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ABSTRACT

The “thinking with images” paradigm represents a pivotal shift in the reasoning of
Vision Language Models (VLMs), moving from text-dominant chain-of-thought
to image-interactive reasoning. By invoking visual tools or generating interme-
diate visual representations, VLMs can iteratively attend to fine-grained regions,
enabling deeper image understanding and more faithful multimodal reasoning. As
an emerging paradigm, however, it still leaves substantial room for exploration in
data construction accuracy, structural design, and broader application scenarios,
which offer rich opportunities for advancing multimodal reasoning. To further
advance this line of work, we present DeepSketcher, a comprehensive suite com-
prising both an image—text interleaved dataset and a self-contained model. The
dataset contains 31k chain-of-thought (CoT) reasoning trajectories with diverse
tool calls and resulting edited images, covering a wide range of data types and
manipulation instructions with high annotation accuracy. Building on this re-
source, we design a model that performs interleaved image—text reasoning and
natively generates “visual thoughts” by operating directly in the visual embedding
space, rather than invoking external tools and repeatedly re-encoding generated
images. This design enables tool-free and more flexible “thinking with images”.
Extensive experiments on multimodal reasoning benchmarks demonstrate strong
performance, validating both the utility of the dataset and the effectiveness of the
model design. The DeepSketcher suite will be released.

1 INTRODUCTION

Recent progress shows that integrating step-by-step reasoning into VLMs has substantially improved
their performance on complex tasks (Meng et al., [2025} [Yang et al., |2025a; Xiaomi, [2025} [Zhang
et al.,2025a; Deng et al.,[2025b; |Chen et al., 2025). However, current VLMs often exhibit a “think-
ing over seeing” tendency (Li et al.| |2025b)): while they can generate lengthy and seemingly coherent
reasoning traces, these traces are frequently detached from the actual visual input. In many cases,
the models misinterpret critical details in the image or even hallucinate content that is not present (Tu
et al., 2025} [Sun et al.| [2025)), suggesting that their reasoning is driven more by linguistic priors than
by genuine visual perception (Guan et al., 2024; Fu et al.,|[2025)).

To address this, OpenAl has introduced a new axis for VLM reasoning with “thinking with im-
ages” (OpenAl [2025¢c). Instead of merely generating textual reasoning traces that overlook visual
content, this approach enables models to actively interact with images through an explicit mech-
anism. By zooming, cropping, and performing systematic image-level manipulations, VLMs are
encouraged to ground their reasoning in actual visual evidence. This paradigm represents a shift
from “thinking over seeing” to “thinking through seeing,” enabling models to analyze visual infor-
mation more deeply, more thoroughly, and ultimately achieve more reliable multimodal reasoning.
Following such an idea, recent efforts have explored stimulating the use of visual information in the
reasoning process to enhance model performance in perception and reasoning tasks. VILASR (Wu
et al.,|2025)) defines a closed set of drawing operations and trains the model to decide when to invoke
each of them. At inference time, the model selects an operation from this set and predicts the spatial
coordinates required to execute it. DeepEyes (Zheng et al., 2025) and OPENTHINKIMG (Su et al.,
2025) leverage end-to-end reinforcement learning to incentivize “thinking with images.” In this set-
ting, the model learns to actively manipulate visual inputs, such as zooming and cropping; additional
related approaches and references are provided in Appendix |Al Despite their differences, these ap-
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proaches share a common limitation: the supported action space remains relatively restricted, and
they inevitably rely on accurate spatial grounding, which remains challenging: curated data seldom
yield perfectly accurate annotations, and end-to-end reinforcement learning rollouts are similarly
error-prone. To overcome the constraints of a limited action space and to expand the model’s “think-
ing space,” another line of work makes a conceptual leap from execution to imagination, aiming to
unify generation and reasoning within a single model (L1 et al., [2025aja; |Yang et al., [2025d). How-
ever, this enlarged thinking space comes at the cost of extremely high training difficulty, and the
methods’ effectiveness has not yet been thoroughly validated on public benchmarks (Qiao et al.,
2024; [X1a0 et al., 2024; Lu et al., 2023 [Wang et al., 2024; [Zhang et al., 2024). These methods pro-
vide promising directions for visual reasoning in VLMs, while also exposing fundamental trade-offs
involving action space, grounding, training feasibility, as well as the inherent difficulty of construct-
ing reliable data for supervision.

To offer a complementary perspective within this paradigm, we introduce the DeepSketcher suite.
The first component of the suite is a high-quality dataset with image—text interleaved chain-of-
thought trajectories, where textual reasoning steps are interleaved with <tocol_call> instructions
that return visually edited images, serving as auxiliary visual cues to guide subsequent reasoning. A
distinctive feature of this dataset is that all images are code-rendered. Specifically, the source images
are generated directly from rendering code, while intermediate images are obtained by modifying the
source code according to the given instructions and re-rendering the updated code. This code-based
approach provides both controllability and semantic clarity, enabling visual manipulations that are
precise, reproducible, and less noisy than pixel-level editing, as illustrated by the running example
in Figure [T} which contrasts direct code-space editing with grounding-based and generation-based
manipulations. Beyond the complex “reasoning — tool call instruction — image manipulation —
reasoning” pipeline within our dataset, we further propose a self-contained architecture to internalize
the whole thinking mode into a single model. Specifically, the model manipulates images directly
within the visual embedding space, allowing seamless integration of visual and textual reasoning.
This design eliminates the need for code execution, external tool calls, and repeated re-encoding
of images, thereby enabling more flexible “thinking with images” patterns. In summary, the main
contributions of this work are as follows:

* By presenting the DeepSketcher suite, we provide a complementary perspective within
the “thinking with images” paradigm, showing how dataset and model design can jointly
support more reliable and flexible multimodal reasoning.

* We construct a high-quality dataset with interleaved image—text chain-of-thought trajecto-
ries. All images are code-rendered, and manipulations are conducted in code space, sup-
porting a broad spectrum of open-vocabulary visual operations while avoiding the ground-
ing noise inherent in previous datasets.

* We design a self-contained model that internalizes the “reasoning — tool call — image
manipulation — reasoning” chain. This design removes reliance on external tool calls,
eliminates the need for coordinate-level predictions, and generalizes beyond code at infer-
ence.

2 DEEPSKETCHER

2.1 THE DEEPSKETCHER DATASET

Overview of the data curation pipeline. The DeepSketcher dataset contains extended interleaved
image—text reasoning traces, where textual requests (e.g., highlighting a region or adding an auxil-
iary line) are followed by corresponding visual edits. Each trajectory thus alternates between natural
language reasoning and image modifications, encouraging models to ground their reasoning in vi-
sual evidence and enabling more thorough multimodal understanding.

Prior approaches to constructing such data typically fall into two categories. (i) Grounding-based
manipulation, where models predict an operation target, for example, by outputting a structured
action such as {‘name’ : ‘image zoom in tool’, ‘bbox’ : [360,280,640,560]} or by generating
editing code to perform image modifications (Hu et al., 2024} Zheng et al., 2025)). In both cases,
the core mechanism relies on accurate prediction of spatial coordinates. (ii) Generation-based ma-
nipulation, where image generation models are leveraged to fulfill editing instructions (Chern et al.,
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intersection area of two circles with radii r_land r_2,
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is available before calculation. 8.94. We now evaluate the numerical values.
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Highﬁght the overlap area Therefore, the final overlapping area of the two circles
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transparent green. neim <tool_call>NONE</tool_call >

</tool call > <Answer> 17.65 </Answer>

Figure 1: In code space (right), edits are specified through rendering code, offering precision and
reproducibility. In contrast, grounding-based manipulation (bounding box predicted by GPT-5|Ope-
nAll(2025b)) and generation-based manipulation (image generated by Nano-Banana|Google| (2025))
often yield noisy results, underscoring their limitations in stability and controllability.

2025)). While effective in some cases, these paradigms often suffer from grounding noise and limited
accuracy, making it difficult to obtain consistent, controllable traces as shown in Figure[T]

In contrast, our approach leverages code-rendered VQA data as the foundation. Each instance in our
VQA dataset is represented as a tuple (C, I, ), A), where C' denotes the rendering code, I = R(C)
is the rendered image from the renderer R, () is a visual question, and A is the corresponding answer.
This representation is particularly valuable because (i) visual manipulations can be expressed as edits
to C, ensuring accurate and reproducible modifications, (ii) the alignment between code and image
avoids the spatial ambiguity and grounding noise, and (iii) the expressiveness of the code space
supports a wide spectrum of operations, rather than limited to a predefined closed set. Building on
this representation, we construct the DeepSketcher dataset, which spans diverse domains (Figure 2)
and includes a wide variety of actions paired with their corresponding image edits (Table 3).

To curate this dataset, we employ a two-round pipeline. In the first round, we design an automatic
agentic system in which two proprietary LLM experts collaborate to solve code-rendered VQA prob-
lems. Their dialogues are collected and reformatted into 6k interleaved image—text CoT trajectories,
which serve as seed data. We then train an intermediate reasoning model on this seed set to learn
proper tool use and to reliably respond to visual manipulation feedback. In the second round, we
broaden data diversity by constructing additional code—image pairs from off-the-shelf VQA datasets
through code conversion, expanding the dataset to 31k examples. The intermediate model is then de-
ployed within the agentic system, generating richer trajectories and more diverse instruction—edited
image pairs without incurring the prohibitive API cost of large-scale agentic interaction. These out-
puts are subsequently used to train the next-stage model, described in Section[2.2] In the following,
we detail the data collection pipeline and the agentic system.

Data Collection. Our data collection follows one fundamental principle: all images must be code-
rendered. Although such data may appear difficult to obtain, synthetic visual datasets are already
plentiful. Prior work has extensively explored the use of synthetic visual data to enhance VLMs’ per-
ception and reasoning abilities, showing its effectiveness across structured domains and beyond (Jia
et al., 2025; Wang et al.l |2025; [Deitke et al., 2024} |Cai et al., |2024b; |Yang et al.| 2025c). This
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Figure 3: Wordcloud of visual manipulations.

2
Cog, .

Int Vl-sual Di'"jzzl ?ve

elligence ong

epSketch

Rank Category Count  Share (%)

1 Labeling/Annotation 12,340 20.9

2 Highlighting 10,437 17.7

. 3 Color Operations 7,383 12.5

4 Circle Drawing 6,942 11.8

3 5 Line Drawing 6,919 11.7
6 Point Marking 3,924 6.6

7 Area/Region Operations 2,641 45

g 8 Shape Drawing 2,549 43
9 Others 5919 43

Others 4,853 10

Total 59,054 100.0

Figure 2: Disciplinary coverage of our dataset.  Table 1: Distribution of visual manipulations.

Algorithm 1 Agentic curation with Solver (LLMg ) and Code Editor (LLMEg )

Require: Initial code Cy, renderer R, question (), max steps 7Tax
1: Iy R(Co); Dg + {Q}, De+ 0
2: fort = 0to Ty do
3 (R, A, Acty) <+ LLMg(Dg, I;) 1/ CoT Ry; A and Act, are mutually exclusive

4: assert (A=) ® (Acty = @) // enforce exclusivity

5: Append (I3, R:, Acty) to Dg

6: if A # o then

7: return Dg with A

8: else

9: Ciy1 < LLMg(Cy, Acty, Dg)  // complete edited code
10: Validate Cyy1 (syntax/render checks); if invalid, repair or backoff
11: Ly R(Ot_;,_l)
12: Append (Cy, Acty) to Dg
13:  endif
14: end for

15: return Dg with A

makes it a generally applicable strategy for improving visual understanding. In the first round, we
sample from CoSyn-400k (Yang et al., 2025b), a large-scale dataset of code—-image—QA triples,
where all images are code-rendered with associated code and at least one LLM-generated QA. In
the second round, we broaden source diversity by converting images from additional VQA datasets
(e.g., MMKI12 (Meng et all [2025), UniGeo (Chen et al) 2022), MM-Math 2024),
GeoQAB8k (Chen et al, [2021)) into rendering code (img2code) and reusing the same pipeline
to obtain more varied traces. To ensure the validity and quality of both the CoSyn-400k and
img2code data, we apply multiple verification and filtering steps, with details given in Appendix[B]

Agentic system for data curation. After collecting code-image-QA pairs from Coysn-400k, we
curate reasoning traces with a two-agent collaborative framework. The system involves two LLM
experts with complementary roles: a Solver LLMg that conducts step-by-step visual reasoning, and
a Code Editor LLM g that edits rendering code according to natural-language instructions provided
by LLMg. Specifically, given a code-rendered image Iy = R(Cjp) and a question @), LLMg is
prompted to reason explicitly and, whenever visual evidence is uncertain or additional views are
needed, to issue a free-form edit request Act; to LLMg (e.g., “draw a tangent line”, “highlight point
A in red”). Upon receiving the request and the current source code Cy, LLM g returns a complete
edited program C'41, which is rendered into a new image I;11 = R(C}+1) and fed back to LLMg
for the next round of reasoning. The process continues until the Solver produces a final answer A or
a termination condition is met (e.g., maximum edit steps).



Under review as a conference paper at ICLR 2026

{ Large Language Model ¢ }

OO Om|- W] - O EI R e [ reeeereeeeereeeseenee
Y B, Qury Ro Acty Byi {(Re, Acty, Eoe)}
e

> A B,

. / ar? O O Q
8 H Z

||+ [ | Visual Embedding 7 w O _ 4‘5 —
. % o 9 - Supervise . S / /,\ .
- [ Query C - B 8 g | —— e §))
Textual Reasoning D E B D D —g \\/ g
>

D D Edit Request D xk D D

Figure 4: Architecture of the proposed DeepSketcher model. A query () and initial image Iy
are encoded into the vision—language model, producing reasoning tokens R; and edit instructions
Act;. The Embedding Editor manipulates visual embeddings directly, supervised by code-rendered
ground-truth edits, and inserts updated embeddings back into the VLM context. This process yields
interleaved reasoning and visual manipulation traces, ultimately producing the final answer.

Then, we log the entire interleaved trajectory {(I;, Ry, Act;)}L_,, where R; denotes the Solver’s
chain-of-thought at step ¢. This yields long image-text CoT traces aligned with code edits and
rendered images, which we later standardize into training examples. To improve the reliability of
the system, we incorporate mistake-proofing and verification mechanisms; full details are provided
in Appendix [B] For clarity, the overall procedure is summarized in Algorithm T}

2.2 THE DEEPSKETCHER MODEL

Overview. The curated DeepSketcher dataset offers long, interleaved reasoning traces aligned with
precise visual manipulations. To leverage this resource, we introduce the DeepSketcher model,
specifically designed to integrate such interleaved reasoning with visual operations.

For comparison, common reasoning VLMs take as input an image I and a textual query (), and
produce a sequence of textual reasoning steps { R1, Ra, . .., R; } followed by a final answer A:

{R1,Rs,..., R}, A=LLM(E,,Q),

where E, denotes the visual embedding output by the visual encoder and @) denotes the textual
query.

In contrast, the DeepSketcher model integrates reasoning and visual manipulation into a unified
trajectory. Given an initial image-query pair (Io, @), the pair is first encoded by a visual encoder
into (E,,0, Q). The model then generates an initial reasoning step Ry (as illustrated in Figure {4).
When additional visual clarification is required, it autonomously generates an action Actg. The
pair (E, o, Actp) is then passed into a built-in embedding editor. As shown in the bottom part of
Figure [} it predicts the manipulation directly in the visual embedding space and returns a “ma-
nipulated” image representation E, ;. The augmented context { E,, o, Q, Ro, Acto, E, 1} is then fed
back into the model for subsequent reasoning. This recursive process yields an interleaved trajectory
of reasoning, actions, and updated visual embeddings, and finally, the textual answer:

(Ro, Acto, By 1, Ry, Act1,Ey o, ..., Rr_1, Acty_1, Ey 17, A) = DeepSketcher(E, o, Q).
The overview of the pipeline is provided in Figure ] Next, we detail the training strategy that

enables the Deepsketcher model to perform interleaved reasoning and visual manipulations.

Building the DeepSketcher model. The training of the DeepSketcher model can be divided into
three phases. In the first phase, we directly utilize the features of images in our dataset, rather than
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utilizing the visual embedding editor, to warm up the reasoning model. The model is optimized
on interleaved image—text sequences. The supervision signal is applied only to textual tokens and
<vision_start>, <vision_end> tokens. These two special tokens serve as boundary markers
for visual content in interleaved sequences. Image features are inserted as continuous embeddings
and serve only as conditioning context. This enables the model to learn proper structural demarca-
tion between textual and visual modalities during generation.

Formally, consider the i-th training example with 7(*) images {I; (i) .. ,I(T( - } interleaved with
text. Each image It(z) is encoded as a sequence of visual tokens quli, and we group the intervening

. )\ T — ; . ;
text into segments {St(l) 7t where St(l) collects the positions of text tokens that appear after It(l)

and before ], t(i)l. Let Eq()i)<f = {ET%, o Eq(fi} denote all visual tokens up to image ¢. Each segment

is modeled autoregressively, condmomng on the historical text a:( )

and the precedmg visual tokens
Ef) )<t, yielding the per-segment loss /.Zt = - rest log Pg( )| a:<T, Eil)q) The phase-1
language modeling objective then averages over all text tokens across the corpus and sums over
examples, segments, and token positions:

@) _

N
ol gy Z Z > tog Py (20 |20, ELL,), (1)
1 |S i=1 =0 _cg(®
where |[S®)| = | UT( - St(i)‘ is the number of text tokens in example ¢. This objective trains the

model to issue proper edit requests while ensuring that textual predictions are consistently condi-
tioned on the available visual context.

The editor must handle a broad spectrum of visual modalities (e.g., geometry, charts) and follow di-
verse instructions to achieve reliable features. Thus, in the second phase, we suggest that larger scale
and diverse supervision are indispensable to equip the model with native visual manipulation capa-
bilities. Accordingly, we augment training data constructed via an img2code pipeline (detailed
in Appendix to capture the complexity of multimodal reasoning tasks, and we deploy the pre-
trained reasoning model for the agentic system described in Section[2.2] which yields more training
traces enriched with edit-request and image outcome pairs (Act,, I;1). With these augmentations
in place, we finalize the architecture to unify textual reasoning and visual manipulation.

When the model is uncertain about its visual perception, it generates an instruction enclosed by
<tool_call> tokens. We then extract the hidden states of these tokens, denoted E,py, € RV*D,
and apply adaptive pooling to obtain a fixed-length sequence F, € R32XP; the choice of 32 is
chosen based on empirical statistics from training data. For the embedding editor, we adopt a Q-
Former—style architecture (Li et al.,[2023) but drop the text branch and retain an image transformer
with cross-attention. Unlike Q-Former, which grounds visual information into a fixed set of learn-
able query tokens, our module uses visual tokens themselves as queries and injects textual guidance
from the action embeddings via cross-attention. Let Fy € R%*PD be the visual tokens from the
frozen visual encoder. We take queries from Ey and keys/values from FE,:

Q = EVWQ7 K= EactWKa V= EactWVa
and update the visual tokens via a cross-attention block followed by an FFN:
Ey =MHA(Q,K,V)+ Ey,  EY =FFN(Ey)+ Ey.

Stacking several such blocks propagates instruction semantics into the visual space, yielding updated
visual embeddings EP* € R¥*? with the same length K as the input Ey-.

We perform a second round of training on our proposed model. We initialize from the checkpoint of
the reasoning model pretrained in the first stage and freeze all modules except the embedding editor.
For supervision, we use the output of the visual encoder on ground-truth edited images as targets,
and apply an /7 loss to the latent editor’s predicted embeddings. Crucially, beginning in this phase,
the VLM consumes editor-produced visual tokens rather than ground-truth visual context, and the
LM objective is conditioned on the editor’s outputs. The phase-2 objective is:

Ephase—Z(e) _ ||E€/red _ E;”}E + EphaSe 2(9)’ (2)

Iy
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Table 2: Performance comparison on multimodel reasoning benchmarks.

Model MathVerse Mathvision MathVista LogicVista WeMath Average
Proprietary VLMs
Claude3.7-Sonnet (Anthropic|[2025a) 46.7 41.9 66.8 58.2 493 52.6
GPT-4.1 (OpenAl|2025a) 48.9 46.4 70.4 61.1 55.5 56.5
) Open-source VLMs
InternVL3-8B (Zhu et al.|[2025) 38.5 26.3 70.4 45.6 31.7 42.5
Qwen2.5-VL-7B (Bai et al.||[2025) 41.1 27.0 68.2 39.8 34.3 42.1
Tool-Calling VLMs
VILASR-7B (Wu et al.|[2025) 29.4 25.0 57.6 322 23.7 33.6
DeepEyes-7B (Zheng et al.||2025) 422 26.6 70.1 47.7 38.9 45.1
) Inner Visual Thought VLMs
Bagel-Zebra-CoT-7B (Li et al.|[2025a) 48.8 28.2 64.7 48.4 28.0 43.6
Mirage-7B (Yang et al.|[2025d) 27.3 28.6 63.7 40.7 16.7 354
DeepSketcher-7B (Ours) 432 323 69.1 48.1 37.1 46.0
A (vs Qwen2.5-VL-7B) +2.1 +5.3 +0.9 +8.3 +2.8 +3.9
phase-2 phase-1

where L7 ~(6) is the same as £y, (6) except the visual embeddings.

Compared to the prior approach (Yang et al., [2025d) that edits images in a highly compressed la-
tent space, our method preserves richer semantic information: the editor operates directly on visual
tokens with explicit conditioning on action embeddings. This design yields more interpretable guid-
ance and better semantic alignment between textual requests and visual transformations.

In the final phase, we retain the same training objective and unfreeze the LLM backbone to en-
courage the model to adapt to its own edited outputs, ensuring consistency between generated edit
requests and the resulting visual context. The visual encoder is frozen through all three stages.

3 EXPERIMENTS

3.1 SETUPS

Baselines. To evaluate the effectiveness of the proposed DeepSketcher model, we compare it
against four categories of baselines: (1) proprietary models, including Claude3.7-Sonnet (Anthropic,
2025a)) and GPT-4.1 (OpenAll 2025a); (2) state-of-the-art open-source models (Zhu et al.,|2025; Bai
et al., |2025); (3) reasoning VLMs with tool-calling capabilities that rely on external tools (Zheng
et al., 2025; Wu et al., |2025); and (4) “thinking-with-generated-images” models that produce inner
visual thoughts (Li et al.,[2025a; | Yang et al.,[2025d)). Strictly speaking, our model also falls into the
fourth category, as it performs interleaved visual-textual reasoning natively, without external tools.
We select Qwen2.5-VL-7B as our baseline model.

Benchmarks. We evaluate our model on common multimodal reasoning benchmarks, including
MathVerse (vision-only) (Zhang et al.| 2024), MathVision (mini) (Wang et al., |2024), MathVista
(mini) (Lu et al.,|2023)), LogicVista (Overall) (Xiao et al.,2024), and WeMath (Overall) (Qiao et al.,
2024). We also construct an in-house benchmark, Indicator-500, by sampling 500 code-rendered
VQA instances from the Cosyn-400k test set. Unlike existing benchmarks, it includes paired code
information, which enables to decouple interleaved reasoning from visual manipulation and provides
a reliable indicator for the embedding editor during training. (See Appendix [C|for training details.)

3.2 MAIN RESULTS

Table [2| summarizes the performance of different VLMs across the benchmarks described above.
For clarity, we group the baselines into four categories as mentioned earlier. The last group, “Inner
Visual Thought VLMs,” is particularly challenging, as its “thinking space” and “action space” are
far larger than those of tool-calling VLMs with fixed utilities. Such models are more sensitive to
visual variations, and their robustness in visual manipulation may affect the model performance.
When they fail to generate reliable visual content, the resulting noise can propagate through the
reasoning trace and hurt overall performance. Despite these challenges, our model consistently
outperforms other inner visual thought VLMs such as Bagel-Zebra-CoT-7B and Mirage-7B across
most benchmarks. Furthermore, when compared with tool-calling VLMs, despite operating under
a substantially more flexible paradigm, it surpasses VILASR-7B and DeepEyes-7B by 12.4 and 0.9
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points in average. Together, these results highlight the effectiveness of our approach within this
challenging setting, which we attribute to the accuracy and reliability of our training data, and the
adaptability of our proposed model architecture.

To better understand the effect of our method, we conduct an in-depth comparison against the base
model Qwen2.5-VL-7B. Overall, our approach yields an average improvement of 3.9 points across
benchmarks. When breaking down results by task category, consistent patterns emerge: the most
reliable gains appear in tasks involving geometry and counting, with particularly striking improve-
ment on MathVision reaching 5.3 points. In addition, math-related problems (LogicVista) involving
logical or numerical reasoning also exhibit significant improvements (8.3 points). By contrast, the
improvement on tasks that require symbolic manipulation or domain knowledge integration tend to
decline, decreasing performance gain to 0.9 points on MathVista. In particular, this dataset con-
tains scientific reasoning and textbook QA, both of which have numerous open-domain images and
depend heavily on disciplinary knowledge outside the scope of our training data. Please see the
Appendix for more performance details.

3.3 ABLATION STUDY

Ablation study on the agentic data curation system. For data curation, we design an agentic
system where two experts collaborate to solve VQA. The intuition is that, with the aid of a Code
Editor that has direct access to the source code underlying an image, the solver LLM effectively
gains more accurate visual information. With this enhanced context, the solver can tackle prob-
lems that would otherwise be unsolvable by independent reasoning, thereby enabling the collection
of higher-quality and more informative interleaved reasoning traces. To verify this, we conduct a
controlled experiment on a subset of Cosyn-400k under two settings: (i) an independent answering
setup, where solver LLM works alone, and (ii) a collaborative answering setup, where the solver
cooperates with another LLM acting as the Code Editor. We evaluate the results using the pass@8
metric, which counts a question as correctly answered if at least one of the eight sampled responses
matches the ground truth. As shown in Table 3] both solvers achieve significant gains when paired
with the Code Editor, confirming that collab-

oration enables the agentic system to correctly Table 3: Comparison of collaborative vs. inde-
answer more questions, including those that are  pendent answers across different LLMs
too challenging for a single model to solve in-

dependently. As a result, our data collection
pipeline retains more verified examples than the
single model. This setup not only increases = GPT-4.1 Null 0.72
coverage but also allows us to harvest reasoning 851;42 15 VL.72B Sua]‘;de3'7'sonnet 822
traces from more difficult problems that would Pl :
otherwise be excluded. IE this way, the col- Qwen2.5-VL-72B  Claude3.7-Sonnet 0.72
lected trajectories are not only richer in reason-

ing content but also more challenging and ultimately more valuable for training.

Solver Code Editor pass@8

Does the model reason better with the embedding editor? To evaluate the effect of the embed-
ding editor, we conduct an ablation study across multiple multimodal reasoning benchmarks as well
as our in-house Indicator-500 evaluation set (Table ). We focus on the models obtained in training
stage 2 and stage 3, since the stage 1 model does not incorporate the embedding editor. For each
model, we consider three experimental settings: (i) deploying the model within an agentic system
that collaborates with an external Code Editor expert, which has direct access to the source code
of the input image and thus makes all information explicitly available, this approximates an upper
bound; (ii) relying solely on the model’s built-in embedding editor to manipulate visual representa-
tions and generate interleaved reasoning traces; and (iii) bypassing the editor entirely and producing
chain-of-thought traces purely in text, which serves as a natural baseline, since any degradation
relative to this case would imply that the editor introduces noise rather than improving reasoning.

As shown in Table 4] the embedding editor consistently improves over the text-only baseline on
most benchmarks. A notable exception arises at stage 2: the editor-equipped model underperforms
on Indicator-500, trailing the baseline by 4.5 points. This issue is largely alleviated in stage 3, where
joint training of the LLM and the editor tightens their coupling. Within stage 3, we see gains under
all three settings: the text-only baseline itself is slightly stronger than in stage 2 (41.3 vs 40.6),
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Table 4: Ablation study on the embedding editor.

Stage Setting Mathverse Wemath Mathvista Mathvision LogicVista Indicator-500 Average
Text-only (Baseline) 37.2 28.3 65.0 28.6 459 38.3 40.6

2 Editor 41.6 37.5 65.8 28.9 46.5 33.8 424
Agentic (Oracle) - - - - - 41.0 -
Text-only (Baseline) 38.1 31.2 65.7 335 41.8 37.5 41.3

3 Editor 432 37.1 69.1 323 48.1 40.5 45.1
Agentic (Oracle) - - - - - 44.8

Instruction: Highlight segment DE in blue and
mark ZBAE with a red

Highlight angles 1 and 2 in red, and Highlight the division between
label them clearly on the diagram. the two cubes.

(17

Total length of edges=24cm

3 3

Instruction: Highlight ZA in blue, £D in red, and . Highlight the two bottom angles of the
mark the right angle at D with a square Mark the angle H with a small square. triangle in different colors

29 . B

o A D

Figure 5: Difference map visualizations. Each example shows the input image (left), the program-
matic rendering (available only in Indicator-500) (middle), and the difference map between the
embedding editor output and the original visual embedding (right).

Examples from Indicator-500 Examples from public benchmarks

adding the editor lifts the stage 3 average by a further +3.8 (45.1 vs 41.3), and the upper bound
is further lifted, reaching 44.8 on Indicator-500. Overall, later-stage joint training mitigates the
distribution shift from editor-produced visual tokens, yields broad performance gains, and improves
the reliability of visual grounding, while the remaining gap to the agentic upper bound underscores
opportunities for further optimization and architectural advances.

We are also interested in characterizing how the embedding editor modifies visual content. Since
the actual visual outputs are not directly observable, we instead measure the distance between edited
outputs and feature embeddings of the input image, and localize pronounced differences as regions
of interest (ROIs). We perform this analysis on both our in-house Indicator-500 dataset and the pub-
lic benchmarks. For Indicator-500, the availability of the underlying source code allows us to issue
the exact same instructions to the Code Editor expert and obtain programmatically rendered edits for
comparison. For the left side of Figure 5] we present results on the in-house Indicator-500 dataset.
Because this set provides access to the underlying source code, we can generate programmatic edits
to visualize the intended visual modifications. From these results, we observe that the regions of
interest generally align well with both the natural language instructions and the programmatic edits,
indicating that the embedding editor tends to modify the intended areas. It is worth noting, however,
that the programmatic edits in Indicator-500 should be regarded as illustrative rather than absolute
ground truth, since natural language instructions may admit multiple valid implementations. On the
right side of Figure[5] we show results on the public benchmarks, where no programmatic edits are
available. The localized regions of interest still largely align with the intent expressed in the natural
language instructions. This observation further reinforces the effectiveness of the proposed module
and demonstrates its ability to generalize beyond the code-accessible setting.

4 CONCLUSION

We present the DeepSketcher suite as a fresh perspective within the broader paradigm of “thinking
with images.” At the heart of this suite lies a carefully constructed dataset, where chain-of-thought
reasoning is interleaved with code-rendered visual edits—precise, reproducible, and semantically
grounded, free from the grounding noise that plagues pixel-level manipulations. Building upon this
foundation, we design a self-contained model that internalizes the entire cycle of reasoning, tool
invocation, and image manipulation. By removing reliance on external tools and fragile coordinate
predictions, the model demonstrates a new pathway toward a resilient multimodal intelligence. To-
gether, these contributions point toward a future where machines learn to “think” with images in a
more integrated way.
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5 ETHICS STATEMENT

We acknowledge that large language models in general may reflect biases present in their pretraining
data. In our study, however, all training data are deliberately restricted to mathematics-related tasks
and disciplinary benchmarks, drawn exclusively from open-source datasets. Moreover, both the
training and evaluation are conducted using open-source frameworks, ensuring transparency and
reproducibility.

The design of our model is not intended to introduce concerns related to health, safety, personal
security, or privacy: it operates entirely on domain-specific data, avoids the use of personal or sen-
sitive information, and is confined to research-oriented applications. By focusing on well-defined
academic tasks, our work contributes to responsible Al research while offering potential benefits for
education, scientific discovery, and the broader study of multimodal reasoning.

6 REPRODUCIBILITY STATEMENT

We provide the necessary information to facilitate the reproducibility of our results. The main paper
describes the data curation process (Section [2.I), the design of the proposed model (Section [2.2)),
the experimental setups (Section [3.I), and the ablation studies (Section [3.3). Additional details
are provided in the appendix, including further information on data curation (Section [B), training
procedures (Section [C)), and extended qualitative and quantitative discussions of the experiments
(Section[D)). We commit to publicly releasing the DeepSketcher suite (model and dataset) as well as
the code for constructing the agentic system to facilitate further research.
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A RELATED WORK

A.1 VISUAL PROMPTING

Visual prompting (VP) is an interaction paradigm that predates the recent surge of multimodal rea-
soning. Prior studies have demonstrated that incorporating pixel- or region-level cues—such as
bounding boxes, markers, scribbles, or segmentation masks—into input images can substantially
enhance a model’s perceptual capabilities (Yang et al. 2023} |Hu et al., |2024; |Cai et al., [2024a}; [Yan
et al., 2024), thereby improving its understanding of visual inputs. For instance, SoM (Yang et al.,
2023)) shows that augmenting input images with labeled cues significantly improves referring and
localization performance in GPT-4V. Similarly, Sketchpad-style pipelines automatically compose
visual prompts by leveraging a toolbox of detectors and segmenters (with lightweight Python glue)
to draw boxes and masks either prior to or during inference, thereby strengthening both perception
and downstream reasoning (Hu et al.| [2024). However, early VP methods are typically developed
on frontier models, since many open-source alternatives lack the capacity to reliably invoke external
tools and effectively reason over the resulting feedback. This limitation highlights the importance of
equipping models with the ability to internalize such skills, rather than relying solely on externally
orchestrated prompting mechanisms.

A.2 VISION LANGUAGE MODEL REASONING

Enhancing the reasoning ability of vision-language models (VLMs) is a key focus of current VLM
research. Following the success of GRPO (Shao et al., 2024} |Guo et al.} 2025)) in textual reasoning, a
growing body of work leverages reinforcement learning (RL) to explicitly encourage and strengthen
the reasoning skills of VLMs, yielding promising progress (Meng et al., 2025; |Deng et al., [2025b;
Yang et al.| [2025a; Zhang et all 20254} |Xiaomi, [2025). Nevertheless, most existing approaches
remain predominantly oriented toward textual reasoning steps, treating the visual input merely as
a static condition rather than an integral component of the reasoning pipeline. To move beyond
simply seeing images and to reason more deeply about them, recent studies have introduced a tool-
use paradigm, where external vision functions or specialized modules are invoked to manipulate
visual inputs—for example, through cropping or zooming—and the edited artifacts are subsequently
fed back into the model to guide the next stage of reasoning (Zhang et al.l 2025b). This paradigm
allows models to better perceive and localize fine-grained image regions, thereby improving visual
question answering (VQA) accuracy. However, such “thinking with images” approaches only enable
models to perform a restricted set of visual operations, thereby constraining their reasoning space. In
parallel, another line of research has sought to expand this reasoning space by incorporating image
generative models (Li et al.| [ 2025a};| Yang et al.,[2025d). Yet, these efforts have largely been confined
to limited scenarios such as jigsaw puzzles and mazes, which restrict their broader applicability.

B MORE DETAILS ON DATASET CONSTRUCTION.

B.1 IMG-TO-CODE PIPELINE

There is an inherent drawback in the current code-rendered dataset. Specifically, the distribution of
questions differs substantially from those authored by human experts in high school, university, or
competition settings. Moreover, it is difficult to reliably assess the difficulty of the generated prob-
lems, and the perspectives adopted in question construction often lack the nuance and pedagogical
intent typically found in human-authored questions. The ability to tackle more challenging problems
is precisely why reasoning models are needed.

To bridge this gap, we design an additional img2code pipeline in the expansion round to incor-
porate more realistic and challenging problems. An overview of the pipeline is shown in Figure [6]
Concretely, we first sample VQA data from a collection of math-dominant datasets (Meng et al.,
2025}, (Chen et al.| [2022; [Sun et al.| [2024; [Chen et al., [2021). We then employ FigCodifier (Wang
et al.,2025), a model specifically trained to convert images into code, to process these samples. The
resulting code is subsequently rendered back into images.

It is worth noting that img2code is an extremely challenging task, as it requires the model to
faithfully capture all fine-grained details in an image using programmatic language. We conduct
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Figure 6: Overview of img2code pipeline.
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Figure 7: Overview of the DeepSketcher data curation pipeline. We first construct a dataset of VQA
problems with images rendered directly from code. An agentic system is then designed to generate
interleaved image—text reasoning traces.

preliminary tests using three models: FigCodifier, GPT-4.1, and Claude 4.0-Sonnet (Anthropicl
2025b). By human inspection, the success rates of all three are below 10%. This is because even
a minor error in the rendering process can lead to a drastically different semantic meaning of the
image. Here, we employ an intuitive compromise for automatic quality filtering. Specifically, we
leverage multiple solver VLMs, including GPT-4.1, Claude 3.7-Sonnet, and Qwen2.5-VL-72B, to
answer the VQA questions using the re-rendered images. If a solver model can produce a correct
answer, then we deem the re-rendered image acceptable: although it may not perfectly replicate the
original, it still contains sufficient information for solving the problem.

B.2 DATA FILTERING

Here, we describe our data filtering process in detail. In the first round of curation, we selected
samples from the math, graphic, diagram, and chart subsets of the Cosyn-400k dataset. Although
this dataset provides a large volume of diverse data, all samples are synthesized: both questions
and answers are generated by LLMs. Consequently, the validity of the provided answers cannot be
guaranteed. To mitigate this, we employ several LLM experts, including GPT-4.1, Qwen2.5-72B-
VL, and GPT-4.1-mini, to independently answer each question. For every question, we sample two
responses from each LLM. If at least one of these responses matches the original answer provided
by Cosyn-400k, we retain the question—answer pair; otherwise, we discard it.

For the agentic system, we design several fail-safe loops and verification strategies. First, if the code
produced by the Code Editor fails to execute during rendering, the erroneous code together with the
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error logs are sent back to the editor for another round of editing. By leveraging the error logs, the
editor can dynamically adjust its edits, thereby mitigating issues arising from either model mistakes
or inconsistencies in the execution environment. If the code is rendered successfully, we then prompt
the Solver LLM to critically inspect and challenge the rendered content rather than simply accepting
it. If the content does not satisfy the Solver’s requirements, the Solver generates revised instructions
for another round of editing.

Finally, before model training, we apply a rejection sampling strategy (Dong et al., [2023)). Specifi-
cally, we use the base model Qwen2.5-VL-7B to answer all queries and discard those for which it
produces the correct answer, retaining only the more challenging cases for training.

B.3 PROMPT TEMPLATE.

We show the prompt template used in the agentic data curation system in Figure [9] Figure [I0] and

Figure [T1]
C TRAINING DETAILS

We adopt Qwen2.5-VL-7B (Bai et al., [2025)) as the base model. Our implementation is built on
LLaMA-Factory (Zheng et al.|[2024). The training is carried out in three stages: first, the intermedi-
ate tool-calling model is trained on the seed data for 5 epochs with a learning rate of 5 x 10~5; next,
the embedding editor is trained on the full dataset for 10 epochs with a learning rate of 1 x 10~%;
finally, the LLM backbone and the embedding editor are jointly trained for an additional 2 epochs
with a learning rate of 5 x 1076, The learning objective of the first stage is:

N TW_1
it () = G SN Y egr (|29, BN, 3)
z 1 |S i=1 t=0 ES“)
which is mentioned in Section[2.2] The learning objective of the second and third stages is:
N T _
Eihl\}[“e 2(9) - (Z Z Z Z log P@( w<‘rv fedltor(Ei(; )S )) (4)
Dim 1 |S =1 =0 o5

The main difference is that, in stages two and three, the VLM takes as input visual tokens produced
by the editor instead of ground-truth visual context, and the LM objective is conditioned on the
editor’s output.

D DISCUSSIONS

D.1 MORE VISUALIZATION RESULTS ON PUBLIC BENCHMARKS

In Section [3.3] we examined “where the model is looking” by visualizing difference maps on our
in-house benchmark. Here, we extend this analysis with additional examples on public benchmarks
in Figure [8| for a more comprehensive view. As shown in Figure [8a} the difference maps generally
align with the model’s textual edit intent. A notable case appears in the bottom-right example from
MathVista, where the editor correctly attends to the faces of all three individuals in accordance with
the instruction, despite the model being trained exclusively on code-rendered images that contain
no such open-world scenarios. This result suggests that the model exhibits a certain degree of
generalization, as it can attend to novel cases far beyond its training distribution. Then, we turn to
failure cases in Figure where the model’s attention seems to deviate from the intent expressed
in natural language instructions. These examples might demonstrate the current limitations of the
editor and the remaining challenges in faithful visual manipulation.

D.2 EFFECT OF DECOUPLED MULTI-STAGE TRAINING

To assess the effect of our multi-stage training strategy, we compare checkpoints with and without
explicitly decoupling the training of LLM and the embedding editor. As shown in Table [5 the
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Highlight segment BC in blue and label it "diameter =2 cm".
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Highlight the two circular bases in different colors to clarify their
locations.

label it "height =4 m".

(a) Cases where the model generally attends to the region in accordance with the instruction.

Highlight triangle BEC in bsl:;;“sd ::;:k the right angle at E with a Highlight the rectangle and label its length as "height".

A cm B .
cm
O i = W%
2cm Zem|
r 45°
D E
Highlight the base region of the cuboid formed after folding, showing Highlight angle 1 in red and label it "95°" to confirm its value.

the 10 cm x 5 cm rectangle.

e

(b) Cases where the model’s attention deviates from its textual intent.

Figure 8: Difference map visualization from public benchmarks. (a) Alignment between attention
and instruction. (b) Cases with deviation from textual intent.

Table 5: Effect of decoupled multi-Stage training.

Setting Mathverse Wemath Mathvista Mathvision LogicVista Indicator-500 Average
Single stage training 39.6 36.9 66.2 25.7 45.6 39.1 422
Decoupled training 432 37.1 69.1 323 48.1 40.5 45.1

three-stage training pipeline—which first pretrains the LLM’s reasoning ability, then introduces the
embedding editor in a separate adaptation stage, and finally performs joint refinement—consistently
outperforms the single-stage alternative. This result suggests that decoupling the LLM from the

17



Under review as a conference paper at ICLR 2026

editor during training is essential: it allows the base model to acquire robust reasoning skills before
being exposed to the more complex task of interleaving reasoning with visual manipulation.

By contrast, directly training the entire system end-to-end in a single stage leads to weaker overall
performance, likely because the model must simultaneously learn high-level reasoning and low-level
embedding modification, increasing optimization difficulty and reducing stability.

D.3 ANALYSIS OF MATHVERSE RESULTS

On the MathVerse (Vision-only) benchmark, our model achieves an accuracy of 43.2, outperforming
both the baseline Qwen2.5-VL-7B and several tool-calling VLMs. Notably, Bagel-Zebra-CoT-7B
attains an exceptionally high score on this benchmark, substantially surpassing our model and rank-
ing near the top of the MathVerse Vision-only leaderboard, comparable to GPT-4.1. This strong
performance can be partially explained by the fact that Bagel-Zebra-CoT-7B is post-trained on
Bagel-7B (Deng et al., [2025a), whose base model already achieves a notably high score (45-50
according to our implementations) on the MathVerse benchmark. Therefore, the results of Bagel-
Zebra-CoT-7B are in part a reflection of the capability of its foundation model. Despite this, our
method consistently achieves a 2.4-point improvement in accuracy over five widely used bench-
marks, further validating the effectiveness of our approach.

E LIMITATIONS AND FUTURE WORK

The proposed DeepSketcher suite provides a complementary perspective to the “thinking with im-
ages” paradigm by curating a dataset constructed entirely from code—ensuring accuracy and avoid-
ing the grounding and image-generation noise—and by designing a self-contained model that cir-
cumvents reliance on external APIs. Nevertheless, this solution comes with several inherent limita-
tions.

First, the dataset is generated exclusively from code, which may limit the approach’s applicability
to broader, open-world domains. Moreover, since all questions are automatically generated, there
is little fine-grained control over aspects such as difficulty, style, or even the correctness of model-
provided answers during reasoning. This lack of precision in data quality raises the risk of “rubbish
in, rubbish out,” making it crucial to design comprehensive filtering pipelines to ensure the model
learns from high-quality content. In this work, we introduced multiple filtering mechanisms and
an img2code framework to mitigate these effects, but future efforts should focus on expanding
data collection to more diverse and open-world domains while improving the quality of generated
content.

Second, although our model design removes the dependence on external tools and the need to re-
encode images repeatedly, it also diverges from unified generative understanding models in that its
“visual thoughts” reside purely in the embedding space. As a result, the actual intermediate visual
content remains inaccessible, limiting our ability to fully interpret and analyze the model’s behavior.
Future work should explore more expressive ways to represent and manipulate visual information,
thereby enhancing transparency and interpretability in reasoning within this paradigm.

F LLM USAGE

Use of LLMs in research workflow During data curation, LLMs were employed as two col-
laborating experts to address VQA problems and generate interleaved reasoning trajectories. For
model training, we developed a vision—language model (VLM) capable of performing interleaved
reasoning based on these curated data. In evaluation, LLMs were further used as judges to assess
the correctness of generated answers. All outputs involving LLMs were carefully reviewed and
validated by the authors to ensure reliability and accuracy.

Code implementation LLMs’ assistance included suggesting solutions to specific programming
challenges and providing debugging support. All code produced with LLM assistance was thor-
oughly reviewed, manually verified, and tested by the authors to ensure correctness, efficiency, and
full compliance with the project requirements.
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Solver LLM starting prompt

You are an agent with broad math knowledge and strong image—text reasoning ability.

You may call an auxiliary tool called the Renderer to help you visualize or annotate the image
(e.g., draw lines, highlight shapes, add labels).

This tool is invoked using the <tool call> tag, and its purpose is to make your visual reasoning
more accurate.

Output MUST follow this template exactly:
<THINK>

Step 1: ... reasoning ...

Step 2: ... reasoning ...

</THINK>

<tool_call>...</tool call>

<ANSWER>.. </ANSWER>

! IMPORTANT RULES /!
1. If you are less than 99% confident in your answer, you MUST call the Renderer by filling

<ACTION_EXEC> with a specific drawing instruction (e.g., "Draw a red circle around triangle
ABC").

2. In that case, <ANSWER> must be exactly "TBD". Do NOT attempt to answer yet.

3. If you are 99% confident in your answer, set <t00o1l_call> to "NONE" and fill <ANSWER>
with the final answer.

4. <tool_call> must only contain visual drawing instructions — do NOT include textual, logical,
or general suggestions.

5.Any output that breaks these rules will be rejected by the grader.

Figure 9: The Solver LLM starting prompt.

Writing assistance LLMs were utilized to support the preparation and refinement of this
manuscript. Their assistance covered tasks such as proofreading for grammatical accuracy, im-
proving sentence flow and clarity, and rephrasing passages to enhance readability. All generated
text was carefully reviewed, assessed, and revised by the authors to ensure the accuracy, consis-
tency, and integrity of the final manuscript. The authors retain full responsibility for all statements,

interpretations, and conclusions presented in this paper.
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Solver LLM mid prompt

You are continuing the same problem.
The image shown below has been edited according to your previous <tool call> instruction.
1. First, carefully check whether the visual edits match what you asked for.
If they do: proceed with the next step of reasoning.
If they do NOT match: adjust your drawing request in <tool_call> to correct it.
2. Do NOT repeat earlier reasoning. Resume from the next step number.
Use "Step k:" where k = last_step + 1.
3. Use this exact format:
<THINK>
Step k: ...
Step k+1: ...
</THINK>
<tool call>
... (new drawing instruction if still <99% confident, else write NONE) ...
</tool_call>
<ANSWER>
... (write the final answer if sure, or TBD if not) ...
</ANSWER>
! RULES !

1. If you are now >99% confident, set <tool_call> to NONE and provide the final <ANSWER>.

2. Otherwise, revise or re-use your drawing request in <tool_call> and leave <ANSWER> as TBD.

3. Never repeat earlier steps. Always continue from the last step.

Figure 10: The prompt template when Solver LLM receives updated visual information.
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Code editor LLM system prompt

You are CodeEditor-GPT, a strict code-rewriting agent.

Your job: update the entire source file so that it satisfies the natural-language instruction.

% RESPONSE FORMAT (no extra text!) %

"

“python\n"
"# (full revised code here)\n"

g
! IMPORTANT RULES !

1. Do NOT output anything outside the python fenced block.

2. Keep the programming language identical to CURRENT _CODE.

3. Output the entire updated file; you may copy unchanged lines verbatim, but add, delete, or reorder
anything needed to satisfy the instruction.

4. If the request is impossible, reply exactly: CODE_ERROR.
Here's an example of how to answer the question:
CURRENT_CODE:

python

import matplotlib.pyplot as plt

plt.figure(); # line-1
plt.show() # line-2
python

INSTRUCTION: Add a title "Demo" to the plot.
OUTPUT:

python

import matplotlib.pyplot as plt

plt.figure()

plt.title("Demo")

plt.show()

Figure 11: The prompt template for Code Editor LLM.
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