
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CALMFLOW: VOLTERRA FLOW MATCHING USING
CAUSAL LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce CaLMFlow (Causal Language Models for Flow Matching), a novel
framework that casts flow matching as a Volterra integral equation (VIE), leverag-
ing the power of large language models (LLMs) for continuous data generation.
CaLMFlow enables the direct application of LLMs to learn complex flows by
formulating flow matching as a sequence modeling task, bridging discrete lan-
guage modeling and continuous generative modeling. Our method implements
tokenization across space and time, thereby solving a VIE over these domains. This
approach enables efficient handling of high-dimensional data and outperforms ODE
solver-dependent methods like conditional flow matching (CFM). We demonstrate
CaLMFlow’s effectiveness on synthetic and real-world data, including single-cell
perturbation response prediction, showcasing its ability to incorporate textual con-
text and generalize to unseen conditions. Our results highlight LLM-driven flow
matching as a promising paradigm in generative modeling, offering improved
scalability, flexibility, and context-awareness.

1 INTRODUCTION

Recent advances in deep learning have revolutionized generative modeling for complex, high-
dimensional data. In particular, methods based on ordinary differential equations (ODEs), such as
continuous normalizing flows (CNFs) (Chen et al., 2018) and flow matching (Lipman et al., 2022),
have emerged as efficient tools designed for modeling continuous data distributions. However, many
ODE systems suffer from stiffness making them numerically unstable and computationally expensive
to solve accurately (Kushnir & Rokhlin, 2012; Zappala et al., 2024). In contrast, integral equations
(IEs) offer a more generalized framework for capturing dynamics, with IE solvers demonstrating
greater numerical stability than their ODE counterparts (Kushnir & Rokhlin, 2012; Zappala et al.,
2024). Recent work in operator learning (Xiong et al., 2021; Cao, 2021; Zappala et al., 2024) has
also connected solving integral equations with transformers, the foundational architecture of large
language models (LLMs), inspiring the use of LLMs to model dynamical systems through the lens of
IEs.

Building on these insights, our work introduces Causal Language Models for Flow Matching
(CaLMFlow), a novel approach that models flow matching using Volterra integral equations (Zappala
et al., 2023), enabling learning flows in a more robust manner. By leveraging causal language
models (CLMs) to solve Volterra integral equations, our method capitalizes on the ability of CLMs to
comprehend natural language, allowing for the modeling of complex data distributions conditioned
on natural language prompts. Our approach provides a robust framework for applications ranging
from synthetic data generation to complex system modeling in the biological sciences.

Our key contributions are:

• Flow matching using causal language models: We introduce a novel framework formu-
lating flow matching as Volterra integral equations and leveraging causal language models
(CLMs) to approximate the solutions, enhancing stability and performance of flow matching.

• Controllable generation of flows using natural language: We present a flexible and
effective approach to controllable generation conditioned on textual prompts by leveraging
the causal language model’s natural language understanding. In Section 5.2, we demon-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the CaLMFlow framework. CaLMFlow takes as input textual conditions
and flows and generates the next time point for the flows. The textual condition is tokenized and
embedded using the LLM tokenizer and embedding layer while the conditional flows are transformed
into spatial-temporal tokens using a learned projection. If multiple conditional flows are input
simultaneously, the tokens are ordered by flow, space, and then time. The LLM applies causal
language modeling and generates the next time point for each flow.

strate its superiority by applying it to perturbation response prediction in single-cell data,
outperforming traditional flow matching and popular single-cell methods.

• Continuous space tokens via variational decoding: We introduce variational decoding
to sample and generate continuous data. This approach models a continuous conditional
distribution for next-token sampling, extending language modeling techniques, which are
designed to model discrete data such as texts, to continuous domains. Our ablation study
in Section 6.1 demonstrate that variational decoding is crucial for accurately modeling
continuous data within our framework.

• Spatiotemporal and trajectory tokenization: We present a spatiotemporal tokenization
scheme that enables CaLMFlow to model VIEs across both spatial and temporal domains.
Additionally, by modeling multiple flows concurrently, CaLMFlow captures correlations
between data samples. We demonstrate in Sections 5.1 and 6.3 this approach significantly
improves performance.

2 RELATED WORK

Flow Matching and Continuous Normalizing Flows: Flow matching has significantly enhanced the
efficiency and scope of continuous normalizing flows (CNFs) (Chen et al., 2018; Papamakarios et al.,
2021) in modeling continuous data distributions. Conditional Flow Matching (CFM) (Lipman et al.,
2022) allows for precise control over the generative process by optimizing conditional vector fields
tailored for specific distribution paths, including those based on Gaussian distributions. Tong et al.
(2024) generalized the conditional paths and introduced mini-batch optimal transport and Schrödinger
bridge CFM, improving the efficiency and performance of CFM models. In Hu et al. (2024), flow
matching is applied to text generation in a non-autoregressive manner, showing improvements
compared to other diffusion-based text generation models such as DiffSeq (Gong et al., 2023). Our
work, however, is primarily concerned with adapting LLMs to generate continuous data conditioned
on text.

Text-conditional Generation: Text-conditional image generation has made significant strides
through the integration of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021) and large language models (LLMs). State-of-the-art systems like Stable Diffusion
(Rombach et al., 2022), DALLE-2 (Ramesh et al., 2022), and DINOv2 (Oquab et al., 2024) leverage
LLM embeddings to generate high-quality images from textual descriptions. Recent research (Ding
et al., 2021; Yu et al., 2022; Ge et al., 2024; Zhan et al., 2024) has focused on adapting LLMs for
multimodal generation, often employing vector quantization (van den Oord et al., 2017; Razavi
et al., 2019; Ge et al., 2023) to extend LLM vocabularies with latent tokens representing non-textual
data. Our CaLMFlow method introduces a novel approach as the first flow matching-based text-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

conditional generative model that produces continuous tokens, potentially offering greater flexibility
and expressiveness compared to discrete token-based methods.

Integral Equations in Neural Network Frameworks: The fusion of neural networks and differential
equations was introduced by Chen et al. (2018) with neural ordinary differential equations. This
concept has since been extended to integral equations, particularly Volterra equations, in several
studies (Fu & Hirsa, 2022; Zappala et al., 2023; 2024). Notably, Zappala et al. (2024) exploited
the relationship between attention mechanisms and integral kernels (Xiong et al., 2021; Cao, 2021)
to model integral equations using transformers. Concurrently, approaches like physics-informed
neural networks (PINNs) (Raissi et al., 2019; Lu et al., 2021; Goswami et al., 2022) have emerged,
incorporating physical laws as prior knowledge to enhance model accuracy and generalization in
operator learning tasks. Our work builds upon these advancements, extending the application of
Volterra integral equations to the flow matching framework.

3 VOLTERRA FLOW MATCHING

3.1 FLOW MATCHING AS VOLTERRA INTEGRAL EQUATIONS

Flow matching (Lipman et al., 2022) is typically formulated as learning the time-dependent vector
field v(x, t) generating the flow ϕ(x, t) related by the ordinary differential equation (ODE):

dϕ

dt
= v(ϕ, t), ϕ(x, 0) = x, (1)

transforming an initial distribution p0, usually Gaussian noise, at time t = 0 into any target distribution
p1 at time t = 1 through the application of a numerical ODE solver applied to the learned vector field,
resulting in a gnerative model of distribution p1 However, ODEs can suffer from stiffness, especially
when modeling systems with rapid changes, long-range dependencies or in high dimensions (Rokhlin,
1985; 1990; Kushnir & Rokhlin, 2012; Zappala et al., 2024) and, as a result, solving such systems are
highly numerically unstable and computationally expensive. To address these challenges fundemental
to ODE systems, we transform Equation 1 into its equivalent integral form by integrating over time:

ϕ(t) = ϕ0 +

∫ t

0

v(ϕ(s), s)ds. (2)

This is a Volterra integral equation (VIE) of the second kind for the unknown function ϕ and v is a
kernel function. The VIE formulation generalizes the ODE approach and offers several advantages:
it inherently accounts for nonlocal components in the dynamics, is more flexible and robust for
modeling complex systems with memory effects, and avoids issues like stiffness and underflowing
that ODE solvers encounter (Kushnir & Rokhlin, 2012; Zappala et al., 2024). Consequently, Volterra
flow matching provides a more general and stable approach to modeling continuous flows between
distributions.

3.2 SOLVING VOLTERRA INTEGRAL EQUATIONS WITH CAUSAL LANGUAGE MODELS

In CaLMFlow, we define the flow using a more general form of Equation 2:

zt = f(zt, t) +

∫ t

0

G(zs, t, s)ds, (3)

where z(t) is the underlying flow and we use shorthand notation zt for simplicity. The term f(zt, t)
serves as an inhomogeneous component in a general VIE that encodes local changes in the system
and the integral

∫ t
0
G(zs, t, s)ds captures the accumulated influence of the dynamics over the history.

Following prior works Xiong et al. (2021); Cao (2021); Zappala et al. (2024), we utilize a causal
language model (CLM) to model the underlying dynamics. We discretize the time domain [0, 1] into
N time steps, denoted as (t0, t1, . . . , tN ), where t0 = 0 and tN = 1. Discretized conditional flow
trajectories are then sampled at these time points from a given ground truth continuous flow trajectory
z(t) (the choice of z(t) will be discussed later). This process yields the sequence (zt0 , zt1 , . . . , ztN ),
which serves as input to the CLM. Intuitively, the CLM employs its attention mechanism to encode
information from z0 through zt and predict zt+1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This process can be formalized as a sequence of functions
(
z0(t), z1(t), . . . , zN (t)

)
, where each zi(t)

is defined on the domain {t0, t1, . . . , ti} and satisfies zi(tj) = ztj . Superscripts indicate functions
of time t (representing discretized flow trajectories), while subscripts denote the values of these
functions at specific time points. For simplicity and alignment with sequence-based CLM inputs,
we represent zi(t) as the sequence of its values (z0, . . . , zi) over its domain. The CLM then acts
as an iterative solver for the discretized Volterra integral equation (VIE). It predicts ẑi+1 from zi,
extending the domain to the next time step:

ẑi+1 = f(zi, ti+1) +

i∑
j=0

∆ti+1G(zj , ti+1, tj), (4)

where ∆tk = tk − tk−1.

The iterative solving process is performed in parallel using teacher forcing, where the CLM is trained
on ground-truth discretized trajectories. The model’s final output zN is the "solved" trajectory.

Further theoretical discussion, framed in the context of Banach spaces, is provided in Appendix D.
Generalizations to higher-dimensional integrals, where spatial dependencies are also considered, are
straightforward but omitted for clarity.

Similar to the discussion in Lipman et al. (2022), the naïve Volterra flow matching objective

LVFM = Ep(zN )

∥∥zN − ẑN
∥∥2 = Ep(zN )

[
N∑
i=0

∥zti − ẑti∥
2

]
, (5)

where zN is the ground truth flow trajectory (a function defined on the discretized time grid
{t0, ..., tN}), ẑN is the model predicted trajectory and p(zN ) is the distribution of trajectories
over the flow. However, p(zN ) is intractable due to the inaccessibility of ground truth marginal
trajectories zN . Instead, we use the optimal transport conditional probability paths (Lipman et al.,
2022; Tong et al., 2024), where we sample each ztj of the conditional flow trajectory zN from
ptj (z|z0, z1) = N (z|(1− tj)z0+ tjz1, σtj ), where z0 and z1 are sampled from the source and target
distributions as conditions.

We optimize the conditional Volterra flow matching objective

LCVFM = Ep0(z0),q(zN )

∥∥zNz0,zN − ẑN
∥∥2 , (6)

where p0 is the initial source distribution (e.g., a Gaussian) and q is the target data distribution. A
theoretical discussion of the different objective functions can be found in Appendix E. We note
that next-token prediction in CLMs is simulation-free during training, as the next token is predicted
based on the ground truth history. Full trajectory simulation occurs only during inference. As such,
CaLMFlow, like CFM, operates as a simulation-free approach during training.

3.3 CONTINUOUS SPACE TOKENS VIA VARIATIONAL DECODING

We introduce variational decoding with a Kullback-Leibler divergence regularizer in our experiments.
Unlike standard CLMs, which rely on a fixed vocabulary and model the next-token distribution
through softmax probabilities, our approach enables the CLM to model a continuous distribution of
next tokens. Specifically, we use a probabilistic encoder qϕ(z|x) to map the CLM output tokens x to
a posterior latent distribution N (z;µ,σ2I), and a probabilistic decoder pψ(x|z) to reconstruct the
tokens x, where latent variable z acts as a continuous representation in a latent space.

Both qϕ and pψ are optimized by maximizing the evidence lower bound (ELBO) (Kingma & Welling,
2022):

−LVAE = Eqϕ(z|x)[log pψ(x|z)]− β KL(qϕ(z|x)∥p(z)), (7)

where p(z) := N (z;0, I) is a prior over the latent variable z, β is a scaling hyperparameter as
introduced in (Higgins et al., 2017), and KL(q∥p) is the Kullback-Leibler divergence. Using the
ELBO, our Volterra flow matching objective becomes

LVCVFM = LCVFM + β KL(qϕ(z|x)∥p(z)) (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To control the generation of continuous tokens at inference, we use a temperature parameter τ that
scales the variance of the encoded posterior, analogous to the use of temperature in LLMs (Renze &
Guven, 2024; Peeperkorn et al., 2024). Specifically, the posterior latent distribution is modified as
qϕ(z|x) ∼ N (z;µ, τσ2I), where τ ≥ 0 is the temperature parameter. An ablation experiment for
the temperature parameter is in Section 6.1.

4 SPATIOTEMPORAL AND MULTI-TRAJECTORY TOKENIZATION

In Section 3.2, we discussed how causal language models (CLMs) are utilized to solve integral
equations by discretizing the time domain. In this section, we first extend the integration to include
spatial domains, enabling the CLM to simultaneously model dynamics over both space and time.
Subsequently, we introduce a heuristic method that encodes multiple flow trajectories within the
same input sequence, which is empirically proven to improve model performance. For precise
implementation details during training and inference, see Algorithms 1 and 2 in Appendix B.

4.1 SPATIOTEMPORAL TOKENIZATION

As discussed in Section 3.2, we first discretize the temporal domain [0, 1] using a fixed grid {ti}Ni=1

of length N . The discretized temporal dynamics are encoded as input matrix Z ∈ RT×Din com-
prising T tokens, where each token zi is of Din dimensions. To introduce spatial structure into
the representation, we further subdivide each temporal embedding vector zi ∈ RDin into K vec-
tors {zij}Kj=1. The splitting can be either learned or predefined, depending on the data. For in-
stance, for single-cell data, we map the encoded gene expression features with a learned network
Sθ : RDin → RK·Din and split the token to K spatial tokens. In the case of images, we use an
encoder to extract low-level features. By ordering the embedding vectors according first to the
time step and then the spatial order, the final spatiotemporal token sequence Zst ∈ RT ·K×Din is
represented as Zst := [z11, . . . , z1K , . . . , zN1, . . . , zNK ]

⊤
. This spatiotemporal sequence of tokens

is processed by the CLM, which approximates a Volterra integral equation over both space and time.
The discussion in Section 3.2 extends to a spatiotemporal VIE.

4.2 MULTI-TRAJECTORY TOKENIZATION

We embed more than one conditional trajectory as input to the CLM by sampling M spatiotemporal
sequences as above and concatenate them along the sequence dimension. The overall sequence
Zsdt ∈ RM ·K·Din becomes Zsdt := [z111, . . . , z1K1, . . . , z1KM , . . . , zN11, . . . , zNKM ]

⊤
.

We empirically find that providing information across a batch of trajectories as context benefits model
performance. We observe that such benefits are unique to CLMs, whereas methods like CFM cannot
natively model multiple trajectories. While multi-trajectory training and inference are related to
integration over function spaces, exploring this connection is beyond the scope of our work and we
leave it for future exploration.

5 EXPERIMENTS

We evaluate CaLMFlow on synthetic datasets to showcase the advantages of integral equations
for modeling high-dimensional dynamical systems, and apply it to single-cell data generation,
demonstrating its ability to model complex distributions and leverage natural language understanding.

5.1 SYNTHETIC DATASETS

5.1.1 HIGH DIMENSIONAL DATA

Stiffness is a well-known challenge in the numerical integration of ODEs (Kushnir & Rokhlin, 2012;
Zappala et al., 2024), particularly in systems with high dimensionality. Conversely, the embedding
dimensions of causal language models (CLMs) are inherently large, as demonstrated by pretrained
models like GPT-2, which has an embedding dimension of 768. As such, we hypothesize that
CaLMFlow is better at modeling high dimensional data than ODE-based methods. To evaluate

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Gaussian → 2 Gaussians Gaussian → 8 Gaussians Gaussian → 2 Moons

Method ↓ Metric → 2-Wass (↓) MMD (↓) 2-Wass (↓) MMD (↓) 2-Wass (↓) MMD (↓)

Data Dimension = 100

CFM 5.483± 0.569 0.324± 0.001 4.846± 0.054 0.224± 0.005 5.061± 0.103 0.194± 0.004
CFM-OT 5.494± 0.517 0.322± 0.001 4.795± 0.031 0.227± 0.004 5.013± 0.058 0.195± 0.004
CFM-SB 5.504± 0.446 0.336± 0.001 4.914± 0.038 0.236± 0.005 5.294± 0.042 0.218± 0.004

CaLMFlow 3.137±1.028 0.211±0.003 2.317±0.226 0.014±0.001 2.944±0.195 0.018±0.002

Data Dimension = 1000

CFM 25.064± 1.291 0.488± 0.001 23.294± 0.166 0.402± 0.004 23.428± 0.187 0.363± 0.002
CFM-OT 25.131± 1.209 0.490± 0.001 23.116± 0.118 0.407± 0.003 23.339± 0.133 0.363± 0.003
CFM-SB 25.053± 1.558 0.493± 0.001 23.211± 0.078 0.412± 0.003 23.805± 0.132 0.373± 0.004

CaLMFlow 11.027±3.853 0.261±0.003 8.272±0.272 0.073±0.001 13.423±0.258 0.039±0.001

Table 1: Performance comparison of CaLMFlow and CFM variants across different distribution pairs
(Gaussian→ 2 Gaussians, Gaussian→ 8 Gaussians, Gaussian→ 2 Moons) and dimensions (100,
1000). We report 2-Wasserstein distance (2-Wass) and Maximum Mean Discrepancy (MMD) (µ± σ
over 5 runs), with best results highlighted in bold. As the dimensionality increases, CaLMFlow
consistently outperforms CFM variants, achieving lower 2-Wasserstein distances and MMD values,
particularly in high-dimensional settings where we expect traditional ODE-based methods, such as
CFM, struggle.

(a) Ground Truth (b) CFM (c) CaLM-
Flow (1 traj.)

(d) CaLM-
Flow (8 traj.)

Figure 2: Heatmaps of the ground truth 4 Gaussians dataset (2a) and that generated by CFM (2b),
CaLMFlow (1 traj.) (2c), and CaLMFlow (8 traj.) (2d). Both variants of CaLMFlow generate a
distribution that closely matches the ground truth, with the 8-trajectory version further enhancing
performance by distributing the data more evenly and accurately.

the robustness of CaLMFlow in high-dimensional settings, we compare its performance against
traditional ODE-based methods, which typically degrade as dimensionality increases.

Our results, summarized in Table 1, demonstrate that while CFM breaks down at higher dimensions,
CaLMFlow maintains strong performance. This suggests that CaLMFlow is an effective alternative
to ODE-based approaches for modeling high-dimensional problems, providing stability and accuracy
where methods like CFM fail.

5.1.2 MULTI-TRAJECTORY CONTEXT

While approaches like CFM focus on modeling the flow of individual points, CaLMFlow is able
to sample multiple trajectories and model them simultaneously. The results in Table 2 show this
approach improves the performance of CaLMFlow on generating synthetic data. Visualizations of
generated results, as shown in Figure 2, further demonstrate that modeling several trajectories at the
same time allows CaLMFlow to distribute data more evenly and accurately by leveraging trajectory
context.

5.2 SINGLE-CELL GENERATION

We apply CaLMFlow to immune tissue single-cell expression data (Dong et al., 2023) to demonstrate
its effectiveness in both unconditional and conditional generation of complex, high-dimensional
real-world data. We utilize the first 1,000 principal components of the gene expression data as

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method ↓ Metric → 2-Wass (↓) MMD (↓) 2-Wass (↓) MMD (↓)

2 Gaussians → 3 Gaussians in 100 Dimensions 2 Gaussians → 4 Gaussians in 100 Dimensions

CFM 6.4344 ± 0.2738 0.0293 ± 0.0008 6.3400 ± 0.3185 0.0206 ± 0.0003
CaLMFlow (1 traj.) 4.0898 ± 0.1842 0.02021 ± 0.0016 5.6608 ± 0.3272 0.0148 ± 0.0007
CaLMFlow (8 traj.) 2.8363 ± 0.3868 0.0149 ± 0.0016 3.6119 ± 0.3213 0.0058 ± 0.0005

Table 2: Comparisons of CFM, CaLMFlow, and CaLMFlow with multiple trajectories on different
distribution pairs in 100 dimensions. We report 2-Wasserstein distance (2-Wass) and Maximum Mean
Discrepancy (MMD), averaged over 5 runs. Best results are highlighted in bold. The table shows that
CaLMFlow, especially when utilizing multiple trajectories, significantly outperforms CFM in terms
of both fit and distribution accuracy. This demonstrates the advantage of leveraging multi-trajectory
modeling in CaLMFlow.

Method ↓ Metric → MMD(↓) 2-Wasserstein(↓) Leiden KLD(↓) adMMD(↓)

CFM 0.0763 ± 0.0275 0.0158 ± 0.0043 0.0330 ± 0.0027e-2 9.3568e-4 ± 0.7058e-4
CFM-OT 0.0893 ± 0.0193 0.0149 ± 0.0012 0.0324 ± 0.0039e-2 9.1720e-4 ± 0.4719e-4
CFM-SB 0.0998 ± 0.0050 0.0151 ± 0.0024 0.0338 ± 0.0045e-2 9.5234e-4 ± 0.3037e-4
DDPM 0.0709 ± 0.0010 0.0348 ± 0.0068 0.0364 ± 0.0101e-2 3.8040e-4 ± 0.1516e-4
scVI 0.1326 ± 0.0230 0.0349 ± 0.0020 0.0360 ± 0.0096e-2 11.1673e-4 ± 0.4967e-4
scGPT 0.3118 ± 0.0063 0.4716 ± 0.0741 — 18.1949e-4 ± 0.0531e-4

CaLMFlow (1 traj.) 0.0060 ± 0.0002 0.0100 ± 0.0006 0.0311 ± 0.0045e-2 2.4795e-4 ± 0.0460e-4
CaLMFlow (5 traj.) 0.0031 ± 0.0001 0.0087 ± 0.0006 0.0331 ± 0.0158e-2 1.8039e-4 ± 0.0239e-4

Table 3: Unconditional single-cell generation results comparing generated data to ground truth data.
To evaluate CaLMFlow’s ability to accurately generate its training single-cell dataset (Dong et al.,
2023), we computed distributional metrics MMD, 2-Wasserstein, KLD, and adMMD (MMD with a
k-NN-based adaptive kernel) across 5 seeds. Our default CaLMFlow outperforms all methods across
all metrics including CFM and its variants CFM-OT and CFM-SB, demonstrating CaLMFlow’s
ability to model the data distribution. Further improvement is seen with CaLMFlow (5 traj.), showing
the benefit of multi-trajectory tokenization. scGPT’s Leiden KLD score is omitted due to the model’s
poor performance on this metric being less informative for comparison purposes. See Figure 6 for a
visual comparison of CaLMFlow and CFM. Experimental details are in Appendices A.1.1 and A.1.2

.

features. The dataset comprises annotations for 7 cell types, 10 perturbations, and 2 chronicities,
leading to 140 unique combinatorial labels. In the unconditional generation experiment, the model
generates the overall target distribution from Gaussian noise as initial conditions, regardless of labels.
In the conditional generation experiment, five combinations of the labels are held out as a test set,
and the models are tasked with generating the held-out target distribution conditioned on the unseen
combinatorial labels.

Our method is benchmarked against several models, including CFM (Tong et al., 2024) and its
variants CFM-OT and CFM-SB, the denoising diffusion probabilistic model (DDPM) (Ho et al.,
2020), single-cell generative models scVI (Lopez et al., 2018) and scGPT (Cui et al., 2023), and the
Compositional Perturbation Autoencoder (Lotfollahi et al., 2023), depending on the task. To assess
the quality of data generated by each model, we compute distributional metrics, such as maximum
mean discrepancy (MMD), 2-Wasserstein distance, and Kullback-Leibler Divergence (KLD), between
model-generated data and the ground truth test data. For KLD , we use Leiden clustering to generate
a distribution of points across clusters (see Appendix A.1.1 for details).

5.2.1 UNCONDITIONAL GENERATION OF SINGLE-CELL DATA

The results in Table 3, demonstrate that CaLMFlow consistently outperforms CFM and all other
methods across all metrics. Furthermore, as illustrated in Figure 6, CaLMFlow generates cells
with distributions more closely aligned to the ground truth data compared to other methods. These
findings underscore CaLMFlow’s superior performance in capturing and reproducing the complex
high-dimensional distributions inherent in single-cell expression data.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method ↓ Metric → MMD(↓) 2-Wasserstein(↓) Leiden KLD(↓) Inception Score(↑) adMMD(↓)

CFM 0.1105± 0.0135 0.0435± 0.0046 0.1076± 0.0049 3.1747± 0.0196 0.0045± 0.0003
CFM-OT 0.1082± 0.0140 0.0547± 0.0066 0.1223± 0.0060 2.9794± 0.0261 0.0045± 0.0004
CFM-SB 0.1118± 0.0031 0.0460± 0.0066 0.1033± 0.0036 3.1477± 0.0207 0.0046± 0.0002
scVI 0.1654± 0.0052 0.5609± 0.0427 — 1.0010± 0.0008 0.0059± 0.0000
scGPT 0.2003± 0.0074 0.3513± 0.0274 — 1.0000± 0.0000 0.0062± 0.0000
CPA∗ — 0.2802 — 1.5831 0.0120

CaLMFlow (R.I.) 0.0350± 0.0004 0.0187± 0.0006 0.0897± 0.0059 3.6976± 0.0297 0.0026± 0.0001
CaLMFlow (N.L.) 0.0181± 0.0005 0.0150± 0.0002 0.0202± 0.0016 3.9603± 0.0391 0.0020± 0.0000

Table 4: Single-cell perturbation response prediction comparison in terms of fit (µ ± σ over five
repeated runs). CFM, scVI, scGPT and CPA are compared. Best results in bold. For CaLMFlow, R.I.
stands for randomly initialized CLM and N.L. stands for natural language pretrained CLM. "—" in
Leiden KLD represents infinite value due to not being able to generate all classes. ∗: for CPA, no
standard deviation is reported as it is deterministic; CPA generated data that resulted in numerical
instability when computing MMD, leading to the absence of valid MMD values

Cell Representation→ Full Cell Top 100 DE Genes

Method ↓Metric→ R2 (↑) Pearson (↑) Spearman (↑) R2(↑) Pearson(↑) Spearman(↑)
CFM 0.4138± 0.1916 0.6280± 0.1395 0.6947± 0.0638 0.3928± 0.2481 0.5851± 0.2262 0.5183± 0.2432
CFM-OT 0.8431± 0.0247 0.9181± 0.0134 0.8693± 0.0227 0.8315± 0.0676 0.9111± 0.0369 0.8929± 0.0519
CFM-SB 0.4541± 0.1747 0.6623± 0.1248 0.7148± 0.0500 0.4182± 0.2423 0.6127± 0.2069 0.5584± 0.2054
scVI 0.1070± 0.0092 0.3268± 0.0137 0.0050± 0.0118 0.3534± 0.0668 0.5919± 0.0554 0.2993± 0.2755
scGPT 0.2130± 0.0347 0.4598± 0.0398 0.3813± 0.1029 0.3387± 0.0778 0.5785± 0.0640 0.3928± 0.1225
CPA 0.5986± 0.0459 0.7731± 0.0300 0.9185± 0.0151 0.8545± 0.0790 0.9234± 0.0432 0.9303± 0.0270

CaLMFlow (R.I.) 0.9862± 0.0087 0.9931± 0.0044 0.9422± 0.0245 0.9653± 0.0270 0.9824± 0.0138 0.9721± 0.0213
CaLMFlow (N.L.) 0.9887±0.0076 0.9943±0.0038 0.9468±0.0192 0.9762±0.0130 0.9880±0.0066 0.9803±0.0149

Table 5: Single-cell perturbation response prediction comparison in terms of correlation. R2, Pearson
R and Spearman R on the full cell and the top 100 most differentially expressed genes are reported
(µ± σ over five repeated runs and five unique combinatorial labels). For CaLMFlow, R.I. stands for
randomly initialized CLM and N.L. stands for natural language pretrained CLM.

5.2.2 SINGLE-CELL PERTURBATION RESPONSE PREDICTION

We leverage CLMs’ inherent capabilities to encode and comprehend natural language by representing
perturbation conditions as simple text prompts (see A.1.3 for details). These prompts are prepended
to the embedded flow-matching conditional trajectories and processed through the CLM’s tokenizer
and embedding layers. For details on conditional encodings for other models, see A.1.3.

Our architecture is based on a small customized Pythia (Biderman et al., 2023) model as the CLM
with a comparable number of parameters (see Table 8 in Appendix A.2 for a comparison). To
investigate the benefit of natural language capabilities of CLMs, we compare random initialization to
natural language pretraining where the weights are copied from a pretrained 160 million parameter
Pythia model.

The results shown in Table 4 highlight CaLMFlow’s ability to generate data distributions that closely
align with the ground truth, outperforming competing models. The correlation statistics shown
in Table 5 underscore CaLMFlow’s effectiveness in producing realistic cell expression profiles
that correspond to the specified combinatorial labels. Notably, both tables show that leveraging
pretrained CLM weights enhances CaLMFlow’s performance, showcasing the power of utilizing
natural language understanding abilities of CLMs in the CaLMFlow framework.

Furthermore, as shown in Figure 3, both variants of CaLMFlow generate data that closely overlaps
with the ground truth distribution, demonstrating CaLMFlow’s superior ability to model data under
unseen conditions. Figure 7 illustrates the distributions produced by each model, showing that
CaLMFlow’s generated data most accurately reflects the ground truth. In contrast, other models are
either unable to differentiate between combinatorial labels or generate unrealistic distributions. These
visualizations reinforce the high quality of data generated by CaLMFlow, emphasizing its capability
to model complex distributions and effectively utilize natural language prompts.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) CaLMFlow (R.I.) (b) CaLMFlow (N.L.) (c) CFM (d) CFM-OT

(e) CFM-SB (f) scVI (g) scGPT (h) CPA

Figure 3: Comparison of conditional generation quality across different models for single-cell
perturbation data. CaLMFlow (3a and 3b) exhibits strong overlap between generated data distribution
(blue) and the ground-truth distribution (orange), highlighting its superior capability to model data
with unseen combinatorial perturbations. In contrast, other models struggle to produce realistic
samples. For CaLMFlow, R.I. refers to randomly initialized CLM, and N.L. refers to natural language
pretrained CLM.

6 ABLATION EXPERIMENTS

6.1 TEMPERATURE

To investigate the impact of the temperature parameter on CaLMFlow’s performance at inference,
we varied the temperature for the 8-Gaussians to 2-Moons dataset. Figure 4 shows the best MMD
and 2-Wasserstein values at τ = 0.2, where the generated data closely matches the ground truth.
Deviations from this value lead to less accurate transformations. Interestingly, it has been empirically
found that the optimal temperature in LLMs is often below 1.0 to mitigate inference noise, an
observation that aligns with our findings. The experiment also highlights the importance of the VAE
component, as its removal significantly degrades performance.

6.2 NUMBER OF TIME POINTS

To evaluate the impact of the number of time points on CaLMFlow’s performance, we varied the
number of time points during training and inference for the 8 Gaussians to 2 Moons dataset. Figure 8
shows that as the number of time points increases, both the MMD and 2-Wasserstein consistently
decrease, indicating improved model accuracy. This demonstrates that increasing the number of
time points improves CaLMFlow’s ability to capture the transformation dynamics, leading to better
performance.

6.3 NUMBER OF SPATIOTEMPORAL TOKENS AND TRAJECTORIES

To test the impact of spatiotemporal tokenization, we use a similar setup as in Tong et al. (2024) on
the MNIST dataset (details in Subsection 4.1). All key hyperparameters, optimizers, and training
configurations were kept identical to ensure consistency. Our results, as shown in Table 6, demonstrate
that CaLMFlow outperforms other methods and increasing the number of spatial tokens improves
inception scores. Similarly, to test the impact of multi-trajectory tokenization, we varied the number
of trajectories used to transform data from 2-Moons to 8-Gaussians toy dataset. Table 9 in Appendixe
C shows a marked improvement in MMD and 2-Wasserstein with the addition of more trajectories.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Ablation results on temperature. Left: CaLMFlow generated data from 8gaussians to
2moons, using different temperature values. Right: 2-Wasserstein and MMD performances as a
function of temperature. The plots show that a low, non-zero temperature value (τ=0.2) produces the
best performance and that the VAE is necessary.

Method ↓ Inception Score (↑)
DDPM 7.1519 ± 0.3456
CFM 8.9353 ±0.2334
CFM-OT 7.5515 ± 0.2935

CaLMFlow (1 Space tokens) 8.9698 ± 0.1817
CaLMFlow (2 Space tokens) 8.9619 ± 0.1281
CaLMFlow (4 Space tokens) 9.1175 ± 0.2103
CaLMFlow (8 Space tokens) 9.4278 ± 0.1845

Table 6: Comparison of inception scores on the MNIST dataset. CaLMFlow (S.T. stands for Space
Tokens) outperforms other methods. The results show an improvement in inception scores as the
number of space tokens increases, with CaLMFlow (8 Space tokens) achieving the highest score with
statistical significance. A comparison of generated images between CFM, CFM-OT, CFM-SB, and
CaLMFlow can be found in Figure 9

.

7 CONCLUSION AND FUTURE WORK

We introduce CaLMFlow, a novel framework for flow matching that leverages causal language models
by casting flow matching as a Volterra integral equation. CaLMFlow outperforms traditional flow
matching models like CFM, especially on high-dimensional datasets, such as single-cell generation
and perturbation response prediction. It generates more accurate and realistic data in both synthetic
and real-world tasks. Future work will formalize CaLMFlow’s multi-trajectory approach using
integral equations over function spaces and explore its potential as an iterative solver to refine entire
trajectory outputs, enhancing its ability to model systems with complex global dynamics.

Reproducibility Statement We have supported reproducibility by detailing our experimental
implementations, metric computations, and data sources in the appendices. The main text and
supplementary materials thoroughly explain our models and methods, along with how the metrics
were computed.

REFERENCES

Ery Arias-Castro, Bruno Pelletier, and Venkatesh Saligrama. Remember the curse of dimensionality:
The case of goodness-of-fit testing in arbitrary dimension, 2018. URL https://arxiv.org/
abs/1607.08156.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.

10

https://arxiv.org/abs/1607.08156
https://arxiv.org/abs/1607.08156


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Shuhao Cao. Choose a transformer: Fourier or galerkin. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 24924–24940. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/d0921d442ee91b896ad95059d13df618-Paper.pdf.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, and Bo Wang. scgpt: Towards
building a foundation model for single-cell multi-omics using generative ai. bioRxiv, 2023.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation via
transformers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 19822–19835. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/a4d92e2cd541fca87e4620aba658316d-Paper.pdf.

Mingze Dong, Bao Wang, Jessica Wei, Antonio H. de O. Fonseca, Curtis J. Perry, Alexander Frey,
Feriel Ouerghi, Ellen F. Foxman, Jeffrey J. Ishizuka, Rahul M. Dhodapkar, and David van Dijk.
Causal identification of single-cell experimental perturbation effects with cinema-ot. Nature
Methods, 20(11):1769–1779, Nov 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-02040-5.
URL https://doi.org/10.1038/s41592-023-02040-5.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8,
2021. URL http://jmlr.org/papers/v22/20-451.html.

Weilong Fu and Ali Hirsa. An unsupervised deep learning approach to solving partial integro-
differential equations. Quantitative Finance, 22(8):1481–1494, 2022.

Yuying Ge, Yixiao Ge, Ziyun Zeng, Xintao Wang, and Ying Shan. Planting a seed of vision in large
language model, 2023.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making
LLaMA SEE and draw with SEED tokenizer. In The Twelfth International Conference on Learning
Representations, 2024.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models. In The Eleventh International Conference on
Learning Representations, 2023.

Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
variational deeponet for predicting crack path in quasi-brittle materials. Computer Methods in
Applied Mechanics and Engineering, 391:114587, 2022. ISSN 0045-7825.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/d0921d442ee91b896ad95059d13df618-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d0921d442ee91b896ad95059d13df618-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a4d92e2cd541fca87e4620aba658316d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a4d92e2cd541fca87e4620aba658316d-Paper.pdf
https://doi.org/10.1038/s41592-023-02040-5
http://jmlr.org/papers/v22/20-451.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Vincent Hu, Di Wu, Yuki Asano, Pascal Mettes, Basura Fernando, Björn Ommer, and Cees Snoek.
Flow matching for conditional text generation in a few sampling steps. In Yvette Graham and
Matthew Purver (eds.), Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 380–392, St. Julian’s,
Malta, March 2024. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Dan Kushnir and Vladimir Rokhlin. A highly accurate solver for stiff ordinary differential equations.
SIAM Journal on Scientific Computing, 34(3):A1296–A1315, 2012.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative
modeling for single-cell transcriptomics. Nature methods, 15(12):1053–1058, 2018.

Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ignacio L
Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, et al. Predicting
cellular responses to complex perturbations in high-throughput screens. Molecular Systems Biology,
pp. e11517, 2023.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM Review, 63(1):208–228, 2021. doi: 10.1137/19M1274067.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021. URL http://jmlr.org/papers/v22/
19-1028.html.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019. URL https://arxiv.org/abs/1912.01703.

Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and Anna Jordanous. Is temperature the creativity
parameter of large language models?, 2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.
06125.

12

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf.

Sashank J. Reddi, Aaditya Ramdas, Barnabás Póczos, Aarti Singh, and Larry Wasserman. On the
decreasing power of kernel and distance based nonparametric hypothesis tests in high dimensions,
2014. URL https://arxiv.org/abs/1406.2083.

Matthew Renze and Erhan Guven. The effect of sampling temperature on problem solving in large
language models, 2024.

Vladimir Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of
computational physics, 60(2):187–207, 1985.

Vladimir Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions.
Journal of Computational Physics, 86(2):414–439, 1990.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Im-
proved techniques for training gans, 2016. URL https://arxiv.org/abs/1606.03498.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. Transactions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?id=CD9Snc73AW. Expert Certification.

V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden: guaranteeing well-connected
communities. Scientific Reports, 9(1):5233, Mar 2019. ISSN 2045-2322. doi: 10.1038/
s41598-019-41695-z. URL https://doi.org/10.1038/s41598-019-41695-z.

Aaron van den Oord, Oriol Vinyals, and koray kavukcuoglu. Neural discrete representation learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
Featured Certification.

13

https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
https://arxiv.org/abs/1406.2083
https://arxiv.org/abs/1606.03498
https://openreview.net/forum?id=CD9Snc73AW
https://doi.org/10.1038/s41598-019-41695-z
https://www.aclweb.org/anthology/2020.emnlp-demos.6


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Emanuele Zappala, Antonio H. de O. Fonseca, Andrew H. Moberly, Michael J. Higley, Chadi
Abdallah, Jessica A. Cardin, and David van Dijk. Neural integro-differential equations. Proceedings
of the AAAI Conference on Artificial Intelligence, 37(9):11104–11112, Jun. 2023. doi: 10.1609/
aaai.v37i9.26315. URL https://ojs.aaai.org/index.php/AAAI/article/view/
26315.

Emanuele Zappala, Antonio Henrique de Oliveira Fonseca, Josue Ortega Caro, Andrew Henry
Moberly, Michael James Higley, Jessica Cardin, and David van Dijk. Learning integral op-
erators via neural integral equations. Nature Machine Intelligence, August 2024. ISSN
2522-5839. doi: 10.1038/s42256-024-00886-8. URL http://dx.doi.org/10.1038/
s42256-024-00886-8.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yugang Jiang, and Xipeng Qiu.
Anygpt: Unified multimodal llm with discrete sequence modeling, 2024.

A DETAILED EXPERIMENT SETUP

All models are implemented in PyTorch (Paszke et al., 2019), trained using the Adam optimizer
(Kingma & Ba, 2017). Additionally, FlashAttention-2 (Dao, 2024) is employed to accelerate training.

For the synthetic experiments, we utilize GPT-2 (Radford et al., 2019) as the CLM, while in the
single-cell experiments, we adopt Pythia (Biderman et al., 2023). Both models are hosted on the
open-source LLM platform Hugging Face (Wolf et al., 2020).

A.1 SINGLE CELL GENERATION

A.1.1 DETAILS ON DISTRIBUTION AND CORRELATION METRICS

MMD and 2-Wasserstein Distance Distributional metrics, even with kernel methods, are shown
to suffer greatly from curse of dimensionality as shown in previous work(Reddi et al., 2014; Arias-
Castro et al., 2018). Therefore, rather than computing MMD and 2-Wasserstein in the original
1000-dimensional feature space, we first embed the ground truth and generated distribution together
with UMAP and compute the metrics in the joint UMAP space. The dimension of the UMAP is
chosen to be 10.

For MMD, we adopt a radial basis function (RBF) kernel k : X × X → R with

k(x, y) = exp
(
−∥x− y∥2

)
The estimator of MMD between two the generated distribution P = (x1, ..., xN ) and the ground
truth distribution Q = (y1, ..., yN ) is computed as

MMD(P,Q) =
1

N(N − 1)

∑
i̸=j

k(xi, xj) +
1

N(N − 1)

∑
i ̸=j

k(yi, yj)−
2

N2

N∑
i=1

N∑
j=1

k(xi, yj)

The 2-Wassertein distance is computed as

W2(P,Q) = inf
π

√√√√( 1

n

n∑
i=1

∥xi − yπ(i)∥2
)
,

where π are permutations on n elements. This is implemented with the Python Optimal Transport
toolbox (Flamary et al., 2021).

We compute adaptive MMD scores using an adaptive Radial Basis Function (RBF) kernel, where the
bandwidth is dynamically adjusted according to the local density of points.

K(X,Y ) = exp

(
−∥X − Y ∥2

2σXσY

)

14

https://ojs.aaai.org/index.php/AAAI/article/view/26315
https://ojs.aaai.org/index.php/AAAI/article/view/26315
http://dx.doi.org/10.1038/s42256-024-00886-8
http://dx.doi.org/10.1038/s42256-024-00886-8


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The bandwidth for each point is determined based on the distances to its k-nearest neighbors (k-NN),
enabling the kernel to adapt to varying local densities. This adaptive mechanism enhances the kernel’s
ability to capture distributional differences in non-homogeneous data, improving the sensitivity of the
MMD to local structure.

Leiden KL Divergence We employ the Leiden clustering algorithm (Traag et al., 2019) to identify
community structures within the ground truth data. We run Leiden clustering with the resolution
parameter set to 0.3, resulting in 8 clusters as shown in Figure 5a. We then train a simple two-layer
MLP with ReLU activation to predict the Leiden labels from the ground truth data, achieving a
prediction accuracy of 95% on a held-out test set. This MLP classifier is subsequently used to assign
predicted Leiden cluster labels to data generated by different models. To assess model performance,
we compute the KL divergence between the distributions of Leiden clusters in the ground truth and
generated data.

Inception Score For the conditional generation task, to assess the quality of the generated cells,
we utilize the Leiden cluster labels and the trained MLP classifier to compute an inception score,
inspired by its use in the computer vision domain (Salimans et al., 2016). Let p(y|x) represent the
conditional distribution of the MLP classifier assigning a label y to a sample x, the Inception Score is
calculated as

IS = exp (ExKL(p(y|x)||p(y)),
where p(y) is the marginal distribution of the label y.

Correlation Metrics For the conditional generation task, we additionally compute correlation
metrics such as R2, Pearson R, and Spearman R between the average generated cells and the average
ground truth cells for each condition, to assess how well the models generate cells based on the
specified conditions. These metrics are calculated per combinatorial label and then averaged. For
each condition (cell type, perturbation, and chronicity) we identify the top 100 most differentially
expressed genes by comparing them to control cells of the same type and chronicity but without
stimulation.

A.1.2 SINGLE CELL UNCONDITIONAL GENERATION MODEL IMPLEMENTATIONS

CaLMFlow’s architecture is a small Pythia model with 64 hidden dimensions, a 256-dimensional
feedforward layer, 4 attention heads, and 2 blocks. The encoder for the cell expression vector, latent
mean, latent sigma and the decoder were all 2-layer MLPs, with input and output dimensions adjusted
for the number of spatial tokens. When using pretrained weights, we take the upper left block of
all weight matrices of the same dimension as our customized model. We used the standard setup
for CFM following the torchCFM library—a 4-layer MLP with intermediate width 1024 for CFM,
CFM-OT, and CFM-SB. At inference, we use 100 function evaluations using the adaptive "dopri5"
solver in the NeuralODE package with the default parameters. For DDPM, we use a 2-layer MLP
with 2048 intermediate dimension, and 100 denoising steps. We found similar performance with
deeper and wider layers, so we used a smaller model to account for the number of parameters. For
scVI, we trained on the full gene expression since its zero-inflated negative binomial decoder is not
meant to handle non-sparse data. At inference, we randomly sample from the prior distribution to
generation samples with the decoder. For scGPT, we trained the model with a 5000 gene context
using the masked decoding decoding scheme from the official repository with masking ratios 0.25,
0.5, and 0.75. At inference, we mimicked the training procedure as closely as possible by using 2500
context genes and masking 2500 genes until an entire cell is generated. The first 2500 genes are taken
from a randomly sampled ground truth cell expression vector.

The below table includes a comparison of each model’s number of trainable parameters.

A.1.3 SINGLE CELL CONDITIONAL ENCODING

CaLMFlow We use the following templates to form the natural language prompts:

For perturbed cells, the prompts are:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Ground Truth (b) CaLMFlow (R.I.) (c) CaLMFlow (N.L.)

(d) CFM (e) CFM-OT (f) CFM-SB

(g) scVI (h) scGPT (i) CPA

Figure 5: Comparison of the ground truth data and model-generated data, colored by Leiden labels.
For the generated data, the Leiden labels are predicted by an MLP classifier trained on the ground
truth. Both variants of CaLMFlow successfully generate data spanning all clusters and closely align
with the ground truth distribution. In contrast, while CFM, CFM-OT, and CFM-SB generate data
across all classes, they fail to differentiate between them, indicating a mismatch in the underlying
community structures. Models such as scVI, scGPT, and CPA are unable to generate data for some
classes altogether.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Model Number of trainable parameters
CFM (all variants) 4,150,248

DDPM 12,696,552
scVI 14,018,766

scGPT 51,330,049
CaLMFLow (custom Pythia-160M) 2,194,104

Table 7: Comparison of the number of parameters of each model

"Generate a {cell type} cell stimulated with {perturbation} and
exposure {chronicity}:"

For control cells, the prompts are:

"Generate a {cell type} cell with no stimulation and exposure
{chronicity}:"

For example, one sample prompt for a perturbed cell is:

"Generate a CD4 T cell stimulated with IL-6 and exposure acute:"

and one sample prompt for a control cell is:

"Generate a B cell with no stimulation and exposure chronic:"

The prompts are tokenized using the Hugging Face tokenizer class AutoTokenizer.from_-
pretrained("EleutherAI/pythia-160m") and embeded using the embedding layers of
a customized Pythia-160M model. The embedding vectors are prepended to the corresponding
conditional flow matching trajectories and processed by the CLM. Since we don’t train the CLM to
generate text responses, no losses are applied on the text prompts during training.

During inference, we sample combinatorial labels from the test dataset, form prompts as above,
sample initial Gaussian noises, tokenize and prompt the CLM to generate the trajectories and
consequently the target distribution.

CFM Conditional Flow Matching doesn’t provide an option for conditional generation out of the
box, so adapted the torchCFM python library. In order to allow CFM to generate contionally, we
create 3 one-hot vectors corresponding to each of the 3 conditions: cell type, perturbation, and
chronicity. With 7 cell types, 10 perturbations, and 2 exposures, we obtain a 19-dimensional vector
once concatenated together. This conditioning vector is then appended to the data vector, and CFM
learns the vector field as usual. The NeuralODE python package was adapted to handle conditioning
vectors so we could apply the same adaptive solver used in Tong et al. (2024).

scVI To condition scVI, we applied the same one-hot encoding scheme as CFM to the latent vectors
prior to decoding the posterior parameters.

scGPT We trained scGPT (Cui et al., 2023) with a 5000 gene context using the masked decoding
decoding scheme from the official repository with masking ratios 0.25, 0.5, and 0.75. The conditioning
vectors were one-hot encoded, and we used learned embedding matrices for each type of condition
and added the learned embedding to the cell expression. At inference, we applied the same procedure,
always using 2500 context genes and masking 2500 genes until an entire cell is generated. The first
2500 genes are generated using a sampled ground truth cell expression vector from the test dataset,
giving an advantage to scGPT other approaches did not have. Despite this, scGPT still showed poor
performance relative to other methods.

CPA CPA is a framework of perturbation response prediction. We follow their setup as in their
official GitHub repository by setting our perturbation as perturbation_key and cell type
and chronicity as categorical covariates.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 MULTI-TRAJECTORY EXPERIMENTS, ABLATIONS ON TEMPERATURE AND NUMBER OF
TIME POINTS

CaLMFlow The model architecture for CaLMFlow consists of a simple MLP to embed the input
into the encoder, represented by GPT-2. The dimensionality of the embeddings and hidden states in
GPT-2 is set to 32. The GPT-2 Transformer encoder uses 4 hidden layers with 1 attention head per
attention layer. The decoder is implemented as a VAE, with a latent dimension of 16 and a hidden
dimension of 32. For CaLMFlow, the scaling hyperparameter β, the number of time points, and the
temperature parameter τ are set to empirically optimal values for each task.

CFM For CFM, we use the standard architecture described in Tong et al. (2024) for the 2D
experiments. Trajectories are evaluated using the dopri5 option of the adaptive solver.

The below table includes a comparison of each model’s number of trainable parameters for the
conditional generation task.

Model Number of trainable parameters
CFM (all variants) 4,169,704

scVI 28,033,895
scGPT 51,342,849

CaLMFLow* (custom Pythia-160M) 2,606,904

Table 8: Comparison of the number of parameters of each model. *For CaLMFlow, the number
of parameters excludes the embedding parameters for text, which is approximately 6.5 million
parameters.

B TRAINING AND INFERENCE ALGORITHMS

Algorithm 1 Inference Algorithm

Sizes: Data dimension D, hidden dimension H , discretize [0, 1] into N time steps, K spatial
tokens per time step, M trajectories
Model components: Embedding function Eθ : RD → RH , projection Sθ : RH → RH·K ,
autoregressive transformer Tθ, mean and variance projections µθ, σθ : RH·K → RH , decoder Decθ
Input: X ∼ N (0, I), X ∈ RM×D (Optional: embedded text sequence of length P , ZT ∈ RP×H )
for n = 1, . . . , N − 1 do

Z← Eθ(X) ▷ Embed data into latent space.
Z← Sθ(Z) ▷ Expand latent dimension with projection S for spatial tokenization.
Z← Reshape(Z) ▷ Input dimension n×M ×H ·K, output dimension n×K ×M ×H
Z← Flatten(Z) ▷ Z = [z111, . . . , z1K1, . . . , z1KM , . . . , zN11, . . . , znKM ] ∈ Rn·K·M×H .
if text then

Z← Concat[ZT ,Z] ▷ Prepend embedded text tokens to embedded continuous data.
end if
Z← Tθ(Z)
Z← Reshape(Z) ▷ Reshape back to n×M ×H ·K.
Zµ,Zσ ← µθ(Z), µσ(Z)
Z← Z ∼ N (Zµ,Zσ)
X← Concat[X,Decθ(Z[n])]

end for
Return: X

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Training Algorithm

Training data: D
Sizes: Data dimension D, hidden dimension H , discretize [0, 1] into N evenly spaced time steps
0 = t0, t1, t2, . . . , tN = 1, K spatial tokens per time step, M trajectories
Model components: Embedding function Eθ : RD → RH , projection Sθ : RH → RH·K ,
autoregressive transformer Tθ, mean and variance projections µθ, σθ : RH·K → RH , decoder Decθ
(Optional: text embedding layer Cθ)
while not converged do ▷ For stochastic gradient descent

X ∼ N (0, I), X ∈ RM×D

Y ∼ D, Y ∈ RM×D

W← 0 ∈ RN×M×D

for i=0, 1, . . . , N-1 do
W[i]← (1− ti)X+ tiY

end for
Z← Eθ(W) ▷ Embed data into latent space.
Z← Sθ(Z) ▷ Expand latent dimension with projection S for spatial tokenization.
Z← Reshape(Z) ▷ Input dimension n×M ×H ·K, output dimension n×K ×M ×H
Z← Flatten(Z) ▷ Z = [z111, . . . , z1K1, . . . , z1KM , . . . , zN11, . . . , znKM ] ∈ Rn·K·M×H .
if text then

Q← tokenized text
ZT ← Cθ(Q)
Z← Concat[ZT ,Z] ▷ Prepend embedded text tokens to embedded continuous data.

end if
Z← Tθ(Z)
Z← Reshape(Z) ▷ Reshape back to n×M ×H ·K.
Zµ,Zσ ← µθ(Z), µσ(Z)
Z← Z ∼ N (Zµ,Zσ)
Wpred ← Decθ(Z)
Loss← L(W[1 :],Wpred[: −1]) ▷ Loss function define in Equation 5
Update(Loss) ▷ Standard backpropagation with optimizer.

end while

C ADDITIONAL RESULTS

(a) CFM (b) CaLMFlow

Figure 6: Comparison of UMAPs of generated versus ground truth single-cell data between CFM and
CaLMFlow. For each model, we generated 20,000 cells and plotted a UMAP with 20,000 randomly
sampled cells from the immune cell dataset from Dong et al. (2023). The plots demonstrate that
CaLMFlow produces a single-cell distribution more accurately reflecting the ground truth data, in
contrast to CFM.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Ground Truth (b) CaLMFlow (R.I.) (c) CaLMFlow (N.L.) (d) CFM

(e) CFM-OT (f) CFM-SB (g) scVI (h) scGPT (i) CPA

Figure 7: Comparison of conditional generation quality across different models for single-cell
perturbation data. CaLMFlow (7b and (7c) generates data that accurately reflects the ground truth
distribution across all combinatorial labels (cell type, perturbation, and chronicity), demonstrating
its superior ability to understand complex conditions while maintaining a realistic overall data
distribution. In contrast, methods like CFM-OT (7e), CFM-SB (7f), and scVI (7g) generate data
where labels are blended, indicating an inability to comprehend conditions. While CFM (7d) and
scGPT (7h) produce well-separated data, it’s easily observed that this does not realistically represent
the actual distribution when compared to the ground truth. For CaLMFlow, R.I. refers to randomly
initialized CLM, and N.L. refers to natural language pretrained CLM.

Figure 8: Ablation results on number of time points. Left: CaLMFlow generated data from 8gaussians
to 2moons, using different number of time points. Right: 2-Wasserstein and MMD performances
as a function of number of time points. The plots show that increasing the number of time points
improves the model performance.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) CaLMFlow (b) CFM (c) CFM-OT (c) DDPM

Figure 9: Uncurated conditional image generation comparison between CaLMFlow, CFM models,
and DDPM on MNIST. CaLMFlow generates higher image quality images compared to both CFM
variants and DDPM.

Method ↓ Metric → 2-Wass (↓) MMD (↓)

CaLMFlow (1 traj.) 1.3756 ± 0.0668 0.0057 ± 0.0002
CaLMFlow (4 traj.) 1.0477 ± 0.0771 0.0041 ± 0.0003
CaLMFlow (10 traj.) 0.8753 ± 0.1243 0.0020 ± 0.0003

Table 9: Ablation results on multi-trajectory implementations of CaLMFlow transforming 2 moons
into 8 Gaussians in 2 dimensions. We evaluate the MMD and 2-Wasserstein between the generated
target distribution and ground truth distribution over 5 seeds. The results show increasing the number
of trajectories improves CaLMFlow’s ability to accurately generate the target distribution.

D BANACH SPACES, VOLTERRA INTEGRAL EQUATIONS AND CLMS

A Volterra integral equation of the second kind is defined as:

z(t) = z(0) +

∫ t

0

G(z(s), t, s)ds (9)

where G(z(s), t, s) is a Urysohn kernel function encoding the influence of past states on the current
state.

We adopt the standard next-token prediction paradigm used in CLMs. Given tokens x0 to xk, the
model predicts xk+1, where the sequence (x0, . . . , xk) corresponds to portions of the conditional flow
matching trajectory. In this section, we give the implementation details of the theoretical discussion
given in Section 3.2.

Our training procedure enables the causal language model (CLM) to learn system dynamics by
modeling sequences of varying lengths. During training, the model predicts the next state in the
trajectory given previous states, similar to next-token prediction in language models, but with tokens
representing continuous trajectory states.

Solving a nonlinear integral equation generally requires some iterative procedure, where an initial
guess is refined iteratively. Since the evaluation of z at time t requires evaluation of z at all time
points between 0 and t due to the integral

∫ t
0
G(zs, t, s)ds. Observe that once an approximation

(guess) zj(t) has been obtained, all evaluations happen in parallel for each iteration, since we can
integrate using zj(t), see Zappala et al. (2024) for details. We present the model with sequences
starting from the initial state z0 and extending to various lengths (e.g., predicting from z0 to z1, z0 to
z2, up to z0 to zN ). This trains the model on multiple sub-trajectories, which can be used in inference
in an iterative manner to output the complete trajectory.

This training methodology can be viewed through the lens of functional analysis, where we consider
the CLM as learning operators on a direct sum of Banach spaces. Each Banach space corresponds
to sequences (or discretized trajectories) of a particular length, and the direct sum represents the
combination of these spaces. The norm on this direct sum space is defined as the sum of the norms
of the individual spaces. By minimizing the loss, which aggregates the errors across all sequence
lengths, the model learns to operate effectively on each of these spaces.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Let Bk denote some Banach space of functions with domain [0, tk], equipped with an appropriate
norm ∥ · ∥Bk

, e.g., the L2 space. The direct sum B =
⊕N

k=1 Bk is the direct sum of the Bk spaces.
The total loss L in this space is the sum of the component norms:

L =

N∑
k=1

∥zi(t)− ẑi(t)∥Bk
(10)

where zi indicates the ground-truth between [0, ti], and ẑi is the model’s prediction on [0, ti]. This
loss function aggregates the errors over all sequence lengths, reflecting the norm on the direct sum
space.

During inference, the model sequentially generates the trajectory by predicting the next state given
the current sequence, starting from the initial state z0. At each step, the model uses the operators
it has learned during training to map the current sequence to the next state. This process can be
interpreted as the model applying learned operators on the respective Banach spaces to generate the
trajectory. We note that this process in inference is sequential, but during training is performed in
parallel.

The LLM computes:

zi+1 = fθ(zi, ti) + ∆t

i∑
j=0

Gθ(zj , ti, tj),

and as ∆t → 0 we obtain Equation 3, where we note that during inference there is no need of
distinguishing between the z used in the integral operator and the prediciton, as the prediction is used
iteratively to produce the next zi+1, contrary to training where the ground truth is used to perform
the process in parallel.

By framing the problem as a sequence modeling task, the LLM effectively approximates the solution
to the integral equation. The sequence of states {zt} can be viewed as tokens in a sequence, where
each state depends on all previous states due to the integral over past times s in Equation 3. The
LLM, with its inherent capability to model long-range dependencies through attention mechanisms,
captures this dependence without the need to explicitly compute fθ and Gθ.

In practice, we model Equation 3 using the LLM as follows:

• The LLM models the conditional distribution of each zti+1
given the past states

{zt0 , . . . , zti}:

p(zti+1
|zt0 , zt1 , . . . , zti) = LLM(zt0 , zt1 , . . . , zti), (11)

which implements an integral depending on zt0 , . . . , zti , i.e. z(s) with s ∈ [0, ti].

We do not define an iterative procedure here for the training, but leverage the use of LLMs and learn
to predict n functions zi, each of which model the solution z(t) (i.e. the ground truth) between t = 0
and t = ti. This is in line with the use of LLMs and allows us to formulate the solver procedure on a
direct sum Banach space, X =

⊕n
i=1 L

2([0, ti]), where the target of each L2([0, ti]) is the ground
truth of the trajectory. In inference, we apply an iterative procedure where the model predicts each
component zi, and uses this to approximate the integral to compute zi+1:

zi+1
t = f(zt, t) +

∫ ti

0

G(zis, t, s)ds, (12)

for t ∈ [ti, ti+1], where the integral operator is well defined because zi is defined over [0, ti] – i.e. it
is an element of L2([0, ti]) as stated above.

In order to perform an approximate integral over the discretized trajectory, we also need a discretized
version of Equation (12), which becomes:

zi+1 = fθ(zi, ti) +

i∑
j=0

∆ti+1Gθ(zj , ti+1, tj), (13)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where ∆t = ti+1 − ti, and zi = z(ti). Once again, observe that we need each zj with j = 0, . . . , i,
and we use the ground-truth data for this.

We can easily extend the VIE to include both spatial and temporal domains:

z(x, t) = f(z, x, t) +

∫ t

0

∫
Ω

G(z, x, x′, t, s)dx′ds. (14)

E VOLTERRA FLOW MATCHING OBJECTIVE

The goal of this section is to connect the conditional Volterra flow matching object to the CFM
objective. We recall some notation from Lipman et al. (2022). Let t ∈ [0, 1], ut(x) the marginal
time dependent vector field associated with the flow ϕ, ut(x|x1) the conditional time dependent
vector field, vt(x) the model learning the vector field ut, q the data distribution, and pt the prob-
ability density path. Then we can define the flow matching objective and its conditional variant,
LFM(θ) = Et,pt(x) ∥vt(x)− ut(x)∥2 and LCFM(θ) = Et,q(x1),pt(x|x1) ∥vt(x)− ut(x|x1)∥2. The
key observation is that the gradients of these two objective functions are equivalent:
Theorem ((Lipman et al., 2022)). Assuming that pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then, up to
a constant independent of θ, LCFM and LFM are equal. Hence,∇θLFM(θ) = ∇θLCFM(θ).

The crux of the proof of Theorem E rests in the chain of equalities (see E Appendix A for details):

Ept(x)⟨vt(x), ut(x)⟩ =
∫ 〈

vt(x),

∫
ut(x|x1)pt(x|x1)q(x1)dx1

〉
pt(x)dx

=

∫ 〈
vt(x),

∫
ut(x|x1)pt(x|x1)q(x1)dx1

〉
dx

=

∫
⟨vt(x), ut(x1)⟩ pt(x)q(x1)dx1dx

= Eq(x1),pt(x|x1)⟨vt(x), ut(x|x1)⟩.

We can expand vt in the penultimate line as:∫
⟨vt(x), ut(x1)⟩ pt(x)q(x1)dx1dx =

∫ 〈∫
vt(x|x′

1)dx
′
1, ut(x1)

〉
pt(x)q(x1)dx1dx.

Note that CaLMFlow takes conditioned inputs during training, i.e. it is history-aware. One approach
to training CaLMFlow like CFM is to randomly sample pairs of conditional trajectories—one for
the target trajectory and one for the input trajectory to generate the flow—and minimize the mean
squared error, either of the next time step or the output of a numerical solver. However, in practice
we have found our model performance to benefit from using the the CVFM objective in Equation 6
combined with the KL divergence regularizer from Equation 8. We leave the exploration of alternative
optimization procedures to future work.

23


	Introduction
	Related Work
	Volterra Flow Matching
	Flow Matching as Volterra Integral Equations
	Solving Volterra Integral Equations with Causal Language Models
	Continuous Space Tokens via Variational Decoding

	Spatiotemporal and Multi-trajectory Tokenization
	Spatiotemporal Tokenization
	Multi-trajectory Tokenization

	Experiments
	Synthetic Datasets
	High Dimensional Data
	Multi-trajectory Context

	Single-cell Generation
	Unconditional Generation of Single-cell Data
	Single-cell Perturbation Response Prediction


	Ablation Experiments
	Temperature
	Number of time points
	Number of Spatiotemporal tokens and Trajectories

	Conclusion and Future Work
	Detailed Experiment Setup
	Single Cell Generation
	Details on Distribution and Correlation Metrics
	Single Cell Unconditional Generation Model Implementations
	Single Cell Conditional Encoding

	Multi-trajectory Experiments, Ablations on Temperature and Number of Time Points

	Training and Inference Algorithms
	Additional results
	Banach Spaces, Volterra Integral Equations and CLMs
	Volterra Flow Matching Objective

