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Abstract

Transformer-based language models exhibit In-
Context Learning (ICL), where predictions are
made adaptively based on context. While prior
work links induction heads to ICL through a sud-
den jump in accuracy, this can only account for
ICL when the answer is included within the con-
text. However, an important property of practical
ICL in large language models is the ability to
meta-learn how to solve tasks from context, rather
than just copying answers from context; how such
an ability is obtained during training is largely un-
explored. In this paper, we experimentally clarify
how such meta-learning ability is acquired by ana-
lyzing the dynamics of the model’s circuit during
training. Specifically, we extend the copy task
from previous research into an In-Context Meta
Learning setting, where models must infer a task
from examples to answer queries. Interestingly, in
this setting, we find that there are multiple phases
in the process of acquiring such abilities, and that
a unique circuit emerges in each phase, contrast-
ing with the single-phases change in induction
heads. The emergence of such circuits can be
related to several phenomena known in large lan-
guage models, and our analysis lead to a deeper
understanding of the source of the transformer’s
ICL ability.

1. Introduction

Transformer-based language models (Vaswani et al., 2017)
show an intriguing ability to perform In-Context Learning
(ICL) (Brown et al., 2020; Xie et al., 2021; Garg et al., 2022;
Dong et al., 2024). ICL is the ability to predict the response
to a query based on context without any additional weight
updates. A widely adopted application of ICL is few-shot
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learning in which only a small number of examples in the
context guide the model’s response to a new query. Due
to its unique capability, ICL has gained a lot of attention
in the research community, and there have been several
approaches such as Bayesian inference (Xie et al., 2021)
and meta-gradient descent (Von Oswald et al., 2023) to
uncover its underlying mechanisms.

One of the popular approaches to understanding ICL is
mechanistic interpretability: reverse-engineering the com-
putations performed by models (Elhage et al., 2021). A key
focus within this framework is the study of circuits, sub-
graphs with distinct functionality that serve as fundamental
building blocks of neural network behavior (Wang et al.,
2022; Conmy et al., 2023a). Notably, Olsson et al. (2022)
uncovered induction heads, a specific circuit mechanism
that plays a crucial role in enabling ICL. Induction heads
recognize the repeating pattern [A] [B] ... [A] within
the context and predict [B] as the next token through a
match-and-copy operation (Figure 1-(a)). The existence of
induction heads is further investigated under more complex
tasks, such as performing semantic matching (Ren et al.,
2024), serving as subcomponents of circuits for natural lan-
guage tasks within LLMs (Wang et al., 2022; Merullo et al.,
2024), and engaging in intricate interactions with multi-head
attention (Singh et al., 2024).

However, the copy mechanism as described in the induc-
tion head explains only a fraction of the few-shot ICL. Let
us consider, for instance, the following ICL scenario in a
Country-to-Capital task, based on Hendel et al. (2023):

France — Paris, Spain — Madrid, Japan — 9
~~ ¥
example query prediction

It is well known that ICL can enhance performance in this
scenario however, this improvement cannot be explained
merely by retrieving similar examples through induction
heads. A straightforward way to explain this ability is to
assume that the model infers the task from the examples
and then uses this inferred task to make predictions. For
example, Hendel et al. (2023); Todd et al. (2024) demon-
strates that tasks are internally represented as vectors (i.e.,
task vectors) within the LLM. This task inference ability is
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recognized as a form of meta-learning (Min et al., 2022a).
However, it remains unclear exactly what kind of circuit
implements this meta-learning or how the circuit is acquired.

In this study, our goal is to elucidate how such meta-learning
capability is acquired. To that end, we extend the copy task
from previous research (Reddy, 2023) to a problem setting,
which we call In-Context Meta-Learning (ICML) setting,
that requires task inference. We then train a simplified trans-
former on this extended setting, and analyze changes in its
internal circuits during the training process. In this setting,
as shown in Figure 1-(a), there exists a set of multiple tasks,
and the answers differ from task to task, so the model needs
to infer the task from the examples to answer the query.
Interestingly, we observe that learning dynamics emerge in
this setting that differ significantly from the case of simple
copying tasks. First, we find that the model undergoes learn-
ing phase while acquiring meta-learning capabilities, unlike
the single phase typically observed in copying tasks. More
specifically, we find that in the first phase, a bigram-type
circuit emerges that focuses solely on the query, ignoring
the context and relying only on the model’s weights. In
the second phase, a circuit emerges that pays attention only
to the labels in the context. Finally, a circuit emerges that
chunks each example pair into a single token.

We introduce novel metrics to measure these three circuits
and show that the abrupt change of these metrics aligns
closely with the sudden jumps in accuracy. Notably, the
label-focused circuit that emerges in the second phase sug-
gests that during acquiring meta-learning capabilities, the
model may initially learn to identify tasks by examining
only the set of labels, without considering the correspon-
dence between classes and labels. The existence of the
label-focused circuit also corresponds to the phenomenon
in previous studies (Min et al., 2022b) that LLMs maintain
high ICL performance even under random label assignments,
which is one explanation for the unique nature of LLMs.

We also examine the case of a multi-head model, which is a
more practical setting; sudden jumps in accuracy become
less apparent, and different heads can still specialize in par-
allel — for instance, one head may converge on a particular
circuit, while another becomes a different one. Although
this parallel specialization leads to smoother accuracy im-
provements, our circuit-level metrics uncover hidden circuit
emergence, revealing that even though learning phases re-
main invisible in the accuracy curve, the underlying circuits
still change abruptly. This observation suggests that even
when a clear phase changes are not observed on the loss
curve, as in the case of LLM training, abrupt changes can oc-
cur on the circuits, which leads to bridging the gap between
toy experiments in the study of mechanistic interpretability
and practical scenarios.

2. Related Works
2.1. In-Context Learning

Brown et al. (2020) demonstrated with GPT-3 the remark-
able ability of LLMs to perform a wide range of tasks using
only a few examples provided in the input prompt. Few-shot
ICL is the ability of LLMs to solve new tasks by examin-
ing a sequence of (input, label) pairs that share a
common concept within the context. Rather than updating
their internal parameters, these models rely solely on the
contextual examples to deduce the task’s rules.

In general, ability to learn from few-shot examples is asso-
ciated with meta-learning (Wang et al., 2020; Hospedales
et al., 2021), and success of the ICL demonstrate the strong
ability of LLM to meta-learn. In effective ICL, the model
infers the underlying task from the examples provided and
refines its predictions based on the inferred task. Although
this meta-learning-based ability is widely used, the under-
lying mechanisms enabling LLMs to perform these tasks
remain poorly understood, and some puzzling results have
been observed. For example, Min et al. (2022b) demon-
strated that even when the labels in the examples are ran-
domized, the accuracy improves. Additionally, Chan et al.
(2022) have demonstrated that data distributional properties
significantly influence ICL performance.

To understand ICL, various approaches have been proposed.
For example, Von Oswald et al. (2023); Dai et al. (2023)
demonstrated that transformers can solve linear regression
problems within the context by leveraging meta-gradients.
Based on this, analytical methods have been applied to study
the ability of transformers to handle a range of tasks, includ-
ing discrete functions (Bhattamishra et al., 2023), nonlinear
functions (Kim & Suzuki, 2024), and classification prob-
lems (von Oswald et al., 2023).

2.2. Mechanistic Interpretability

One promising approach to understanding ICL is mechanis-
tic interpretability (MI), which seeks to uncover the internal
mechanisms of models (Olah et al., 2020; Elhage et al.,
2021). A key focus of MI is the study of circuits, which
are subgraphs with distinct functionality that serve as funda-
mental building blocks of neural network behavior (Wang
et al., 2022; Conmy et al., 2023b; Merullo et al., 2024).

One such circuit studied in the context of ICL is the in-
duction head (Olsson et al., 2022). The induction heads
are a two-layer structure; in particular, the latter layer is
commonly called the induction head, and the earlier layer is
referred to as the previous token head. Previous token head
attends to and copies the preceding token into the current
token. When few-shot examples are present in the context, it
chunks each (x, £) pair into a single token. Induction heads
then perform a match-and-copy operation, matching a query
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Figure 1. (a) Task Structure: Previous studies focused on a copying-task setup, where the query’s answer remains unchanged by context,
allowing the model to either memorize pairs or match and copy from context. In contrast, this work explores a more practical scenario
where (z, £) pairs vary by task, requiring the model to infer the task from examples and predict the query’s answer. (b) Network
Structure: we mainly use two layers of attention followed by a token-wise MLP layer. The task is consistent within the context.

derived from the current token with a key derived from the
previous token head’s output. For more details on the in-
duction head, see Appendix A. Further research has shown
that induction heads can perform soft matching (Crosbie &
Shutova, 2024), emerge naturally in multi-head attention
settings (Singh et al., 2024), and are present in LLMs (Cho
et al., 2024).

Despite these advancements of induction heads, these stud-
ies have primarily focused on tasks where the context explic-
itly includes the label to be copied, such as direct copying
tasks. Therefore, induction heads alone cannot fully explain
the meta-learning capabilities in more practical scenarios.

3. Experimental Setup
3.1. In-Context Meta Learning

To analyze the meta-learning capabilities of ICL, building
on prior works (Chan et al., 2022; Reddy, 2023), we de-
sign a simple experimental setting named the In-Context
Meta-Learning (ICML!) described in Figure 1-(a). Unlike
previous approaches, where copying labels or memorizing
(z, ¢) pairs was sufficient to predict the answer, our setting
instead requires the model to meta-learn the underlying
task (7) from (z, £) context pairs. The network is trained to
predict the label of a target , given an alternating sequence
of N items and N labels:

?
~—

query prediction

T T T
x1, 07,22, 45, ..., xNn, lN, T4 ,
~—

examples

Here, 7 represents the task, where each task defines a unique
(z, £) pair with labels ¢ randomly assigned to items x. The
total number of tasks is denoted as 7', and the context pre-
sented to the model consistently corresponds to the same
task. Since the query x, may not be appeared the in-context

!Code is available at https://github.com/
gouki51l0/In-Context-Meta-Learning

examples, the network needs to infer the task 7, instead of
simply copying a label, from the context.

Following Reddy (2023), we represent each item x and label
¢ina (P + D)-dimensional space. Of these dimensions, P
is dedicated to positional information via a one-hot encoding
(with P = 65 across all experiments), while D captures the
content. To encourage translation-invariant operations, each
input sequence is randomly placed within a window of size
(2N + 1) spanning the range [0, P — 1]. Each class k is
associated with a D-dimensional mean vector (i, whose
entries are drawn independently from NV(0,1/D). For an
item z; assigned to class k, we add noise 1 (sampled from
the same distribution) scaled by e, giving z; = %,
where e governs within-class variation and the denominator
ensures ||x;|| &~ 1. Finally, each class is linked to one of L
labels, with L < K. To control the proportion to which a
query can be solved by copying from the context, the same
item as the query is included in the context with probability
pg. WeuseT =3, K =64, L =32, N =4, D =
63, ¢ = 0.1, pp = 0, unless otherwise specified. In our
ICML setup, we can reproduce the standard match-and-copy
induction head mechanism from Reddy (2023) by setting
T =1, pp = 1,. For detailed results, see Appendix A.

3.2. Network Structure

Following prior research (Reddy, 2023), we use a two-layer
attention-only transformer shown in Figure 1-(b), where
each layer ;1 comprises m heads (indexed by h), and a causal
mask ensures position 7 attends only to positions j < 7. A
two-layer MLP classifier then produces the label probabili-
ties. For the complete set of equations and hyperparameter
details, see Appendix B. In this architecture, each head h
in layer  computes attention weights {pEJ“ ) }, quantifying
how strongly position 7 (query) attends to position j (key).
These outputs are aggregated across heads and passed to the
MLP, which makes the final label predictions.
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Figure 2. (left) Changes in accuracy and loss across three distinct phases during training, with lighter-shaded curves indicating different
random seeds. Each phase is highlighted with a different background color: Phase 1 (yellow), Phase 2 (orange), and Phase 3 (red).
(right) Visualization of the attention maps (circuits) corresponding to each phase, with characteristic attention patterns indicated by red
arrows and their circuits displayed above. Specific attention types, such as Bigram, Label Attention, and Chunk Example, emerge at
different phases, reflecting the model’s adaptation to the task. Quantitative results for these attention maps are provided in Figure 4.
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Figure 3. Accuracy (blue) and AAccuracy (green) as functions of
the training step. Here, AAccuracy = Acc(t + At) — Acc(t)
with A¢ = 100. Vertical dashed lines indicate where AAccuracy
exceeds 0.025, marking the transition points between the three
observed phases (Phase 1, Phase 2, Phase 3).

The classifier is a two-layer MLP with ReLU activations,
followed by a softmax layer producing probabilities over L
labels. We train this network to classify the query item z,
into one of the L labels using cross-entropy loss. Both the
query/key dimension and the MLP hidden layer dimension
are set to 128. We use a batch size of 128 and optimize with
vanilla stochastic gradient descent at a learning rate of 0.01.

4. Abrupt Learning and Emergent Circuits
4.1. Three-Phase Dynamics and Circuit Overview

We conducted experiments under the ICML setting with
three tasks (i.e., T’ = 3). As shown on the left side of Fig-
ure 2, the results reveal three distinct phases of accuracy
changes, each accompanied by a corresponding drop in loss.
The observed dynamics are as follows: the first accuracy
plateau occurs at around 30-40%, the second at approxi-
mately 75%, and the final phase reaches 100%. To clearly
these three phases, we define the following metric:

AAccuracy = Accuracy (t + At) — Accuracy(t),

where ¢ denotes the optimization step and we set At = 100.
In Figure 3, we plot this quantity along with the model’s ac-
curacy, marking vertical lines at steps where AAccuracy >
0.025. These lines serve as boundaries between the three
observed phases. Based on this threshold, we partition
the model’s behavior into Phase 1, Phase 2, and Phase 3
throughout the remainder of this paper.

On the right side of Figure 2, we visualize the attention
maps from the two layers of the model during each phase.
The attention patterns emerging during the learning process
can be categorized into the following three types:

1. Bigram: Strong attention is focused on the token in the
context that corresponds to the query token (z).

2. Label Attention: Strong attention is focused on the
label tokens of the (x, ¢) pair within the context.

3. Chunk Example: Attention aggregates the (z, ¢) token
pair in the context into a single token, similar to the
induction head’s previous token head.

As visualized on the right side of Figure 2, the combinations
of these attention types differ between the first and second
layers across the three phases:

Phase 1 (Non-Context Circuit; NCC): Both layers use
bigram attention, ignoring the context and relying solely on
the model’s weights. At this stage, the model predict label
base on only query, limiting accuracy to around 1/7". In this
case, the accuracy stagnates at around 30—40%.

Phase 2 (Semi-Context Circuit; SCC): The first layer
exhibits label attention, while the second layer focuses on
the query token (bigram attention). The model not only
leverages weights memory but also attends to label tokens
(i-e., half of the context), in the context to infer possible
answers, resulting in improved accuracy of around 75%.

Phase 3 (Full-Context Circuit; FCC): The first layer ag-
gregates the (z, £) pair into a single token (chunk example),
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Table 1. Summary of circuits, accuracy, and layer-wise attention.

Table 2. Formulas of the three attention metrics.

Circuit Accuracy (T = 3) Layer 1 Layer 2 Metric Formula
NCC 30-40% Bigram Bigram Bigram pg}\?ﬂ,zN +1
- . : . N Jh
SCC ~T75% Label Attention Bigram Label Attention et pgNL+ 12k
FCC 100% Chunk Example Label Attention 1 N wh
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Figure 4. Evolution of the three attention metrics (Bigram, Label Attention, and Chunk Example) across optimization steps for the
first (green) and second (red) layers. The shaded regions represent the three learning phases: Phase 1 (yellow), Phase 2 (orange), and
Phase 3 (red), defined by AAccuracy (Figure 3). Each metric shifts cleanly at the phase boundaries, demonstrating a close correspondence

between accuracy improvements and circuit-level transformations.

while the second layer focuses on these aggregated tokens
(label attention) to predict label, resulting in using the entire
context. Through this abstraction of the pairwise relation-
ship (i.e., task inference), the model can produce correct
answers for the query. Once the model learns this circuit, it
achieves 100% accuracy.

The relationship between each circuit and its corresponding
attention pattern is summarized in Table 1.

4.2. Quantifying Circuit Emergence

To quantitatively measure these circuits, we propose three
metrics based on the attention maps of each layer. Let pﬁ ’jh
represent the attention from token j to token 7 in the h-th
head of the p-th layer. Let the context length be 2N + 1 (in
this case, N = 4). We define three primary attention-based
metrics, with precise formulas provided in Table 2. Here,
we briefly describe what each metric represents: (1) Bigram
Metrics capture the attention from the query token to itself;
(2) Label Attention Metrics measure the total attention from
the query token to the label tokens within the context; (3)
Chunk Example Metrics assess the attention from x to £
within each (z, £) pair.

The plots in Figure 4 illustrate how these metrics evolve
in the first and second layers across the three phases. For
the Bigram Metrics, both the first and second layers show
high values at the moment of the initial jump in accuracy,
marking the formation of the NCC. Then, at the beginning
of Phase 2, the bigram metrics in the first layer decrease
significantly while those in the second layer remain high,
and label attention in the first layer rises — together lead-
ing to the formation of the SCC. At the start of Phase 3,

the chunk example metrics in the first layer increase, and
the label attention metrics in the second layer also become
high, resulting in the formation of the FCC. Importantly,
these metric transitions align closely with the corresponding
jumps in model accuracy, supporting the view that these
metrics provide a valid and quantitative perspective on the
circuit changes observed during the three phases, as depicted
in the right side of Figure 2.

4.3. Deeper Look at the Semi-Context Circuit

How SCC Drives Accuracy In Phase 2, the model forms
the SCC, using label information from the context in addi-
tion to the query. We provide a theoretical analysis of why
this leads to improved accuracy and empirically validate our
theory through controlled experiments. To clarify SCC’s
behavior, we tested the following simplified conditions:

1. The number of classes (/) equals the number of labels
(L), with no duplication.

2. The input context (including the query) contains no du-
plicate classes.

3. The number of tasks (7') is set to 2, and there are no
common (z, £) pairs shared across tasks.

4. To specifically focus on SCC, a mask is applied to circuits
associated with SCC during training (details are provided
in the Appendix C).

In Phase 1, since there are two tasks, the model has a 50%
chance of predicting correctly by random guessing. In other
words, the model’s prediction reduces to a binary choice
for each input query (z4). Once label information becomes
usable, the binary choice can potentially be narrowed fur-
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Figure 5. Comparison of theoretical accuracy (dashed lines) and
model accuracy for different class counts (X). The close alignment
between theoretical predictions and experimental results confirms
the validity of the theoretical analysis.

ther. This occurs when one of the labels corresponding to
the two options is present in the context. In this scenario,
the label in the context is definitively not the correct answer
for the query, as per the defined conditions. Thus, the an-
swer becomes uniquely determinable, increasing accuracy.
Following the derivation in Appendix D, the probability of
one of the labels appearing in the context is
K—2
p= 1- ( K47 1) .
(")

Therefore, the theoretical accuracy achievable with SCC
can be expressed as:

Theoretical Accuracy =p-1+(1—p)-0.5.

Figure 5 shows the theoretical accuracy alongside the accu-
racy achieved by a model trained with only Phase 2 attention
circuits remaining. The class/label counts were varied as
K = {8,16,32}. The near-perfect agreement between the
theoretical and empirical results confirms both the validity
of our derivation and the role of SCC in boosting accuracy.

Random-Label Robustness of SCC We focus on the ten-
dency of SCC to make predictions “based solely on labels
and query.” We hypothesize that this circuit explains the
puzzling phenomenon that the improvement in ICL perfor-
mance observed even when using random labels, as noted
in Min et al. (2022b). Min et al. (2022b) has demonstrated
that replacing labels randomly within examples results in
only a marginal performance drop, suggesting that ICL does
not rely heavily on (xz, ) pairs. To investigate this phe-
nomenon, we define an Out-of-Distribution (OOD) evalu-
ation where the labels in each context pair are randomly
permuted. Specifically, we consider:

?
~—

query prediction

T, g;(l),$27 62(2), .-y IN, K;(N)’ l'q 5

examples

Here, 7 is a random permutation on {1, 2, ..., N'}, meaning
that £7 @) replaces the original label ¢]. By measuring the
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Figure 6. Comparison of training accuracy and random-label ac-
curacy (RLA). The plot demonstrates the rise in both metrics,
with RLA following a trend similar to emergence Phase 2. This
indicates that SCC acquired in Phase 2 contributes to improved
accuracy even with shuffled labels.

S
o

model’s accuracy under these shuffled labels, we obtain
the Random-Label-Accuracy (RLA). In the Figure 6, we
compare this RLA with the training accuracy. Similar to
the rise observed in Phase 2, when SCC is acquired, the
RLA also increases. This suggests that the reason for the
improved performance with random labels, as seen in Min
et al. (2022b), is the existence of circuits similar to SCC
within LLMs.

4.4. Effects of Data Property on Circuits Emergence

Previous studies have indicated that certain properties
of the training data, such as burstiness, can influence
the emergence of ICL (Chan et al., 2022) and induction
heads (Reddy, 2023). In this work, we explore how these
data properties affect the development of circuits in our
ICML setting, with the aim of advancing our understand-
ing of the multi-phase emergence of these circuits. As
mentioned in Section 3, the variables capturing the char-
acteristics of the data include the number of tasks 7', the
number of classes K, the noise magnitude e. In addition,
and following Chan et al. (2022), we adopt rank-frequency
distributions over both classes and tasks: f(k) ~ k= and
f(1) ~ 778, which follow a power-law form commonly
known as Zipf’s law (Zipf, 1949) (see Appendix E for de-
tails). The default values are ' = 3, K = 64, ¢ = 0.1,
a = 0, and 5 = 0. The results of varying these parameters
are shown in the Figure 7. For results obtained by varying
pB, see Appendix F.

In Figure 7-(a), we present the results of varying the number
of tasks T'. As T increases, Phase 1 accuracy decreases
(approximately proportional to 1/7"). When T = 1, the
setup aligns with previous studies (see Figure 1), where the
model’s accuracy increases in a single phase rather than un-
dergoing multiple phases. Conversely, for T" > 2, the model
consistently exhibits three distinct phases. This indicates
that the multi-phase phenomenon is robust to the number
of tasks, and that introducing additional tasks in the ICL
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Figure 7. The relationship between learning phase dynamics and data distribution properties is explored by varying key parameters: the
number of tasks (1), the number of classes (K), the noise magnitude (¢), the sampling bias for classes (K~ ), and the sampling bias for
tasks (T_ﬂ ). Default values are T' = 3, K = 64, ¢ = 0.1, « = 0, and 5 = 0. The plots show how these variations influence accuracy and

the emergence of learning phases.

setting can provide new empirical insights.

In Figure 7-(b), when K is small (e.g., K = 32), the model
tends to skip Phase 1 and transition directly to Phase 2. In
contrast, when K is large (e.g., K = 128, 256), the model
skips Phase 2 and jumps directly from Phase 1 to Phase 3.
This can be explained by the theoretical values derived in
Section 4.3, where increasing the number of classes brings
the accuracy in Phase 2 closer to that in Phase 1, effectively
making Phase 2 unobservable for large K.

In Figure 7-(c), increasing e (the within-class variation)
leads to skipping Phase 2. Moreover, when € is 1, Phase 1
is also skipped. Following the results of Chan et al. (2022),
higher values of € make it more difficult for the model to
memorize the (z,¢) pairs in its weights, and thus it shifts
its focus toward leveraging the context. The observation
that NCC is skipped entirely when € = 1 aligns with this
trend. Although SCC is a circuit that uses the context, it
inherits the nature of NCC, causing it to be skipped as €
increases. In Figure 7-(d), we see that increasing « likewise
tends to skip Phase 1 or Phase 2. The heightened sampling
bias makes it more challenging to memorize pairs in the
weights, so the model more readily exploits context-based
information. As a result, the NCC or SCC does not emerge.
In summary, the results suggest that when the model finds
it difficult to memorize (z, ¢) pairs (larger € or o) neither
NCC nor SCC emerges.

In Figure 7-(e), we examine how varying the task sampling
bias j3 affects both the average accuracy across tasks and the
accuracy of each individual task. While changing (3 leads
to only minor differences in the overall average trend, the
accuracy on a per-task basis varies considerably with 3. In
particular, when 3 is high (e.g., 5 = 1), the model tends to
memorize the most frequent task (i.e., 7 = 0) first, causing
the remaining tasks to skip NCC and progress directly to

forming FCC. Additional results for larger values of 7" and
varying context length (/V) are provided in Appendix I and
Appendix J, respectively.

S. Multi-Head Enhances Circuit Discovery
5.1. Parallel Circuit Exploration

To investigate a more practical scenario, we extend our anal-
ysis to multi-head attention. Figure 8 compares the accuracy
changes for models with two heads and one head. In the left
panel of Figure 8, we observe that learning phases become
less pronounced when using multi-head attention. A closer
examination of the attention maps for each head (as shown
in the right panel of Figure 8) reveals that different heads
specialize in distinct functions. Specifically, one head learns
circuits resembling NCC, while another head becomes FCC.
This parallel specialization provides a smoother trajectory
of accuracy improvement, in contrast to the multi-learning
phase observed in single-head models.

These findings suggest that multi-head attention allows for
parallel exploration of circuits, improving the efficiency
of circuit discovery. As a result, the multiple phase char-
acteristic of single-head models are absent in multi-head
configurations. This behavior aligns with observations in
LLMs, where multi-head attention enables different heads
to serve distinct functions, leading to smoother accuracy im-
provements, as seen in Figure 8. Results for a larger number
of heads are provided in the Appendix G.

5.2. Hidden Circuit Emergence

In Figure 8, we observe multiple attention heads lead to
smoothing the accuracy improvement. To gain deeper in-
sights into this phenomenon, we analyze how the internal
circuits evolve by using the circuit metrics summarized
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Figure 8. Comparison of accuracy dynamics between single-head
(blue) and multi-head (orange) attention models (left). The multi-
head model exhibits smoother accuracy improvements, without the
distinct learning phases observed in the single-head model. On the
right, the attention maps for the two heads in the multi-head model
are visualized. Head 1 specializes in NCC, while Head 2 adopts
circuits resembling FCC. These findings indicate that multi-head
attention allows parallel circuit discovery, enhancing the efficiency
of the learning process.

in Table 2. In Figure 9 (left), we present the circuit met-
rics for Bigram and Label Attention in Head 2. Notably,
around the 30,000th training step, the Bigram metric ex-
hibits a pronounced increase in the second layer, whereas
the Label Attention metric is notably larger in the first layer.
The right panel displays the corresponding attention maps,
which clearly demonstrate an SCC-like pattern, illustrating
how the model’s attention shifts between bigram-driven and
label-focused mechanisms. The attention maps on the Fig-
ure 9 (right) correspond to the model’s behavior at 30,000
training steps, as indicated by the vertical dashed line. A
complete set of metrics is provided in Appendix H.

These results suggest that, even though we do not observe
abrupt learning in accuracy under the multi-head config-
uration, a hidden circuit emerge within the model’s inter-
nal mechanisms. This hidden phenomenon implies that,
in more practical scenarios (such as large-scale language
model where the loss typically decreases in a smooth fash-
ion), the model’s internal circuits may still undergo signifi-
cant emergent shifts.

6. Discussion

We introduced controlled experimental called In-Context
Meta-Learning (ICML), designed to move beyond simple
copy tasks by requiring task inference. We then investigate
how a 2-layer, attention-only transformer acquires ICL abili-
ties, inspired by induction head research (Olsson et al., 2022;
Reddy, 2023). Although our model is much smaller than
those used in large-scale interpretability research (Wang
et al., 2022; Merullo et al., 2024; Templeton et al., 2024,
Gao et al., 2024), this controlled design revealed novel in-
sights, including multi-learning phases that illuminate how
the model’s internal circuits evolve. Moreover, the observed
random-label robustness (Section 4.3) and multi-head be-
haviors, where the loss decreases smoothly (Section 5), both
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Figure 9. Circuit metrics (left) and attention maps (right) for Bi-
gram (Head 2) and Label Attention (Head 2) in multi head setting.
The left plots depict the progression of Accuracy (blue), Layer 1
Metrics (green), and Layer 2 Metrics (red) over training steps. The
attention maps on the right correspond to the model’s behavior at
30,000 training steps, as indicated by the vertical dashed line.

align with findings in LLMs. These results connect small-
scale experiments to practical LLMs, clarifying ICL mecha-
nisms. Additional related work is presented in Appendix K.

Relationship to Prior Internal-Circuit Research Pre-
vious investigations taking an internal-circuit approach to
ICL have largely focused on induction heads, which em-
ploy a match-and-copy mechanism (Ren et al., 2024; Cho
et al., 2024). In contrast, by adopting a more practical meta-
learning perspective, our study reveals multi-phase circuits
that initially memorize examples and then evolve to infer
the underlying task, which differs from the single-learning
phase commonly observed in induction heads. While both
induction heads and our Full-Context Circuits (FCC) chunk
contextual (z, ¢) pairs into a single token in the first layer,
the second layer diverges: induction heads retrieve only a
label, whereas FCC further aggregates (Chunk Example —
Label Attention in Table 1). This shared mechanism in the
first layer implies that even a simple copy task contributes to
meta-learning—like ICL capabilities. In addition, consistent
with earlier findings (Chan et al., 2022; Singh et al., 2023;
Reddy, 2023), these results highlight the key role of dataset
characteristics in circuit formation and ICL performance.

Implication for LLMs Our analysis links circuits to the
established concept of task vectors (Hendel et al., 2023;
Todd et al., 2024). A task vector represents the abstracted
representation a model forms from examples, and although
such vectors have been recognized, the internal circuit-based
mechanisms that produce them remain poorly understood.
Our findings offers a step toward elucidating these mecha-
nisms. In addition, we examine multi-head attentions. Prior
work (Singh et al., 2024) has identified redundancy in in-
duction heads under multi-head architectures. Our findings
indicate that, rather than mere redundancy, multiple distinct
circuits emerge in parallel in the multi-head setting, resulting
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Figure 10. Layer-wise analysis of Bigram, Label Attention, and Chunk Example metrics in a pretrained LLM (GPT2-XL). We observe
that chunk example scores peak in earlier layers while label attention scores are higher in middle or later layers, consistent with the
final circuit (FCC) behavior in our 2-layer attention-only model, where the first layer emphasizes chunk example and the second layer

specializes in label attention.

in smoother performance gains. This observation bridges
the discontinuous concept of circuits with the continuous
performance improvements seen in LLMs.

To test whether the circuits we observe in our controlled toy
setting also appear in real-world pretrained models, we con-
duct an additional analysis using a standard sentiment clas-
sification task. Specifically, we use the SST2? dataset from
the GLUE benchmark, consisting of 872 sentiment-labeled
samples. We use GPT2-XL? (48-layer decoder transformer,
pretrained). Each prompt contains two labeled examples
followed by a query example without its label, in a 2-shot
setup. The prompt format is as follows:

Review:{text}\nSentiment:{label}
Review:{text}\nSentiment:{label}
Review:{text}\nSentiment:

An actual example of such a prompt is provided in Ap-
pendix N. As the model is fully trained, we cannot observe
circuit formation over training; instead, we analyze atten-
tion patterns across layers in response to the fixed prompts.
We define three attention-based metrics, using raw attention
probabilities p(i, j) from token j to token 4, averaged over
all heads in each layer:

1. Bigram Attention: p(query, query)
Measures the self-attention of the final token (query).

2. Label Attention: - 31| p(query, labely)
Measures how much the query attends to each of the
K = 2 label tokens.

3. Chunk Example Attention: L >/ %
Measures how strongly each label token attends to the
corresponding review tokens.

Zhttps://huggingface.co/datasets/stanfordnlp/sst2
3https://huggingface.co/openai-community/gpt2-xI

Figure 10 shows that the Chunk Example metric is higher
in early layers, while Label Attention dominates later lay-
ers—mirroring our two-layer model’s progression from
chunk example to label focus. This pattern aligns with
our earlier findings in small Transformers, suggesting these
circuits generalize to LLMs.

We further investigate circuit behaviors in more standard
Transformer architectures (see Appendix L), under next-
token prediction objectives (see Appendix M), and in mod-
els deeper than two layers (see Appendix O). In all these
cases, we observe consistent structural patterns, supporting
the robustness and generality of our circuit-based interpreta-
tion.

7. Conclusion

We introduced In-Context Meta-Learning (ICML), a con-
trolled setting for analyzing how attention-only transform-
ers acquire in-context learning abilities. Unlike simpler
induction-head settings limited to match-and-copy circuits,
our approach allowed us to explore how internal circuits
function in a more practical task-inference context. Our
analysis revealed a multi-phase learning process, where
early layers bind example pairs (chunk example) and later
layers abstract task-relevant patterns (label attention). These
circuits proved robust to random labels and benefited from
multi-head attention, resulting in smoother learning dynam-
ics. We further showed similar circuit patterns emerging in
pretrained models, such as GPT2-XL, on real-world natural
language tasks, suggesting our findings generalize beyond
toy settings. While our work is still far from fully cap-
turing the complexity of real LLM behaviors, connecting
controlled experiments in mechanistic interpretability to
realistic use-cases of LLMs is becoming increasingly impor-
tant. Such efforts will help advance interpretability research
and play a crucial role in the development of safer Al sys-
tems.
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A. Induction Head

Figure 11 illustrates an induction circuit consisting of a previous token head in Layer 1 and an induction head in Layer 2.
After Layer 1, the side-by-side x and ¢ tokens are chunked into a single token. In Layer 2, two operations occur: matching
of x via queries and keys (in purple) and copying of ¢ (in red).

MLP
ces 1‘,’5
copy
K vV K Vv match Q
x1| €% xg| 5 e xg
£ xg €5 oo xg

Figure 11. The circuit consists of a previous token head in Layer 1 and an induction head in Layer 2. After Layerl, the side-by-side « and
£ tokens are chunked into a single token. In Layer 2, we highlight two operations: matching of x vai queries and keys (in purple), and
copying of ¢ (in red).

When a sample is drawn with probability p g, the burstiness parameter B introduced by Chan et al. (2022); Reddy (2023)
becomes relevant, determining how many times items from the query class appear in an input sequence (where NV is a
multiple of B). In our ICML setup, we specifically examine the case with 7' = 1, pp = 1, and B = 1, as shown in Figure 12.
We observe that the first attention layer encodes each (x, £) pair into a single token, while the second layer strongly attends
to one of these pairs, effectively implementing the match-and-copy mechanism characteristic of an induction head. Notably,
our setting thus subsumes the standard induction head experiments proposed in Reddy (2023).

MLP

Accuracy

10 10
Steps

Figure 12. (left) The emergence of induction heads is observed as single-learning phase. (right) The attention maps on the right illustrate
the circuit mechanism, where Layer 1 groups (z, £) pairs into single-token representations, and Layer 2 then copies this label.
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B. Model Details

B.1. Network Architecture

Our model features two layers of multi-head attention with a causal mask, followed by a two-layer MLP classifier. Each
attention layer 1 € {1, 2} has m heads, labeled by h. Let (u,...,u,) be the input sequence (subject to a causal mask
ensuring 4 can only attend to j < ¢). The outputs of the first layer are {v;}; those of the second layer are {w; }.

Attention Computation. Within layer u, head h computes attention weights

ph) exp (K" uj)T( M)
T S (K )T (QF w)

; ey

where Q,&h) and K ,Sh) are the learnable query and key matrices for head h in layer p. Next, each head outputs a weighted
sum of the value-transformed inputs:

Headl(-“’h) = Zpgg’h) (Vu(h‘) u;), 2)
j<i

where Vﬂ(h) is the corresponding value matrix.

Multi-Head Aggregation. The outputs of all m heads in layer p are concatenated and projected by a trainable matrix
Wo,., yielding

vi = + Wh [Head?:”; e Headglm] , 3)
w; = v; + W3 [Head?’l) S Headz(?’m)} : 4)
Here, |. . .] indicates concatenation over the head outputs, and each Wy, is a learnable linear projection.

Classifier. The two-layer MLP receives the final attention outputs {w;} (e.g., specifically w,, if n indexes the query
token). A hidden layer with ReLU activation is followed by a softmax that produces label probabilities.

B.2. Training Details

Table 3. Training and Model Configuration

Hyperparameter Value

Loss Function Cross-entropy
Optimizer Vanilla SGD
Learning Rate 0.01

Batch Size 128

Dimension of query/key/value 128
MLP Hidden Layer Dimension 128
Causal Mask Restrict sums to j < ¢
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C. Controlled Circuit Pruning Experiments

To validate the relationship between the identified circuits and model performance, we conducted controlled pruning
experiments. In these experiments, all components except the circuits corresponding to a specific phase were pruned at
initialization, isolating the contribution of each circuit. For comparison, we also trained a fully trainable model, referred to
as the full model, which could attend to all identified attention patterns.

As shown in Figure 13, networks trained with only the circuits from a particular phase plateaued at accuracies corresponding
to that phase. This result provides strong evidence that the circuits identified in each phase are directly responsible for the
observed performance.

Interestingly, when the Phase 3 circuit was provided from the beginning (pink curve in Figure 13), the model achieved 100%
accuracy in single step. In contrast, the full model exhibited a more gradual improvement, sequentially discovering and
leveraging the circuits corresponding to each phase. This highlights the dynamic nature of the full model’s training process,
where it incrementally constructs and refines the required circuits during training.

Accuracy

Phase 1 Circuit
Phase 2 Circuit
Phase 3 Circuit
e Full Model

0.8
0.6
0.4
0.2

0.0 3 4 5
10 10 10 10
Optimization Steps

Figure 13. Controlled pruning experiments to validate the relationship between identified circuits and model performance. Networks

trained with only the circuits from a specific phase plateaued at accuracies corresponding to that phase (yellow: Phase 1, orange: Phase 2,
pink: Phase 3). This demonstrates that the identified circuits are directly responsible for the observed performance in each phase.

D. Derivation of the Theoretical Accuracy

In the main text, we define

(")
p=1- 255 ©)
("1
and use it to obtain the “Theoretical Accuracy” as
Theoretical Accuracy =p- -1 + (1 —p) - 0.5. 6)

This appendix provides a more detailed derivation of these formulas, along with the underlying conditions.

Task Conditions.

1. The number of classes (K) equals the number of labels (L), with no duplication.

[\

. The input context (including the query) contains no duplicate classes.

W

. Only two tasks are considered (1" = 2).
4. There are no common (z, ¢) pairs shared between different tasks.

5. To focus on SCC, a mask is applied to circuits associated with SCC during training.
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Excluding Both 1., and L;. We are interested in the probability that the context does not contain Ly or L.

* The total number of ways to choose 4 distinct classes from the K — 1 classes (excluding the query’s class) is (K4_1).

* To exclude both L; and Lo, we must choose all 4 classes from the remaining K — 2 classes, leading to (Kig) possible
ways to form the context with neither L, nor Lo present.

Hence, the probability that neither L1 nor Lo is in the context is

K—2
)
K—1)°
("4
Probability p and the Accuracy Calculation. We denote by p the probability that at least one of Ly or Ly appears in the

context: Koo
)

P EYy

Under the task rules, if at least one of these two labels appears in the context, it cannot be the label for the query, so the other
one must be correct. This yields 100% accuracy in that scenario. Conversely, if neither L1 nor L, is found in the context
(probability 1 — p), the model is forced to guess between two equally likely options, resulting in 50% accuracy. Therefore,

Theoretical Accuracy = p-1 + (1—p) - 0.5,

as stated in the main text.
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E. Rank-Frequency

In natural language processing and other real-world domains, both data instances and task distributions often follow a
power-law structure, commonly referred to as Zipf’s law (Zipf, 1949). This law states that the frequency of an item or task is
inversely proportional to its rank, meaning that a small number of elements occur frequently, while the majority appear
rarely. Formally, this is expressed as:

f(k) o< k¢, 0

where k denotes the rank of an item, and « controls the degree of skewness. Figure 14 illustrates how increasing « leads to
a more imbalanced distribution, with a steep drop in frequency beyond the highest-ranked elements.

Rank-Frequency Distributions for Different « Values (f(k) =k~)
1.0

—_— a=0
- a=0.25
0.8 a=0.5
a=0.75
35\0'6 — a=1.0
= —_— a=1.25
0.4
0.2
0.0
0 20 40 60 80 100

Rank £

Figure 14. Rank-frequency distributions for different values of the power-law exponent «, following the Zipfian distribution f(k) = k™.
As « increases, the distribution becomes more skewed, with a few high-frequency items dominating while the majority appear infrequently.

In our setting, not only data but also task sampling follows a similar Zipfian distribution:

f(r) ~ 775, ®)

where 3 determines the skewness of the task distribution.
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F. Effects of Birstiness on Circuit Emergence

When a sample is drawn with probability pg, the burstiness parameter B introduced by Chan et al. (2022); Reddy (2023)
becomes relevant, determining how many times items from the query class appear in an input sequence (where N is a
multiple of B). Figure 15 examines the impact of burstiness B and probability pp. The left panel shows accuracy curves
for different values of B at a fixed pp = 0.25. As B increases, Phase 1, where NCC memorizes pairs through weight
updates — tends to be skipped. The right panel presents accuracy curves for different values of pp while keeping B = 1
fixed. As pp increases, the model’s accuracy improves more smoothly, and distinct learning phases become less pronounced.
These results align with previous studies showing that increased burstiness tends to shift the model away from weight-based
solutions and toward context-dependent reasoning (Chan et al., 2022; Reddy, 2023).
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Figure 15. (Left) Accuracy curves for different values of B at a fixed pg = 0.25. Increasing B tends to skip Phase 1, where NCC
memorizes pairs through weights. (Right) Accuracy curves for different values of pp with B = 1. As pp increases, the learning process
becomes smoother, reducing the occurrence of distinct learning phases.
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G. Multi-Heads Experiments

Figure 16 (Left) shows accuracy curves over training steps for different numbers of attention heads (1, 2, 4, 8, and 16).
Models with multiple heads exhibit a smooth increase in accuracy, whereas the single-head configuration undergoes
multi-learning phases, where accuracy improves in distinct jumps rather than gradually.

Figure 16 (Right) visualizes attention patterns in a 4-head attention model across two layers. The four heads naturally divide
into two functional roles: two heads focus on NCC, while the other two heads focus on FCC.

4 head Attention
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— 1 heads
0 - 0 0 0
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—— 16 heads O 3
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Figure 16. (Left) Accuracy curves over training steps for different numbers of attention heads (1, 2, 4, 8, and 16). Models with multiple
heads exhibit a smooth increase in accuracy, whereas the single-head configuration shows multi-learning phases. (Right) Visualization of
attention patterns in a 4-head attention model, separated by layer. Two heads focus on NCC, while the other two focus on FCC. Red
squares highlight key attention positions indicative of each role.
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H. Circuit Metrics in Multi-head Attention

Figure 17 presents circuit metrics for each attention head, analyzed by layer in a two-head attention model. Head 1
consistently maintains high bigram values across both Layer 1 and Layer 2. This indicates that it primarily performs
token-level copying operations, forming an NCC. In contrast, Head 2 exhibits a different pattern. As training progresses, the
chunk example metric increases in Layer 1, while the label attention metric becomes dominant in Layer 2, forming an FCC.

These findings reinforce the idea that multi-head attention facilitates specialization, allowing different heads to develop
distinct computational circuits that enhance the model’s meta-learning capabilities.
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Figure 17. Circuit metrics for each attention head, analyzed by layer in two heads attentions. Head 1 maintains high bigram values across
both Layer 1 and Layer 2, indicating the formation of an NCC. In contrast, Head 2 exhibits increasing chunk example values in Layer 1
and high label attention values in Layer 2, suggesting the formation of an FCC.
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I. Impact of Increasing Task Numbers (1)

Figure 18 shows accuracy (left) and loss (right) for models trained with increasing numbers of tasks (I" = 3,6, 9,12, 15, 18).
Even with higher T, models exhibit sudden accuracy jumps. As T increases, initial accuracy decreases, and it takes longer
for models to achieve sharp accuracy improvements, highlighting the challenges of training under more realistic conditions.
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Figure 18. Left: Accuracy, Right: Loss, for increasing numbers of tasks (7") set to 3, 6, 9, 12, 15, and 18, bringing the setup closer to
real-world conditions. Even with higher 7", the model still exhibits sudden jump in accuracy. As 7" increases, the accuracy in the first
phase (around 1/7") decreases, and it takes longer to reach the next sharp jump in accuracy.

J. Impact of Increasing Context Length (V)

Figure 19-(a) presents accuracy curves when increasing the number of few-shot examples (IV), resulting in a longer total
context. Multiple learning phases are visible for contexts up to N = 8. For N > 16, the model quickly achieves perfect
accuracy, indicating easier learning with more context. Figure 19-(b) shows attention maps at N = 16 (context length=33)
with clear chunk-example attention patterns in layer 1 and label-attention patterns in layer 2, consistent with behaviors
observed at lower contexts.
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Figure 19. (a) Accuracy curves when increasing the number of few-shot examples (/V) in the context, making the total context length
2N + 1. Up to about N = 8, multiple learning phases are visible.For N > 16, the model exhibits only a single learning phase before
reaching 100 % accuracy. This behavior suggests that having a larger context makes it much easier for the model to learn a circuit that
leverages the context, eliminating the need for intermediate phases. (b) Attention maps of a two-layer, attention-only Transformer with
N = 16 (context length = 33) at 100% accuracy. The first layer (left) shows a chunk example attention pattern, whereas the second layer
(right) focuses on label attention. These observations are consistent with the circuits seen at N = 4.
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K. Extended Related Work

Our study relates closely to multiple strands of literature on in-context learning (ICL) and multi-phase emergence. Here, we
elaborate on these connections and highlight distinct aspects of our approach.

In-Context Learning Literature Beyond Copy Tasks Previous studies on in-context learning frequently employ linear
regression frameworks (Von Oswald et al., 2023; Raventos et al., 2023), offering analytically tractable models for theoretical
analysis. While these approaches use identical tasks across context examples, they typically optimize for mean squared error
(MSE), diverging from the conditions encountered in real-world in-context scenarios. In contrast, our experimental design
closely mirrors practical applications of LLMs, emphasizing realistic task settings and diverse few-shot contexts.

Several works (D’ Angelo et al., 2025; Edelman et al., 2024; Park et al., 2025) have examined in-context learning in the
context of Markov chain tasks, highlighting meta-learning phenomena. Although the meta-learning dynamics studied
are related to ours, these Markov chain settings differ significantly from the typical few-shot example-pair format that
characterizes standard LLM usage. Our research specifically targets these conventional scenarios, aiming for greater
ecological validity in interpreting LLM behavior.

Research (He et al., 2024) exploring in-context learning on modular arithmetic tasks (Nanda et al., 2023; Furuta et al., 2024;
Minegishi et al., 2025) investigates phenomena like out-of-distribution generalization and the role of attention mechanisms at
convergence. While extending beyond simpler tasks, such studies typically do not focus on tracking the dynamic acquisition
of internal circuits throughout training. Our work uniquely captures these acquisition dynamics, directly linking them to
observed behaviors like random-label accuracy emergence and multi-head smoothing.

Multi-Phase Emergence Literature Prior investigations into multi-phase emergence (Edelman et al., 2024) have shown
transformers acquiring functional capabilities via discrete phase transitions. This finding aligns closely with our observations.
However, whereas previous studies utilized Markov chain prediction tasks—progressing through uniform, unigram, and
bigram phases—our experiments examine a more practically relevant progression: from Bigram to Semi-Context, and
eventually Full-Context circuits. This advancement better reflects complexities observed in realistic few-shot learning
scenarios.

Several developmental interpretability studies (Hoogland et al., 2025) also highlight multi-phase transitions, primarily by
analyzing geometric properties of loss landscapes, such as the Local Learning Coefficient (LLC). Our analysis diverges by
explicitly characterizing the mechanistic circuits underlying these transitions. An exciting avenue for future research could
involve bridging these LL.C-based geometric perspectives with our mechanistic circuit analyses to enrich interpretability
methodologies.
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L. Experiment on Standard Transformer

Figure 20 shows accuracy and attention maps for a standard transformer (with attention and MLP layers) trained on the same
task as the simpler 2-layer attention-only model from the main text. At 50k steps, the model shows clear label-attention and
bigram patterns similar to the simpler model. At 400k steps, more complex circuits emerge: a chunk-example pattern is
visible in layer 1, and clearer label-attention develops in layer 2 (red arrows highlight these patterns). These results confirm

that insights from the simpler model apply to standard transformers.
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Figure 20. Accuracy and attention map visualizations (left: at 50k steps; right: at 400k steps) from training a standard Transformer rather
than a 2-layer attention-only model. The label-attention & bigram circuit and chunk-example & label-attention circuit emerge here, same
as in the 2-layer attention-only Transformer experiments.

M. Experiment with Next Token Prediction

Figure 21 shows accuracy curves for two conditions: predicting only the final label token (Last Label Only) and predicting
every label token (All Labels). Both conditions show clear learning phases, but the All Labels setting does not reach perfect
accuracy due to the need for contextual information. The attention patterns (right) indicate that even when predicting all
labels, the model develops the same final circuit (chunk example attention in Layer 1 and label attention in Layer 2) as in the
simpler scenario.
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Figure 21. Accuracy curves for two conditions: (1) predicting only the final label token (“Last Label Only,” blue) and (2) predicting every
label token in the context (“All Labels,” red). In both settings, we still observe learning phases. Because the task requires contextual
information for correct label predictions, the “All Labels” setting never reaches 100% accuracy. The attention patterns (right) show
that when predicting all label tokens, the model still learns the same final circuit (FCC), combining chunk example in Layer 1 and label
attention in Layer 2.
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N. Prompt Examples of LLM Experimemt

Review: hide new secretions from the parental units

Sentiment: Negative

Review: that loves its characters and communicates something rather
beautiful about human nature

Sentiment: Positive
Review: remains utterly satisfied to remain the same throughout
Sentiment:

O. Accuracy and Attention Patterns across Model Depths

Figure 22 shows accuracy curves of attention-only Transformers with 2 to 5 layers. Clear multiple learning phases are
observed in the 2- and 3-layer models, whereas the 4- and 5-layer models exhibit smoother transitions without distinct
phases. Figure 23 presents attention maps from models achieving 100% accuracy. Regardless of the total number of layers,
the core circuit (FCC) consistently emerges in the first two layers: the first layer captures chunk-related information, and the
second layer focuses attention on labels.
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Figure 22. Accuracy curves for attention-only Transformers with 2, 3, 4, and 5 layers. The 2-layer model shows three clear learning
phases, and the 3-layer model also exhibits multiple transitions. For 4- and 5-layer models, no distinct multiple learning phases are visible
in the accuracy curves.
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Chunk example Label Attention Bigram
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Figure 23. Attention maps of 3-layer (top), 4-layer (middle), and 5-layer (bottom) models at 100% accuracy. In each model, the first layer

displays a chunk example pattern, and the second layer exhibits label attention. This suggests that the core circuit (FCC) for achieving
100% accuracy is formed in the first two layers, regardless of the total number of layers.
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