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Abstract

Coreset Selection (CS) identifies a subset of training data
that achieves model performance comparable to using the
entire dataset. Many state-of-the-art CS methods, select
coresets using scores whose computation requires training
the downstream model on the entire dataset and record-
ing changes in its behavior on samples as it trains (train-
ing dynamics). These scores are inefficient to compute and
hard to interpret as they do not indicate whether a sam-
ple is difficult to learn in general or only for a specific
model. Our work addresses these challenges by proposing
an interpretable score that gauges a sample’s difficulty us-
ing human-understandable textual attributes (concepts) in-
dependent of any downstream model. Specifically, we mea-
sure the alignment between a sample’s visual features and
concept bottlenecks, derived via large language models, by
training a linear concept bottleneck layer and compute the
sample’s difficulty score using it. We then use this score and
a stratified sampling strategy to identify the coreset.Through
experiments on CIFAR-10, CIFAR-100, and ImageNet-1K,
we show our coresets outperform random subsets, even at
high pruning rates, and achieve model performance compa-
rable to or better than coresets found by training dynamics-
based methods.

1. Introduction

Machine learning (ML) pipelines are becoming increas-
ingly intensive regarding their data and compute require-
ments [2, 59]. Coreset Selection (CS) [10, 17, 36, 37, 43,
65, 73] approaches have emerged to improve the efficiency
of these pipelines, since they focus on pruning large datasets
and retaining only a small subset of representative sam-
ples, making training more efficient. Many state-of-the-art
(SOTA) CS methods use the downstream model’s training
dynamics — the model’s behavior on a sample during train-
ing, to generate a difficulty score for each sample. This en-
ables accurate estimation of the data difficulty but requires
training the downstream model on the entire dataset at least
once, which can be costly when training a large model on a
large dataset. Moreover, these scores are difficult to inter-

pret as they are downstream model-dependent and cannot
inform if the sample will be hard or easy to learn for a dif-
ferent downstream model (without training it first). Thus,
we aim to answer the following question “How to efficiently
estimate a sample’s difficulty in an interpretable and model-
agnostic way i.e. without the knowledge of the architecture
or training dynamics of the downstream model?”

To address this, we use Concept Bottleneck Models
(CBMs) [28, 71] which are effective at making ML mod-
els more interpretable. CBMs map a model’s input on to
a set of human-understandable concepts, referred to as the
“bottleneck” and then use them to make a prediction. How-
ever, CBMs require concept annotation for every sample
in the training data, which can be costly to obtain. Re-
cently [67, 70] showed that this limitation of CBMs can be
overcome by leveraging the advances in Large Language
Models (LLMs) and Vision Language Models (VLMs) that
can be prompted to generate concept annotation for the
training samples without requiring any task-specific fine-
tuning. Our Fig. 1 (block 1) shows the prompt we used to
obtain the concept bottleneck using an LLM.

Once the bottleneck is formed, we use a VLM (such as
CLIP [45]) to measure the alignment between the visual fea-
tures and the concept bottleneck (denoted as concept simi-
larity in Fig. 1 (block 2)). A simple linear concept bottle-
neck layer is then trained to align the visual and concept
features to make predictions on the training samples. We
use the average margin of a training sample during the train-
ing of this bottleneck layer as our concept-based difficulty
score. We use a stratified sampling [73] (block 3) using our
score to form the coreset which can then be used to train
various downstream models Fig. 1 (block 4). Our method
speeds up the computation of the coreset by 15 times com-
pared to approaches based on the downstream model’s train-
ing dynamics across three benchmark datasets. Moreover,
compared to coresets found by other training dynamics-free
approaches our coresets lead to downstream models with
significantly better accuracy, especially at high data pruning
rates, and achieve performance close to SOTA CS meth-
ods. We also show that our approach is effective for the
label-free CS problem where the dataset is unlabeled. Since
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Figure 1. : Overview of our approach: We start by prompting an LLM to generate concept annotation for N class labels in the dataset
and select k most discriminative attributes (per class) to form the concept bottleneck, which are passed through a text encoder (Tenc) to
obtain the bottleneck embedding matrix (EC ). The visual information of a training sample x extracted via the visual encoder (Venc) is then
aligned to the embedding matrix using a linear concept bottleneck layer trained for T epochs. Our difficulty score for x is then computed as
the average margin (i.e., the difference between the likelihood of the correct and other classes) over T epochs. Finally, a coreset is selected
using stratified sampling which is then used to train an unknown downstream model.

our CS method is model agnostic, we show that our coreset
leads to high performance regardless of the architecture of
the downstream model, unlike other methods. Lastly, we
show that our concept-based difficulty score is aligned with
human intuition, allowing us to interpret why examples are
easy/hard, independent of the downstream model.

2. Preliminaries
2.1. Coreset selection (CS) problem formulation
Consider a classification task and data distribution P . Let
D = {(xi, yi)}ni=1 denote the dataset of n training exam-
ples sampled i.i.d. from the distribution P where xi de-
notes the data and yi ∈ Y denotes the label from a set of
N classes. CS [11, 73] aims to find a subset S of D con-
sisting of m ≤ n samples such that the models trained on
S achieve performance comparable to models trained onD.
Formally, the CS problem is defined as follows,

min
S:|S|=m

E(x,y)∼P [ℓ(x, y|θS)]− E(x,y)∼P [ℓ(x, y|θD)], (1)

where θD and θS denote the “downstream model” trained on
D and S (coreset), respectively and ℓ is the loss function.

To find this subset S, previous works have proposed
scores to gauge a sample’s difficulty for a model, and are
later used to form the coreset. These approaches use in-
formation from the training dynamics of the downstream
model to estimate the a difficulty score. Scores such as
the forgetting score [58] computed as the number of times
a sample gets misclassified after being correctly classified
earlier during model training and the area under the mar-
gin (AUM) [44] which identifies mislabeled/difficult sam-
ples are popular examples. While approaches based on the

training dynamics of the downstream model have achieved
SOTA results, the requirement of knowledge/training the
downstream model or a relatively big proxy model on the
entire dataset is inefficient for large datasets/models.

2.2. Concept bottleneck models (CBMs)
Recent advances in language model-guided CBMs utilize
an LLM to obtain concept bottlenecks which are then used
to predict the labels. These works rely on pre-trained multi-
modal models (such as CLIP [45]) which consists of a vi-
sual encoder Venc and a text encoder Tenc that can map im-
ages and text to a d-dimensional representation space. Let
C = {c1, c2, · · · , cNC

} be the set of NC concepts (bottle-
neck) generated via a LLM, we can then construct a bottle-
neck embedding matrix EC ∈ RNC×d such that each row
of the matrix is mapping of the concept c ∈ C after pass-
ing it through textual encoder Tenc. Based on this, a CBM
[70] produces a prediction h(x) = f(g(Venc(x), EC)) for
a sample x where g : Rd → RNC computes the similarity
of the visual features to each concept in the bottleneck and
f : Rd → ∆ outputs the probability of each class in the
label set Y , where ∆ is a N simplex.

3. Methodology
3.1. Generating the concept bottleneck via LLMs
Since obtaining data with concept annotation is costly we
use LLMs to generate concept annotation for the samples.
However, generating attributes (word-level concepts) for all
the samples in the dataset via LLMs is still costly, hence
we generate attribute-level concepts only for class label
names. This approach was recently shown to be effective
at generating the concept bottleneck for interpretable image



Table 1. Comparison of the model’s (RN-18 for CIFAR10/100 and RN-34 for Imagenet) test accuracy after training on coresets found by
various approaches shows that our coresets lead to significantly better performance than Random achieving competitive results compared
to the methods using the downstream model’s training dynamics, even for high pruning rates. (Best in each category is highlighted).

Method

Datasets and Pruning Rates

CIFAR-10 CIFAR-100 Imagenet

30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%

Needs Training
Dynamics

Entropy 94.44 92.11 85.67 66.52 72.26 63.26 50.49 28.96 72.34 70.76 64.04 39.04
Forgetting 95.40 95.04 92.97 85.70 77.14 74.45 68.92 55.59 72.60 70.89 66.51 52.28

AUM 95.27 94.93 93.00 86.08 76.84 73.77 68.85 55.03 72.29 70.52 67.78 57.36

Doesn’t Need
Training

Dynamics

Random 94.33 93.40 90.94 79.08 74.59 71.07 65.30 44.76 72.18 70.34 66.67 52.34
RandomFFCV - - - - - - - - 73.37

±0.08

71.71
±0.10

67.85
±0.04

51.29
±0.20

Ours 94.77
±0.09

93.44
±0.61

91.80
±0.21

84.63
±0.24

75.98
±0.26

72.22
±0.22

66.53
±0.42

51.85
±0.29

73.39
±0.12

72.34
±0.13

69.44
±0.17

55.92
±0.02

classification [67, 70]. In Figure 1 (block 1), we present
the prompts provided to the LLMs to extract the concepts
for various class label names. The responses of the LLM
are then processed to remove formatting errors to obtain
the concept sets. Details of our prompt design, robustness
check of different prompts, and examples of the generated
attributes are mentioned in App. F. Once the per-class con-
cepts are extracted, we select k discriminative concepts per
class (concepts that are unique to a class) to form the con-
cept bottleneck. Our final list of k concepts for a class con-
tains its name and k − 1 attributes generated by the LLM.
In App. E we show an ablation of using different methods
to obtain the concept sets, and k.

3.2. Concept-based score for CS
Next, we describe how to use the concept bottleneck to pro-
duce a difficulty score for the samples in the dataset. We
start by discussing how we learn the functions f and g de-
scribed in Sec. 2.2 (see Fig. 1(block 2) for an overview
of the method). We use the dot product between the vi-
sual embeddings of an image x denoted as Venc(x) and
the bottleneck embedding matrix EC to measure the align-
ment between the visual and textual features of the concepts
[67, 70]. The concept similarity score is computed as

g(x,EC) := Venc(x) · E⊺
C . (2)

To map the concept similarity scores to predictions in the
label space Y , we propose to use a linear (concept bot-
tleneck layer) predictor as f . Concretely, the function f
with parameters W ∈ RN×NC is given by f(x;W ) :=
g(x,EC) ·W ⊺. We learn the parameters W using

W ∗ = argmin
W

1

n

n∑
i=1

ℓ(f(xi;W ), yi), (3)

where ℓ(f(x;W ), y) = − log(f(x;W )y) is the cross-
entropy loss. We define the concept bottleneck layer’s
output, h(x) := f(g(x,EC);W

∗). In practice, we learn
the optimal W using mini-batch gradient descent by run-
ning the optimization for T epochs. To gauge the diffi-
culty of each training sample we use the area under the

margin (AUM) [44] while solving Eq. 3 which quantifies
the data difficulty as the margin of a training sample av-
eraged over T training epochs. Concretely, the margin
of a sample (x, y) at a training epoch t is M t(x, y) =
ht
y(x) − maxy′ ̸=y h

t
y′(x), where ht

y′(x) is the prediction
likelihood of the bottleneck layer at epoch ht for class y′.
Thus, AUM (concept-based score) is computed as

AUM(x, y) =
1

T

T∑
t=1

M t(x, y). (4)

Recent works [44, 73, 74] have demonstrated the effective-
ness of AUM for gauging the sample’s difficulty for coreset
selection. However, [73, 74] requires computing AUM for
the downstream model by training it on the entire dataset
once, which is computationally costly. On the other hand,
our method integrates AUM with the training of the lin-
ear concept bottleneck layer h, which is computationally
cheaper (training a linear layer takes only 7 minutes for Im-
agenet compared to 8 hours for training a ResNet-34) than
training the downstream model (θ).

Sampling training examples to form a coreset. Af-
ter obtaining data difficulty scores, a crucial step is choos-
ing the samples to form the coreset. While many previous
works [11, 58] have reported encouraging results keeping
the most challenging samples (for our concept-based score
this means samples with the smallest margin), recent works
[55, 73] have shown that this could lead to a catastrophic
drop in accuracies after training the downstream model on
the coreset, especially when the size of the coreset is small.
This is mainly due to poor sample coverage and potentially
mislabeled data in the datasets. To remedy this, we use
Coverage-centric Coreset Selection (CCS) proposed by [73]
(see Alg. 1 in App. G.3) which uses a stratified sampling
approach and filters out (potentially) mislabeled samples to
form the coreset.

4. Experiments
Datasets, models, and training: We focus on CS for clas-
sification tasks on three benchmark datasets; CIFAR-10,
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Figure 2. Visualizing samples according to our concept-based score for a subset of classes in CIFAR-10/100 showing that easy (challeng-
ing) samples are aligned (unaligned) with their assigned label. Image-level concepts (in boxes) extracted via LLaVA confirm that easy
(challenging) examples are aligned (unaligned) with concepts of their labels, explaining the reason for a high (low) concept-based score.

CIFAR-100 [29], and Imagenet-1K [13] datasets consisting
of 50000, 50000, and 1.28 million samples spread across
10, 100, and 1000 classes, respectively. We also report re-
sults on Emotion recognition and biomedical image recog-
nition tasks using the Affectnet [38] and BloodMNIST [1]
datasets. We report the results for different pruning rates
where a pruning rate of 90% refers to removing 90% of the
samples from the original training dataset (additional details
in Appendix G.1). We compare our method against various
baselines and SOTA methods proposed by previous works
(explained in App. G.2).

4.1. Evaluating performance on CS
Table 1 shows the accuracy of models trained on coresets
found by various approaches on the test sets of the three
datasets for the standard CS problem (where the dataset is
labeled). We find that coresets found by our approach lead
to significantly better performance, even at higher prun-
ing rates, compared to the random subsets. Moreover, our
method which does not use any information about the train-
ing dynamics of the downstream models provides competi-
tive performance to coresets found by the SOTA approaches
based on forgetting score and AUM, and even outperforms
them on Imagenet for smaller pruning rates.

To test coreset performance of our method on emotion
recognition, we used the EfficientNet model [57] and re-
port F1 scores for our coresets in Table 2. When com-
pared against randomly selected coresets, coresets selected
via our concept-based approach achieve better performance.
To evaluate the coreset performance on BloodMNIST, we
use a ResNet-18 model and report accuracy of our coresets
in Table 3. Our method achieves better performance than
random for higher pruning rates and is competitive at lower
pruning rates. In App. B, we show that our approach can be
extended to label-free datasets as well.

4.2. Visualizing Concept-based Scores
In Fig. 2, the top row shows the images with the highest
concept-based scores (easiest) and the bottom shows the
images with the lowest scores (challenging) for a subset of

classes in CIFAR-10/100. As observed the easiest images
are typical images associated with the label where as the
challenging images are confusing (and even potentially mis-
labeled) as they look like images from a different class. For
example, some challenging images in the class “boy” from
CIFAR-100 are actually images of a baby which is also a
class in CIFAR-100. More examples of such images are
presented in Fig. 3 in App. D. Since the challenging exam-
ples are confusing for humans too our score is well aligned
with the human-perceived difficulty of the samples.

Next, we demonstrate why certain samples get low/high
concept-based scores in our approach by extracting at-
tributes specific to these images using LLaVA (note that
these attributes are different from the per-class concepts
used in the concept bottleneck). To generate these, we
prompt LLavA to produce concepts using both the sample
image and its class label (see image-level concept extrac-
tion in App. F). These image-level attributes are shown in
the boxes in Fig. 2. As observed in Fig. 2, image-level at-
tributes provided by LLaVA are related to the class label
for easy images whereas they are unrelated for challeng-
ing images. For example, attributes provided by LLaVA for
the challenging images of “airplane” align more with those
of a “ship” , and concepts provided for challenging im-
ages of “bridges” align more with those of “castles”. Since
our score also assigns a small value for these images, our
concept-based score in Eq. 4 can correctly capture when
the visual information in the sample is not aligned with the
associated label of the sample and vice-versa.

5. Conclusion

In this work, we proposed a coreset selection method based
on scores obtained via concept bottlenecks that allow us
to gauge the difficulty of a sample in terms of human-
understandable concepts and is independent of the down-
stream model. Our experiments show that training down-
stream models on these coresets lead to better performance
than random subsets and achieves accuracy similar to or bet-
ter than the SOTA approaches.
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Appendix
We present additional related work in Appendix A fol-

lowed by experimental results on label-free CS in Ap-
pendix B and experiments on transferability and effi-
ciency of our approach in Appendix C. Then we visualize
easy/hard images in Appendix D followed by ablation stud-
ies in Appendix E and describe the details of our methodol-
ogy for extracting the concepts from LLaVA in Appendix F.
Finally, we present additional experimental and implemen-
tation details of our in Appendix G including the algorithm
for stratified sampling used in our work in Appendix G.3.
We conclude in Appendix H with limitations and future
work.

A. Related Work
Coreset selection (CS): CS improves the efficiency of
model training by selecting a subset of influential samples.
Various approaches have been proposed to generate such a
subset [17]. A popular approach uses influence functions
[8, 27, 35, 49] which measures the influence of a sample
by considering the effect of removing it from the model’s
training. While effective, these approaches are compu-
tationally costly due to their dependence on higher-order
derivatives. Another set of approaches selects a subset by
either matching the gradients to those computed on the en-
tire dataset [25, 37] or uses training dynamics of a model
[12, 32, 43, 44, 58] to compute the importance of a sample.
However, such approaches require repeated training of the
downstream model to produce accurate importance scores.
In comparison, our approach avoids using any knowledge of
the downstream model for computing the difficulty scores.
Finally, using the dataset’s geometric properties via cluster-
ing is another popular choice for CS [14, 15, 21, 51, 55].
However, the high computational complexity due to their
dependence on pairwise distances between the samples pro-
hibits their use on large datasets.

Concept-based interpretability approaches: Con-
cepts are defined as high-level semantics that refers to the
abstract and human-interpretable meanings of the visual
data, such as objects, actions, and scenes, as opposed to
low-level features like edges or textures [64]. Concepts
have been used in interpretable computer vision to bridge
the gap between human understanding and machine percep-
tion in various tasks such as image classification. Such in-
terpretability methods can be broadly classified as post-hoc
methods (do not impose any model constraints) or by-design
methods.

Post-hoc methods include Gradient-weighted Class Ac-
tivation Mapping approaches [3, 20, 39, 50] that trace net-
work gradients to identify the input areas that guide predic-
tions and Explanation Generation methods [18, 26, 41, 53]
that require models to produce explanations for visual

Table 2. Performance of concept-based coreset selection for emo-
tion recognition task, Affectnet dataset. Our approach’s coresets
result in higher F1 scores compared to Random for standard CS.

Model
Arch. Method

Pruning Rates

30% 50% 70% 90%

EfficientNet
Random 0.607±0.006 0.573±0.025 0.517±0.006 0.347±0.055

Ours 0.603±0.006 0.577±0.021 0.537±0.015 0.450±0.035

Table 3. Performance of concept-based coreset selection on
biomedical image recognition (BloodMNIST dataset). CS se-
lected by our approach results in superior accuracy compared to
Random for standard CS.

Model
Arch. Method

Pruning Rates

30% 50% 70% 90%

ResNet-18
Random 94.99±0.27 94.79±0.18 91.71±0.29 86.50±0.66

Ours 94.64±0.60 94.06±0.10 92.26±0.19 87.44±1.46

tasks by conditioning their predictions on captioning mod-
els or incorporating visual evidence to ground explana-
tions [19, 42]. Interpretable-by-design methods, such as
Prototype methods, optimize a metric space where classi-
fications are based on distances to class prototypes, identi-
fying important input regions but often obscuring their se-
mantic content [9, 40, 48, 54, 60].

Concept Bottleneck Models (CBMs) extend
interpretable-by-design approaches by using human-
understandable attributes as an intermediate layer for
predictions, as used in few-shot learning [30] and attribute
learning [47, 66]. A recent advancement, Computa-
tional Derivation Learning (CompDL), utilizes a CBM
architecture by applying a linear layer over CLIP scores
between expert-designed concepts and images, improving
evaluation of how well CLIP grounds concepts [72]. While
interpretable, CBMs reliance on costly annotations and
lower accuracy compared to end-to-end models limit their
usage.

Post-hoc Concept Bottleneck Models (PCBMs) address
these issues by incorporating static knowledge bases (e.g.,
ConceptNet [56]) and residual connections to boost accu-
racy [71]. High-level semantic-driven descriptions are also
used to guide data augmentation to build an informative
set [62] to make model training efficient with a good enough
training set. Prior works use external knowledge bases to
obtain these textual semantic concepts to guide vision mod-
els [5, 24, 46, 52]. Recently [67, 70] incorporated LLMs to
identify the concept bottleneck to make classification more
explainable. We build on this literature and use CBMs for
CS.

B. Concept-based score for label-free CS
Recently, there has also been an interest [16, 36, 74] in iden-
tifying the representative samples from an unlabeled dataset



Table 4. Comparison of the model’s (RN-18 for CIFAR10/100 and RN-34 for Imagenet) test accuracy after training on coresets, found in
a label-free manner, shows that our coresets lead to better performance than Random and those found by Prototypicality and is competi-
tive/better than the coresets found by ELFS (which is dependent on the training dynamics of the downstream model).

Method

Datasets and Pruning Rates

CIFAR-10 CIFAR-100 Imagenet

30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%

Needs Training
Dynamics

ELFS (SwAV) 95.00 94.30 91.80 82.50 76.10 72.10 65.50 49.80 73.20 71.40 66.80 53.40
ELFS (DINO) 95.50 95.20 93.20 87.30 76.80 73.60 68.40 54.90 73.50 71.80 67.20 54.90

Doesn’t Need
Training

Dynamics

Prototypicality 94.70 92.90 90.10 70.90 74.50 69.80 61.10 32.10 70.90 60.80 54.60 30.60

Random 94.33 93.40 90.94 79.08 74.59 71.07 65.30 44.76 72.18 70.34 66.67 52.34
RandomFFCV - - - - - - - - 73.37

±0.08

71.71
±0.10

67.85
±0.04

51.29
±0.20

Ours-LF 94.81
±0.14

93.93
±0.13

91.75
±0.34

84.02
±0.44

74.67
±0.23

72.07
±0.58

65.50
±0.17

49.91
±0.96

73.61
±0.08

71.99
±0.05

68.42
±0.21

53.21
±0.06

such that 1) we reduce the samples that need to be labeled
by humans and 2) we can improve the efficiency of model
training by only training the model on a subset of data.
Our concept-based score can also be effectively utilized for
this task with a simple modification. Similar to previous
works [36, 55, 74], we assume that we know the number
of classes in the datasets. Additionally, we assume that we
also know the names of the classes in the datasets. Previ-
ous works have demonstrated that VLMs such as CLIP [45]
achieve excellent zero-shot performance without requiring
fine-tuning on specific datasets. We leverage this capability
of CLIP models to obtain pseudo-labels for the images in
our unlabeled dataset and use them to obtain our difficulty
score for each sample

AUM(x, ypseudo) =
1

T

T∑
t=1

M t(x, ypseudo), (5)

where for an image x in the dataset, ypseudo =
argmaxj∈Y Venc(x) · W⊺

zeroshot where Wzeroshot ∈
RN×d is a matrix with columns defined as Tenc(sj) and
sj = “a photo of a {jth class name}” for each class
j ∈ Y [45, 63]. We use these scores along with CCS to
produce the coreset. Similar to [36, 74], this coreset is then
assumed to be annotated by humans and downstream mod-
els (θ) are trained on this annotated coreset.

Evaluating performance on label-free CS: Table 4
shows the accuracy of models trained on coresets when the
training set lacks labels (we report the numbers presented
by [74] for all the methods and baselines). The results
show that the random subsets are a competitive baseline
and even it outperforms Prototypicality [55]. Our results
also show that our coresets outperform the random subsets
for all pruning rates with the improvements being the most
significant at higher pruning rates. Compared to ELFS [74],
our method provides competitive performance and even sur-
passes it for lower pruning rates on Imagenet, without us-
ing any information about the downstream model’s archi-

tecture or its training dynamics. Thus, our method is effec-
tive for this problem with a simple modification of utilizing
the zero-shot predictions from CLIP as pseudo-labels.

C. Transferability and Efficiency of CS

Here we evaluate the performance of training downstream
models with three different architectures to highlight the ef-
fectiveness of our approach for model-agnostic CS. Table 5
shows superior performance than random for ResNet-18,
ResNet-34, and ResNet-50 models trained on our coresets
for standard and label-free CS for various pruning rates.

Next, we compare the efficiency of our approach at find-
ing coresets compared to approaches relying on training the
downstream model on the entire dataset to obtain the train-
ing dynamics-based score. Using two A-100 GPUs, our ap-
proach can find the coreset in approximately 30 minutes for
the Imagenet dataset giving a 15x speed up over training
dynamics-based approaches. We obtain a similar speed up
for CIFAR-10/100 where our method finds the coreset in
less than 2 minutes.

Moreover, since our method is agnostic to the architec-
ture of the downstream model we do not need to repeat
the CS step for different architectures, unlike other meth-
ods which need to train the downstream model with new
model architecture to find the best coreset for it.

D. Visualizing easy/challenging samples based
on concept-based score

Similar to Fig 2 in Sec. 4.2 of the main paper, we visualize
easy and challenging examples in Fig. 3 for CIFAR-10 and
subset of classes from CIFAR-100. As observed the easy
images (the ones that get high scores in our approach) are
more canonical images of the class labels whereas the chal-
lenging ones are images that can potentially be assigned
another class in the same dataset or are mislabeled in the
dataset. The clear distinctions between these images show



Table 5. Superior performance of downstream models with dif-
ferent architectures trained on our coresets for Imagenet compared
to Random for standard (Ours) and label-free (Ours-LF) CS high-
light our method’s effectiveness for downstream model-agnostic
CS.

Model
Arch. Method

Pruning Rates

30% 50% 70% 90%

RN-18
Random 71.15±0.23 68.48±0.10 63.15±0.19 44.96±0.50

Ours-LF 71.21±0.09 68.77±0.13 63.76±0.09 47.50±0.10

Ours 70.94±0.19 69.30±0.84 65.16±0.04 49.57±0.16

RN-34
Random 73.37±0.08 71.71±0.10 67.85±0.04 51.29±0.20

Ours-LF 73.61±0.08 71.99±0.05 68.42±0.21 53.52±0.06

Ours 73.39±0.12 72.34±0.13 69.44±0.17 55.92±0.02

RN-50
Random 76.06±0.11 74.44±0.04 70.50±0.02 53.56±0.13

Ours-LF 76.54±0.08 74.84±0.03 71.10±0.09 55.22±0.92

Ours 76.29±0.10 75.12±0.03 72.05±0.09 58.26±0.46

that our concept-based score aligns well with human intu-
ition on the difficulty of the samples.

E. Ablation studies
Here, we present an ablation to study the effect of different
methods for concept generation and the effect of keeping
different numbers of concepts per class (k) in the bottle-
neck.

E.1. Comparing Concept Generation Techniques
Table 6 shows how the performance of models trained on
our coresets change when different methodologies are used
to generate the concept sets. Since our method uses LLaVA
[34], which is a vision language model, we compare the per-
formance of models trained on the random subsets and core-
sets obtained using class-wise concepts (only textual infor-
mation) and concepts extracted using both visual and textual
information. For concepts generated using only textual in-
formation, we consider two alternatives, namely class-wise
attributes (CW-A) and class-wise descriptions (CW-D).
While CW-A considers concepts formed by a single or a
few words, CW-D consists of longer, more descriptive con-
cepts (eg., a descriptive concept for the class butterfly is “a
beautiful insect with colorful wings”). For CW-D, we use
a subset of k concepts provided by [70], generated via the
GPT-3 model. Our results show that CW-A performs better
than CW-D for both the standard and label-free CS prob-
lems. Thus, we use attribute-level concepts in our work.

Next, for generating concepts using both visual and tex-
tual information, we consider two alternatives. The first is
a class-wise one-shot image attribute approach where we
first cluster all images of a class in the embedding space of
the CLIP’s visual encoder and identify the image whose em-
bedding is the closest to the cluster center (for the label-free
setting we use the pseudo-labels of the images during clus-

Table 6. Coreset performance on CIFAR-100 for 90% pruning rate
for concepts generated using different methods. A random sub-
set of CIFAR-100 achieves an accuracy of 44.76±1.58 at this rate.
(Class-wise attributes approach is used for in rest of the paper.)

Concept generation methods

Prompt uses only class label Prompt uses class label + image(s)

class-wise
attributes

class-wise
descriptions

class-wise one-shot
image attributes

image-wise
attributes

Ours 51.85±0.51 51.05±0.71 51.68±0.45 52.47±0.39

Ours-LF 49.91±0.96 49.85±0.83 50.22±0.16 51.05±0.93

tering ), then we prompt LLaVA to generate attributes using
this single image and the class name. Once generated we
use k discriminative concepts to form the bottleneck. The
second is image-wise attribute approach, where we use each
image in the training set and prompt LLaVA to generate per
image attributes describing the image. Once generated we
sort the concepts based on their frequency of occurrence in
a class and use the most frequently occurring discrimina-
tive concepts to form the bottleneck. While the image-level
concepts lead to the best coresets, it is slow and costly to
prompt LLaVA to generate attributes for all the images in a
large dataset such as Imagenet. For CIFAR-100, this pro-
cess took about nine hours to complete (in comparison CW-
A can be extracted in 5 minutes for CIFAR-100, without
parallel computation) which is very costly compared to the
small performance gains it provides over other approaches.
Lastly, while the one-shot approach is better than CW-A in
most cases, the additional step of clustering can be costly
for larger datasets such as Imagenet. Based on these results,
we used CW-A for concept generation using LLaVA.

E.2. Comparing Effect of Number of Concepts (k)
In Table 7, we show how the number of concepts extracted
per class label affects the selection of coresets. Once the list
of attribute-level concepts is generated by LLaVA, we can
select k concepts per class either randomly or choose con-
cepts unique to a class (discriminative). Our results show
that using even k=1 is sufficient to surpass the performance
using a random subset (Random baseline). This perfor-
mance increases when we keep discriminative concepts in
our concept bottleneck, with k = 5 achieving the best re-
sults. While the size of the concept bottleneck need not be
very large to find good coresets, it is helpful to take a sam-
ple’s visual similarity with a set of concepts rather than a
single concept per class. Thus, we selected 5 discriminative
concepts per class to form the concept bottleneck.

F. Details for concept set generation

Prompt Selection: To extract concepts for our approach,
we only use the class labels in the prompt as can be seen
in Figure 1. The prompt, “Can you give distinct attributes



Table 7. Effect of the number of concepts k (per class) and the
method of selecting k attribute-level concepts from the concepts
generated by LLaVA vs. the accuracy of models trained on the
coresets of CIFAR-100 at 90% pruning rate. A random subset of
CIFAR-100 achieves an accuracy of 44.76±1.58 at this rate.

Concept selection k=1 k=5 k=10

Random concepts 48.78±0.96 50.15±1.64 50.39±0.72

Discriminative 51.42±0.18 51.58±0.51 51.22±0.72

for ⟨class name⟩. Give the output separated by a comma
in the line.” instructs the VLM not only to provide distinct
keywords but also adds formatting instructions. However,
despite the instructions included in the prompt, LLaVA out-
puts are not always formatted well, often containing dupli-
cate entries, mismatched commas and braces, and some-
times having a detailed explanation before the keywords.
To remedy this we run the LLaVA output through a sim-
ple post-processing script and use regular expressions to
clean the LLaVA outputs. For our experiments where we
perform ablation of various concept-bottleneck generation
methods (Table 6), we also use two more concept generation
methods, one is one-shot image-based class concepts and
the second is image-level concept generation. For the for-
mer, where we select one representative image per class via
clustering, we prompt LLaVA as follows, “⟨image⟩ Can you
give distinct attributes for such an image of ⟨class name⟩.
Give the output separated by a comma in the line.” And,
to get concepts for every image of a class, we use a similar
prompt as follows, “⟨image⟩ Can you give distinct visual
attributes for this image of ⟨class name⟩. Give the output
separated by a comma in the line.” Each LLaVA prompt
request on a single A-100 GPU takes approximately 3 sec-
onds.
Alternative VLMs for Concept Generation: We lever-
age LLaVA as our choice of VLM for concept generation,
however in Table 6, we also compare against concepts ex-
tracted from GPT (column 2) [67]. We see comparable
performance with those extracted from LLaVA. Moreover,
LLaVA is an open-source model whereas GPT prompting
is not. We also experimented with retrieving concepts via
SpLiCE [4]. However, a major limitation of SpLiCE is
that similar to image-level concepts it is a costly approach.
SpLiCE uses a linear optimization for sparse concept de-
composition and can take up to 3 hours for 50, 000 images
which is slower than generating class-level concepts from
LLaVA.

G. Experimental Details
G.1. Datasets, and Model Implementation Details
For CIFAR-10/CIFAR-100, we train a ResNet-18 model
and for Imagenet we train ResNet-18, ResNet-34, and

ResNet-50 models on the coresets for all pruning ratios.
Emotion Recognition: For emotion recognition,

we use the Affectnet dataset [38] for our experiments.
AffectNet is a large-scale facial expression dataset de-
signed for training and evaluating affective computing
models [61]. It contains facial images collected from
the internet using web search queries for emotion-related
keywords in multiple languages. Each image is man-
ually annotated for eight discrete emotion categories:
neutral, happiness, sadness, surprise,
fear, disgust, anger, contempt. For our
experiments, we utilize an openly available version of
this dataset [23], containing roughly 16000 training and
14000 testing samples. According to our approach we first
use LLaVA to extract concepts for the 8 emotion classes,
using the following prompt, “What are the facial features
that distinguish emotion class name from other emotion
types. Focus on changes in eyes, nose, lips, eyebrows,
mouth. Give the output separated by commas in a line.”.
We get 5 − 10 distinctive facial feature concepts for every
emotion, for instance for emotion class happy, we get
the following concepts, “wide open eyes”, “sparking
eyes”, “smiling lips”, “open mouth”, “raised eyebrows”,
“flushed cheeks”, “teeth barred”.

Biomedical Image Recognition: For biomedical
image recognition, we use the BloodMNIST [1] dataset
from the MedMNIST [68, 69] which comprises of im-
ages of normal blood cells, captured from individuals
without infection, hematologic or oncologic disease
and free of any pharmacologic treatment at the moment
of blood collection. It consists of a total of 17, 092
images and is organized into 8 classes (basophil,
eosinophil, erythroblast, immature
granulocytes, lymphocyte,monocyte,
neutrophil, platelet).

For this dataset, we first extract concepts for the 8 blood
cell types via GPT using the following prompt, “What are
the features that can distinguish blood cell class name from
rest of the blood cell types on their size, shape, nucleus
appearance, and the presence of granules in their cyto-
plasm”. We obtain 10 concepts for every blood cell type,
for instance, for platelets, we get the following concepts,
“Smallest blood component”, “No nucleus”, “Granules
present”, “Irregular shape”, “Cytoplasmic fragments”,
“Variable granule distribution”, “Oval to round shape”,
“Small dense granules”, “Lacks chromatin”, “Compact cy-
toplasmic body”. To accelerate training on Imagenet, we
utilize the training code based on FFCV [31]. We run CS
for three trials with different random seeds for all experi-
ments and report the average of these runs in our tables. For
generating the concept annotation we use a recently pro-
posed open source model LLaVA [33, 34]. Extracting the
concepts for each class using this model takes a mere 3 sec-



onds per prompt.
For computing the concept similarity scores between the

visual and concept bottleneck features we used the CLIP
[45] model following the previous works [67, 70, 72] which
showed its effectiveness for this task. Specifically, we used
the ViT B-32 CLIP model [45]. For computing the pseudo-
labels in Sec. B we used a ViT L-14 CLIP model trained on
the DataComp-1B dataset [22]. The accuracies of the mod-
els trained on the entire training set are 95.44% and 78.74%
for ResNet(RN)-18 on CIFAR-10/100 and 72.4% for RN-
18, 75% for RN-34, and 78.4% for RN-50 on Imagenet.

For generating the importance score we pre-compute the
concept similarity scores for the entire dataset and then train
the concept-bottleneck layer (in block 2 of Fig. 1) for 100
epochs across all experiments. This training only requires
800 seconds for Imagenet which is significantly more effi-
cient than training the ResNet-34 model on Imagenet (re-
quires roughly 8 hours without FFCV and about 4 hours
with FFCV on two A-100 GPUs).

After the coresets are selected, we use the setting and
code from [73] for training a ResNet-18 model for 40000
iterations with a batch size of 256 on the coresets for all
pruning ratios for CIFAR-10/CIFAR-100. For Imagenet, we
train ResNet-18, ResNet-34, and ResNet-50 models for 100
epochs on the coresets identified by our method using the
training code based on FFCV [31].

The performance of the label-free CS is dependent on the
quality of the pseudo-labels. Compared to the clustering-
based approach used by ELFS [74], our approach of using
the zero-shot classification ability of CLIP models yields
significantly better pseudo-label quality along with being
simpler and more efficient to compute. Specifically, for
CIFAR-10/100, pseudo-labels of the training set are com-
puted using the CLIP L-14 model trained on the DataComp-
1B dataset [22] yields an accuracy of 98.52% and 87.28%
whereas for Imagenet it achieves an accuracy of 79.47%
which are better than the best pseudo-label accuracy ob-
tained by the clustering approach in ELFS (92.5% and
66.3% on CIFAR-10/100 and 58.8% on Imagenet).

G.2. CS baselines and methods
We compare our method against various baselines and
SOTA methods proposed by previous works. 1) Random:
Uniformly select samples from the datasets to form the
coreset. RandomFFCV denotes the performance of the mod-
els trained on random subsets of Imagenet using the training
code based on FFCV [31]. 2) Entropy [11]: Selects sam-
ples based on entropy which is computed as the uncertainty
in the model’s prediction on a sample. 3) Forgetting Score
[58]: Selects samples based on the forgetting score which is
computed as the number of times an example is misclassi-
fied after being correctly classified earlier during training of
the downstream model. A higher forgetting score indicates

a more challenging sample. 4) AUM [44]: Selects samples
based on their average margin during training of the down-
stream model i.e., the difference between the target class
and the next highest class across the training epochs. Lower
AUM indicates a more challenging sample. For the forget-
ting score, AUM, and our method, we use CCS [73] for
sampling to form the coreset whereas for entropy we select
the samples with the highest entropy in the coreset as done
in previous works [11, 73].

For label-free CS, we use 1) Prototypicality [55]: which
first performs k-means clustering in the embedding space
of SwAV [6] model and ranks samples based on their Eu-
clidean distance to the cluster centers. Samples further
away from the cluster center are then used to form the core-
set. 2) ELFS [74]: estimates the pseudo-labels of the unla-
beled samples using a deep clustering approach (using the
embedding space of SwAV [6] and DINO [7]) and forms
the coreset using the training dynamics of the downstream
model trained on the pseudo-labeled data.

Crucially, SOTA methods such as forgetting score,
AUM, and ELFS require training the downstream model on
the entire dataset (with true/pseudo labels) first, for CS, un-
like our method which is independent of the downstream
model. While the Random and the Prototypicality don’t re-
quire the downstream model for CS, we show in the fol-
lowing sections that our results are significantly better than
these.

G.3. Algorithm for stratified sampling using CCS
[73]

Here we present the algorithm for sampling the training ex-
amples to form the coreset based on the coverage-based se-
lection methodology proposed by [73]. A crucial compo-
nent of the algorithm is the cutoff rate β which controls how
many challenging samples should be removed from consid-
eration when selecting the coreset. This is done to elimi-
nate misclassified samples from the dataset since they can
hurt the performance of the model trained on coreset, espe-
cially at high pruning rates. Previous works [73, 74] ablate
the values of this cutoff ratio by training the downstream
model on a range of values. In our work, we simply use the
values proposed by the previous works and find that they
work well for our score as well. The cutoff rates β for dif-
ferent pruning rates α are as follows (α, β). For CIFAR-10:
(30%, 0), (50%, 0), (70%, 10%), (90%, 30%), for CIFAR-
100: (30%, 10%), (50%, 20%), (70%, 20%), (90%, 50%),
for Imagenet: (30%, 0), (50%, 10%), (70%, 20%), (90%,
30%). We used CCS for label-free CS as well and the cutoff
rates used were for CIFAR-10: (30%, 0), (50%, 0), (70%,
20%), (90%, 40%), for CIFAR-100: (30%, 0), (50%, 20%),
(70%, 40%), (90%, 50%), for Imagenet: (30%, 0), (50%,
10%), (70%, 20%), (90%, 30%).



(a) Easy images from CIFAR-10 (b) Challenging images from CIFAR-10

(c) Easy images from CIFAR-100 (d) Challenging images from CIFAR-100

Figure 3. Class-wise easy and challenging images for the 10 classes (airplane, car, bird, cat, deer, dog, frog,
horse, ship, truck) in CIFAR-10 and for a subset of 10 classes (boy, bridge, camel, cloud, crab, kangaroo,
lamp, rose, tiger, train) from CIFAR-100. Similar to the results in Fig. 2, easy images (a,c) are more canonical images asso-
ciated with the class labels whereas challenging images (b,d) are images that are confused between two or more classes in the dataset.

H. Limitations and Future Work

In our work, the concept extraction from LLM is treated as
a pre-processing step which is independent of the data dif-
ficulty score computation and coreset selection. However,
LLMs can produce very noisy and non-discriminative con-

cepts for various classes (eg., a concept “blue” can be asso-
ciated with several classes in the Imagenet dataset), leading
to poor concept-similarity scores. Moreover, while class-
wise concept extraction is efficient, image-level concepts
could be much more informative for a sample’s difficulty.
Thus, improving the efficiency of concept extraction and



Algorithm 1 Coverage-centric Coreset Selection (CCS)
[73]
Input: Dataset with difficulty scores: D = {(x, y, s)}ni=1,
pruning ratio: α, cutoff rate: β, number of bins: b.
Output: Coreset: S

# Prune hardest examples
D′ ← D \ {⌊n× β⌋ hardest examples}
A1, A2, · · · , Ab ← Split scores in D′ into b bins.
B ← {Bi : Bi consists of samples with scores in Ai for i =
1, · · · , b}.
# Define the size of the coreset
m← n× α.

while B ̸= ∅ do
# Select the bin with the fewest examples
Bmin ← argminB∈B |B|.
# Compute the budgets for this bin
mB ← min{|B|,

⌊
m
|B|

⌋
}.

SB ← randomly sample mB samples from Bmin.
C ← C

⋃
SB .

B ← B \ {Bmin}.
m← m−mB .

end while
return C.

tuning the prompt for LLMs/VLMs to incorporate the feed-
back from score computation or CS can help generate better
concept bottlenecks leading to a better estimate of a sam-
ple’s difficulty. While these are important research direc-
tions we leave them for future work.
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