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Abstract
With the rapid growth in the size and com-001
plexity of large language models (LLMs), the002
costs associated with their training and infer-003
ence have escalated significantly. Research004
indicates that certain layers in LLMs harbor005
substantial redundancy, and pruning these lay-006
ers has minimal impact on the overall perfor-007
mance. While various layer pruning meth-008
ods have been developed based on this insight,009
they generally overlook the finer-grained redun-010
dancies within the layers themselves. In this011
paper, we delve deeper into the architecture012
of LLMs and demonstrate that finer-grained013
pruning can be achieved by targeting redun-014
dancies in multi-head attention (MHA) and015
multi-layer perceptron (MLP) blocks. We pro-016
pose a novel, training-free structured pruning017
approach called BlockPruner. Unlike exist-018
ing layer pruning methods, BlockPruner seg-019
ments each Transformer layer into MHA and020
MLP blocks. It then assesses the importance021
of these blocks using perplexity measures and022
applies a heuristic search for iterative pruning.023
We applied BlockPruner to LLMs of various024
sizes and architectures and validated its per-025
formance across a wide range of downstream026
tasks. Experimental results show that Block-027
Pruner achieves more granular and effective028
pruning compared to state-of-the-art baselines.029

1 Introduction030

Large language models (LLMs) (Zhao et al., 2023;031

Minaee et al., 2024) have demonstrated outstand-032

ing performance across a diverse array of natural033

language processing tasks. However, their grow-034

ing size and complexity have led to substantial035

computational demands and increased memory us-036

age, creating obstacles for deployment in resource-037

constrained environments. Model compression038

techniques (Gao et al., 2020; Li et al., 2023; Wang039

et al., 2024) have emerged as a promising solution040

to address the challenges of deploying large, com-041

putationally intensive models. These techniques042
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Figure 1: Block Influence (BI) scores (Men et al., 2024)
for the Llama2-7B model (Touvron et al., 2023b) com-
puted at both layer and block levels, where blocks/layers
with lower BI scores indicate less importance. The
model has 32 Transformer layers, each containing one
MHA and one MLP block, totaling 64 blocks. Block-
level BI scores are generally lower than layer-level
scores, indicating finer-grained redundancies.

aim to transform large models into more com- 043

pact versions that require less storage and execute 044

with lower latency, while minimizing performance 045

degradation. Model compression methods typically 046

involve knowledge distillation (Huang et al., 2022; 047

Gu et al., 2024), quantization (Yao et al., 2022; 048

Dettmers et al., 2023), and pruning (van der Oud- 049

eraa et al., 2024; Ashkboos et al., 2024). In this 050

study, we primarily focus on pruning, a technique 051

that can be combined with these other methods to 052

achieve more effective and efficient compression. 053

Recent research on layer redundancy has shown 054

that LLMs contain a substantial number of redun- 055

dant layers (Yang et al., 2024; Men et al., 2024; 056

Chen et al., 2024). Removing these layers does not 057

severely impact the model’s performance. To quan- 058

tify this redundancy, researchers have investigated 059

various similarity-based measurement methods and 060

developed corresponding pruning strategies, includ- 061

ing layer merging (Yang et al., 2024) and layer 062
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removal (Men et al., 2024). These methods not063

only maintain the original width of the model archi-064

tecture and avoid introducing additional structures,065

but also demonstrate superior performance. Fur-066

thermore, Gromov et al. (2024) posited that this067

observed redundancy may be intrinsically linked068

to the residual structure (He et al., 2016) inher-069

ent in the Transformer architecture. Building on070

this intuition and recognizing that Transformer lay-071

ers can be further subdivided into smaller resid-072

ual blocks, namely multi-head attention (MHA)073

and multi-layer perceptron (MLP)1, we hypothe-074

size that fine-grained block redundancies could ex-075

ist within LLMs. Consequently, we conducted a076

preliminary experiment to assess the significance077

of blocks at varying granularities. Specifically,078

we sampled 32 instances from the Alpaca dataset079

(Taori et al., 2023) and employed the Block In-080

fluence (BI) metric (Men et al., 2024) to evaluate081

blocks at layer and block levels, as depicted in Fig-082

ure 1. The results reveal that block-level BI scores083

are generally lower than layer-level BI scores, indi-084

cating that fine-grained redundancies at the block085

level are more significant within the model.086

Building on these findings, we argue that finer-087

grained pruning can be effectively implemented in088

LLMs. Therefore, we introduce BlockPruner, a089

novel, training-free structured pruning approach.090

Unlike existing methods that focus on entire lay-091

ers, BlockPruner segments each Transformer layer092

into multi-head attention (MHA) and multi-layer093

perceptron (MLP) blocks. It then evaluates the im-094

portance of these blocks using perplexity measures095

and applies a heuristic search for iterative pruning.096

To validate the effectiveness of our method, we097

applied BlockPruner to six LLMs of varying sizes098

and architectures, and evaluated their performance099

using five representative benchmarks. Our experi-100

mental results demonstrate that BlockPruner pro-101

vides more granular and effective pruning com-102

pared to state-of-the-art baselines. Additionally,103

we performed a series of analytical experiments to104

investigate the impact of block type, block impor-105

tance metrics, and data on pruning effectiveness.106

Our findings confirm that LLMs contain substan-107

tial redundancies at the block level compared to the108

layer level, demonstrating that fine-grained pruning109

is more effective and appropriate than layer-based110

approaches for compressing these models.111

1In this work, unless otherwise specified, we refer to a
block as one of the two sublayers: MHA or MLP.

2 Related Work 112

Pruning is a well-established technique to com- 113

press and accelerate neural networks by removing 114

superfluous weights or structures within models. 115

Pruning methods can be broadly categorized into 116

unstructured pruning and structured pruning. 117

Unstructured pruning. Unstructured pruning 118

targets individual weights, eliminating redundant 119

connections in neural networks by setting the corre- 120

sponding weights to zero. For instance, SparseGPT 121

(Frantar and Alistarh, 2023) formulates pruning 122

as a layer-wise sparse regression problem, approxi- 123

mately solving it via a sequence of efficient Hessian 124

updates and weight reconstructions. Wanda (Sun 125

et al., 2024) computes the importance score of each 126

weight based on the product of the magnitude of 127

each weight and the norm of the corresponding in- 128

put activation, identifying and removing weights 129

with lower importance scores. OWL (Yin et al., 130

2024) identifies the correlation between pruning ef- 131

ficacy and the retention ratio of outliers, assigning 132

different sparsity ratios to each layer based on the 133

observed outlier ratio. RIA (Zhang et al., 2024b) 134

introduces a metric that considers both weight and 135

activation information, utilizing a permutation strat- 136

egy for the input channels of weight matrices to 137

enhance pruning performance. BESA (Xu et al., 138

2024) adopts a layer-wise pruning strategy, inde- 139

pendently pruning each Transformer layer to mini- 140

mize the reconstruction error between the outputs 141

of pruned and dense Transformer layers, which 142

avoids accumulating errors across layers. 143

Structured pruning. Structured pruning focuses 144

on broader network structures, such as neurons, 145

attention heads, or even entire modules. LLM- 146

Pruner (Ma et al., 2023) utilizes gradient informa- 147

tion to identify interdependent structures within 148

LLMs, pruning the least important groups and sub- 149

sequently using Low-Rank Adaptation (LoRA) (Hu 150

et al., 2022) to restore the performance of pruned 151

models. LoRAPrune (Zhang et al., 2023) estimates 152

the importance of pre-trained weights using LoRA 153

gradients, iteratively removing redundant channels 154

in the weight matrices and recovering the pruned 155

models’ performance through fine-tuning. Sheared- 156

LLaMA (Xia et al., 2024) learns a set of pruning 157

masks to extract a sub-network with the specified 158

target structure from the source model, employ- 159

ing a dynamic batch loading algorithm to adjust 160

the data proportion of each domain based on the 161
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loss reduction rate in different domains. SliceGPT162

(Ashkboos et al., 2024) introduces the concept of163

computational invariance, achieving compression164

by removing rows or columns corresponding to165

smaller principal components in the weight matrix.166

LaCo (Yang et al., 2024) proposes a concise layer167

pruning approach, reducing model size by merging168

layers while maintaining the overall model struc-169

ture. ShortGPT (Men et al., 2024) introduces a170

metric for measuring layer importance, achieving171

model compression by removing redundant layers.172

Although unstructured pruning can maintain per-173

formance at higher pruning ratios, it often requires174

additional hardware or library support, making175

model acceleration impractical. Current structured176

pruning methods typically require retraining the177

model after pruning to avoid performance collapse.178

While layer pruning techniques like LaCo eliminate179

the need for additional retraining, their disregard180

for fine-grained block redundancy makes it chal-181

lenging to avoid significant performance loss.182

Concurrent and independent of our research,183

FINERCUT (Zhang et al., 2024a) also presents184

a fine-grained block pruning algorithm. However,185

their study does not delve into the rationale behind186

treating Transformer layers as two distinct sublay-187

ers for pruning purposes. In contrast, we began by188

conducting preliminary experiments that unveiled189

the fine-grained block redundancy within Trans-190

former models. This discovery led us to propose191

the concept of minimal residual blocks. Further-192

more, we explored how pruning various types of193

blocks affects the model’s performance. Further-194

more, FINERCUT evaluates block importance by195

comparing the similarity between the output logits196

of the initial and pruned models. However, this197

metric may not adequately ensure that the pruned198

model generates coherent and semantically correct199

text, as it overlooks semantic information. In con-200

trast, our approach measures block importance us-201

ing the perplexity of the pruned model, which better202

reflects the fluency and quality of its output.203

3 Methodology204

The proposed fine-grained block pruning method205

(BlockPruner) is depicted in Figure 3. It begins by206

decomposing each Transformer layer into two min-207

imal residual blocks (§3.1). We then evaluate the208

importance of each block using our proposed block209

importance metric (§3.2). Finally, we iteratively210

prune the block with the lowest importance (§3.3).211
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+

+
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Figure 2: Illustration depicting that a Transformer layer
can be subdivided into two residual blocks.

3.1 Minimal Residual Block 212

Most contemporary LLMs (Brown et al., 2020; 213

Touvron et al., 2023a,b) are built upon the GPT ar- 214

chitecture (Radford et al., 2019), which constitutes 215

a decoder-only model comprising multiple Trans- 216

former layers, an embedding layer, and a language 217

model head. As depicted in Figure 2, each Trans- 218

former layer can be decomposed into two primary 219

residual blocks: the multi-head attention (MHA) 220

block and the multi-layer perceptron (MLP) block. 221

Formally, consider the input hidden states of the 222

ith Transformer layer, denoted as Xi−1 ∈ Rn×d, 223

where n represents the length of the input sequence, 224

and d represents the hidden layer dimension of the 225

model. The computational process within the ith 226

Transformer layer can be represented as follows: 227

X ′
i = MHA(LN(Xi−1)) +Xi−1, (1) 228

229
Xi = MLP(LN(X ′

i)) +X ′
i. (2) 230

Here, LN(·) denotes the layer normalization mod- 231

ule and X ′
i ∈ Rn×d represents the intermediate 232

hidden states after the MHA block. 233

Equations (1) and (2) indicate that both types 234

of residual blocks can be abstracted into a same 235

computational formula. Therefore, intuitively treat- 236

ing them as independent layers for pruning appears 237

reasonable, which will be further validated by our 238

subsequent experimental results. 239

3.2 Block Importance 240

While previous layer pruning methods (Men et al., 241

2024; Chen et al., 2024) rely solely on the simi- 242

larity between layer inputs and outputs to measure 243

layer importance, we contend that this approach 244

considers only the local influence of the layer while 245
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Figure 3: Overview of our BlockPruner. We iteratively calculate the importance score for each block (MHA or
MLP) to obtain the block importance distribution, and subsequently remove the block with the lowest importance.

neglecting its role in the overall model’s output. To246

address the drawback, we introduce perplexity as247

a measure of block importance. Specifically, we248

determine the importance score of each block by249

masking it and then computing the perplexity of the250

new model on a given dataset. Intuitively, a block251

with the lowest importance score indicates that its252

removal results in minimal performance degrada-253

tion. This method more effectively captures each254

block’s overall impact on the model’s performance,255

thereby more accurately reflecting its significance.256

Mathematically, perplexity is defined as the ex-257

ponential of the average negative log-likelihood of258

a sequence of words. Given a sequence of words259

w1, . . . , wn and a language model that predicts the260

probability pθ(wi|w<i) for each word wi, the per-261

plexity PPL is calculated as:262

PPL = exp(− 1

n

n∑
i=1

logpθ(wi|w<i)), (3)263

where pθ(wi|w<i) denotes the probability of word264

wi given the preceding words in the sequence.265

3.3 Iterative Search for Block Pruning266

Unlike existing layer pruning techniques, which267

indiscriminately remove entire Transformer lay-268

ers, we propose a novel fine-grained pruning strat-269

egy. This strategy selectively prunes multi-head270

attention (MHA) or multi-layer perceptron (MLP)271

blocks based on their defined importance. By em-272

ploying this finer-grained pruning approach, we273

aim to better preserve the critical components and274

capabilities of the model while aggressively remov- 275

ing the less significant blocks. 276

For an LLMM with L layers, we first divide 277

them into 2L blocks, consisting of multi-head at- 278

tention (MHA) and multi-layer perceptron (MLP) 279

blocks. Then, we perform iterative pruning search 280

on a calibration dataset C to sequentially prune K 281

blocks. The steps are outlined as follows: 282

Step 1: Mask Block. For each block Bi (MHA 283

or MLP) inM, we generate a modified model M̂ 284

by masking out this block. 285

Step 2: Calculate Importance. We compute 286

the perplexity Pi for the modified model M̂ on the 287

calibration dataset C as the importance score for 288

the masked block Bi. 289

Step 3: Sort and Prune. After computing the 290

importance scores for all blocks, we sort these 291

scores and remove the block with the lowest impor- 292

tance score fromM to create a new model. 293

Step 4: Iterate. The aforementioned steps are 294

iteratively repeated until K blocks are removed. 295

By iteratively removing the blocks with the low- 296

est importance scores, we aim to prune the LLM 297

while minimizing performance degradation on the 298

calibration dataset C. This fine-grained block prun- 299

ing approach provides a more targeted method for 300

pruning LLMs compared to traditional layer-level 301

pruning techniques, thereby facilitating more effi- 302

cient model compression while better preserving 303

the model’s performance. The detailed procedure 304

for this pruning process is outlined in Algorithm 1. 305
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Algorithm 1 Iterative Block Pruning

Input: Model M with L layers, calibration
dataset C, number of blocks to remove K

Output: Pruned modelM∗

1: M0←M
2: Split the modelM0 into 2L blocks
3: for j = 1 to K do
4: for i = 1 to 2L− j + 1 do
5: Create model M̂ by masking block Bi;
6: Compute the perplexity Pi for M̂ on the

calibration dataset C;
7: end for
8: Sort the blocks based on their perplexities;
9: Remove the block with the lowest perplexity

fromMj−1 and obtainMj ;
10: end for
11: M∗←MK

12: return Pruned modelM∗

4 Experiments306

In this section, we first introduce the experimental307

setups and then present the main results.308

4.1 Experimental Setups309

Models. To validate the widespread effectiveness310

of our pruning method, we experiment with three311

series of models: Llama2 (Touvron et al., 2023b),312

Baichuan2 (Yang et al., 2023), and Qwen1.5 (Bai313

et al., 2023). These models share analogous ar-314

chitectures as described in equations (1) and (2).315

Due to computational constraints, we employ 7B316

and 13B models for Llama2 and Baichuan2, respec-317

tively, and 7B and 14B models for Qwen1.5.318

Baselines. We compare our method with several319

state-of-the-art structured pruning methods. The320

specific baseline methods include SliceGPT (Ashk-321

boos et al., 2024), LaCo (Yang et al., 2024), Short-322

GPT (Men et al., 2024), and Relative Magnitude323

(Samragh et al., 2023; Men et al., 2024). SliceGPT324

achieves pruning by removing rows or columns325

corresponding to smaller principal components in326

the weight matrix. LaCo merges model layers from327

deep to shallow, using model output representa-328

tions to calculate thresholds to avoid over-merging.329

ShortGPT eliminates redundant layers by calcu-330

lating Block Influence. Relative Magnitude (RM)331

uses || f(x)
x+f(x) || as an importance metric for layers,332

where f(.) represents the non-residual part of the333

Transformer layer, and employs the same pruning334

method as ShortGPT. For SliceGPT, we used the of-335

ficial implementation2. For LaCo, we implemented 336

it based on their code and controlled the number of 337

pruned layers by adjusting the merging threshold. 338

For ShortGPT and RM, we reproduced the results 339

based on their paper descriptions. 340

Data and GPUs. In our main experiment, we 341

utilize the Alpaca dataset (Taori et al., 2023) to 342

calculate importance scores. For our method, we 343

employ only 256 samples to compute perplexity, 344

and we discuss the influence of varying sample 345

sizes in Section 5.4. Moreover, we observe that 346

ShortGPT and Relative Magnitude are not sensi- 347

tive to different numbers of samples. The effect 348

of sample size on ShortGPT and Relative Magni- 349

tude is detailed in Appendix E. Nevertheless, we 350

used the same number of samples as our method 351

for consistency. All experiments in this study are 352

conducted using two RTX 4090 GPUs. 353

Evaluations. Following SliceGPT, we use LM 354

Evaluation Harness (Gao et al., 2023) for evalua- 355

tion and validation on five well-known benchmarks: 356

PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi 357

et al., 2021), HellaSwag (Zellers et al., 2019), ARC- 358

e and ARC-c (Clark et al., 2018). We also utilize 359

Wikitext2 dataset (Merity et al., 2016) for evaluat- 360

ing the perplexity after pruning. More comprehen- 361

sive details of can be found in Appendix C. 362

4.2 Main Results 363

Previous structured pruning methods typically 364

prune less than 30% of the parameters. Therefore, 365

in our main experiments, we controlled the prun- 366

ing ratio within this range. Since it is challenging 367

to achieve identical pruning ratios across different 368

methods and models, we select the closest available 369

pruning ratios for comparison. The experimental 370

results are presented in Table 1. 371

As shown in the results, our BlockPruner method 372

significantly outperforms previous structured prun- 373

ing baselines in terms of average performance and 374

achieves the best results across most benchmarks, 375

even though the pruning ratios in our method are 376

slightly higher than that of baselines. We also 377

observe that Llama2-13B maintains better per- 378

formance at higher pruning ratios compared to 379

Llama2-7B, with Baichuan2 and Qwen1.5 exhibit- 380

ing similar behavior. This suggests that as the 381

model scale grows, so does the number of redun- 382

dant blocks, allowing for more pruning space. 383

2As SliceGPT’s official code does not support Baichuan2
and Qwen1.5, we only employ it on the Llama2 series models.
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Model Method Ratio (%) PPL (↓) PIQA WinoGrande HellaSwag ARC-e ARC-c Avg. Score

Llama2-7B

Dense 0 5.47 79.05 69.06 75.99 74.54 46.16 68.96
SliceGPT 21.45 30.74 72.42 59.91 56.04 63.64 37.12 57.83
LaCo 21.02 50.39 68.34 60.46 54.08 55.39 35.84 54.82
RM 21.02 676.80 54.46 49.25 29.22 34.43 22.53 37.98
ShortGPT 21.02 18.45 70.24 65.90 62.63 56.06 36.09 58.18
BlockPruner 21.99 11.51 74.21 62.43 65.87 61.07 37.29 60.17

Llama2-13B

Dense 0 4.89 80.52 72.14 79.36 77.36 49.23 71.72
SliceGPT 21.52 23.95 74.32 65.59 60.71 68.52 42.41 62.31
LaCo 24.37 13.97 72.42 59.27 60.44 54.34 34.56 56.21
RM 24.37 10.08 73.72 66.61 66.80 66.12 41.98 63.05
ShortGPT 24.37 20.06 72.74 70.80 67.80 60.35 41.30 62.60
BlockPruner 25.12 8.16 76.93 66.30 72.20 65.82 41.38 64.53

Baichuan2-7B

Dense 0 6.04 77.48 68.27 72.18 72.98 42.75 66.73
LaCo 21.57 26.46 68.28 58.56 51.50 52.90 28.50 51.95
RM 21.57 189.78 59.96 52.33 30.87 38.17 23.63 40.99
ShortGPT 21.57 31.05 63.71 62.67 50.01 47.31 30.72 50.88
BlockPruner 22.45 15.38 69.75 61.48 58.09 58.08 33.02 56.08

Baichuan2-13B

Dense 0 6.66 78.84 70.40 75.23 74.07 47.70 69.25
LaCo 22.68 27.07 70.89 58.01 54.00 57.11 32.94 54.59
RM 22.68 17.70 68.99 67.88 63.78 57.49 37.54 59.14
ShortGPT 22.68 20.69 69.31 68.27 61.71 56.52 36.69 58.50
BlockPruner 24.19 15.36 71.44 64.01 64.20 59.81 37.88 59.47

Qwen1.5-7B

Dense 0 7.95 79.22 66.46 76.92 62.16 42.66 65.48
LaCo 20.97 39.23 70.40 58.64 56.35 46.89 32.85 53.03
RM 20.97 2026.31 67.36 49.88 42.00 54.17 28.58 48.40
ShortGPT 20.97 49.88 69.53 62.12 58.87 43.60 32.17 53.26
BlockPruner 21.83 20.58 71.71 55.56 59.31 53.70 33.28 54.71

Qwen1.5-14B

Dense 0 7.44 79.87 70.56 79.41 68.48 47.01 69.07
LaCo 22.25 16.32 71.55 58.33 60.16 53.70 34.04 55.56
RM 22.25 55.99 67.08 53.28 42.08 50.72 29.01 48.43
ShortGPT 22.25 1237.21 58.60 55.96 36.16 38.09 34.81 44.72
BlockPruner 23.72 15.67 75.24 61.48 66.92 59.51 39.08 60.45

Table 1: Zero-shot downstream task performance of various models using different pruning methods. “Dense”
represents the original, unpruned models. “PPL” means the perplexity on Wikitext2. All evaluations are conducted
using the same configuration to ensure comparability.

Furthermore, it’s noteworthy that models exhibit-384

ing lower perplexity on the Wikitext2 dataset gen-385

erally outperform those with higher perplexity on386

the same dataset. This underscores the potential387

of perplexity as a metric reflecting model perfor-388

mance. Notably, despite our method conducting389

pruning searches on the Alpaca dataset, it achieves390

lower perplexity on the Wikitext2 dataset.391

Finally, we observe that while approaches such392

as ShortGPT and Relative Magnitude result in a393

significant decline in model performance across394

different tasks, BlockPruner stands out by avoid-395

ing such drastic reductions. This suggests that our396

proposed block pruning method effectively miti-397

gates performance degradation during the pruning398

process. Due to space constraints, we have moved399

the details of pruning baselines and comparisons400

across various pruning ratios to Appendix F.401

5 Analyses402

5.1 Ablation Study403

To assess the influence of various key operations404

within the proposed pruning algorithm on its per-405

formance, we undertake a thorough ablation study 406

across six models. In particular, we first drop 407

the iterative search procedure and directly remove 408

blocks with the lowest importance scores. Then, 409

we substitute the fine-grained block pruning with 410

a coarser-grained layer pruning approach. The re- 411

sults of these experiments are shown in Table 2. 412

The experimental findings highlight that solely 413

relying on the perplexity metric without incorpo- 414

rating a search component can result in subpar 415

pruning results and even performance deterioration. 416

This phenomenon may stem from the intrinsic na- 417

ture of perplexity, which, unlike other importance 418

metrics focusing solely on local block influence, is 419

inherently influenced by the interaction among mul- 420

tiple blocks due to its derivation from the model’s 421

output calculation. While perplexity aids in identi- 422

fying redundant blocks within the model, it doesn’t 423

directly yield an optimal pruning sequence. 424

Furthermore, pruning at the layer level rather 425

than the fine-grained block level yields less robust 426

performance. This observation indicates that the 427

model contains fine-grained redundancies, and seg- 428
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Model Method Ratio (%) Avg. Score

Llama2-7B
BlockPruner 21.99 60.17
- search 20.95 55.89 (-7.11%)
- block 21.02 58.63 (-2.56%)

Llama-2-13B
BlockPruner 25.12 64.53
- search 25.08 58.58 (-9.21%)
- block 24.37 62.91 (-2.51%)

Baichuan2-7B
BlockPruner 22.45 56.08
- search 22.39 38.81 (-30.80%)
- block 21.57 54.76 (-2.36%)

Baichuan2-13B
BlockPruner 24.19 59.47
- search 24.19 55.95 (-5.92%)
- block 24.95 58.22 (-2.10%)

Qwen1.5-7B
BlockPruner 21.83 54.71
- search 20.90 37.72 (-31.06%)
- block 20.97 52.66 (-3.75%)

Qwen1.5-14B
BlockPruner 23.72 60.45
- search 22.98 40.80 (-32.51%)
- block 22.25 60.10 (-0.58%)

Table 2: Average score of ablation study of BlockPruner
on downstream tasks. “- search” indicates dropping the
iterative search procedure and directly removing blocks
with the lowest importance score. “- block” means we
substitute the fine-grained block pruning with a coarser-
grained layer pruning approach.

menting layers into smaller blocks for pruning al-429

lows for more efficient removal of this redundancy,430

thereby better preserving the model’s capabilities.431

5.2 Redundancies Between MHA and MLP432

To investigate the significance and roles of the433

MHA and MLP modules in modern LLMs, we434

conduct pruning experiments focusing exclusively435

on MHA or MLP blocks. We apply this pruning436

strategy to two models of varying sizes, Llama2-437

7B and Llama2-13B, while keeping the pruning438

ratios below 33%. The results illustrated in Figure439

4 reveal several notable observations.440

Before reaching a pruning ratio of 17%, pruning441

only the MHA blocks results in less performance442

loss compared to pruning MLP blocks and even443

matches the performance of mixed pruning. This444

indicates that MHA modules in LLMs may pos-445

sess greater redundancy than initially anticipated,446

whereas MLP modules are relatively less redundant.447

However, when the pruning ratio surpasses 17%,448

further pruning of MHA blocks leads to a sharp449

decline in performance. This trend suggests that450

as pruning advances, the redundant MHA blocks451

are progressively removed, leaving only the crucial452

MHA blocks. Moreover, in the larger model, the453

sharp decline in performance occurs at higher prun-454

ing ratios. This observation is consistent with our455

previous findings, suggesting that larger models456

contain more redundant blocks. Such redundancy457

may stem from factors like insufficient training,458
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Figure 4: The impact of pruning MHA and MLP individ-
ually on model performance. “MHA&MLP” represents
the original BlockPruner algorithm.
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Figure 5: Left: The proportion of MHA blocks removed
during the pruning process, relative to the total number
of removed blocks. Right: The number of different
blocks removed from models at a pruning ratio of 30%.

resulting in higher initial redundancy. 459

We also examine the proportion of MHA blocks 460

removed during pruning. Specifically, we present 461

the number of MHA and MLP blocks removed at 462

different pruning stages. In Figure 5 (left), we set 463

the number of removed blocks to 60. In Figure 5 464

(right), the models have 22 and 28 blocks removed, 465

respectively, maintaining a pruning ratio of 30%. 466

The results in Figure 5 (left) for both models re- 467

veal a consistent tendency to initially remove only 468

MHA blocks. As the pruning process progresses 469

and more blocks are removed, the proportion of 470

MHA blocks being pruned follows a zigzag down- 471

ward trend. Notably, the curve for Llama2-13B 472

shifts to the right compared to Llama2-7B, suggest- 473

ing that the larger model contains more redundant 474

MHA blocks. This is further emphasized in Figure 475

5 (right), where, at the same pruning ratio, Llama2- 476

13B prunes more MHA blocks than Llama2-7B. 477

Additionally, given that our pruning method tends 478

to remove more MHA blocks at equivalent pruning 479

ratios, it can significantly reduce the usage of the 480

key-value (KV) cache (Pope et al., 2023) in MHA, 481

which potentially accelerate the inference process. 482
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Figure 6: The impact of different block importance
metrics on the pruning performance of BlockPruner

5.3 Perplexity for Block Redundancy483

In this section, we explore the impact of different484

block importance metrics. Generally, Block Influ-485

ence (BI) and Relative Magnitude (RM) measure486

the importance of a block based solely on its in-487

put and output hidden states, thereby reflecting the488

block’s local influence. In contrast, perplexity is de-489

rived from the model’s output representations and490

thus can better measure a block’s overall influence.491

However, as indicated in the ablation study, us-492

ing perplexity without the iterative search proce-493

dure leads to a significant decline in performance.494

This suggests that perplexity alone is not an effec-495

tive block importance metric. Instead, it is better496

suited for dynamic pruning algorithms that offer497

greater flexibility compared to static algorithms.498

As illustrated in Figure 6, when BI and RM are499

applied in dynamic pruning algorithms, they some-500

times achieve performance comparable to perplex-501

ity at lower pruning ratios. However, as the pruning502

ratio increases, their limitations become evident,503

resulting in a sharp decline in model performance.504

This suggests that these local metrics do not ade-505

quately capture the impact of different blocks on506

the model’s overall performance.507

In summary, perplexity leverages global infor-508

mation to effectively measure block redundancy,509

especially when used with a dynamic pruning strat-510

egy. This combination captures the complex inter-511

actions among blocks. In contrast, local metrics512

like Block Importance (BI) and Relative Magnitude513

(RM) are useful in specific scenarios but don’t re-514

flect the overall contribution of blocks to the model,515

particularly at higher pruning ratios.516

5.4 Impact of Data on Pruning517

In the work on SliceGPT (Ashkboos et al., 2024),518

the authors also used the Wikitext2 (Merity et al.,519

2016) and Alpaca (Taori et al., 2023) datasets for520

pruning experiments. They observed that the Al-521
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Figure 7: Left: The performance of BlockPruner on
the Alpaca and Wikitext2 datasets using a calibration
dataset of 256 samples. Right: Impact of sample sizes
on BlockPruner’s performance on Alpaca, with the num-
bers indicating the sample sizes used.

paca dataset often yielded better pruning results. In 522

our study, we obtain similar findings. As shown in 523

Figure 7 (left), when pruning Llama2-7B, the per- 524

formance across different pruning ratios is signifi- 525

cantly higher when using the Alpaca dataset com- 526

pared to Wikitext2. We hypothesize that this may 527

be due to the Alpaca dataset being an instruction- 528

following dataset, which is more closely aligned 529

with downstream tasks. This suggests that the 530

choice of dataset has a significant impact on the 531

final pruning performance of the model. 532

To determine the appropriate sample size and 533

analyze its impact on the pruning performance of 534

BlockPruner, we extract varying numbers of in- 535

stances from the Alpaca dataset and conduct prun- 536

ing experiments using Llama2-7B. The results pre- 537

sented in Figure 7 (right) indicate that increasing 538

the sample size beyond 256 yields no significant 539

improvement in the pruning effect of BlockPruner. 540

Therefore, we set the number of samples to 256. 541

6 Conclusion 542

In this work, we introduce BlockPruner, a novel 543

structured pruning approach for efficiently prun- 544

ing large language models (LLMs). BlockPruner 545

decomposes Transformer layers into two minimal 546

residual blocks and employs a new block impor- 547

tance metric along with a pruning search algo- 548

rithm to iteratively remove redundant blocks. Ex- 549

tensive experiments across various models show 550

that our method outperforms other baselines in 551

post-pruning performance. Our findings highlight 552

the presence of fine-grained block redundancy in 553

LLMs and reveal significant differences in redun- 554

dancy levels among different block types. We hope 555

our work contributes to a deeper understanding of 556

the importance of various blocks within LLMs. 557
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Limitations558

Our current work has three potential limitations.559

First, while perplexity serves as a useful indicator560

of block importance, it may not be the optimal met-561

ric. Second, while our proposed pruning search al-562

gorithm is effective, other combinatorial optimiza-563

tion algorithms might identify superior pruning564

sequences. Lastly, due to constraints in computa-565

tional resources, we did not apply our method to566

prune larger models. Nevertheless, our approach is567

highly scalable and readily adaptable for pruning568

larger models in future research.569

Ethics Statement570

The aim of this study is to provide a generalizable571

pruning method for large language models. All572

models and datasets used in our experiments are573

publicly accessible and do not contain any private574

information. We strictly adhere to the usage poli-575

cies of these resources and utilize them solely for576

research purposes.577
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A Details of Implementations786

In this section, we detail our experimental setup.787

We sampled from the Alpaca dataset with a fixed788

random seed of 42. For SliceGPT, we followed789

the original paper’s configuration, using 1024 sam-790

ples, a sparsity ratio set at 30%, and a maximum791

sequence length of 2048. For ShortGPT, RM, and792

BlockPruner, we sampled 256 samples from the793

dataset, with the same maximum sequence length794

of 2048. For LaCo, we adjusted the merging thresh-795

old using the provided code and data to achieve the796

corresponding pruning ratio.797

B Details of Datasets798

B.1 Pruning Datasets799

Alpaca (Taori et al., 2023) is a general instruction-800

following dataset containing 52,000 questions.801

Each sample comprises three fields: instruction, in-802

put, and response. We selected 10% of the dataset803

and utilized 256 samples for the main experiments.804

Perplexity calculation was performed uniformly805

across all text in the samples without differentia-806

tion between fields.807

B.2 Evaluation Datasets808

All downstream task datasets were partitioned and809

evaluated using the default configuration of LM810

Evaluation Harness.811

Wikitext-2 (Merity et al., 2016) is a collection812

of over 100 million tokens extracted from verified813

Good and Featured articles on Wikipedia. This814

dataset is commonly used to measure the quality of815

a model’s text generation. We employed samples816

from the pre-split test set for calculating perplexity.817

PIQA (Bisk et al., 2020) is a dataset designed to818

evaluate natural language models’ understanding819

Model Method Ratio(%) Avg.Score

Llama2-7B SliceGPT 21.45 57.93
SliceGPT∗ 21.45 57.83

Llama2-13B SliceGPT 21.52 62.34
SliceGPT∗ 21.52 62.31

Table 3: Comparison of average performance on down-
stream tasks between the official SliceGPT results and
our reproduced results (indicated by “∗” for our results).

of physical commonsense. It employs a multiple- 820

choice format where the model selects the most 821

appropriate solution from two options given a goal. 822

WinoGrande (Sakaguchi et al., 2021) is an ex- 823

tensive dataset to evaluate models’ commonsense 824

reasoning capabilities. It comprises 44,000 ques- 825

tions. The dataset features fill-in-the-blank tasks 826

with binary options, aiming to select the correct 827

option for a given sentence that requires common- 828

sense reasoning. 829

HellaSwag (Zellers et al., 2019) is also a dataset 830

designed to assess models’ commonsense reason- 831

ing abilities, specifically to highlight the limitations 832

of current models in handling commonsense nat- 833

ural language reasoning tasks. Despite being triv- 834

ial for humans (with >95% accuracy), the dataset 835

presents significant difficulties for models. The 836

evaluation is conducted using four-way multiple- 837

choice questions. 838

ARC (Clark et al., 2018) dataset comprises 7,787 839

multiple-choice science exam questions sourced 840

from various origins. Each question typically of- 841

fers four answer options. These questions are cat- 842

egorized into two distinct difficulty sets: 2,590 843

questions for Challenge Set and 5,197 for Easy Set. 844

C Details of Evaluations 845

To ensure a fair and comprehensive comparison, 846

we employed the same version of the LM Evalua- 847

tion Harness as used in the SliceGPT experiments 848

and obtained evaluation scores under identical ex- 849

perimental configurations. These scores closely 850

match those reported in the SliceGPT paper, as de- 851

tailed in Table 3. For consistency, we present our 852

reproduced results in the main experiments. 853

To evaluate the performance of pruned models 854

on downstream tasks, we utilized five multiple- 855

choice QA datasets: PIQA, WinoGrande, Hel- 856

laSwag, ARC-e, and ARC-c. Additionally, to as- 857

sess text generation quality, we calculated perplex- 858

ity using the test set of the Wikitext2 dataset. For 859

the downstream task evaluations, we adhered to 860

11

https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218
https://arxiv.org/abs/2405.18218
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=Tr0lPx9woF
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223


24 26 28 30 32
Pruning Ratio (%)

20

30

40

50

60

70

80
Av

g.
 S

co
re

Llama2-7B

BlockPruner
BlockPruner+Post train
Dense

26 28 30 32
Pruning Ratio (%)

20

30

40

50

60

70

80

Av
g.

 S
co

re

Llama2-13B

BlockPruner
BlockPruner+Post train
Dense

Figure 8: Average score of BlockPruner with varying
pruning ratios before and after post-training.

the default evaluation parameters and zero-shot set-861

tings, with a batch size set to 1. For perplexity862

calculations, the maximum text length was set to863

2048, maintaining a batch size of 1 as well.864

D Post-training after Pruning865

We sampled 8,000 instances from the Alpaca866

dataset and conducted post-training on the pruned867

Llama2-7B and Llama2-13B models obtained via868

BlockPruner using LoRA. All linear layers, exclud-869

ing the embedding layer and the language model870

head, were trained. The LoRA rank and LoRA871

α parameters were set to 32 and 10, respectively,872

with a learning rate of 2e-4 and a batch size of 1.873

Additionally, we configured the gradient accumula-874

tion steps to 4 and employed a linear learning rate875

scheduler. We controlled the pruning ratios within876

the range of 24% to 33%. The results are shown877

in Figure 8. It can be seen that after training, our878

models showed further improvement at different879

pruning ratios. The Llama2-7B and Llama2-13B880

models recovered to 89% and 92% of the perfor-881

mance of the unpruned models, respectively, when882

pruned by approximately 1/4.883

E Sensitivity to Sample Size884

ShortGPT uses Block Influence as the importance885

metric for layers, while RM uses Relative Magni-886

tude. The former calculates the similarity between887

the input and output hidden states of a layer, while888

the latter utilizes the input and the non-residual889

part of the output. In our preliminary experiments,890

we found that these two metrics are not sensitive891

to sample size. We sampled different numbers of892

instances from the test set of the Alpaca dataset893

to observe their impact on these metrics, and the894

results are shown in Figure 9. We can see that all895

the lines almost overlap, indicating that Block In-896

fluence and Relative Magnitude are not sensitive to897

the sample size. We speculate that this may be due 898

to the limited information provided by the changes 899

in the input and output of a single layer. 900

F Varying Pruning Ratios 901

To broadly demonstrate the superiority of our 902

method, we present the pruning effects of Block- 903

Pruner, ShortGPT, and Relative Magnitude on six 904

representative large models at different pruning 905

ratios. As depicted in Figure 10, our method ef- 906

fectively minimizes performance loss throughout 907

the pruning process, avoiding any sudden drops in 908

performance. In contrast, RM exhibits significant 909

instability and is prone to performance collapse. 910

ShortGPT performs relatively well, but in the prun- 911

ing experiments on Qwen1.5-14B, it also leads to 912

severe performance degradation at higher pruning 913

ratios. Overall, the advantages of our method be- 914

come more pronounced as both model size and 915

pruning ratio increase. 916

12
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Figure 9: The changes in Block Influence and Relative Magnitude of the model under different sample sizes.
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Figure 10: Average score of BlockPruner with varying pruning ratios compared with ShortGPT and RM.
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