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ABSTRACT

Recent advances in accelerating text-to-image (T2I) diffusion models have en-
abled the synthesis of high-fidelity images even in a single step. However, per-
sonalizing these models to incorporate novel concepts remains a challenge due to
the limited capacity of one-step models to capture new concept distributions ef-
fectively. We propose a bidirectional concept distillation framework, EchoDistill,
to enable one-step diffusion personalization (1-SDP). Our approach involves an
end-to-end training process where a multi-step diffusion model (teacher) and a
one-step diffusion model (student) are trained simultaneously. The concept is first
distilled from the teacher model to the student, and then echoed back from the
student to the teacher. During the EchoDistill, we share the text encoder between
the two models to ensure consistent semantic understanding. Following this, the
student model is optimized with adversarial losses to align with the real image
distribution and with alignment losses to maintain consistency with the teacher’s
output. Furthermore, we introduce the bidirectional echoing refinement strategy,
wherein the student model leverages its faster generation capability to feedback
to the teacher model. This bidirectional concept distillation mechanism not only
enhances the student ability to personalize novel concepts but also improves the
generative quality of the teacher model. Our experiments demonstrate that this
collaborative framework significantly outperforms existing personalization meth-
ods over the 1-SDP setup, establishing a novel paradigm for rapid and effective
personalization in T2I diffusion models.

1 INTRODUCTION

Recently, large-scale generative models (Ma et al., 2023a; Tu et al., 2024; Xing et al., 2024; Zhang
et al., 2023a) dominate high-quality text-to-image (T2I) generation and have been widely applied
in diverse downstream tasks (Hertz et al., 2023; Mou et al., 2024; Wang et al., 2023a; Zhang et al.,
2023b). Among these applications, personalized text-to-image generation, also referred to as new
concept learning (Chung et al., 2025; Kumari et al., 2023; Wu et al., 2025c), has emerged as a partic-
ularly important task. It involves adapting a T2I model to recognize and synthesize a novel concept
from user-provided reference images. Recent T2I personalization methods (Gal et al., 2023a; Ku-
mari et al., 2023; Ruiz et al., 2023a) generally adapt pretrained T2I models using few-shot reference
images and bind the novel concept to a pseudo-token so that the adapted model can synthesize var-
ious renditions of the new concept guided by text prompts. Despite their success, the adapted T2I
models still face a notable limitation which lies in their slow inference speed. To address infer-
ence inefficiency for T2I models, recent research has turned to distillation-based acceleration tech-
niques (Liu et al., 2025; Sauer et al., 2024; Zheng et al., 2024; Xu et al., 2025). These techniques
have matured considerably in the context of T2I diffusion models (Luo et al., 2023b; Salimans &
Ho, 2022; Sauer et al., 2024), as we focus on in this paper. In general, training-based distillation
methods aim to learn a fast student generator (Luo et al., 2023a; Sauer et al., 2024; Song et al.,
2023; Zheng et al., 2024) from a multi-step T2I diffusion teacher model. Representative accelera-
tion methods (Dao et al., 2024; Luo et al., 2023a; Sauer et al., 2024) achieve impressive acceleration
by reducing the number of sampling steps to four or even fewer than one step for image generation.

However, existing personalization methods often overlook this critical requirement for few-step dif-
fusion models. Directly applying conventional personalization techniques to these acceleration mod-
els frequently results in failure cases. As an example illustrated in Fig. 1, the word-inversion method
Textual Inversion applied to the one-step diffusion model SDTurbo (Sauer et al., 2024) is unable
to learn the textual concept tokens, which indicates that the one-step diffusion model struggles to
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Input Textual inversion EchoDistill (Ours)Custom Diffusion IP-Adapter

Figure 1: Comparison with existing new concept learning methods for one-step personalization:
Textual Inversion (Gal et al., 2023a) and Custom Diffusion (Kumari et al., 2023) for SDTurbo (Sauer
et al., 2024), and IP-Adapter (Ye et al., 2024) for TCD (Zheng et al., 2024).

independently update the text encoder. This presents the first challenge in 1-SDP: 1) Student in-
adaptability: The student cannot learn text tokens independently and effectively. This issue is
further exemplified in our experiments with the weight-optimization method Custom Diffusion (Ku-
mari et al., 2023) in one-step models (Fig. 1), where jointly updating the text encoder and the dif-
fusion backbone fails to improve performance and instead degrades generation quality. For existing
encoder-based personalization methods, they struggle to generalize to one-step diffusion due to its
unique architectural and optimization properties (IP-Adapter in Fig. 1). A naive way to leverage
the distillation technique for the 1-SDP problem is to first fine-tune a multi-step teacher model on
the target concept, then use it to generate diverse samples to distill the one-step student. However,
this results in two additional challenges: 2) Inefficiency: The multi-step generation process and
non-end-to-end teacher-student distillation will significantly slow down learning. 3) Teacher irre-
liability: The teacher itself can also fail to capture certain concepts, limiting its effectiveness as a
guiding signal for the student. These issues contribute to significant failure cases of current methods
in concept personalization for one-step diffusion student models.

In this paper, we address the above challenges in 1-SDP by introducing our EchoDistill framework.
The EchoDistill jointly trains a multi-step T2I teacher model and a one-step student model in an
end-to-end manner. The framework consists of two collaborative learning stages. In the first, dis-
tillation stage, the pretrained multi-step T2I teacher model concurrently learns the target concept
while transferring knowledge to the student via concept distillation. In the second, echoing stage,
the fast-generating student model produces images that are leveraged to further refine and enhance
the teacher’s generative performance. More specifically, to address the above challenges in 1-SDP,
we propose the following strategies along the distillation stage: 1) Shared text encoder (STE): To
ensure semantic consistency and improve knowledge transfer between models, the student directly
inherits the text encoder from the teacher model; 2) End-to-end joint training (E2E): Rather than
relying on a sequential training paradigm, we adopt a unified optimization framework where the
teacher and student models are trained simultaneously on the target concept. This promotes stable
knowledge distillation and faster convergence. To support training, we employ two types of loss
functions: alignment losses to ensure consistency with the teacher model, and adversarial losses to
align the student’s outputs with the real image distribution of the novel concept. 3) Echoing stage
(Echo): Follwing the first distillation stage, we further introduce a bidirectional refinement echo-
ing stage to improve the performance. We exploit the student model’s fast generation ability by
using its high-quality outputs to reverse-guide the learning of the teacher and student models. After
one-step personalization, our method EchoDistill is also able to achieve few-step (2-step, 4-step,
etc.) customized generations as a bonus. To assess the performance of our method, EchoDistill,
we compare it against several personalization approaches using a range of evaluation schemes from
DreamBench (Ruiz et al., 2023a). The results, both qualitative and quantitative, highlight the supe-
rior effectiveness of our approach. To summarize, we make the following contributions:

• To the best of our knowledge, we are the first to identify and formalize the problem of one-step
diffusion personalization, termed 1-SDP, which significantly accelerates generation compared to
conventional multi-step diffusion models while maintaining competitive image quality. We iden-
tify three core challenges in this setup: student inadaptability, inefficiency, and teacher irreliability.

• To tackle these challenges, we introduce a set of novel solutions: 1) a shared text encoder (STE) to
mitigate student inadaptability by aligning semantic understanding between teacher and student;
2) a joint end-to-end framework (E2E) that personalizes the one-step student model alongside
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the multi-step teacher model; and 3) an echoing stage (Echo), where the student’s fast image
generation is leveraged to refine and stabilize the teacher’s output.

• We conduct extensive experiments on the DreamBench (Ruiz et al., 2023a) benchmark, evaluating
both qualitative and quantitative performance. Our proposed EchoDistill outperforms existing
personalization techniques under the 1-SDP setting, demonstrating its ability to quickly adapt to
novel concepts while preserving generation quality in one-step student models.

2 RELATED WORKS

Text-to-image personalization, also known as new concept learning, focuses on adapting a model to
a user-provided novel concept using a few reference images. This technique has been extensively
studied in T2I diffusion models (Butt et al., 2024; Gal et al., 2023a; Liu et al., 2023a; Ruiz et al.,
2023a) and recently studies in the AR domain (Chung et al., 2025; Wu et al., 2025c).

Tuning-based methods (Li et al., 2025) leverage reference images of the same concept to fine-tune
either the T2I diffusion model or its learnable embeddings. Depending on the optimization targets,
these methods can be categorized into word-inversion and weight-optimization approaches.

Word-inversion methods focus on learning new concept tokens without modifying the parameters
of generative models. Textual Inversion (Gal et al., 2023a) is a pioneering approach that introduces
pseudo-words by performing personalization in the text embedding space. Other works (Agarwal
et al., 2024; Dong et al., 2022; Voynov et al., 2023; Zhao et al., 2025) continually enable fine-grained
and robust concept representation by employing designed loss functions to ensure that each token
captures a distinct aspect of the reference images. While these methods maintain high semantic
consistency by keeping the generative model frozen, they suffer from limited identity fidelity due to
the compression of rich image features into the low-dimensional text embedding space.

Weight-optimization methods advance beyond token-level personalization by fine-tuning the model’s
internal weights, enabling richer and more faithful concept learning. One of the most prominent
methods is DreamBooth (Ruiz et al., 2023a), which fine-tunes a pre-trained text-to-image diffu-
sion model to associate a unique identifier with a target subject using just 3–5 reference images.
Following that, several methods such as Custom Diffusion (CD) (Kumari et al., 2023) and Cones
2 (Liu et al., 2023a) propose optimizing only a subset of model parameters, significantly reducing
both training time and memory consumption while preserving generation fidelity. Along similar
lines, a variety of approaches (Chen et al., 2023; Gal et al., 2023b; Han et al., 2023; Zhang et al.,
2023d) have emerged to improve visual quality and efficiency. In addition to partial weight tuning,
recent works (Achlioptas et al., 2023; Xiang et al., 2023) introduce parameter-efficient strategies us-
ing Adapter modules, Low-Rank Adaptation (LoRA), or their variants, including Hyper-E4T (Arar
et al., 2023), DisenBooth (Chen et al., 2024), etc.

Tuning-Free methods have proposed encoder-based alternatives that significantly reduce or elim-
inate the need for fine-tuning backbones by leveraging pre-trained image encoders. These meth-
ods (Li et al., 2024; Rowles et al., 2024; Shi et al., 2024; Wang et al., 2024a; Xiao et al., 2023;
Ye et al., 2024) enable efficient concept learning by extracting informative features from reference
images using models trained on large-scale, diverse datasets. Some of them also specify in human
face generation (Cui et al., 2024; Guo et al., 2024; Li et al., 2024; Wang et al., 2024a; Wu et al.,
2024). A recent advanced research is IP-Adapter (Ye et al., 2024), which utilizes the ViT image en-
coder from CLIP (Radford et al., 2021) to extract reference image features. These features are then
integrated into the diffusion model’s U-Net backbone through cross-attention mechanisms, resulting
in more coherent and faithful renditions. While encoder-based methods are effective for general
personalization from a single reference image, they are mainly tailored for large-scale, multi-step
T2I models and require expensive retraining for each new backbone. Their limited ability to cap-
ture concept diversity (Li et al., 2025) and lack of adaptation to few-step architectures remain key
limitations. Applying such pretrained encoders or adapters to one-step diffusion models yields poor
concept fidelity and image quality, highlighting a critical gap in current research.

3 METHODOLOGY

In this section, we begin by introducing the preliminaries in Section 3.1, followed by revealing the
key challenges of this 1-SDP setup in Section 3.2. We then present our framework, EchoDistill,
which incorporates three novel techniques designed to address these challenges in Section 3.3.
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3.1 PRELIMINARIES

Latent Diffusion Models. LDM (Rombach et al., 2022) is the most widely applied T2I diffusion
models and the distillation teacher model for current few-step diffusion models (Luo et al., 2023a;
Sauer et al., 2024). It is conditioned on textual input τ(P), where τ is the text encoder and P is the
prompt. The backbone ϵtcθ is a conditional UNet (Ronneberger et al., 2015) which predicts the added
noise. After predicting the noise, diverse schedulers (Lu et al., 2022; Song et al., 2021) are used to
denoise. Here, we use SD2.1 as the teacher model ϵtcθ as in T2I acceleration approaches (Nguyen &
Tran, 2024; Sauer et al., 2024).

One-Step Diffusion Model. To accelerate diffusion inference, various methods distill the sampling
steps Ttc = [1, T ] of the teacher into few student anchor steps (NFEs*) Tst = {υ1, . . . , υn} where
n is typically set to 1, 2, or 4. Specifically, a one-step diffusion model Gst aims to transform a noise
xT ∼ N (0, 1) directly into an image without iterative denoising steps, hence we denote this noise
to image process as xst

0 = Gstϕ (xT , T, C). In this paper, we build on the one-step SD-Turbo (Sauer
et al., 2024) as the student model Gstϕ for new concept learning under the 1-SDP setup.

3.2 CORE CHALLENGES IN 1-SDP

As previously illustrated qualitatively in Section 1 and supported quantitatively in Section 4, con-
ventional T2I personalization methods fail to learn new concepts in one-step diffusion models (such
as SDTurbo (Sauer et al., 2024)). We identify three main challenges in this 1-SDP setting.

Student Inadaptability. We begin by applying the word-inversion Textual Inversion (Gal et al.,
2023a) to the one-step diffusion model SD-Turbo(Sauer et al., 2024). Observing from Fig. 1 and
Table 1, this naive adaptation fails to capture or reproduce the target concept, revealing a key lim-
itation: one-step diffusion models cannot be effectively personalized by text encoder tuning alone,
indicating the need for additional supervision or architectural changes. We further evaluate weight-
optimization methods Custom Diffusion on SD-Turbo. This not only fails to enhance performance
but also degrades image quality and concept fidelity, as proven in Fig. 1. These findings suggest
that excessive flexibility in updating the backbone of few-step models may disrupt the generative
prior. We hypothesize that this limitation arises from the inherent differences in the distillation ob-
jectives. Traditional diffusion models distill the entire generative process, preserving detailed noise-
to-image mappings. In contrast, few-step models are typically trained using distribution alignment
losses (Poole et al., 2023; Wang et al., 2023b) rather than reconstructing individual denoising trajec-
tories. As a result, applying conventional diffusion losses during personalization leads to ineffective
learning and poor visual fidelity.

Teacher Irreliability and Inefficiency. A naive approach to tackle the 1-SDP problem is a two-
stage distillation strategy, which we refer to as the teacher-first distillation paradigm. In this setup,
a multi-step teacher model is first fine-tuned on the target concept, and then used to generate di-
verse supervision samples for training the one-step student model. However, this paradigm faces
two fundamental limitations: 1) Inefficiency: The pipeline requires the teacher to first complete con-
cept learning before it can supervise the student. Furthermore, the supervision involves multi-step
generation (e.g., using 25 or 50 NFEs), making the process slow and computationally expensive. 2)
Teacher Irreliability: The teacher model may struggle to accurately learn certain visual concepts,
particularly under sparse supervision, as can be seen from the Custom Diffusion baseline (SD2.1)
in Table 1 and Fig. 3. When this occurs, the generated samples used for distillation are suboptimal
or even misleading, thereby degrading the student model’s performance due to poor supervision.
Results for the teacher-first paradigm and additional discussions are provided in Appendix. H.

3.3 EchoDistill: BIDIRECTIONAL CONCEPT DISTILLATION

Based on the above observations, we propose the first end-to-end bidirectional concept distillation
framework, termed EchoDistill, specifically designed for personalizing one-step diffusion models
(1-SDP). Unlike the above teacher-first paradigm that sequentially updates the teacher (multi-step
diffusion model) and then distills knowledge to the student (one-step diffusion model), our approach
adopts a gradual distillation and echoing bidirectional concept distillation strategy, where the student
learns progressively in tandem with the teacher. In addition, the student provides feedback to the
teacher during the following echoing stage. To ensure memory efficiency and prevent overfitting,
we adopt the lightweight adaptation strategy from Custom Diffusion (Kumari et al., 2023), updating

*NFEs denote the number of function evaluations, from the view of diffusion ODE trajectories.
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Figure 2: Overview of EchoDistill. The student and teacher jointly learn the new concept with a
shared text encoder. The teacher learns from real images xr

0 (green line), and the text encoder is
updated accordingly. The student is optimized with two objectives (gold line): an adversarial loss to
match real data distribution and alignment losses to match the denoised outputs of the teacher. The
discriminators are trained to distinguish between the student’s outputs and real images.

only the key and value projections in both teacher and student models. To tackle the aforementioned
challenges, EchoDistill includes three targeted strategies to address the above challenges.

3.3.1 DISTILLATION STAGE: SHARED TEXT ENCODER AND END-TO-END DISTILLATION

To address the first challenge—student adaptability—we propose the use of a shared text encoder
(STE) between the teacher and student models. Motivated by the observation that the student can
benefit from consistent semantic grounding, we directly inherit the teacher’s text encoder for the
student during distillation. This design ensures a unified language-vision alignment across both
models. To facilitate effective training under this shared encoder and also to address the second
challenge of inefficient training, we adopt a bidirectional gradual distillation strategy. In this scheme,
the student model is progressively trained alongside the teacher. To maintain memory efficiency and
mitigate overfitting during distillation, we adopt the lightweight adaptation strategy from Custom
Diffusion, updating only the key and value projections in both teacher and student networks.

Our training procedure is illustrated in Fig. 2 and the detailed algorithm pipeline is in Appendix. F.
EchoDistill consists of three steps in each iteration. First, the real image xr

0 is fed into the teacher
model. The teacher is trained following the Custom Diffusion paradigm, where both the text encoder
and the UNet are optimized using the noise prediction loss Lrec:

Lrec = Exr
0,y,t,ϵ∼N (0,1)∥ϵ− ϵtcθ (xt, t, τ(P)∥22 (1)

Second, the student receives a random noise xT ∼ N (0, 1) input and generates an output xst
0 =

Gst(xT , T, C). This output is guided by a combination of two objectives: (1) alignment losses
between the student and teacher, and (2) adversarial losses between the student and real images.
For the alignment objective, xst

0 is passed through the teacher’s forward diffusion process to obtain
a noisy version xst

t = αtx
st
0 + σtϵ, ϵ ∼ N (0, 1), which is then denoised by the teacher to yield

the predicted xtc
0 . This xtc

0 is detached via a stop-gradient operation and serves as the supervision
target for computing the alignment losses against xst

0 . For the adversarial objective, the student
is optimized to fool an ensemble of discriminators, which are trained to distinguish the student-
generated image xst

0 from real images xr
0. Third, the discriminators are optimized to enhance their

discriminative performance. The detailed loss functions are defined as follows.

Alignment losses encourage the student-generated images to be semantically consistent with those
from the teacher model, capturing both low-level pixel details and high-level perceptual alignment.
It is composed of three components:

• Identity Feature Loss, adapted from IP-Adapter (Ye et al., 2024) (IPA), extracts identity-preserving
features from the image space x0 using a CLIP image encoder followed by a projection network.
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Here the xtc
0 is the estimated teacher image, computed from the teacher prediction xtc

0 = α
−1/2
t ·

{xt − [(1 − αt) · ϵtct /(1 − ᾱt)
1/2]} while the xst

0 is the image from student direct generation
Gst(xT , T, C). This loss is computed as cosine similarity:

Lid(x
st
0 , xtc

0 ) = 1− cos
(
IPA(xst

0 )), IPA(xtc
0 ))

)
(2)

• MSE Loss minimizes the distance between student and teacher latent representations:

Lmse(x
st
0 , xtc

0 ) =
∥∥xst

0 − xtc
0

∥∥2
2

(3)
• Multi-Scale Sliced Wasserstein Distance (He et al., 2024), compares multi-scale feature distribu-

tions in the image space to align structural and color information. This loss is proposed to alleviate
the unstable color distribution during the distillation and defined as:

Lswd(x
st
0 , xtc

0 ) = MS-SWD
(
xst
0 , xtc

0

)
(4)

The full alignment loss scales these components by weighting factors and a time-dependent term:

Lalign = c(t) ·
[
λid · Lid(x

st
0 , xtc

0 ) + λmse · Lmse(x
st
0 , xtc

0 ) + λms · Lswd(x
st
0 , xtc

0 )
]

(5)

Inspired by ADD (Sauer et al., 2024), we introduce a timestep-dependent exponential weighting fac-
tor c(t) = α(t), where t denotes the randomly sampled timestep in the teacher’s noising–denoising
process and α(t) is the same as defined in DDPM (Ho et al., 2020). At higher noise levels (i.e., larger
t), the teacher’s predictions become increasingly unreliable, and the c(t) is accordingly decreased.
This design helps stabilize the student’s training by reducing the influence of noisy supervision.

Adversarial losses are designed to reduce the distribution gap between student-generated outputs
and real concept images. Specifically, we ensemble multiple discriminators (Chan et al., 2022; Ku-
mari et al., 2022), each operating from a different semantic perspective, to improve training stability
and achieve better results. We employ K = 3 discriminators, each using a different pretrained
backbone—DINOv1, DINOv2, and CLIP—as feature extractors. Each backbone is followed by
a two-layer trainable projection head to distinguish between real and generated images, while the
feature extractors remain frozen during training. The adversarial loss for the student is defined as:

LG
GAN =

K∑
k=1

λk · Exst
0

[
− log(Dk(x

st
0 ))

]
(6)

where Dk denotes the k-th discriminator (based on DINOv1 (Caron et al., 2021), DINOv2 (Oquab
et al., 2023) and CLIP (Radford et al., 2021)), and xst

0 is the student output image. Denoting xr
0 as

the real image, the discriminator loss is defined as:

LD
GAN = −

K∑
k=1

[
Exr

0
[logDk(x

r
0)] + Exst

0

[
log(1−Dk(x

st
0 ))

]]
(7)

In summary, the integration of a shared text encoder (STE), alignment losses and adversarial loss
collectively enhances the adaptability and generalization capacity of the student model within the
first distillation stage of our EchoDistill framework. It is worth noting that these loss formulations
are specifically designed for the one-step student model, whose fast image generation allows efficient
access to final outputs. In contrast, applying such losses to the multi-step teacher is impractical due
to the computational cost of obtaining real image outputs across iterative denoising steps.

3.3.2 ECHOING STAGE: STUDENT IMPROVES THE TEACHER

We interpret the one-step student model as a GAN-like generator, and hypothesize that it can ben-
efit from aligning with the few-shot target data distribution via adversarial training. Specifically,
incorporating a adversarial loss (Sauer et al., 2024; Wang et al., 2024b; 2018b; Yin et al., 2024)
as in Eq. 6 and Eq. 7 helps the student model generate samples that better match the distribution
of concept images, even enabling it to outperform the teacher model in terms of visual qualities,
as demonstrated in Table 1. This finding also aligns with insights from ADD (Sauer et al., 2024),
which emphasizes the critical role of the discriminator loss in boosting generative fidelity.

Building on this insight, we propose an additional echoing stage, which leverages the student
model’s rapid generation capability to provide constructive feedback to both itself and the teacher
model. The echoing stage mirrors the distillation stage, with the only difference being the defini-
tion of the real trainig examples xr

0. Specifically, we replace real images with randomly generated
samples from the updated student model after the first-stage distillation: x̂r

0 = Gst(xT , T, C). The
training objectives and update rules for both the student and teacher models remain unchanged from
the initial distillation stage. The motivation behind this design is further discussed in Appendix F.
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Input CD DisenBoothDB TextBoost TI Cones 2 IP-Adapter EchoDistillCD (SD 2.1)

A [V*] candle with a wheat field  in the background

A [V*] cat in the snow 

A [V*] dog in a purple  wizard outfit

A [V*] vase on a cobblestone street

A [V*] dog with a mountain in the background

A [V*] toy on top of green grass with sunflowers around it

A red [V*] sneaker 

Figure 3: Our method EchoDistill (last column) compared with existing methods applied to the 1-
SDP setup with SDTurbo (Sauer et al., 2024) as the one-step diffusion backbone. One representive
concept image is shown on the left-most column.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Comparison methods and evaluation metrics. We compare our method EchoDistill with the fol-
lowing T2I personalization approaches: 1) word-inversion: Textual Inversion (Gal et al., 2023a),
Cones 2 (Liu et al., 2023a); 2) optimization-based: Custom Diffusion (Kumari et al., 2023), Dream-
Booth (Ruiz et al., 2023a), DisenBooth (Chen et al., 2024), TextBoost (Park et al., 2024); 3) Encoder-
based: IP-Adapter (Ye et al., 2024). For Disenbooth and Cones2 approach, the reference images
were taken from training dataset in TextBoost. For Custom Diffusion, we also include a baseline
variant using SD2.1 (Rombach et al., 2022) as the backbone, which also serves as the base model
for SDTurbo. For IP-Adapter, due to the absence of an available implementation compatible with
the one-step SDTurbo model, we adopt the TCD-based practice (Zheng et al., 2024) for comparison.
We follow the default configurations in their papers or open-source implementations. In the experi-
ments, we evaluate our method on the DreamBooth (Ruiz et al., 2023a) dataset, which contains 30
distinct concepts for personalized learning. To measure the alignment between generated images
and textual prompts, we employ the CLIP-T score. Additionally, we assess cosine visual similarity
between generated images and reference images using DINO (Caron et al., 2021) and CLIP-I (Rad-
ford et al., 2021) metrics, following standard practices in prior works (Kumari et al., 2023; Park
et al., 2024). More details of these comparisons and experiments are in the Appendix. G.

Implementation Details. During training of our method EchoDistill, the teacher model employs a
sampling schedule with 1000 denoising steps (NFEs), while the student model performs denoising
in a single step. For the hyperparameters, the loss weights in Eq. 5 and Eq. 6 are set such that
λms = 0.1, while all other weights are set to 1.0. The model is trained with a learning rate of
2× 10−5 and a batch size of 2. All experiments are conducted on a single NVIDIA A40 GPU.
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Table 1: Quantitative comparisons with existing text-to-image (T2I) personalization methods.

Methods Model Train NFEs Infer NFEs CLIP-T CLIP-I DINO
Custom Diffusion SD 2.1 1000 25 0.269 0.752 0.519

Custom Diffusion SD Turbo 1 1 0.205 0.518 0.058
Textual Inversion SD Turbo 1 1 0.252 0.564 0.166

Cones 2 SD Turbo 1 1 0.273 0.619 0.204
DreamBooth SD Turbo 1 1 0.188 0.536 0.111

TextBoost SD Turbo 1 1 0.217 0.570 0.167
DisenBooth SD Turbo 1 1 0.251 0.564 0.231
IP-Adapter TCD 1 1 0.204 0.628 0.325

EchoDistill SD Turbo 1 1 0.252 0.783 0.637

Table 2: Ablation Study (Part 1).

Methods CLIP-T CLIP-I DINO
Ablate Components

w/o teacher 0.240 0.719 0.505
w/o discriminators 0.200 0.566 0.105

Full model 0.252 0.783 0.637
Ablate Infer-NFEs

1 step 0.252 0.783 0.637
2 steps 0.255 0.783 0.635
4 steps 0.256 0.772 0.610

Table 3: Ablation Study (Part 2).

Methods CLIP-T CLIP-I DINO
Ablate 1-Step Backbone

Hyper-SD1.5 0.211 0.709 0.463
SD-turbo 0.252 0.783 0.637

Ablate Echo Stage

Teacher Before Echo 0.269 0.752 0.519
After Echo 0.265 0.764 0.571

Student Before Echo 0.252 0.783 0.637
After Echo 0.236 0.798 0.673

4.2 EXPERIMENTAL RESULTS

Qualitative results. The main qualitative comparisons are presented in Fig. 3. Among the seven
baseline methods, Custom Diffusion, DreamBooth, TextBoost, and Textual Inversion fail to perform
effective denoising or learn target concepts under the one-step inference setting. DisenBooth and
Cones2 struggle to capture precise concepts. Although IP-Adapter preserves some identity consis-
tency, its results are often blurry, misaligned with the prompts, and affected by the reference image
background. In contrast, our proposed method, EchoDistill, achieves both precise concept learning
and strong semantic alignment between the generated images and input texts.

Quantitative results. The detailed numeric results are presented in Table 1. EchoDistill maintains
the text-image alignment quality competitive to the baselines, as evidenced by the CLIP-T Score. In
terms of image similarity (CLIP-I, DINO scores), EchoDistill significantly outperforms the one-step
or multi-step based methods. We note that the CLIP-T is not that relevant in T2I personalization
since it is computing the alignment with the generated image with the input text (without the con-
ditional token), and therefore does not capture the alignment with the input concept images or the
intended new concept. Therefore the CLIP-I and DINO are more convincing to demonstrate the
effectiveness of personalization methods: on these scores our method shows the best performance.
Moreover, EchoDistill even surpasses the Custom Diffusion (SD2.1) in the first row, further support-
ing our argument that the teacher model is not fully reliable under the 1-SDP setup. Additionally,
the low CLIP-I and DINO scores of the Textual Inversion baseline highlight the student’s inability
to independently learn the concept without effective supervision. These results collectively validate
the key challenges we identified in adapting concept learning to the 1-SDP setup.

4.3 ABLATION STUDY

Main components. Table 2 presents the analysis of removing key components from EchoDistill,
namely the teacher model and the discriminators. As shown, removing the teacher or the discrim-
inators leads to a noticeable decline across all evaluation metrics. These results indicate that both
components play a crucial role in effectively learning new concepts. Qualitative ablation results are
shown in Fig. 4-(c). Our full model generates high-quality and semantically consistent outputs. In
contrast, omitting the teacher results in images that lack fine details specific to the target concept.
When the discriminators are removed, the outputs are significantly more noisy. This degradation
likely stems from the teacher’s use of a single denoising step, which produces x0 predictions with
residual noise that are subsequently propagated to the student model during training.
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A [V*] backpack with a tree and
autumn leaves in the background

A wet [V*] dog

Input Hyper-SD 1.5 SD-Turbo

A [V*] dog with a blue house in the background

A [V*] cartoon with a wheat field in the background

w/o 
teacher

w/o
discriminators Full ModelInput

A [V*] bowl on the beach

A [V*] stuffed animal with a blue house in the background

Student
(Before)

Teacher
(Before)

Teacher
(After)

A [V*] dog with a mountain in the background

A [V*] dog on the beach

Input

Input Inference step: 1 Inference step: 2 Inference step: 4

Student
(After)

(d)(c)

(a) (b)

Figure 4: (a) Abating the Infer-NFEs; (b) Ablating the one-step diffusion backbone; (c) Ablating the
teacher and discriminators; (d) Ablating the echoing stage.

Inference Steps. Although EchoDistill is trained for a 1-step setting, we further evaluate its per-
formance for 2-step and 4-step denoising, using the same trained model without re-training. As
reported in Table 2, CLIP-T scores show slight improvements with additional steps, whereas CLIP-
I and DINO scores exhibit marginal declines. Overall, the variations across quantitative metrics
remain minimal. The qualitative comparisons in Fig. 4-(a) reveal more perceptible differences. No-
tably, increasing the number of inference steps enhances image fidelity, especially by producing
richer background details and finer textures. This generalizability emerges as a beneficial byproduct
of the training process in EchoDistill.

1-Step Backbones. We perform a backbone ablation study to assess the adaptability of our method
to alternative one-step backbones. In particular, we replace the student model with Hyper-SD1.5
and adjust the teacher model accordingly to SD1.5. The quantitative results are summarized in Ta-
ble 3. Our findings indicate that this alternative backbone yields inferior performance compared to
the SDTurbo backbone. However, as illustrated in Fig.4-(b), Hyper-SD1.5 still remains capable of
generating reasonable outputs in such cases. Notably, our choice of SDTurbo as the primary back-
bone is motivated by two main factors: it is one of the few one-step models capable of generating
high-quality images, and its distillation-based training process is well aligned with our framework,
which likely contributes to its superior performance over Hyper-SD1.5 when used as the backbone.

Echoing Stage. In Table 3, we compare the student and teacher performance after the echoing stage.
The teacher model exhibits significant improvements in CLIP-I and DINO scores, while CLIP-T
scores experience a slight decline. These results suggest that the student’s output can effectively
enhance the performance of both teacher and student models, particularly in terms of identity and
visual similarity. Qualitative examples in Fig. 4-(d) further support this observation: when the
teacher model struggles to learn certain concepts, leveraging the student’s output as an additional
supervisory signal enables the teacher to better capture and reproduce those challenging concepts.

5 CONCLUSIONS

In this paper, we introduced the novel task of one-step diffusion personalization (1-SDP), a signifi-
cant step toward bridging the gap between fast generative inference and concept-personalized image
synthesis. We identified three major challenges that prevent conventional personalization methods
from being directly applicable to one-step diffusion models. To overcome these limitations, we
proposed a unified framework, EchoDistill, which jointly trains a multi-step teacher and a one-step
student through an end-to-end distillation process and a bidirectional echoing stage. By leveraging a
shared text encoder, end-to-end optimization, and student-guided echoing stage, EchoDistill enables
effective adaptation to new visual concepts. Extensive experiments on the DreamBench benchmark
confirm that EchoDistill consistently outperforms existing personalization approaches, setting a new
foundation for rapid and reliable concept learning in diffusion-based generation.
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Tuning-free multi-subject image generation with localized attention. International Journal of
Computer Vision, 2023.

Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang.
A survey on video diffusion models. ACM Computing Surveys, 57(2):1–42, 2024.

Chenkai Xu, Xu Wang, Zhenyi Liao, Yishun Li, Tianqi Hou, and Zhijie Deng. Show-o
turbo: Towards accelerated unified multimodal understanding and generation. arXiv preprint
arXiv:2502.05415, 2025.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. Proceedings of the Conference on Artificial Intelli-
gence, 2024.
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APPENDIX

A BROADER IMPACTS

Our method, EchoDistill, enables efficient and high-fidelity personalized image generation, which
holds significant potential for a range of creative applications, including design, education, and vir-
tual content creation. By reducing the need for extensive data and computation, EchoDistill democ-
ratizes access to advanced generative tools, empowering users with minimal resources to produce
customized visual content. However, as with other powerful generative models, our approach also
introduces potential risks. These include the unauthorized generation of content, impersonation,
and the creation of misleading or harmful imagery. We acknowledge these risks and stress the im-
portance of deploying appropriate safeguards, such as content moderation, usage auditing, and user
authentication mechanisms, particularly in real-world applications. We advocate for the responsible
use of this technology and encourage the research community and stakeholders to collaborate on
developing ethical guidelines and technical solutions to mitigate potential misuse.

B LIMITATIONS.

Our proposed method, EchoDistill, marks an initial step toward enabling one-step diffusion models
to learn novel concepts efficiently. While the experimental results are promising, several limitations
remain and warrant further investigation: (1) Training efficiency: The current training pipeline is hin-
dered by the computational overhead introduced by the multi-discriminator architecture. Optimizing
or rethinking this component could significantly improve training speed. (2) Limited one-shot per-
sonalization: The discriminator’s reliance on multiple reference samples to model the underlying
data distribution makes true one-shot personalization challenging. Designing a more robust dis-
criminator or alternative mechanisms to enable faithful learning from a single image remains an
open problem. (3) Training instability: As with many GAN-based methods, our approach may ex-
hibit instability across runs, particularly for challenging concepts, where achieving optimal results
may require a few trials. Enhancing training stability remains a promising direction for future work.
We leave these challenges as compelling avenues for future research, aiming to build upon this initial
framework to support broader generalization, compositionality, and efficiency.

C CODE RELEASE AND REPRODUCIBILITY STATEMENT

We provide a lightweight testing script of EchoDistill at the anonymous repository https:
//anonymous.4open.science/r/EchoDistill_Anonymous-D5C5/, which enables
users to experience the inference process of our pretrained one-step model. The complete code-
base, including training scripts and model checkpoints, will be released upon the acceptance.

D ETHICAL AND LLM STATEMENTS

We acknowledge the potential ethical implications of deploying generative models, including con-
cerns related to privacy, data misuse, and the propagation of biases. All models used in this paper
are publicly available, and we will release the modified codes to enable reproduction of our results.
We also emphasize the potential misuse of customization approaches in generating misinformation,
and we strongly encourage and support their responsible usage. Regarding the use of LLMs, we
clarify that in this work they were only minimally employed, specifically for correcting grammatical
errors.

E OVERVIEW OF TEXT-TO-IMAGE PERSONALIZATION METHODS

In this section, we present a comprehensive comparison of representative text-to-image personal-
ization methods, expanding upon the overview introduced in λ-Eclipse (Patel et al., 2024). Ta-
ble 4 provides an extended summary that systematically contrasts these approaches across several
key dimensions, including support for single- or multi-subject personalization, training-free versus
training-based paradigms, number of input images required, inference efficiency, etc.
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Table 4: We provide an overview of representative text-to-image personalization methods by ex-
tending the summary introduced in λ-Eclipse (Patel et al., 2024). The base models listed corre-
spond to those used in their original papers. For a fair comparison with the highlighted methods
in our study, we re-implemented and adapted all approaches using the same base model configu-
ration as described in our main paper. ChilloutMix is a community-contributed variant of the Sta-
ble Diffusion model (Rombach et al., 2022). Inifinity refers to a variant of the Text-to-Image VAR
model (Tian et al., 2024), while LlamaGen denotes a text-to-image auto-regressive (AR) model (Sun
et al., 2024a).

Method Multi-
Subject

Tuning-
Free

Base
Model

Input
Images

Inference
Steps Note

Textual Inversion (Gal et al., 2023a) ✗ ✗ SDv1.4 Few-Shot Multi-Step Word-Inversion
P+ (Voynov et al., 2023) ✗ ✗ SDv1.4 Few-Shot Multi-Step Word-Inversion

ProsPect (Zhang et al., 2023c) ✗ ✗ SDv1.4 1-Shot Multi-Step Word-Inversion
MATTE (Agarwal et al., 2024) ✗ ✗ SDv1.4 1-Shot Multi-Step Word-Inversion

Cones 2 (Liu et al., 2023b) ✓ ✗ SDv2.1 Few-Shot Multi-Step Word-Inversion
DreamBooth (Ruiz et al., 2023a) ✗ ✗ SDv1.4 Few-Shot Multi-Step

ClassDiffusion (Huang et al., 2025a) ✗ ✗ SDv1.5 Few-Shot Multi-Step
DisenBooth (Chen et al., 2024) ✗ ✗ SDv2.1 1-shot Multi-Step
CatVersion (Zhao et al., 2025) ✗ ✗ SDv1.5 Few-Shot Multi-Step

AttnDreamBooth (Pang et al., 2024) ✗ ✗ SDv2.1 1-shot Multi-Step
ViCo (Tumanyan et al., 2023) ✗ ✗ SDv1.4 Few-Shot Multi-Step
TextBoost (Park et al., 2024) ✗ ✗ SDv1.5 1-shot Multi-Step

NeTI (Alaluf et al., 2023) ✗ ✗ SDv1.4 Few-Shot Multi-Step
HyperDreamBooth (Ruiz et al., 2023b) ✗ ✗ SDv1.5 1-shot Multi-Step

E4T (Gal et al., 2023b) ✗ ✗ SD 1-shot Multi-Step
Hyper-E4T (Arar et al., 2023) ✗ ✗ SD 1-shot Multi-Step
ARBooth (Chung et al., 2025) ✗ ✗ Infinity (Han et al., 2025) Few-Shot Multi-Step

Proxy-Tuning (Wu et al., 2025c) ✗ ✗ LlamaGen (Sun et al., 2024a) Few-Shot Multi-Step
Continual Diffusion (Smith et al., 2023) ✓ ✗ SD Few-Shot Multi-Step

Perfusion (Tewel et al., 2023) ✓ ✗ SDv1.5 Few-Shot Multi-Step
Custom Diffusion (Kumari et al., 2023) ✓ ✗ SDv1.4 Few-Shot Multi-Step

Cones (Liu et al., 2023a) ✓ ✗ SDv1.4 1-shot Multi-Step
SVDiff (Han et al., 2023) ✓ ✗ SDv1.5 Few-Shot Multi-Step

FreeCustom (Ding et al., 2024) ✓ ✗ SDv1.5 1-Shot Multi-Step
Mix-of-Show (Gu et al., 2024) ✓ ✗ Chilloutmix Few-Shot Multi-Step

LoRACLR (Simsar et al., 2025) ✓ ✗ Chilloutmix Few-Shot Multi-Step
Orthogonal (Po et al., 2024) ✓ ✗ Chilloutmix Few-Shot Multi-Step

OMG (Kong et al., 2024) ✓ ✗ SDXL Few-Shot Multi-Step
Zip-LoRA (Shah et al., 2023) ✓ ✗ SDXL Few-Shot Multi-Step

Break-A-Scene (Avrahami et al., 2023) ✓ ✗ SDv2.1 1-shot Multi-Step
TokenVerse (Garibi et al., 2025) ✓ ✗ Flux (Labs, 2024) 1-shot Multi-Step

EchoDistill (Ours) ✗ ✗ SDTurbo (Sauer et al., 2024) Few-Shot 1-step

PhotoMaker (Li et al., 2024) ✗ ✓ SDXL 1-shot Multi-Step Human Face
ConsistentID (Huang et al., 2024) ✗ ✓ SDv1.5 1-shot Multi-Step Human Face

InstantID (Wang et al., 2024a) ✗ ✓ SDXL 1-shot Multi-Step Human Face
Profusion (Zhou et al., 2023) ✗ ✓ SDv2 1-shot Multi-Step Human Face

PuLID (Guo et al., 2024) ✗ ✓ SDXL 1-shot Multi-Step Human Face
Infinite-ID (Wu et al., 2024) ✗ ✓ SDXL 1-shot Multi-Step Human Face

LCM-Lookahead (Gal et al., 2024) ✗ ✓ SDXL 1-shot Multi-Step Human Face
InfiniteYou (Jiang et al., 2025) ✗ ✓ Flux (Labs, 2024) 1-shot Multi-Step Human Face

IP-Adapter (Ye et al., 2024) ✗ ✓ SDv1.5 1-shot Multi-Step
ELITE (Wei et al., 2023) ✗ ✓ SDv1.4 1-shot Multi-Step

UMM-Diffusion (Ma et al., 2023b) ✗ ✓ SDv1.5 1-shot Multi-Step
InstantBooth (Shi et al., 2024) ✗ ✓ SDv1.4 Few-Shot Multi-Step

BLIP-Diffusion (Li et al., 2023) ✗ ✓ SDv1.5 1-shot Multi-Step
JeDi (Zeng et al., 2024) ✗ ✓ SDv1.4 Few-Shot Multi-Step

Re-Imagen (Chen et al., 2022) ✗ ✓ Imagen (Saharia et al., 2022) 1-shot Multi-Step
SuTi (Chen et al., 2023) ✗ ✓ Imagen (Saharia et al., 2022) Few-Shot Multi-Step
Taming (Jia et al., 2023) ✗ ✓ Imagen (Saharia et al., 2022) 1-shot Multi-Step

Kosmos-G (Pan et al., 2024) ✓ ✓ SDv1.5 1-shot Multi-Step
SSR-Encoder (Zhang et al., 2024) ✓ ✓ SDv1.5 1-shot Multi-Step

λ-Eclipse (Patel et al., 2024) ✓ ✓ Kandinsky (Arkhipkin et al., 2023) 1-shot Multi-Step
FastComposer (Xiao et al., 2023) ✓ ✓ SDv1.5 1-shot Multi-Step

Subject-Diffusion (Ma et al., 2024) ✓ ✓ SDv2.1 1-shot Multi-Step
RMCC (Huang et al., 2025b) ✓ ✓ SDXL 1-shot Multi-Step

Emu2 (Sun et al., 2024b) ✓ ✓ SDXL 1-shot Multi-Step
MS-Diffusion (Wang et al., 2025) ✓ ✓ SDXL 1-shot Multi-Step
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Algorithm 1 Training Pipeline of One-step Personalization in EchoDistill

1: Input: Real image datasetD = {(xr
0, y)}; teacher model ϵtcθ ; student model Gst; discriminators

{Dk}Kk=1; text encoder τ(·); diffusion steps T ; noise schedule functions {αt, σt}; weighting
functions c(t), λid, λmse, λms, {λk}Kk=1

2: for each training iteration do
3: Sample real image and prompt: (xr

0, y) ∼ D
4: Random noise ϵ ∼ N (0, 1)
5: Encode prompt: C ← τ(y)
6: Step 1: Teacher training
7: Sample timestep t ∼ U(1, T )
8: Generate noisy input: xt = αtx

r
0 + σtϵ

9: Predict noise: ϵ̂← ϵtcθ (xt, t, C)
10: Compute loss: Lrec = ∥ϵ− ϵ̂∥22
11: Update teacher model and the text encoder using Lrec
12: Step 2: Student training
13: Sample latent: xT ∼ N (0, 1)
14: Generate image: xst

0 ← Gst(xT , T, stopgrad(C)) ▷ stopgrad(·) denotes stop-gradient
15: // Alignment loss
16: Forward diffuse: xst

t = αtx
st
0 + σtϵ

17: Denoise: xtc
0 ← stopgrad(ϵtcθ (x

st
t , t, C))

18: Compute alignment loss:
Lalign = c(t) · [λid · Lid(x

st
0 , xtc

0 ) + λmse · Lmse(x
s, xt) + λms · Lswd(x

st
0 , xtc

0 )]
19: // Adversarial loss
20: Compute adversarial loss: LG

GAN =
∑K

k=1 λk · Exst
0
[− log(Dk(x

st
0 ))]

21: Update student model using: Lst = Lalign + LG
GAN

22: Step 3: Discriminator training
23: for each discriminator Dk do
24: Compute the discriminator loss:

LDk

GAN = −
[
Exr

0
[logDk(x

r
0)] + Exst

0
[log(1−Dk(stopgrad(xst

0 )))]
]

25: Update Dk using: LDk

GAN
26: end for
27: end for
28: Output: Trained teacher model ϵtcθ , student model Gst, and text encoder τ

F ALGORITHMIC DESCRIPTION OF EchoDistill TRAINING

Distillation Stage. The full training procedure of one-step personalization in EchoDistill is de-
scribed in Section 3.3.1 of the main paper. For completeness, Algorithm 1 provides the detailed
step-by-step implementation. Each iteration consists of three steps: (1) the teacher model and text
encoder are jointly optimized via the noise prediction loss Lrec following the Custom Diffusion
paradigm; (2) training of the student model through a combination of alignment losses with the
teacher’s outputs and adversarial losses against real image data; and (3) updating the discriminators
to improve their capacity to differentiate between real and synthesized samples.

Echoing Stage. During the echoing stage, the training procedure remains identical to the previous
phase, except that the training examples are replaced with one-step inference samples generated by
the student model. This design is beneficial in multiple ways. (1) In the initial distillation stage,
the availability of real images is limited, and this constrained data scale impedes the training of the
teacher model. By contrast, the student model exhibits the ability to learn data distributions from few
images. That is a capability endowed by the discriminator, as validated in few-shot GAN frameworks
such as TransferGAN(Wang et al., 2018a) and MineGAN(Wang et al., 2020). Consequently, during
the echoing stage, our objective is to sample from the data distribution learned by the student model,
using these samples as training examples to enhance the teacher model’s performance. (2) Notably,
the 1-step diffusion student model learns distributions distinct from those acquired by the teacher
model. Similar observation can be found in ADD(Sauer et al., 2024), where the discriminator loss
primarily shapes the data distribution of the student model, while the distillation loss facilitates
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Table 5: Quantitative comparisons with existing text-to-image (T2I) personalization methods. NFEs
indicates the number of function evaluations.

Methods Model Train
NFEs

Inference
NFEs CLIP-T↑ CLIP-I↑ DINO↑ Train

Time (s)
Inference
Time (s) iterations

Custom diffusion

SD 2.1 1000 25 0.264 0.761 0.555 345 2.73 1000
SD Turbo 1000 1 0.207 0.530 0.097 541 0.22 1000
SD Turbo 1000 4 0.257 0.597 0.235 541 0.54 1000
SD Turbo 1000 25 0.276 0.647 0.337 541 1.57 1000
SD Turbo 1 1 0.205 0.518 0.058 543 0.22 1000
SD Turbo 1 4 0.246 0.556 0.109 543 0.53 1000
SD Turbo 4 1 0.206 0.532 0.105 543 0.23 1000
SD Turbo 4 4 0.258 0.600 0.244 543 0.54 1000

Textual Inversion SD Turbo 1 1 0.252 0.564 0.166 2269 0.13 4000
Cones 2 SD Turbo 1 1 0.273 0.619 0.204 2446 0.51 4000

DreamBooth SD Turbo 1 1 0.188 0.536 0.111 281 0.14 1000
TextBoost SD Turbo 1 1 0.217 0.570 0.167 64 0.15 500

DisenBooth SD Turbo 1 1 0.251 0.564 0.231 905 0.18 2000
Lora SD Turbo 1 1 0.212 0.585 0.160 141 0.15 800

IP-Adapter TCD / 1 0.204 0.628 0.325 / 0.39 /
OminiControl Flux / 1 0.279 0.727 0.455 / 2.48 /

EchoDistill SD Turbo 1 1 0.252 0.783 0.637 3137 0.18 1000

convergence and enhances conceptual alignment with the teacher’s outputs. Supporting evidence
for this ablation study can be found in Table 8. (3) By shifting the training examples from few
real image inputs to images generated by the 1-step student model, the teacher model is enabled
to learn from the student’s distribution, a distribution partially shaped by the discriminator’s design
and characterized by image features not inherently present in the teacher model, thereby yielding
beneficial effects.

G ADDITIONAL RESULTS ON METHOD COMPARISON

In this section, we present additional quantitative and qualitative results to further validate the ef-
fectiveness and efficiency of our proposed method. Table 5 extends the comparisons from the main
paper by reporting both training and inference time (in seconds), along with the number of optimiza-
tion iterations required by each method. These results underscore the efficiency of our approach as a
one-step diffusion model, achieving image generation in just 0.18 seconds per instance during infer-
ence. Figures 6 through 9 provide additional qualitative comparisons against representative baseline
methods. Each figure presents a concept reference image (left) followed by results from various ap-
proaches. Our method, EchoDistill, consistently delivers superior visual fidelity while maintaining
rapid inference, highlighting its practical advantages for real-time or resource-constrained applica-
tions in one-step diffusion-based image generation (1-SDP).

Discussion on runtime cost. About the training time, this limitation is inherent to optimization-
based customization approaches, which universally require additional runtime computation when
encountering novel concepts. Conversely, existing optimization-free methods, including encoder-
based frameworks (IP-Adatper (Ye et al., 2024), DreamO (Mou et al., 2025), Xverse (Chen
et al., 2025), UNO (Wu et al., 2025b), InfiniteYou (Jiang et al., 2025), etc.) and unified models
(BAGEL (Deng et al., 2025), GPT-4o (Achiam et al., 2023), OmniGen2 (Wu et al., 2025a), etc.), de-
mand extensive datasets for training. Furthermore, no encoder-based or unified model to date fully
supports few-step (or even one-step) diffusion models. This leaves the integration of one-step mod-
els’ speed advantages with the versatile capabilities of unified models as an underexplored research
direction. In this work, we aim to be the first to investigate the realization of one-step personalization
via an optimization-based approach, with optimization-free alternatives designated as future work.

Comparison with Flux+OminiControl.We further compare EchoDistill with the recent Flux (Labs,
2024) model combined with the OminiControl (Tan et al., 2025). It is important to note that Omini-
Control is trained on large-scale datasets similar to IP-Adapter, which makes the evaluation against
our method not entirely equitable. The evaluation is conducted on the DreamBooth dataset un-
der the 1-step setup, and the results are summarized in the lower part of Table 5. As shown,
Flux+OminiControl outperforms other baselines reported in the table; however, it remains signif-
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Table 6: Additional results for alternative designs on the DreamBooth dataset.

Method CLIP-T ↑ CLIP-I ↑ DINO ↑
Teacher-first 0.266 0.725 0.503
Remove STE 0.242 0.742 0.551
Ours (EchoDistill) 0.252 0.783 0.637

Table 7: User study for diverse methods.

Method Preference Rate (%)

Custom Diffusion (Kumari et al., 2023) 32.26%
Cones 2 (Liu et al., 2023a) 0.48%

DisenBooth (Chen et al., 2024) 0.36%
EchoDistill 66.90%

icantly inferior to our proposed EchoDistill. This performance gap can be attributed to the weaker
generation capability of Flux constrained to 1-step inference.

H ADDITIONAL DISCUSSIONS FOR ALTERNATIVE DESIGNS

We further compare our method with several alternative designs in order to clarify the motivation and
validity of our proposed framework. All experiments in this section are performed on the Dream-
Booth dataset.

Teacher-first paradigm. In this design, the teacher is first trained, and the teacher-generated sam-
ples for the target concept (with varying text prompts) are directly used as supervised training data
for the student. The identity loss (Eq. 2 in the main paper) is applied between the teacher-generated
samples and the student outputs, allowing the student to learn identity-related features from the
teacher model. As shown in Table 6, this design performs worse than our proposed approach. More-
over, it suffers from several inherent limitations: (1) Computational overhead: teacher inference
requires multiple steps, which is inefficient; (2) Teacher irreliability: as discussed in the main pa-
per, the teacher does not always successfully learn the target concepts; (3) Limited image diversity:
the generated images consistently feature highly similar visual appearances; and (4) Performance
ceiling: the student’s performance is inherently bounded by the capabilities of the teacher.

In addition, we also attempted to directly apply VSD (Wang et al., 2023b), SDS (Poole et al., 2023),
and MSE losses to distill teacher-learned concepts into the student model under this paradigm. How-
ever, we observed that this approach was insufficient for transferring the teacher’s personalization
capabilities to the student.

Discussion on feed-forward customization methods. Beyond the teacher-first paradigm, an alter-
native direction is to build on feed-forward customization methods such as SynCD (Kumari et al.,
2025) and JeDi (Zeng et al., 2024), and then distill these models into a few-step diffusion frame-
work. However, most existing distillation techniques for diffusion models are primarily designed to
align the data distributions of few-step models with those of their teacher models. This emphasis
stems from the inherent difficulty that few-step diffusion models face in replicating the full denois-
ing trajectory of their teacher. As a result, subtle discrepancies in concept-specific details are often
introduced, as observed in prior works such as AYF (Sabour et al., 2025), ADD (Sauer et al., 2024),
and LCM (Luo et al., 2023a).

Remove STE. We further investigate the effect of sharing the text encoder between the teacher
and student models. Removing the shared text encoder (STE) results in a clear performance drop,
demonstrating that STE not only simplifies the training framework but also improves learning effi-
ciency.
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Table 8: Ablation study of our method EchoDistill.

Methods CLIP Score CLIP-I DINO
Full model 0.252 0.783 0.637

w/o the teacher 0.240 0.719 0.505
w/o all the discriminators 0.200 0.566 0.105

w/o Identity Feature Loss 0.248 0.769 0.618
w/o MSE loss 0.242 0.739 0.528

w/o MS-SWD loss 0.249 0.754 0.553
w/o the discriminator of the Dino v1 0.231 0.689 0.441
w/o the discriminator of the Dino v2 0.246 0.736 0.534

w/o the discriminator of the Clip 0.227 0.678 0.409

I USER STUDY

To evaluate alignment with human preferences, we conducted a user study involving 15 participants,
yielding 840 preference annotations per method. In each trial, participants were presented with a
set of generated images and instructed to “select the best image from each group, considering both
text-image alignment and object identity consistency.” The methods evaluated in our study include
Custom Diffusion, Cones 2, and DisenBooth, which demonstrate superior performance compared to
other baseline approaches based on both qualitative and quantitative experimental results. As sum-
marized in Table 7, our approach, EchoDistill, significantly outperformed all baselines—receiving
at least 34% more user votes than the second-best method. These findings underscore the strong
alignment between EchoDistill ’s outputs and human perceptual judgments.

J EXTENDED ABLATION STUDY

In Section 4.3 of the main paper, we explore the contributions of key components in EchoDistill,
namely the teacher model and discriminators. A more detailed ablation study is presented in Ta-
ble 8, wherein individual loss terms and discriminators are systematically removed. The results
indicate that omitting the ID loss, latent MSE loss, or MSSWD loss causes notable performance
degradation, particularly reflected in reduced DINO scores, underscoring their critical role in main-
taining alignment with the teacher model. Furthermore, removal of any single discriminator leads
to more pronounced declines across all evaluation metrics. Collectively, these findings demonstrate
the complementary nature of the various loss functions and discriminators in improving generation
fidelity and semantic consistency. Qualitative comparisons provided in Fig. 10 further illustrate the
visual impact of removing each component. Beyond the general decline in generation quality, we
observe that omission of certain components can induce training instability or divergence for specific
concepts.

K 1-SHOT PERFORMANCE.

We further evaluate our method under a one-shot supervision setting, wherein only a single image is
utilized for training. As summarized in Table 9, performance declines across all evaluation metrics
relative to the few-shot scenario. This degradation is anticipated, given that our approach is not ex-
plicitly optimized for one-shot learning, and the scarcity of supervisory data increases the likelihood
of training instability. Qualitative results illustrated in Fig. 5 demonstrate that, although one-shot
training can yield visually plausible outputs, the generated images occasionally lack fine-grained
details corresponding to the novel concept.
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Table 9: One-shot performance of our EchoDistill.

Methods CLIP-T CLIP-I DINO
One-shot 0.231 0.713 0.470
Few-shot 0.252 0.783 0.637

Reference Image

A V* dog in the 
snow

Prompt One-shot Few-shot

A V* dog wearing 
pink glasses

Figure 5: The qualitative results of the 1-shot performance.

L RESULTS ON THE CUSTOMCONCEPT101 DATASET

We further evaluate our method on the CustomConcept101 dataset (Kumari et al., 2023). Qualitative
results, presented in Fig. 11 and Fig. 12, demonstrate that our approach generalizes effectively across
a diverse set of concepts and prompt types, consistently generating high-quality outputs.
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Input CD DisenBoothDB TextBoost TI Cones 2 IP-Adapter EchoDistillCD (SD 2.1)

A [V*] candle on top of a white rug

A [V*] candle with a mountain in the background

A [V*] cat with a city in the background 

A purple [V*] cat

A [V*] cat on top of pink fabric

A [V*] cat in the snow

A [V*] sneaker in the snow

A [V*] sneaker on top of a wooden floor

A [V*] dog in a chef outfit

A [V*] dog wearing a santa hat

Figure 6: Our method EchoDistill (last column) compared with existing methods applied to the 1-
SDP setup with SDTurbo (Sauer et al., 2024) as the one-step diffusion backbone. One representive
concept image is shown on the left-most column. (Part 1)
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A [V*] dog with a mountain  in the background

Input CD DisenBoothDB TextBoost TI Cones 2 IP-Adapter EchoDistillCD (SD 2.1)

A wet [V*] dog

A purple [V*] dog

A [V*] dog in the jungle

A [V*] dog with a blue house  in the background

A [V*] dog in the snow

A [V*] dog in a chef outfit

A [V*] dog wearing a red hat

A [V*] dog in the jungle

A [V*] dog on top of pink fabric

Figure 7: Our method EchoDistill (last column) compared with existing methods applied to the 1-
SDP setup with SDTurbo (Sauer et al., 2024) as the one-step diffusion backbone. One representive
concept image is shown on the left-most column. (Part 2)
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Input CD DisenBoothDB TextBoost TI Cones 2 IP-Adapter EchoDistillCD (SD 2.1)

A [V*] dog wearing a red hat

A [V*] dog wearing pink glasses

A [V*] dog wearing a red hat

A wet [V*] dog

A [V*] toy with the Eiffel Tower in the background

A [V*] toy on the beach

A red [V*] boot

A [V*] boot on the beach

A [V*] cat on a cobblestone street

A [V*] sneaker on top of a white rug

Figure 8: Our method EchoDistill (last column) compared with existing methods applied to the 1-
SDP setup with SDTurbo (Sauer et al., 2024) as the one-step diffusion backbone. One representive
concept image is shown on the left-most column. (Part 3)
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A [V*] toy on the beach

Input CD DisenBoothDB TextBoost TI Cones 2 IP-Adapter EchoDistillCD (SD 2.1)

A [V*] toy in the snow

A purple [V*] cartoon

A [V*] cartoon in the jungle

A purple [V*] sneaker

A [V*] sneaker in the jungle

A [V*] vase on the beach

A [V*] vase in the snow

A [V*] stuffed animal with a mountain in the background

A [V*] stuffed animal in the jungle

Figure 9: Our method EchoDistill (last column) compared with existing methods applied to the 1-
SDP setup with SDTurbo (Sauer et al., 2024) as the one-step diffusion backbone. One representive
concept image is shown on the left-most column. (Part 4)
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Figure 10: Qualitative results of the extended ablation study. D denotes the discriminator.
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Input

Photo of a [V*] flower [V*] flower at a beach with a 
view of the seashore

[V*] flower and a chocolate 
cake on the table

Ours (EchoDistill)

Photo of a [V*] flower Georgia O'Keeffe style [V*] 
flower painting

A vase filled with [V*] flower  
on a table

Photo of a [V*] chair A watercolor painting of 
[V*] chair in a forest

An orange [V*] chair 

Photo of a [V*] sofa [V*] sofa in front of a 
medieval castle

[V*] sofa painting by artist 
Claude Monet

Photo of a [V*] violin A [V*] violin at a stone 
cathedral entrance

A neon [V*] violin in a rainy, 
Blade Runner-style cityscape

Photo of a [V*] plushie [V*] plushie in times square A koala in the style of [V*] 
plushie 

Figure 11: Qualitative results of EchoDistill on the CustomConcept101 dataset. Our method demon-
strates strong generalization across a variety of concepts and prompt styles. (Part 1)
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Input

Photo of a [V*] barn Painting of [V*] barn in the 
style of Van Gogh

[V*] barn in snowy ice

Ours (EchoDistill)

Photo of a [V*] lighthouse

Photo of a [V*] cup [V*] cup oil painting by 
Andy Warhol

Photo of a [V*] toy A pair of [V*] toy on a 
study table

A watercolor painting of 
[V*] toy 

Photo of a [V*] car A sleek [V*] car parked in 
front of a mountain range

A [V*] car resting beneath the 
cherry blossoms in full bloom

Photo of a [V*] shoes A purple colored [V*] shoes A pair of [V*] shoes on a 
rocky mountain top 

Dolphins playfully swim 
near the [V*] lighthouse

The [V*] lighthouse 
surrounded by a tranquil lake

[V*] cup on a tree log, with a dense, 
green forest in the background

Figure 12: Qualitative results of EchoDistill on the CustomConcept101 dataset. Our method demon-
strates strong generalization across a variety of concepts and prompt styles. (Part 2).
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