1. Let
S = dom({y}) \ dom(P) denote the set that is domi-
nated by y but not by P. We first consider the set Ay,
the subset dominated by the maximum point u(*7), which
is clearly contained in S as y|c( ;) = u(®7), Note that,
when y is restricted to C(i,7), its projection along f;
onto the attainment boundary is always (ygnfj H), y2) s
its projection along f> onto the attainment boundary is
always (y1, yéz))T Hence, we can express the reminder
set §\ As = [y, 57" V] ¢ [y, ug] o+ ] x

[y2, 5] — [yhuim] X [ya, uS?) = Ay + Ay + A3. DO

A

@

Based on Thm. 3.3, we can express the HVI restricted to
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cell C(4,j) as

”—y)(“”—yg

( Y (u))( (4,5) — )

+ (u g 1) (s (@) _ (ij))+A+( (i,j))

=z ZQ + ry(":])
where z1 = y{"" —yy 2 = (Y — ), =
Aty — ("7 ) Note that 2z ~
NG~ no?) and 2~ N — p,03)

are Gaussian random variables truncated to [Lq, U]
i’ﬂ- J+1.) (ZJ)’ Ykﬁltly’j)] and [Lo, Us) = [yél)i
uém) (7) l(w)]

7

respectively. Thereby, the distribution
of AT ( )lc(i,;) can be expressed via that of products of
truncated Gaussians.

Let p}) = y(n+1 D i, ph = () — pa. We have

the following expression of HVI’s dlstnbutlon for the non-
dominated cells: V5 € [AT (ul®9)), AT(109)],

PDF(AZﬁzy)((S) = PDF,,., (5 - 'Y(i’j))
B(p)
P _
= D1D2/ ¢,u’1,01 (x)(b/ﬂz,ag (7) z 1d1’, (4)
a(p) z
p=205—7"7,

D, = [(I)M’l,al(Ul) - (I)//l,al(Ll)]_lv

Dy = [q)li/2>02 (U2) - cI)M’gJQ (LQ)]_la
where ¢, , and ®, , denote the PDF and CDF of a Gaus-
sian random variable with mean g and standard deviation

o, respectively. The integration bounds are determined as
follows. If L1Us < Uy Ly ', we define:

[L1,p/La], LiLy <p< LiUs
[a(p), B(p)] = { [p/U2,p/La], LiUs <p <ULy (5
[p/Us, Ui], UL, <p<U Uy

For a cell in the dominated space, i.e., C'(¢, ) with i + j >
n, we could invert the coordinate system to treat it in the
same way as the non-dominated part (notice that 1(7) and
u(®7) are swamped after inversion). Namely, we take the
following inverted quantities:

[Ly,U; ] = [-Ui,—L4],
[L2_v UQ_] = [_U2v _LQ]v
By = =y, My = [l

7,7 n+1—j
(U559 — ),

A7) = AT (109 —
It is straightforward to verify that the above derivation still
holds for the inverted quantities. In this case, the con-
ditional density function can be computed with Eq. (4):

"When L1Us > U Lo, it suffices to swap variables z; and z2,
and apply Eq. (5).

V6 € [A~ (u), A= (16D)),

PDFY)  (5)

_ pppid)
{7y (8) = PDFLY

v (=9)

where we substitute the quantities (e.g., L) with the in-
verted ones (e.g., L]) in PDF ...

= PDF. ., (—0—~®9),

Conditional cumulative distribution function Taking
the conditional density function, the cumulative distribu-
tion of the hypervolume improvement can be derived for
a non-dominated cell C(i,5) (i + j < n). For § €
[A*(u®)), AT (149))] and p = § — v(*9), we have:

p
CDFYY, (0) = / PDF.,., (z)dz
L1 L2

B(p)
:DlDZ G+/() (bu’l,ﬂ](C) ,u2,02 ) (6)
a(p

G= (I)szdz (U2) [(Du/l,al (a(p)) - (I),ul o1 ( +
¢/Ll27g2 (LQ) [q)lt’l,rn (Ll) (I)/L’ o1 (B( ))]

where the integration bounds «, 3 are defined in Eq. (5). For
a cell C(4,j) in the dominated space (i + j > n), we take
the same trick of inverting the coordinate system as above:
Vo € [A*(u(i’j)),A*(l(i’j))],

%)) ,
CDFAf(y)((S) =1- CDFAj(y)( J),
where we have to take the inverted quantities in Eq. (6).

Numerical computation We use the numerical integra-
tion to compute the distribution function in each cell and set
the absolute error of the integration to 108, The time com-
plexity of the PDF and CDF of HVI is quadratic w.r.t. the
number of approximation points in PP due to the quadratic
number terms in Eq. (3). To reduce the time complexity, we
propose to prune the computation on some cells: (1) the ones
on which the probability mass of y is sufficiently small. We
only include the cells that overlap with the range of ;1 & 30
in the computation; (2) if the value of HVI to compute is
out of the range of conditional HVI on a cell. In the left plot
of Fig 2, we have illustrated an example of the CDF of HVI
computed from both the exact distribution and the Monte
Carlo (MC) method. It is necessary to compare the com-
putational cost of the exact distribution to that of the MC
method to approximate the cumulative distribution function.
Generally, for achieving an accuracy of 7, the numerical
integration requires O(7 1) (Novak, 2014), resulting in an
overall complexity of O(7~*(n +1)?) for the exact method.
In contrast, the MC method requires sampling O(7~2) real-
izations of y and calculating the hypervolume improvement

2We employed the 21-point Gauss—Kronrod quadrature method
with maximally 50 sub-intervals.
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Figure 2. Left: For the Pareto front in Fig. 1, we show the CDF of y computed from the exact and MC methods (using 100, 500, and 2 500
samples). Right: The CPU time for the exact and the MC method (with 10" sample points) w.r.t. an increasing number of points of P.

thereof®, giving rise to the complexity of O(7~2nlInn).
Also, in the right plot of Fig. 2, we compare the CPU time
of the exact expression to the MC computation when vary-
ing the number of points in the Pareto front, which shows
that under a comparable numerical accuracy, the CPU time
consumed by the exact computation is roughly one order of
magnitude lower than that of the MC method, for a wide
range of the cardinality of P.

4. -Probability of Hypervolume Improvement

In this section, we leverage the commonly used -Pol func-
tion with HVI’s distribution in order to demonstrate the
usefulness thereof in Bayesian optimization. The e-Pol
function translates the mean of posterior distribution to-
wards P by €1,,, and computes the probability of improving
the current P (see its definition in Sec. 2). When computing
e-Pol, all objective points that are taken into account have
a minimal distance of ¢ to the attainment boundary of P.
Despite its simplicity, we find it difficult to relate € to the
quantiles of HVI’s distribution: from the posterior distri-
bution, we can generate two sample points that both have
€ minimal distance to the attainment boundary but differ
hugely in their hypervolume improvements.

To mitigate this issue, we propose the e-Probability of Hy-
pervolume Improvement (¢-PoHVI) function, which com-
putes the probability of making at least € hypervolume im-
provement to P. This probability can be computed directly
by HVI’s CDF function defined in Eq. (6):

e-PoHVI(x; P,r,e) = 1 — CDF A px (), (D

31t requires computing the hypervolume of the Pareto front
approximation, which has a time complexity of ©(n logn) when
m = 2,3 (Beume et al., 2009).

where € can be considered a lower quantile of HVI’s distribu-
tion. This definition gives rise to two advantages: (1) When
HVI exhibits a huge dispersion, e-PoHVI is still safe to use,
compared to EHVI, which would become less meaningful
in this circumstance; (2) the user of Bayesian optimization
can precisely control the level of the minimal improvement
in each iteration. Compared to e-Pol (time complexity:
©(nlogn)), our new acquisition function suffers from rel-
atively higher computation overheads (quadratic; see “Nu-
merical computation” above), and it requires the user to
specify a reference point (for computing the hypervolume
improvement), which is not needed in e-Pol. Nevertheless,
we are interested in whether the losses in the computation
cost of e-PoHVI can speed up the empirical convergence of
Bayesian optimization on challenging problems. In practice,
the free parameter ¢ in those two acquisition functions is
either manually determined or tuned via hyperparameter
tuning. In this paper, we also propose two control schemes:

* e-PoHVI-scaling determines the parameter ¢, at iter-
ation ¢ with the schedule: €, = gg exp (—ct), where
€o = 0.05,c = 0.02. We include, in the supplemen-
tary material, a rule-of-thumb to set the hyperparameter
€o and c. This schedule is motivated by the fact that
when converging to the Pareto front, the steps of each
approximation point tend to decrease.

e e-PoHVI-smoothing exponentially smooths of the hy-
pervolume improvement measured in the optimization:
Et4+1 — & (HV(Pf, I‘) — HV(Pt_l, I‘)) + (1 — Ot)é't,
where o = 0.5 and €y = 0.05. The intuition is to take
the hypervolume improvement realized in the optimiza-
tion history to set the € value for the next iteration.
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Figure 3. The log difference between the hypervolume of the best-so-far approximation set P and the target hypervolume over function
evaluations. The target hypervolume is obtained with 1 000 points evenly sampled on the Pareto front of each problem. We show the mean
and standard error of the log differences measured from 15 independent runs of each acquisition function on each problem.

5. Experiments

Experimental setup We investigate the empirical
performance of e-PoHVI against e-Pol and EHVI on three
sets of test problems: (1) the classical bi-objective ZDT
problems (Zitzler et al., 2000), which have regular-shaped
Pareto front (either convex or concave). We selected
problems ZDT1-4 and 6 (ZDTS5 is a discrete optimization
problem); (2) WOSGZ1-8 problems (Wang et al., 2019)
whose Pareto fronts are more difficult to approximate
(WOSGZ9-16 are tri-objective problems); (3) a real-world
problem - four bar truss design (Cheng & Li, 1999; Tanabe
& Ishibuchi, 2020) (denoted as RE), which has a convex
Pareto front and the ranges of two objective functions differ
drastically. The decision space is set to [0, 1]3° for ZDT1-3
and ZDT6, [0, 1] x [—5, 5?9 for ZDT4, [0, 1] x [—1, 1]*° for
all WOSGZ problems, and [1, 3] x [1,v/2] x [1,+/2] x [1, 3]
for RE. In the objective space, we take the reference point
r = [15, 15] as recommended in (Zitzler et al., 2000) for
ZDT problems when computing the hypervolume. The
reference points are set to [1.2,1.2] and [3 000, 0.0383] for
the WOSGZ and the RE problem, respectively, as suggested
in (Wang et al., 2019; Lukovic et al., 2020).

We implement e-Pol, e-PoHVI, EHVI in the
DGEMO (Lukovic et al., 2020) algorithmic frame-
work* and test each of acquisition functions with 15
independent runs on each test problem. Also, we compare
PoHVI with two commonly-used multi-objective Bayesian
optimization algorithms: Joint Entropy Search (JES) (Tu

*Our source code is available at https://github.com/
wangronin/HVI-distribution

et al., 2022) and ParEGO (Knowles, 2006).

We initialize the BO algorithm with min(60,6d) points
generated with Latin Hypercube sampling and terminate
the algorithm at 170 iterations. We build two independent
Gaussian processes for each objective with Matérn 5/2
kernel. We maximize the acquisition function in each
iteration with covariance matrix adaptation evolution
strategy (CMA-ES) algorithm (Hansen, 2006). Also, we
take the above “scaling” control scheme to set the free
parameter of e-Pol.

Results and discussion In Fig. 3, we show the mean con-
vergence and 95% confidence interval of the best-so-far
hypervolume value of P for BO equipped with different
bi-objective acquisition functions. Overall, we see (1) two
versions of e-PoHVI outperform e-Pol and EHVI substan-
tially on WOSGZ problems while EHVI takes the lead on
ZDT and RE problems; (2) e-PoHVI outperforms the classic
ParEGO algorithm across all functions; (3) the Joint Entropy
search (JES) only outperforms PoHVI on ZDT6.
Compared to WOSGZ, ZDT problems are considered rel-
atively easier to solve since (1) the Pareto fronts are very
regular - either convex or concave; (2) there are no local
Pareto fronts (except ZDT4); (3) on the Pareto front, the
optimal distribution (Auger et al., 2010) of points (w.r.t. HV)
is mostly uniform. Similarly, the real-world problem RE has
a much lower search dimensionality (four) with a convex
Pareto front. WOSGZ problems are, however, designed to
have more realistic Pareto fronts (non-convex/non-concave
with non-uniform optimal distribution), which is shown to
be challenging to solve or model (Wang et al., 2019).
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Table 1. Over all test problems, we perform the pairwise Wilcoxon’s Rank-Sum test matrix at significance level 0.05 with p-value
correction, where +/ & /— indicates that the algorithm in the column is significantly better/not different/worst than the ones in rows.

e-Pol EHVI e-PoHVI-smoothing e-PoHVI-scaling
e-Pol n.a. 5217 6/6/2 9/3/2
EHVI 7/2/5 n.a. 7/2/5 8/1/5
e-PoHVI-smoothing 2/6/6 5217 n.a. 8/5/1
e-PoHVI-scaling 2/3/9 5/1/8 1/6/7 n.a.
Sumof +/ ~ /— 11/11/20  15/5/22 14/14/14 25/9/8

With a small data set, we expect a much higher GP’s predic-
tion uncertainty on WOSGZ problems than ZDTs, which is
validated with numerical observations: in Table 2, we list
GP’s prediction uncertainty (posterior standard deviations)
for each objective function over decision points sampled
u.a.r. from the decision space. We see, for instance, on
WOSGZ1, the posterior standard deviation of the first ob-
jective is about o1 = 1.5524, which is orders of magnitude
higher than that on ZDT1 (07 = 0.00837). As a result,
HVT’s distribution on WOSGZs exhibits a high dispersion,
and the EHVI function becomes less characteristic of the
distribution. In contrast, e-PoHVI is not affected by the
large dispersion since it utilizes the quantile of HVI’s dis-
tribution. Similarly, e-Pol also suffers less from the high
dispersion of HVI despite not connecting to the quantiles of
HVT’s distribution. We conclude that e-PoHVI is advanta-
geous when the prediction uncertainty of GP is high, which
occurs if the objective functions are challenging to model
with a small data set.

Between e-Pol and e-PoHVI, we see that e-PoHVI (with
both control schemes of ¢) substantially improves the con-
vergence speed and achieves better hypervolume values of
the final approximation set P on all test problems except
ZDT1, 2, and 4. ZDTT1 is one of the simplest bi-objective
problems. On ZDT?2, although e-Pol shows a faster initial
convergence, e-PoHVI manages to hit about the same mean
hypervolume value in the last few iterations. On ZDT4, all
acquisition functions fail to get close to the Pareto front
since this problem has many local Pareto fronts. Much more
function evaluations are needed for all acquisition functions.
Also, we see that the scaling control (e-PoHVI-scaling)
performs better than the exponential smoothing (¢-PoHVI-
smoothing) on all problems except ZDT3.

Furthermore, we perform a pairwise Wilcoxon’s Rank-Sum
test (with p-value correction for multiple testing) on all test
problems to verify the statistical significance of the result
in the convergence chart. In table 1, we show the test’s out-
come - each entry of the table (+/ ~ /—) indicates out of
14 test problems, the number of cases where the algorithm
in the first row is significantly better/not different/worst
than the ones in the first column. Overall, e-PoHVI-scaling
outperforms both e-Pol, e-PoHVI-smoothing, and EHVI.
Since e-PoHVI-scaling is a comparable parameter control

compared to that of e-Pol. We can conclude that e-PoHVI
has better empirical performance than e-Pol on the selected
test problems. Finally, in the supplementary material, we
have included the detailed descriptive statistics of the con-
vergence of hypervolume values and the best, median, and
worst P obtained by each method at the last iteration.

6. Conclusions

We first propose a generalization to hypervolume improve-
ment (HVI), which assigns nonzero value to the dominated
points. Then, we derive the exact expression of the distri-
bution functions of the hypervolume improvement (HVI)
in the Bayesian optimization setup, in which we utilize a
cell partition of the objective space. Compared to the Monte
Carlo approach, the numerical computation of the exact
expression is computationally faster and numerically more
accurate. Taking this distribution function, we propose a
novel acquisition function, e-Probability of Hypervolume
Improvement, which shows a large empirical advantage over
its counterparts.

The limitation of this work is two-fold: (1) the distribution
functions are derived in the bi-objective scenario with uncor-
related Gaussian processes for each objective. In practice,
users of Bayesian optimization often wish to solve more
than two objectives with a multi-output Gaussian process
model. For correlated Gaussian posteriors, our analytical re-
sults (Eq. (4) and (6)) can be directly applied by substituting
the probability density in Eq. (4) with the one of the corre-
lated Gaussian. As for more than two objectives, the cell
partition approach can be applied in principle. However, the
exact formulation of HVI’s distribution is very complicated
to accommodate in this work, given the page limit. (2) The
experimental study of the proposed acquisition function can
be enhanced by applying it to more real-world problems,
such as industrial optimization and hyperparameter tuning
tasks.
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A. Appendix

We illustrate how to determine the hyperparameters of e-PoHVI-scaling: ¢; = £ exp (—ct). We use the following reasoning
to determine the hyperparameters in the scaling scheme. For example, on WOSGZ problems: (1) ¢ controls the maximal
HV improvement across all iterations; (2) we take [1.2, 1.2] as the reference point, which gives rise to an upper bound of
1.44 on the maximal HV value, provided that the ideal point on those problems is [0, 0]; (3) We assume that the initial
HYV value after random sampling is one-half the maximal HV value, i.e., 1.44/2; (4) If the BO algorithm were to realize
€0 exp (—ct) HV improvement in each iteration, then the total sum of all such improvements should be bounded above the
maximal HV value to realize, i.e., g9 ), exp (—ct) < 1.44/2. The hyperparameter of e-PoHVI-smoothing function can be
determined in a similar way.

Figure 4. On each test problem, we show some descriptive statistics: min, max, mean, median, standard deviation (std), and 25%- and
75%-quantiles of the hypervolume (HV) value observed at the last iteration of the BO algorithm. The entries are color-coded relative to
the corresponding ones (e.g., we take all the mean values in a column) in the same column/problem, where a more greenish color indicates
better performance and vice versa.

Algorithms| HV Problems
ZD1 ZDT2 ZDT3 ZDT6 WOSGZ1 WO0SGZ2 WO0SGZ3 WO0SGZ4 WOSGZ5 WOSGZ6 WOSGZ8 RE
mean | 216.2202 174.8293 0.3080 0.2251 0.2673 0.2262 0.1276 0.0964 0.4943

0.1326 0.1008
130.7111 0.0469 0.0163
156.9966 0.2091 0.1907 0.1465
50% | 215.7326 186.2343 166.4622 0.3246 0.2767 0.2703 0.1208 0.0664
75% | 218.0948 202.3426 0.4148 0.3576 0.3127 0.1901 0.1798 0.6812
224.2742 218.6817 0.4951 0.4357 0.3865 0.3324 0.2787

0.1290 0.1329 0.0927

6.9221 2.1402

228.3821

std 3.4927
min | 210.5050
e-Pol 25% | 214.0570

0.2749
0.3598

EHVI 25%

0.1939 0.6954 39.7858

188.0899 218.6876 0.4454 0.4449 0.3756 0.3017 0.1855

std 0.1161“ 0.1335 0.6861

polvi. | min [204.3805 179.8648 209.2984 128.4503 0.1210 0.3511 38.7614
smoothing | 25% 184.5195 215.4688 0.4159 0.3598 0.2701 0.1168 0.0889 0.6180 39.2666
50% 187.7873 219.5413 0.4520 0.4063 0.2897 0.2280 0.1992 0.7414 39.7942

75% 0.4381 0.3357 0.2662 0.2897 0.7896 40.3828

max 0.4952 0.3407 0.3851 0.8567 40.6948

mean 39.6309

std 31.5378 0.8818

ponvi. | min 38.0070
scaling | 25% 150.7709 39.2178
50% 164.8309 39.9479

75% 206.7578 40.1927

40.6822

219.5621

max | 223.2271

Table 2. GP’s prediction uncertainty (posterior standard deviations o1 and o2 for each objective function, respectively) aggregated over
uniformly sampled decision points on ZDTs (top) and WOSGZs (bottom) and BO’s iterations. The average and standard error of the
uncertainty is estimated over 15 repetitions of BO.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
o1 02 a1 02 o1 02 o1 02 o1 02
average 0.008378 0.044345 | 0.008819 0.008107 | 0.003032 0.400788 | 0.023912 22.251792 | 0.043914 0.173658
standard error | 0.043334 0.015357 | 0.041234 0.003639 | 0.004248 0.028704 | 0.019340 0.8503408 | 0.030066 0.199384
WOSGZ1 WOSGZ2 WOSGZ3 WOSGZ4 WOSGZ5 WOSGZ6 WOSGZ7 WOSGZ8
o1 o2 o1 T3 o1 ) o1 [op} o1 T2 a1 T2 a1 02 o1 T2

average

1.5524  0.0915 | 3.1203 0.1797 | 3.1615 0.1834 | 3.9904 0.2614 | 44331 0.3117 | 54329 0.3487 | 3.5918 0.2047 | 3.8567 0.2651
standard error

0.5048  0.0352 | 0.9660 0.0654 | 1.0346 0.0690 | 1.3334 0.1030 | 1.4432 0.1061 | 1.7562 0.1255 | 0.8340 0.0628 | 1.0050 0.0861
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Figure 5. The critical difference (CD) chart obtained with the Nemenyi posthoc testing procedure to a Friedman test. The performance of
two acquisition functions significantly differs on a problem set if their average ranks of HV values differ by at least the critical difference
shown as the interval atop each chart. The thick horizontal line indicates a clique of acquisition functions with no significant difference.
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Figure 6. The best, median, and the worst empirical attainment curves on all the test problems, where ®, ®, and ® represent the best, the
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worst, and the median Pareto-front approximation sets over 15 independent runs, respectively.

14



Probability Distribution of Hypervolume Improvement in Bi-objective Bayesian Optimization

f

f

f

Figure 6. The best, median, and the worst empirical attainment curves on all the test problems, where ®, ®, and ® represent the best, the
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Figure 6. The best, median, and the worst empirical attainment curves on all the test problems, where ®, ®, and ® represent the best, the
worst, and the median Pareto-front approximation sets over 15 independent runs, respectively.
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