
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEPSKETCHER: INTERNALIZING VISUAL MANIPU-
LATION FOR MULTIMODAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

The “thinking with images” paradigm represents a pivotal shift in the reasoning of
Vision Language Models (VLMs), moving from text-dominant chain-of-thought
to image-interactive reasoning. By invoking visual tools or generating interme-
diate visual representations, VLMs can iteratively attend to fine-grained regions,
enabling deeper image understanding and more faithful multimodal reasoning. As
an emerging paradigm, however, it still leaves substantial room for exploration in
data construction accuracy, structural design, and broader application scenarios,
which offer rich opportunities for advancing multimodal reasoning. To further
advance this line of work, we present DeepSketcher, a comprehensive suite com-
prising both an image–text interleaved dataset and a self-contained model. The
dataset contains 31k chain-of-thought (CoT) reasoning trajectories with diverse
tool calls and resulting edited images, covering a wide range of data types and
manipulation instructions with high annotation accuracy. Building on this re-
source, we design a model that performs interleaved image–text reasoning and
natively generates “visual thoughts” by operating directly in the visual embedding
space, rather than invoking external tools and repeatedly re-encoding generated
images. This design enables tool-free and more flexible “thinking with images”.
Extensive experiments on multimodal reasoning benchmarks demonstrate strong
performance, validating both the utility of the dataset and the effectiveness of the
model design. The DeepSketcher suite will be released.

1 INTRODUCTION

Recent progress shows that integrating step-by-step reasoning into VLMs has substantially improved
their performance on complex tasks (Meng et al., 2025; Yang et al., 2025a; Xiaomi, 2025; Zhang
et al., 2025a; Deng et al., 2025b; Chen et al., 2025). However, current VLMs often exhibit a “think-
ing over seeing” tendency (Li et al., 2025b): while they can generate lengthy and seemingly coherent
reasoning traces, these traces are frequently detached from the actual visual input. In many cases,
the models misinterpret critical details in the image or even hallucinate content that is not present (Tu
et al., 2025; Sun et al., 2025), suggesting that their reasoning is driven more by linguistic priors than
by genuine visual perception (Guan et al., 2024; Fu et al., 2025).

To address this, OpenAI has introduced a new axis for VLM reasoning with “thinking with im-
ages” (OpenAI, 2025c). Instead of merely generating textual reasoning traces that overlook visual
content, this approach enables models to actively interact with images through an explicit mech-
anism. By zooming, cropping, and performing systematic image-level manipulations, VLMs are
encouraged to ground their reasoning in actual visual evidence. This paradigm represents a shift
from “thinking over seeing” to “thinking through seeing,” enabling models to analyze visual infor-
mation more deeply, more thoroughly, and ultimately achieve more reliable multimodal reasoning.
Following such an idea, recent efforts have explored stimulating the use of visual information in the
reasoning process to enhance model performance in perception and reasoning tasks. VILASR (Wu
et al., 2025) defines a closed set of drawing operations and trains the model to decide when to invoke
each of them. At inference time, the model selects an operation from this set and predicts the spatial
coordinates required to execute it. DeepEyes (Zheng et al., 2025) and OPENTHINKIMG (Su et al.,
2025) leverage end-to-end reinforcement learning to incentivize “thinking with images.” In this set-
ting, the model learns to actively manipulate visual inputs, such as zooming and cropping; additional
related approaches and references are provided in Appendix A. Despite their differences, these ap-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proaches share a common limitation: the supported action space remains relatively restricted, and
they inevitably rely on accurate spatial grounding, which remains challenging: curated data seldom
yield perfectly accurate annotations, and end-to-end reinforcement learning rollouts are similarly
error-prone. To overcome the constraints of a limited action space and to expand the model’s “think-
ing space,” another line of work makes a conceptual leap from execution to imagination, aiming to
unify generation and reasoning within a single model (Li et al., 2025a;a; Yang et al., 2025d). How-
ever, this enlarged thinking space comes at the cost of extremely high training difficulty, and the
methods’ effectiveness has not yet been thoroughly validated on public benchmarks (Qiao et al.,
2024; Xiao et al., 2024; Lu et al., 2023; Wang et al., 2024; Zhang et al., 2024). These methods pro-
vide promising directions for visual reasoning in VLMs, while also exposing fundamental trade-offs
involving action space, grounding, training feasibility, as well as the inherent difficulty of construct-
ing reliable data for supervision.

To offer a complementary perspective within this paradigm, we introduce the DeepSketcher suite.
The first component of the suite is a high-quality dataset with image–text interleaved chain-of-
thought trajectories, where textual reasoning steps are interleaved with <tool call> instructions
that return visually edited images, serving as auxiliary visual cues to guide subsequent reasoning. A
distinctive feature of this dataset is that all images are code-rendered. Specifically, the source images
are generated directly from rendering code, while intermediate images are obtained by modifying the
source code according to the given instructions and re-rendering the updated code. This code-based
approach provides both controllability and semantic clarity, enabling visual manipulations that are
precise, reproducible, and less noisy than pixel-level editing, as illustrated by the running example
in Figure 1, which contrasts direct code-space editing with grounding-based and generation-based
manipulations. Beyond the complex “reasoning→ tool call instruction→ image manipulation→
reasoning” pipeline within our dataset, we further propose a self-contained architecture to internalize
the whole thinking mode into a single model. Specifically, the model manipulates images directly
within the visual embedding space, allowing seamless integration of visual and textual reasoning.
This design eliminates the need for code execution, external tool calls, and repeated re-encoding
of images, thereby enabling more flexible “thinking with images” patterns. In summary, the main
contributions of this work are as follows:

• By presenting the DeepSketcher suite, we provide a complementary perspective within
the “thinking with images” paradigm, showing how dataset and model design can jointly
support more reliable and flexible multimodal reasoning.

• We construct a high-quality dataset with interleaved image–text chain-of-thought trajecto-
ries. All images are code-rendered, and manipulations are conducted in code space, sup-
porting a broad spectrum of open-vocabulary visual operations while avoiding the ground-
ing noise inherent in previous datasets.

• We design a self-contained model that internalizes the “reasoning → tool call → image
manipulation → reasoning” chain. This design removes reliance on external tool calls,
eliminates the need for coordinate-level predictions, and generalizes beyond code at infer-
ence.

2 DEEPSKETCHER

2.1 THE DEEPSKETCHER DATASET

Overview of the data curation pipeline. The DeepSketcher dataset contains extended interleaved
image–text reasoning traces, where textual requests (e.g., highlighting a region or adding an auxil-
iary line) are followed by corresponding visual edits. Each trajectory thus alternates between natural
language reasoning and image modifications, encouraging models to ground their reasoning in vi-
sual evidence and enabling more thorough multimodal understanding.

Prior approaches to constructing such data typically fall into two categories. (i) Grounding-based
manipulation, where models predict an operation target, for example, by outputting a structured
action such as {‘name′ : ‘image zoom in tool′, ‘bbox′ : [360, 280, 640, 560]} or by generating
editing code to perform image modifications (Hu et al., 2024; Zheng et al., 2025). In both cases,
the core mechanism relies on accurate prediction of spatial coordinates. (ii) Generation-based ma-
nipulation, where image generation models are leveraged to fulfill editing instructions (Chern et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Step 1: To ensure accuracy, I should first mark…so that a
clear visualization is available before calculation.
<tool_call>
Highlight the overlap area between the two circles in
transparent green.
</tool_call >

Here you go! Python ```import ….. ’’’

Step 2: The highlighted region now correctly shows
the entire lens-shaped overlap between the two circles,
as required by the problem.
Step 3: I can now use the standard formula for the
intersection area of two circles with radii !_1and !_2,
separated by a distance ", to calculate the overlapping
area: ...
First, compute each term: …
Now calculate: …
Finally, …, the area of the overlapping region can be
expressed as sixteen times α plus nine times β, minus
8.94. We now evaluate the numerical values.
First, …Adding these two results yields 26.60.
Therefore, the final overlapping area of the two circles
is about 17.65 square meters.
<tool_call>NONE</tool_call >
<Answer> 17.65 </Answer>

Visual manipulation in code space

Code Editor

Question：Find overlap area.

Source code：
Python
```
import matplotlib
….. 
’’’

Code rendered VQA

Solver

Render

Solver

❌

Grounding-based Visual manipulation

Solver:
Step 1: To ensure accuracy, I 
require a closer view of the 
overlapped area.
<tool_call>
{"name": "image_zoom_in_tool", 
"bbox": [360, 280, 640, 560], 
"label": "overlapped area"}
</tool_call >

❌

Generation-based Visual manipulation

Solver:
Step 1: To ensure accuracy, I 
should first … clear visualization 
is available before calculation.
<tool_call>
Highlight the overlap area 
between the two circles in 
transparent green.
</tool_call >

Figure 1: In code space (right), edits are specified through rendering code, offering precision and
reproducibility. In contrast, grounding-based manipulation (bounding box predicted by GPT-5 Ope-
nAI (2025b)) and generation-based manipulation (image generated by Nano-Banana Google (2025))
often yield noisy results, underscoring their limitations in stability and controllability.

2025). While effective in some cases, these paradigms often suffer from grounding noise and limited
accuracy, making it difficult to obtain consistent, controllable traces as shown in Figure 1.

In contrast, our approach leverages code-rendered VQA data as the foundation. Each instance in our
VQA dataset is represented as a tuple (C, I,Q,A), where C denotes the rendering code, I = R(C)
is the rendered image from the rendererR, Q is a visual question, and A is the corresponding answer.
This representation is particularly valuable because (i) visual manipulations can be expressed as edits
to C, ensuring accurate and reproducible modifications, (ii) the alignment between code and image
avoids the spatial ambiguity and grounding noise, and (iii) the expressiveness of the code space
supports a wide spectrum of operations, rather than limited to a predefined closed set. Building on
this representation, we construct the DeepSketcher dataset, which spans diverse domains (Figure 2)
and includes a wide variety of actions paired with their corresponding image edits (Table 3).

To curate this dataset, we employ a two-round pipeline. In the first round, we design an automatic
agentic system in which two proprietary LLM experts collaborate to solve code-rendered VQA prob-
lems. Their dialogues are collected and reformatted into 6k interleaved image–text CoT trajectories,
which serve as seed data. We then train an intermediate reasoning model on this seed set to learn
proper tool use and to reliably respond to visual manipulation feedback. In the second round, we
broaden data diversity by constructing additional code–image pairs from off-the-shelf VQA datasets
through code conversion, expanding the dataset to 31k examples. The intermediate model is then de-
ployed within the agentic system, generating richer trajectories and more diverse instruction–edited
image pairs without incurring the prohibitive API cost of large-scale agentic interaction. These out-
puts are subsequently used to train the next-stage model, described in Section 2.2. In the following,
we detail the data collection pipeline and the agentic system.

Data Collection. Our data collection follows one fundamental principle: all images must be code-
rendered. Although such data may appear difficult to obtain, synthetic visual datasets are already
plentiful. Prior work has extensively explored the use of synthetic visual data to enhance VLMs’ per-
ception and reasoning abilities, showing its effectiveness across structured domains and beyond (Jia
et al., 2025; Wang et al., 2025; Deitke et al., 2024; Cai et al., 2024b; Yang et al., 2025c). This

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Mathematics

Geometry

Trigonometry

Calculus

Functio
ns

Ang
lesTo

po
lo

gy

Engineer
ingCivil

Elect
rica

l

Bi
om

ec
ha

nic
s

Com
puter 

Science

M
ac

hi
ne

 
Le

ar
ni

ng

N
etw

ork

Graph Theory

Cognitive Dimensions

Spatial 
Intelligence

Visual Intelligence

Physics
Text 

D
om

inant

Chemistry

Biology

Figure 2: Disciplinary coverage of our dataset.

Figure 3: Wordcloud of visual manipulations.

Rank Category Count Share (%)
1 Labeling/Annotation 12,340 20.9
2 Highlighting 10,437 17.7
3 Color Operations 7,383 12.5
4 Circle Drawing 6,942 11.8
5 Line Drawing 6,919 11.7
6 Point Marking 3,924 6.6
7 Area/Region Operations 2,641 4.5
8 Shape Drawing 2,549 4.3
9 Others 5,919 4.3

Others 4,853 10

Total 59,054 100.0

Table 1: Distribution of visual manipulations.

Algorithm 1 Agentic curation with Solver (LLMS ) and Code Editor (LLME )

Require: Initial code C0, rendererR, question Q, max steps Tmax

1: I0 ← R(C0); DS ← {Q}; DE ← ∅
2: for t = 0 to Tmax do
3: (Rt, A,Actt)← LLMS(DS , It) // CoT Rt; A and Actt are mutually exclusive
4: assert (A = ∅) ⊕ (Actt = ∅) // enforce exclusivity
5: Append (It, Rt, Actt) to DS

6: if A ̸= ∅ then
7: return DS with A
8: else
9: Ct+1 ← LLME(Ct, Actt,DE) // complete edited code

10: Validate Ct+1 (syntax/render checks); if invalid, repair or backoff
11: It+1 ← R(Ct+1)
12: Append (Ct, Actt) to DE

13: end if
14: end for
15: return DS with A

makes it a generally applicable strategy for improving visual understanding. In the first round, we
sample from CoSyn-400k (Yang et al., 2025b), a large-scale dataset of code–image–QA triples,
where all images are code-rendered with associated code and at least one LLM-generated QA. In
the second round, we broaden source diversity by converting images from additional VQA datasets
(e.g., MMK12 (Meng et al., 2025), UniGeo (Chen et al., 2022), MM-Math (Sun et al., 2024),
GeoQA8k (Chen et al., 2021)) into rendering code (img2code) and reusing the same pipeline
to obtain more varied traces. To ensure the validity and quality of both the CoSyn-400k and
img2code data, we apply multiple verification and filtering steps, with details given in Appendix B.

Agentic system for data curation. After collecting code-image-QA pairs from Coysn-400k, we
curate reasoning traces with a two-agent collaborative framework. The system involves two LLM
experts with complementary roles: a Solver LLMS that conducts step-by-step visual reasoning, and
a Code Editor LLME that edits rendering code according to natural-language instructions provided
by LLMS . Specifically, given a code-rendered image I0 = R(C0) and a question Q, LLMS is
prompted to reason explicitly and, whenever visual evidence is uncertain or additional views are
needed, to issue a free-form edit request Actt to LLME (e.g., “draw a tangent line”, “highlight point
A in red”). Upon receiving the request and the current source code Ct, LLME returns a complete
edited program Ct+1, which is rendered into a new image It+1 = R(Ct+1) and fed back to LLMS

for the next round of reasoning. The process continues until the Solver produces a final answer A or
a termination condition is met (e.g., maximum edit steps).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Large Language Model

Query

Visual Encoder

Supervise

V
is

ua
l E

nc
od

er

Embedding Editor

C
ross-attn.

Self-attn.

FFN

🔥

🔥

🔍

Visual Embedding

Query

Textual Reasoning

Edit Request

Figure 4: Architecture of the proposed DeepSketcher model. A query Q and initial image I0
are encoded into the vision–language model, producing reasoning tokens Rt and edit instructions
Actt. The Embedding Editor manipulates visual embeddings directly, supervised by code-rendered
ground-truth edits, and inserts updated embeddings back into the VLM context. This process yields
interleaved reasoning and visual manipulation traces, ultimately producing the final answer.

Then, we log the entire interleaved trajectory {(It, Rt, Actt)}Tt=0, where Rt denotes the Solver’s
chain-of-thought at step t. This yields long image-text CoT traces aligned with code edits and
rendered images, which we later standardize into training examples. To improve the reliability of
the system, we incorporate mistake-proofing and verification mechanisms; full details are provided
in Appendix B. For clarity, the overall procedure is summarized in Algorithm 1.

2.2 THE DEEPSKETCHER MODEL

Overview. The curated DeepSketcher dataset offers long, interleaved reasoning traces aligned with
precise visual manipulations. To leverage this resource, we introduce the DeepSketcher model,
specifically designed to integrate such interleaved reasoning with visual operations.

For comparison, common reasoning VLMs take as input an image I and a textual query Q, and
produce a sequence of textual reasoning steps {R1, R2, . . . , Rt} followed by a final answer A:

{R1, R2, . . . , Rt}, A = LLM(Ev, Q),

where Ev denotes the visual embedding output by the visual encoder and Q denotes the textual
query.

In contrast, the DeepSketcher model integrates reasoning and visual manipulation into a unified
trajectory. Given an initial image-query pair (I0, Q), the pair is first encoded by a visual encoder
into (Ev,0, Q). The model then generates an initial reasoning step R0 (as illustrated in Figure 4).
When additional visual clarification is required, it autonomously generates an action Act0. The
pair (Ev,0, Act0) is then passed into a built-in embedding editor. As shown in the bottom part of
Figure 4, it predicts the manipulation directly in the visual embedding space and returns a “ma-
nipulated” image representation Ev,1. The augmented context {Ev,0, Q,R0, Act0, Ev,1} is then fed
back into the model for subsequent reasoning. This recursive process yields an interleaved trajectory
of reasoning, actions, and updated visual embeddings, and finally, the textual answer:

(R0, Act0, Ev,1, R1, Act1, Ev,2, . . . , RT−1, ActT−1, Ev,T , A) = DeepSketcher(Ev,0, Q).

The overview of the pipeline is provided in Figure 4. Next, we detail the training strategy that
enables the Deepsketcher model to perform interleaved reasoning and visual manipulations.

Building the DeepSketcher model. The training of the DeepSketcher model can be divided into
three phases. In the first phase, we directly utilize the features of images in our dataset, rather than

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

utilizing the visual embedding editor, to warm up the reasoning model. The model is optimized
on interleaved image–text sequences. The supervision signal is applied only to textual tokens and
<vision start>, <vision end> tokens. These two special tokens serve as boundary markers
for visual content in interleaved sequences. Image features are inserted as continuous embeddings
and serve only as conditioning context. This enables the model to learn proper structural demarca-
tion between textual and visual modalities during generation.

Formally, consider the i-th training example with T (i) images {I(i)0 , . . . , I
(i)

T (i)−1
} interleaved with

text. Each image I
(i)
t is encoded as a sequence of visual tokens E(i)

v,t, and we group the intervening

text into segments {S(i)t }T
(i)−1

t=0 , where S(i)t collects the positions of text tokens that appear after I(i)t

and before I(i)t+1. Let E(i)
v,≤t = {E

(i)
v,0, . . . , E

(i)
v,t} denote all visual tokens up to image t. Each segment

is modeled autoregressively, conditioning on the historical text x(i)
<τ and the preceding visual tokens

E
(i)
v,≤t, yielding the per-segment loss L(i)

t = −
∑

τ∈S(i)
t

logPθ

(
x
(i)
τ | x(i)

<τ , E
(i)
v,≤t

)
. The phase-1

language modeling objective then averages over all text tokens across the corpus and sums over
examples, segments, and token positions:

Lphase-1
LM (θ) = − 1∑N

i=1 |S(i)|

N∑
i=1

T (i)−1∑
t=0

∑
τ∈S(i)

t

logPθ

(
x(i)
τ

∣∣∣x(i)
<τ , E

(i)
v,≤t

)
, (1)

where |S(i)| =
∣∣⋃T (i)−1

t=0 S(i)t

∣∣ is the number of text tokens in example i. This objective trains the
model to issue proper edit requests while ensuring that textual predictions are consistently condi-
tioned on the available visual context.

The editor must handle a broad spectrum of visual modalities (e.g., geometry, charts) and follow di-
verse instructions to achieve reliable features. Thus, in the second phase, we suggest that larger scale
and diverse supervision are indispensable to equip the model with native visual manipulation capa-
bilities. Accordingly, we augment training data constructed via an img2code pipeline (detailed
in Appendix B.1) to capture the complexity of multimodal reasoning tasks, and we deploy the pre-
trained reasoning model for the agentic system described in Section 2.2, which yields more training
traces enriched with edit-request and image outcome pairs (Actt, It+1). With these augmentations
in place, we finalize the architecture to unify textual reasoning and visual manipulation.

When the model is uncertain about its visual perception, it generates an instruction enclosed by
<tool call> tokens. We then extract the hidden states of these tokens, denoted Eraw ∈ RN×D,
and apply adaptive pooling to obtain a fixed-length sequence Eact ∈ R32×D; the choice of 32 is
chosen based on empirical statistics from training data. For the embedding editor, we adopt a Q-
Former–style architecture (Li et al., 2023) but drop the text branch and retain an image transformer
with cross-attention. Unlike Q-Former, which grounds visual information into a fixed set of learn-
able query tokens, our module uses visual tokens themselves as queries and injects textual guidance
from the action embeddings via cross-attention. Let EV ∈ RK×D be the visual tokens from the
frozen visual encoder. We take queries from EV and keys/values from Eact:

Q = EV WQ, K = EactWK , V = EactWV ,

and update the visual tokens via a cross-attention block followed by an FFN:

ẼV = MHA(Q,K, V ) + EV , Eout
V = FFN(ẼV ) + ẼV .

Stacking several such blocks propagates instruction semantics into the visual space, yielding updated
visual embeddings Epred

V ∈ RK×D with the same length K as the input EV .

We perform a second round of training on our proposed model. We initialize from the checkpoint of
the reasoning model pretrained in the first stage and freeze all modules except the embedding editor.
For supervision, we use the output of the visual encoder on ground-truth edited images as targets,
and apply an ℓ1 loss to the latent editor’s predicted embeddings. Crucially, beginning in this phase,
the VLM consumes editor-produced visual tokens rather than ground-truth visual context, and the
LM objective is conditioned on the editor’s outputs. The phase-2 objective is:

Lphase-2(θ) =
∥∥Epred

V − Egt
V

∥∥
1
+ Lphase-2

LM (θ), (2)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on multimodel reasoning benchmarks.

Model MathVerse Mathvision MathVista LogicVista WeMath Average
Proprietary VLMs

Claude3.7-Sonnet (Anthropic, 2025a) 46.7 41.9 66.8 58.2 49.3 52.6
GPT-4.1 (OpenAI, 2025a) 48.9 46.4 70.4 61.1 55.5 56.5

Open-source VLMs
InternVL3-8B (Zhu et al., 2025) 38.5 26.3 70.4 45.6 31.7 42.5
Qwen2.5-VL-7B (Bai et al., 2025) 41.1 27.0 68.2 39.8 34.3 42.1

Tool-Calling VLMs
VILASR-7B (Wu et al., 2025) 29.4 25.0 57.6 32.2 23.7 33.6
DeepEyes-7B (Zheng et al., 2025) 42.2 26.6 70.1 47.7 38.9 45.1

Inner Visual Thought VLMs
Bagel-Zebra-CoT-7B (Li et al., 2025a) 48.8 28.2 64.7 48.4 28.0 43.6
Mirage-7B (Yang et al., 2025d) 27.3 28.6 63.7 40.7 16.7 35.4
DeepSketcher-7B (Ours) 43.2 32.3 69.1 48.1 37.1 46.0
∆ (vs Qwen2.5-VL-7B) +2.1 +5.3 +0.9 +8.3 +2.8 +3.9

where Lphase-2
LM (θ) is the same as Lphase-1

LM (θ) except the visual embeddings.

Compared to the prior approach (Yang et al., 2025d) that edits images in a highly compressed la-
tent space, our method preserves richer semantic information: the editor operates directly on visual
tokens with explicit conditioning on action embeddings. This design yields more interpretable guid-
ance and better semantic alignment between textual requests and visual transformations.

In the final phase, we retain the same training objective and unfreeze the LLM backbone to en-
courage the model to adapt to its own edited outputs, ensuring consistency between generated edit
requests and the resulting visual context. The visual encoder is frozen through all three stages.

3 EXPERIMENTS

3.1 SETUPS

Baselines. To evaluate the effectiveness of the proposed DeepSketcher model, we compare it
against four categories of baselines: (1) proprietary models, including Claude3.7-Sonnet (Anthropic,
2025a) and GPT-4.1 (OpenAI, 2025a); (2) state-of-the-art open-source models (Zhu et al., 2025; Bai
et al., 2025); (3) reasoning VLMs with tool-calling capabilities that rely on external tools (Zheng
et al., 2025; Wu et al., 2025); and (4) “thinking-with-generated-images” models that produce inner
visual thoughts (Li et al., 2025a; Yang et al., 2025d). Strictly speaking, our model also falls into the
fourth category, as it performs interleaved visual-textual reasoning natively, without external tools.
We select Qwen2.5-VL-7B as our baseline model.

Benchmarks. We evaluate our model on common multimodal reasoning benchmarks, including
MathVerse (vision-only) (Zhang et al., 2024), MathVision (mini) (Wang et al., 2024), MathVista
(mini) (Lu et al., 2023), LogicVista (Overall) (Xiao et al., 2024), and WeMath (Overall) (Qiao et al.,
2024). We also construct an in-house benchmark, Indicator-500, by sampling 500 code-rendered
VQA instances from the Cosyn-400k test set. Unlike existing benchmarks, it includes paired code
information, which enables to decouple interleaved reasoning from visual manipulation and provides
a reliable indicator for the embedding editor during training. (See Appendix C for training details.)

3.2 MAIN RESULTS

Table 2 summarizes the performance of different VLMs across the benchmarks described above.
For clarity, we group the baselines into four categories as mentioned earlier. The last group, “Inner
Visual Thought VLMs,” is particularly challenging, as its “thinking space” and “action space” are
far larger than those of tool-calling VLMs with fixed utilities. Such models are more sensitive to
visual variations, and their robustness in visual manipulation may affect the model performance.
When they fail to generate reliable visual content, the resulting noise can propagate through the
reasoning trace and hurt overall performance. Despite these challenges, our model consistently
outperforms other inner visual thought VLMs such as Bagel-Zebra-CoT-7B and Mirage-7B across
most benchmarks. Furthermore, when compared with tool-calling VLMs, despite operating under
a substantially more flexible paradigm, it surpasses VILASR-7B and DeepEyes-7B by 12.4 and 0.9

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

points in average. Together, these results highlight the effectiveness of our approach within this
challenging setting, which we attribute to the accuracy and reliability of our training data, and the
adaptability of our proposed model architecture.

To better understand the effect of our method, we conduct an in-depth comparison against the base
model Qwen2.5-VL-7B. Overall, our approach yields an average improvement of 3.9 points across
benchmarks. When breaking down results by task category, consistent patterns emerge: the most
reliable gains appear in tasks involving geometry and counting, with particularly striking improve-
ment on MathVision reaching 5.3 points. In addition, math-related problems (LogicVista) involving
logical or numerical reasoning also exhibit significant improvements (8.3 points). By contrast, the
improvement on tasks that require symbolic manipulation or domain knowledge integration tend to
decline, decreasing performance gain to 0.9 points on MathVista. In particular, this dataset con-
tains scientific reasoning and textbook QA, both of which have numerous open-domain images and
depend heavily on disciplinary knowledge outside the scope of our training data. Please see the
Appendix for more performance details.

3.3 ABLATION STUDY

Ablation study on the agentic data curation system. For data curation, we design an agentic
system where two experts collaborate to solve VQA. The intuition is that, with the aid of a Code
Editor that has direct access to the source code underlying an image, the solver LLM effectively
gains more accurate visual information. With this enhanced context, the solver can tackle prob-
lems that would otherwise be unsolvable by independent reasoning, thereby enabling the collection
of higher-quality and more informative interleaved reasoning traces. To verify this, we conduct a
controlled experiment on a subset of Cosyn-400k under two settings: (i) an independent answering
setup, where solver LLM works alone, and (ii) a collaborative answering setup, where the solver
cooperates with another LLM acting as the Code Editor. We evaluate the results using the pass@8
metric, which counts a question as correctly answered if at least one of the eight sampled responses
matches the ground truth. As shown in Table 3, both solvers achieve significant gains when paired

Table 3: Comparison of collaborative vs. inde-
pendent answers across different LLMs

Solver Code Editor pass@8

GPT-4.1 Null 0.72
GPT-4.1 Claude3.7-Sonnet 0.80
Qwen2.5-VL-72B Null 0.67
Qwen2.5-VL-72B Claude3.7-Sonnet 0.72

with the Code Editor, confirming that collab-
oration enables the agentic system to correctly
answer more questions, including those that are
too challenging for a single model to solve in-
dependently. As a result, our data collection
pipeline retains more verified examples than the
single model. This setup not only increases
coverage but also allows us to harvest reasoning
traces from more difficult problems that would
otherwise be excluded. In this way, the col-
lected trajectories are not only richer in reason-
ing content but also more challenging and ultimately more valuable for training.

Does the model reason better with the embedding editor? To evaluate the effect of the embed-
ding editor, we conduct an ablation study across multiple multimodal reasoning benchmarks as well
as our in-house Indicator-500 evaluation set (Table 4). We focus on the models obtained in training
stage 2 and stage 3, since the stage 1 model does not incorporate the embedding editor. For each
model, we consider three experimental settings: (i) deploying the model within an agentic system
that collaborates with an external Code Editor expert, which has direct access to the source code
of the input image and thus makes all information explicitly available, this approximates an upper
bound; (ii) relying solely on the model’s built-in embedding editor to manipulate visual representa-
tions and generate interleaved reasoning traces; and (iii) bypassing the editor entirely and producing
chain-of-thought traces purely in text, which serves as a natural baseline, since any degradation
relative to this case would imply that the editor introduces noise rather than improving reasoning.

As shown in Table 4, the embedding editor consistently improves over the text-only baseline on
most benchmarks. A notable exception arises at stage 2: the editor-equipped model underperforms
on Indicator-500, trailing the baseline by 4.5 points. This issue is largely alleviated in stage 3, where
joint training of the LLM and the editor tightens their coupling. Within stage 3, we see gains under
all three settings: the text-only baseline itself is slightly stronger than in stage 2 (41.3 vs 40.6),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on the embedding editor.

Stage Setting Mathverse Wemath Mathvista Mathvision LogicVista Indicator-500 Average

2
Text-only (Baseline) 37.2 28.3 65.0 28.6 45.9 38.3 40.6
Editor 41.6 37.5 65.8 28.9 46.5 33.8 42.4
Agentic (Oracle) – – – – – 41.0 –

3
Text-only (Baseline) 38.1 31.2 65.7 33.5 41.8 37.5 41.3
Editor 43.2 37.1 69.1 32.3 48.1 40.5 45.1
Agentic (Oracle) – – – – – 44.8 –

Mark the angle H with a small square.

Instruction: Highlight segment DE in blue and
mark ∠BAE with a red arc.

Instruction: Highlight ∠A in blue, ∠D in red, and
mark the right angle at D with a square

Highlight angles 1 and 2 in red, and
label them clearly on the diagram.

Highlight the division between
the two cubes.

Examples from Indicator-500 Examples from public benchmarks

Highlight the two bottom angles of the
triangle in different colors

Figure 5: Difference map visualizations. Each example shows the input image (left), the program-
matic rendering (available only in Indicator-500) (middle), and the difference map between the
embedding editor output and the original visual embedding (right).

adding the editor lifts the stage 3 average by a further +3.8 (45.1 vs 41.3), and the upper bound
is further lifted, reaching 44.8 on Indicator-500. Overall, later-stage joint training mitigates the
distribution shift from editor-produced visual tokens, yields broad performance gains, and improves
the reliability of visual grounding, while the remaining gap to the agentic upper bound underscores
opportunities for further optimization and architectural advances.

We are also interested in characterizing how the embedding editor modifies visual content. Since
the actual visual outputs are not directly observable, we instead measure the distance between edited
outputs and feature embeddings of the input image, and localize pronounced differences as regions
of interest (ROIs). We perform this analysis on both our in-house Indicator-500 dataset and the pub-
lic benchmarks. For Indicator-500, the availability of the underlying source code allows us to issue
the exact same instructions to the Code Editor expert and obtain programmatically rendered edits for
comparison. For the left side of Figure 5, we present results on the in-house Indicator-500 dataset.
Because this set provides access to the underlying source code, we can generate programmatic edits
to visualize the intended visual modifications. From these results, we observe that the regions of
interest generally align well with both the natural language instructions and the programmatic edits,
indicating that the embedding editor tends to modify the intended areas. It is worth noting, however,
that the programmatic edits in Indicator-500 should be regarded as illustrative rather than absolute
ground truth, since natural language instructions may admit multiple valid implementations. On the
right side of Figure 5, we show results on the public benchmarks, where no programmatic edits are
available. The localized regions of interest still largely align with the intent expressed in the natural
language instructions. This observation further reinforces the effectiveness of the proposed module
and demonstrates its ability to generalize beyond the code-accessible setting.

4 CONCLUSION

We present the DeepSketcher suite as a fresh perspective within the broader paradigm of “thinking
with images.” At the heart of this suite lies a carefully constructed dataset, where chain-of-thought
reasoning is interleaved with code-rendered visual edits—precise, reproducible, and semantically
grounded, free from the grounding noise that plagues pixel-level manipulations. Building upon this
foundation, we design a self-contained model that internalizes the entire cycle of reasoning, tool
invocation, and image manipulation. By removing reliance on external tools and fragile coordinate
predictions, the model demonstrates a new pathway toward a resilient multimodal intelligence. To-
gether, these contributions point toward a future where machines learn to “think” with images in a
more integrated way.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 ETHICS STATEMENT

We acknowledge that large language models in general may reflect biases present in their pretraining
data. In our study, however, all training data are deliberately restricted to mathematics-related tasks
and disciplinary benchmarks, drawn exclusively from open-source datasets. Moreover, both the
training and evaluation are conducted using open-source frameworks, ensuring transparency and
reproducibility.

The design of our model is not intended to introduce concerns related to health, safety, personal
security, or privacy: it operates entirely on domain-specific data, avoids the use of personal or sen-
sitive information, and is confined to research-oriented applications. By focusing on well-defined
academic tasks, our work contributes to responsible AI research while offering potential benefits for
education, scientific discovery, and the broader study of multimodal reasoning.

6 REPRODUCIBILITY STATEMENT

We provide the necessary information to facilitate the reproducibility of our results. The main paper
describes the data curation process (Section 2.1), the design of the proposed model (Section 2.2),
the experimental setups (Section 3.1), and the ablation studies (Section 3.3). Additional details
are provided in the appendix, including further information on data curation (Section B), training
procedures (Section C), and extended qualitative and quantitative discussions of the experiments
(Section D). We commit to publicly releasing the DeepSketcher suite (model and dataset) as well as
the code for constructing the agentic system to facilitate further research.

REFERENCES

Anthropic. Claude3.7. www.anthropic.com/news/claude-3-7-sonnet, 2025a.

Anthropic. Claude4. www.anthropic.com/news/claude-4, 2025b.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, and
Yong Jae Lee. Making large multimodal models understand arbitrary visual prompts. In IEEE
Conference on Computer Vision and Pattern Recognition, 2024a.

Shihao Cai, Keqin Bao, Hangyu Guo, Jizhi Zhang, Jun Song, and Bo Zheng. Geogpt4v: Towards
geometric multi-modal large language models with geometric image generation. arXiv preprint
arXiv:2406.11503, 2024b.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language models.
arXiv preprint arXiv:2504.11468, 2025.

Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P Xing, and Liang Lin.
Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021.

Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
Unifying geometry logical reasoning via reformulating mathematical expression. arXiv preprint
arXiv:2212.02746, 2022.

Ethan Chern, Zhulin Hu, Steffi Chern, Siqi Kou, Jiadi Su, Yan Ma, Zhijie Deng, and Pengfei Liu.
Thinking with generated images. arXiv preprint arXiv:2505.22525, 2025.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art multimodal models. arXiv e-prints, pp. arXiv–2409,
2024.

10

www.anthropic.com/news/claude-3-7-sonnet
www.anthropic.com/news/claude-4


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025a.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
An early exploration to complex vision-language reasoning via iterative self-improvement. arXiv
preprint arXiv:2503.17352, 2025b.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2406.11503, 2023.

Stephanie Fu, Tyler Bonnen, Devin Guillory, and Trevor Darrell. Hidden in plain sight: Vlms
overlook their visual representations. arXiv preprint arXiv:2506.08008, 2025.

Google. Nano-banana. https://nanobanana.ai/, 2025.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An
advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14375–14385, June 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
guage models. Advances in Neural Information Processing Systems, 37:139348–139379, 2024.

Caijun Jia, Nan Xu, Jingxuan Wei, Qingli Wang, Lei Wang, Bihui Yu, and Junnan Zhu. Chartrea-
soner: Code-driven modality bridging for long-chain reasoning in chart question answering. arXiv
preprint arXiv:2506.10116, 2025.

Ang Li, Charles Wang, Kaiyu Yue, Zikui Cai, Ollie Liu, Deqing Fu, Peng Guo, Wang Bill Zhu,
Vatsal Sharan, Robin Jia, et al. Zebra-cot: A dataset for interleaved vision language reasoning.
arXiv preprint arXiv:2507.16746, 2025a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Zongxia Li, Wenhao Yu, Chengsong Huang, Rui Liu, Zhenwen Liang, Fuxiao Liu, Jingxi Che, Dian
Yu, Jordan Boyd-Graber, Haitao Mi, et al. Self-rewarding vision-language model via reasoning
decomposition. arXiv preprint arXiv:2508.19652, 2025b.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng
Zhang, and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-
based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

OpenAI. Gpt-4.1. https://openai.com/index/gpt-4-1/, 2025a.

OpenAI. Gpt-5. https://openai.com/zh-Hant-HK/index/introducing-gpt-5/,
2025b.

OpenAI. Thinking with images. https://openai.com/index/
thinking-with-images/, 2025c.

11

https://nanobanana.ai/
https://openai.com/index/gpt-4-1/
https://openai.com/zh-Hant-HK/index/introducing-gpt-5/
https://openai.com/index/thinking-with-images/
https://openai.com/index/thinking-with-images/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, et al. We-math: Does your large multi-
modal model achieve human-like mathematical reasoning? arXiv preprint arXiv:2407.01284,
2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie
Chen, Jiawei Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via
visual tool reinforcement learning. arXiv preprint arXiv:2505.08617, 2025.

Hai-Long Sun, Zhun Sun, Houwen Peng, and Han-Jia Ye. Mitigating visual forgetting via take-
along visual conditioning for multi-modal long cot reasoning. arXiv preprint arXiv:2503.13360,
2025.

Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math eval-
uation with process evaluation and fine-grained classification. arXiv preprint arXiv:2404.05091,
2024.

Chongjun Tu, Peng Ye, Dongzhan Zhou, Lei Bai, Gang Yu, Tao Chen, and Wanli Ouyang. Attention
reallocation: Towards zero-cost and controllable hallucination mitigation of mllms. arXiv preprint
arXiv:2503.08342, 2025.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hong-
sheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. Advances in
Neural Information Processing Systems, 37:95095–95169, 2024.

Ke Wang, Junting Pan, Linda Wei, Aojun Zhou, Weikang Shi, Zimu Lu, Han Xiao, Yunqiao Yang,
Houxing Ren, Mingjie Zhan, et al. Mathcoder-vl: Bridging vision and code for enhanced multi-
modal mathematical reasoning. arXiv preprint arXiv:2505.10557, 2025.

Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu Tan. Re-
inforcing spatial reasoning in vision-language models with interwoven thinking and visual draw-
ing. arXiv preprint arXiv:2506.09965, 2025.

Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal llm logical reasoning
benchmark in visual contexts. arXiv preprint arXiv:2407.04973, 2024.

LLM-Core-Team Xiaomi. Mimo-vl technical report. arXiv preprint arXiv:2506.03569, 2025.

An Yan, Zhengyuan Yang, Junda Wu, Wanrong Zhu, Jianwei Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Julian McAuley, Jianfeng Gao, et al. List items one by one: A new data source and learning
paradigm for multimodal llms. arXiv preprint arXiv:2404.16375, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing general-
ized multimodal reasoning through cross-modal formalization. arXiv preprint arXiv:2503.10615,
2025a.

Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca Weihs, Andrew Head, Mark Yatskar, Chris
Callison-Burch, Ranjay Krishna, Aniruddha Kembhavi, et al. Scaling text-rich image understand-
ing via code-guided synthetic multimodal data generation. arXiv preprint arXiv:2502.14846,
2025b.

Yuwei Yang, Zeyu Zhang, Yunzhong Hou, Zhuowan Li, Gaowen Liu, Ali Payani, Yuan-Sen Ting,
and Liang Zheng. Effective training data synthesis for improving mllm chart understanding. arXiv
preprint arXiv:2508.06492, 2025c.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zeyuan Yang, Xueyang Yu, Delin Chen, Maohao Shen, and Chuang Gan. Machine mental imagery:
Empower multimodal reasoning with latent visual tokens. arXiv preprint arXiv:2506.17218,
2025d.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025a.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the
diagrams in visual math problems? In European Conference on Computer Vision, pp. 169–186.
Springer, 2024.

Yi-Fan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu
Jiang, Changyi Liu, Tianke Zhang, et al. Thyme: Think beyond images. arXiv preprint
arXiv:2508.11630, 2025b.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYanhan YeYanhan, and Zheyan Luo. Llamafac-
tory: Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations),
pp. 400–410, 2024.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. arXiv
preprint arXiv:2505.14362, 2025.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 VISUAL PROMPTING

Visual prompting (VP) is an interaction paradigm that predates the recent surge of multimodal rea-
soning. Prior studies have demonstrated that incorporating pixel- or region-level cues—such as
bounding boxes, markers, scribbles, or segmentation masks—into input images can substantially
enhance a model’s perceptual capabilities (Yang et al., 2023; Hu et al., 2024; Cai et al., 2024a; Yan
et al., 2024), thereby improving its understanding of visual inputs. For instance, SoM (Yang et al.,
2023) shows that augmenting input images with labeled cues significantly improves referring and
localization performance in GPT-4V. Similarly, Sketchpad-style pipelines automatically compose
visual prompts by leveraging a toolbox of detectors and segmenters (with lightweight Python glue)
to draw boxes and masks either prior to or during inference, thereby strengthening both perception
and downstream reasoning (Hu et al., 2024). However, early VP methods are typically developed
on frontier models, since many open-source alternatives lack the capacity to reliably invoke external
tools and effectively reason over the resulting feedback. This limitation highlights the importance of
equipping models with the ability to internalize such skills, rather than relying solely on externally
orchestrated prompting mechanisms.

A.2 VISION LANGUAGE MODEL REASONING

Enhancing the reasoning ability of vision-language models (VLMs) is a key focus of current VLM
research. Following the success of GRPO (Shao et al., 2024; Guo et al., 2025) in textual reasoning, a
growing body of work leverages reinforcement learning (RL) to explicitly encourage and strengthen
the reasoning skills of VLMs, yielding promising progress (Meng et al., 2025; Deng et al., 2025b;
Yang et al., 2025a; Zhang et al., 2025a; Xiaomi, 2025). Nevertheless, most existing approaches
remain predominantly oriented toward textual reasoning steps, treating the visual input merely as
a static condition rather than an integral component of the reasoning pipeline. To move beyond
simply seeing images and to reason more deeply about them, recent studies have introduced a tool-
use paradigm, where external vision functions or specialized modules are invoked to manipulate
visual inputs—for example, through cropping or zooming—and the edited artifacts are subsequently
fed back into the model to guide the next stage of reasoning (Zhang et al., 2025b). This paradigm
allows models to better perceive and localize fine-grained image regions, thereby improving visual
question answering (VQA) accuracy. However, such “thinking with images” approaches only enable
models to perform a restricted set of visual operations, thereby constraining their reasoning space. In
parallel, another line of research has sought to expand this reasoning space by incorporating image
generative models (Li et al., 2025a; Yang et al., 2025d). Yet, these efforts have largely been confined
to limited scenarios such as jigsaw puzzles and mazes, which restrict their broader applicability.

B MORE DETAILS ON DATASET CONSTRUCTION.

B.1 IMG-TO-CODE PIPELINE

There is an inherent drawback in the current code-rendered dataset. Specifically, the distribution of
questions differs substantially from those authored by human experts in high school, university, or
competition settings. Moreover, it is difficult to reliably assess the difficulty of the generated prob-
lems, and the perspectives adopted in question construction often lack the nuance and pedagogical
intent typically found in human-authored questions. The ability to tackle more challenging problems
is precisely why reasoning models are needed.

To bridge this gap, we design an additional img2code pipeline in the expansion round to incor-
porate more realistic and challenging problems. An overview of the pipeline is shown in Figure 6.
Concretely, we first sample VQA data from a collection of math-dominant datasets (Meng et al.,
2025; Chen et al., 2022; Sun et al., 2024; Chen et al., 2021). We then employ FigCodifier (Wang
et al., 2025), a model specifically trained to convert images into code, to process these samples. The
resulting code is subsequently rendered back into images.

It is worth noting that img2code is an extremely challenging task, as it requires the model to
faithfully capture all fine-grained details in an image using programmatic language. We conduct

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 6: Overview of img2code pipeline.

Figure 7: Overview of the DeepSketcher data curation pipeline. We first construct a dataset of VQA
problems with images rendered directly from code. An agentic system is then designed to generate
interleaved image–text reasoning traces.

preliminary tests using three models: FigCodifier, GPT-4.1, and Claude 4.0-Sonnet (Anthropic,
2025b). By human inspection, the success rates of all three are below 10%. This is because even
a minor error in the rendering process can lead to a drastically different semantic meaning of the
image. Here, we employ an intuitive compromise for automatic quality filtering. Specifically, we
leverage multiple solver VLMs, including GPT-4.1, Claude 3.7-Sonnet, and Qwen2.5-VL-72B, to
answer the VQA questions using the re-rendered images. If a solver model can produce a correct
answer, then we deem the re-rendered image acceptable: although it may not perfectly replicate the
original, it still contains sufficient information for solving the problem.

B.2 DATA FILTERING

Here, we describe our data filtering process in detail. In the first round of curation, we selected
samples from the math, graphic, diagram, and chart subsets of the Cosyn-400k dataset. Although
this dataset provides a large volume of diverse data, all samples are synthesized: both questions
and answers are generated by LLMs. Consequently, the validity of the provided answers cannot be
guaranteed. To mitigate this, we employ several LLM experts, including GPT-4.1, Qwen2.5-72B-
VL, and GPT-4.1-mini, to independently answer each question. For every question, we sample two
responses from each LLM. If at least one of these responses matches the original answer provided
by Cosyn-400k, we retain the question–answer pair; otherwise, we discard it.

For the agentic system, we design several fail-safe loops and verification strategies. First, if the code
produced by the Code Editor fails to execute during rendering, the erroneous code together with the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

error logs are sent back to the editor for another round of editing. By leveraging the error logs, the
editor can dynamically adjust its edits, thereby mitigating issues arising from either model mistakes
or inconsistencies in the execution environment. If the code is rendered successfully, we then prompt
the Solver LLM to critically inspect and challenge the rendered content rather than simply accepting
it. If the content does not satisfy the Solver’s requirements, the Solver generates revised instructions
for another round of editing.

Finally, before model training, we apply a rejection sampling strategy (Dong et al., 2023). Specifi-
cally, we use the base model Qwen2.5-VL-7B to answer all queries and discard those for which it
produces the correct answer, retaining only the more challenging cases for training.

B.3 PROMPT TEMPLATE.

We show the prompt template used in the agentic data curation system in Figure 9, Figure 10, and
Figure 11.

C TRAINING DETAILS

We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the base model. Our implementation is built on
LLaMA-Factory (Zheng et al., 2024). The training is carried out in three stages: first, the intermedi-
ate tool-calling model is trained on the seed data for 5 epochs with a learning rate of 5× 10−6; next,
the embedding editor is trained on the full dataset for 10 epochs with a learning rate of 1 × 10−4;
finally, the LLM backbone and the embedding editor are jointly trained for an additional 2 epochs
with a learning rate of 5× 10−6. The learning objective of the first stage is:

Lphase-1
LM (θ) = − 1∑N

i=1 |S(i)|

N∑
i=1

T (i)−1∑
t=0

∑
τ∈S(i)

t

logPθ

(
x(i)
τ

∣∣∣x(i)
<τ , E

(i)
v,≤t

)
, (3)

which is mentioned in Section 2.2. The learning objective of the second and third stages is:

Lphase-2
LM (θ) = − 1∑N

i=1 |S(i)|

N∑
i=1

T (i)−1∑
t=0

∑
τ∈S(i)

t

logPθ

(
x(i)
τ

∣∣∣x(i)
<τ , feditor

(
E

(i)
v,≤t

))
. (4)

The main difference is that, in stages two and three, the VLM takes as input visual tokens produced
by the editor instead of ground-truth visual context, and the LM objective is conditioned on the
editor’s output.

D DISCUSSIONS

D.1 MORE VISUALIZATION RESULTS ON PUBLIC BENCHMARKS

In Section 3.3, we examined “where the model is looking” by visualizing difference maps on our
in-house benchmark. Here, we extend this analysis with additional examples on public benchmarks
in Figure 8 for a more comprehensive view. As shown in Figure 8a, the difference maps generally
align with the model’s textual edit intent. A notable case appears in the bottom-right example from
MathVista, where the editor correctly attends to the faces of all three individuals in accordance with
the instruction, despite the model being trained exclusively on code-rendered images that contain
no such open-world scenarios. This result suggests that the model exhibits a certain degree of
generalization, as it can attend to novel cases far beyond its training distribution. Then, we turn to
failure cases in Figure 8b, where the model’s attention seems to deviate from the intent expressed
in natural language instructions. These examples might demonstrate the current limitations of the
editor and the remaining challenges in faithful visual manipulation.

D.2 EFFECT OF DECOUPLED MULTI-STAGE TRAINING

To assess the effect of our multi-stage training strategy, we compare checkpoints with and without
explicitly decoupling the training of LLM and the embedding editor. As shown in Table 5, the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Highlight the segment from AB perpendicular to CD in bright green, and
label it "height = 4 m".Highlight segment BC in blue and label it "diameter = 2 cm". 

Highlight angle BCE at point C with a red arc. Mark EB and DC in bold.

Highlight the two circular bases in different colors to clarify their
locations. Draw a colored circle around each person's face in the image.

(a) Cases where the model generally attends to the region in accordance with the instruction.

Highlight the rectangle and label its length as "height".

Highlight the base region of the cuboid formed after folding, showing
the 10 cm × 5 cm rectangle. Highlight angle 1 in red and label it "95°" to confirm its value.

Highlight triangle BEC in blue and mark the right angle at E with a
small square.

(b) Cases where the model’s attention deviates from its textual intent.

Figure 8: Difference map visualization from public benchmarks. (a) Alignment between attention
and instruction. (b) Cases with deviation from textual intent.

Table 5: Effect of decoupled multi-Stage training.

Setting Mathverse Wemath Mathvista Mathvision LogicVista Indicator-500 Average
Single stage training 39.6 36.9 66.2 25.7 45.6 39.1 42.2
Decoupled training 43.2 37.1 69.1 32.3 48.1 40.5 45.1

three-stage training pipeline—which first pretrains the LLM’s reasoning ability, then introduces the
embedding editor in a separate adaptation stage, and finally performs joint refinement—consistently
outperforms the single-stage alternative. This result suggests that decoupling the LLM from the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

editor during training is essential: it allows the base model to acquire robust reasoning skills before
being exposed to the more complex task of interleaving reasoning with visual manipulation.

By contrast, directly training the entire system end-to-end in a single stage leads to weaker overall
performance, likely because the model must simultaneously learn high-level reasoning and low-level
embedding modification, increasing optimization difficulty and reducing stability.

D.3 ANALYSIS OF MATHVERSE RESULTS

On the MathVerse (Vision-only) benchmark, our model achieves an accuracy of 43.2, outperforming
both the baseline Qwen2.5-VL-7B and several tool-calling VLMs. Notably, Bagel-Zebra-CoT-7B
attains an exceptionally high score on this benchmark, substantially surpassing our model and rank-
ing near the top of the MathVerse Vision-only leaderboard, comparable to GPT-4.1. This strong
performance can be partially explained by the fact that Bagel-Zebra-CoT-7B is post-trained on
Bagel-7B (Deng et al., 2025a), whose base model already achieves a notably high score (45–50
according to our implementations) on the MathVerse benchmark. Therefore, the results of Bagel-
Zebra-CoT-7B are in part a reflection of the capability of its foundation model. Despite this, our
method consistently achieves a 2.4-point improvement in accuracy over five widely used bench-
marks, further validating the effectiveness of our approach.

E LIMITATIONS AND FUTURE WORK

The proposed DeepSketcher suite provides a complementary perspective to the “thinking with im-
ages” paradigm by curating a dataset constructed entirely from code—ensuring accuracy and avoid-
ing the grounding and image-generation noise—and by designing a self-contained model that cir-
cumvents reliance on external APIs. Nevertheless, this solution comes with several inherent limita-
tions.

First, the dataset is generated exclusively from code, which may limit the approach’s applicability
to broader, open-world domains. Moreover, since all questions are automatically generated, there
is little fine-grained control over aspects such as difficulty, style, or even the correctness of model-
provided answers during reasoning. This lack of precision in data quality raises the risk of “rubbish
in, rubbish out,” making it crucial to design comprehensive filtering pipelines to ensure the model
learns from high-quality content. In this work, we introduced multiple filtering mechanisms and
an img2code framework to mitigate these effects, but future efforts should focus on expanding
data collection to more diverse and open-world domains while improving the quality of generated
content.

Second, although our model design removes the dependence on external tools and the need to re-
encode images repeatedly, it also diverges from unified generative understanding models in that its
“visual thoughts” reside purely in the embedding space. As a result, the actual intermediate visual
content remains inaccessible, limiting our ability to fully interpret and analyze the model’s behavior.
Future work should explore more expressive ways to represent and manipulate visual information,
thereby enhancing transparency and interpretability in reasoning within this paradigm.

F LLM USAGE

Use of LLMs in research workflow During data curation, LLMs were employed as two col-
laborating experts to address VQA problems and generate interleaved reasoning trajectories. For
model training, we developed a vision–language model (VLM) capable of performing interleaved
reasoning based on these curated data. In evaluation, LLMs were further used as judges to assess
the correctness of generated answers. All outputs involving LLMs were carefully reviewed and
validated by the authors to ensure reliability and accuracy.

Code implementation LLMs’ assistance included suggesting solutions to specific programming
challenges and providing debugging support. All code produced with LLM assistance was thor-
oughly reviewed, manually verified, and tested by the authors to ensure correctness, efficiency, and
full compliance with the project requirements.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

.

Solver LLM starting prompt

You are an agent with broad math knowledge and strong image–text reasoning ability.
You may call an auxiliary tool called the Renderer to help you visualize or annotate the image
(e.g., draw lines, highlight shapes, add labels).
This tool is invoked using the <tool_call> tag, and its purpose is to make your visual reasoning
more accurate.

Output MUST follow this template exactly:
<THINK>
Step 1: … reasoning …
Step 2: … reasoning …
</THINK>
<tool_call>...</tool_call>
<ANSWER>...</ANSWER>

⚠️  IMPORTANT RULES ⚠️
1. If you are less than 99% confident in your answer, you MUST call the Renderer by filling
<ACTION_EXEC> with a specific drawing instruction (e.g., "Draw a red circle around triangle
ABC").

2. In that case, <ANSWER> must be exactly "TBD". Do NOT attempt to answer yet.

3. If you are 99% confident in your answer, set <tool_call> to "NONE" and fill <ANSWER>
with the final answer.

4. <tool_call> must only contain visual drawing instructions — do NOT include textual, logical,
or general suggestions.

5.Any output that breaks these rules will be rejected by the grader.

Figure 9: The Solver LLM starting prompt.

Writing assistance LLMs were utilized to support the preparation and refinement of this
manuscript. Their assistance covered tasks such as proofreading for grammatical accuracy, im-
proving sentence flow and clarity, and rephrasing passages to enhance readability. All generated
text was carefully reviewed, assessed, and revised by the authors to ensure the accuracy, consis-
tency, and integrity of the final manuscript. The authors retain full responsibility for all statements,
interpretations, and conclusions presented in this paper.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Solver LLM mid prompt

You are continuing the same problem.

The image shown below has been edited according to your previous <tool_call> instruction.

1. First, carefully check whether the visual edits match what you asked for.

If they do: proceed with the next step of reasoning.

If they do NOT match: adjust your drawing request in <tool_call> to correct it.

2. Do NOT repeat earlier reasoning. Resume from the next step number.

Use "Step k:" where k = last_step + 1.

3. Use this exact format:

<THINK>

Step k: …

Step k+1: …

</THINK>

<tool_call>

… (new drawing instruction if still <99% confident, else write NONE) …

</tool_call>

<ANSWER>

… (write the final answer if sure, or TBD if not) …

</ANSWER>

⚠️  RULES ⚠️

1. If you are now ≥99% confident, set <tool_call> to NONE and provide the final <ANSWER>.

2. Otherwise, revise or re-use your drawing request in <tool_call> and leave <ANSWER> as TBD.

3. Never repeat earlier steps. Always continue from the last step.

Figure 10: The prompt template when Solver LLM receives updated visual information.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Code editor LLM system prompt

You are CodeEditor-GPT, a strict code-rewriting agent.

Your job: update the entire source file so that it satisfies the natural-language instruction.

★ RESPONSE FORMAT (no extra text!) ★

"```python\n"
    "# (full revised code here)\n"
    "```\n"

⚠️  IMPORTANT RULES ⚠️

1. Do NOT output anything outside the python fenced block.

2. Keep the programming language identical to CURRENT_CODE.

3. Output the entire updated file; you may copy unchanged lines verbatim, but add, delete, or reorder
anything needed to satisfy the instruction.

4. If the request is impossible, reply exactly: CODE_ERROR.

Here's an example of how to answer the question:

CURRENT_CODE: 

```python

import matplotlib.pyplot as plt

plt.figure(); # line-1

plt.show() # line-2

```python

INSTRUCTION: Add a title "Demo" to the plot.

OUTPUT:

```python

import matplotlib.pyplot as plt

plt.figure()

plt.title("Demo")

plt.show()

Figure 11: The prompt template for Code Editor LLM.

21

	Introduction
	DeepSketcher
	The DeepSketcher Dataset
	The Deepsketcher Model

	Experiments
	Setups
	Main Results
	Ablation Study

	Conclusion
	Ethics statement
	Reproducibility Statement
	Related Work
	Visual Prompting
	Vision Language Model Reasoning

	More Details on Dataset Construction.
	Img-to-code pipeline
	Data filtering
	Prompt template.

	Training Details
	Discussions
	More visualization results on public benchmarks
	Effect of Decoupled Multi-Stage Training
	Analysis of MathVerse Results

	Limitations and future work
	LLM Usage

