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Abstract

Multi-fidelity Bayesian Optimisation (MFBO) has been shown to generally converge faster
than single-fidelity Bayesian Optimisation (SFBO) (Poloczek et al. (2017)). Inspired by re-
cent benchmark papers, we are investigating the long-run behaviour of MFBO, based on ob-
servations in the literature that it might under-perform in certain scenarios (Mikkola et al.
(2023), Eggensperger et al. (2021)). An under-performance of MBFO in the long-run could
significantly undermine its application to many research tasks, especially when we are not
able to identify when the under-performance begins. We create a simple benchmark study,
showcase empirical results and discuss scenarios and possible reasons of under-performance.
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1. Introduction

The optimisation of costly-to-evaluate functions is a significant challenge in hyperparameter-
optimisation in machine learning, material science, drug discovery and more (Kandasamy
et al. (2020), Liang et al. (2021), Bellamy et al. (2022)). Bayesian Optimisation (BO, Frazier
(2018)) has become an established method to tackle these challenges, also due to the fact
that it does not require access to a gradient. As part of so called grey-box BO methods
(Astudillo and Frazier (2021)) that take into account internal structure of an optimisation
problem, multi-fidelity BO (MBFO) has emerged as popular method to utilise access to
different information sources on the same optimisation problem (Huang et al. (2006)).

2. Review of MFBO

The core assumption of MFBO is that we have access to different auxiliary fidelities that
inform us on our target fidelity. Further assumptions on the nature of those auxiliary
fidelities and their relationship to the target fidelity will determine the type of algorithm
to use. Poloczek et al. (2016) provide one of the earliest implementations of the MFBO
process which has established itself as the predominant choice. They adapt the knowledge
gradient acquisition function to the MFBO setting, and provide a new set of mean and
covariate functions. Two noteworthy design choices here are the continuous fidelities and
the use of a multi-output gaussian process to model both the objective and fidelity. Similar
extensions have been made for maximum entropy search (Takeno et al. (2020)) and expected
improvement (Irshad et al. (2023); Daulton et al. (2020)) acquisition functions. While
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several methods come with attractive theoretical guarantees, when applied to domains where
Bayesian optimization is the preferred choice, it is common to see heuristics. On benchmarks
like HPOBench (Eggensperger et al. (2021)), heuristic-driven methods dominate (Awad
et al. (2021); Cowen-Rivers et al. (2022)).

3. Problem and Solution

Multi-fidelity BO (MFBO) is generally accepted to outperform single-fidelity BO approaches
(SFBO). Only recently, the literature has focused on possible failure-modes of MFBO, that
could rank it below established SFBO performance. This is partially driven by a range of
new and more reliable benchmarks that allow fair comparison of BO algorithms, such as
the HPOBench (Eggensperger et al. (2021)) that utilise execution containers to standardise
comparison across compute environments.

(Mikkola et al. (2023)) recently evaluated the impact of unreliable information sources
on MFBO performance. As part of their investigation, they compared MFBO and SFBO
on the Hartmann6D test function, see Figure 1. We can observe a cross-over point at a
budget of about 25, where the SF-MES starts to outperform the multi-fidelity methods. The
confidence intervals still overlap up to the final budget point of 80 and as such do not allow
us to conclude that single-fidelity, on average, is outperforming multi-fidelity approaches in
the long-run.

Evaluation plots created with the HPOBench provide an additional perspective on our
observation of a cross-over point in 1. (Eggensperger et al. (2021)) show in Figure 2 the
mean rank of single-fidelity (dotted) and multi-fidelity (not dotted) methods over increasing
fraction of budget spent. While the multi-fidelity methods clearly rank higher for most of
the budget spend, we can observe a long-term trend of single-fidelity methods steadily
improving in rank and outperforming the other methods at the very right edge of the plot
(marked by a red circle). The nature of the budget used in HPOBench, a finite set of training
data points, does not allow increasing the budget unless the dataset itself is increased. We
hypothesize that in settings where hyperparameter optimization can be done efficiently on
much larger datasets that single-fidelity might continue to outperform, in line with our
observations in Figure 1.

To study our observations in Figure 1 and Figure 2, we devise our own simulation
runs based on the BoTorch Hartmann6D tutorial where the Hartmann6D test function is
augmented with a continuous fidelity choice (Balandat (2021)). Our results are shown in
Figure 3. Plotting MFBO and SFBO in a single plot requires adjusting MFBO to the
equidistant budget query points of SFBO. While SFBO with a query cost of 1 will query
100 samples with a budget of 100, MFBO will query more than 100 samples (i.e. low and
high fidelity), most of the time not at the same budget point as SFBO. Hence, we ’normalise’
our MFBO results by querying and reporting the high fidelity every time the MFBO run
budget crosses over a SFBO budget point. This does not perfectly represent the MFBO
decision making, but aligns the calculation of confidence intervals which leads to a more
fair and interpretable comparison plot.
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Figure 1: Possible long-run underperformance of MFBO as found in (Mikkola et al. (2023),
Figure 1). The plot shows maximum-entropy search for single-fidelity (green,
SF-MES), multi-fidelity (pink, MF-MES) and robust multi-fidelity (purple, rMF-
MES, the method suggested by (Mikkola et al. (2023)) to handle unreliable in-
formation sources).

Figure 2: Possible long-run underperformance of MFBO as found in (Eggensperger et al.
(2021), Figure 4). The plot shows the mean rank of single-fidelity (dotted) and
multi-fidelity (not dotted) methods over increasing fraction of budget spent.
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Simple regret vs budget Hartmann6D ussing MES

Simple regret vs budget XGB using MES

Figure 3: Our results of 100 trails each for SFBO and MFBO, at budget 100 for Hart-
mann6D and 500 for XGB, plotted with log-transformation on the y-axis. On
both benchmarks, SFBO eventually outperforms MFBO. The crossing point is
different with SFBO overtaking MFBO around a budget of 50 on Hartmann6D
but 100 on XGB.
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4. Discussion

We are able to reproduce the observations made in previous papers, as discussed in Figure
1 and 2. We observe the majority of low-fidelity queries occur at the very beginning of
the run. MFBO seems to build a ’warm-start’ set of low-fidelity observations which then
informs a further run dominated by high-fidelity queries. That is why we see such strong
performance of MFBO compared to SFBO in the initial budget range of 0 to 15, which is
also usually observered in the MFBO literature.

Our initial results suggest both theoretical and practical next steps. It is important to
collect more empirical results on different test functions and BO surrogates and acquisition
functions, as our Figures only represent a small set of BO setups such that we cannot
conclude that long-run underperformance of MFBO also occurs in other MFBO settings.
More importantly, theoretical investigation needs to uncover the reason why we observere
MFBO underperformance in Figure 3. We consider the following scenarios:

• Lack of standardisation: For a fair comparison, we will need to establish agreed
standards and implementation strategies. HPOBench (Eggensperger et al. (2021))
attempts to establish such standard and partially succeed, also showcasing the signif-
icant impact a lack of standardisation can have. In Figure 4 in their paper, the upper
row shows the non-standardise benchmark run, where single-fidelity methods have no
clear trend. The bottom row instead, standardised to the benchmark, shows a clear
trend of single-fidelity methods possibly outperforming multi-fidelity methods if given
enough budget (i.e. the central question of our paper).

• Application variety: The problem structure, whether real-world or test function,
presumably has an impact on MFBO performance. Indeed, (Mikkola et al. (2023))
study that exact question and in their Figure 1 showcase how unreliable fidelities ren-
der MFBO inferior to SFBO. Our empirical study, although trying to replicate their
study of informative auxiliary information sources, might not be the best representa-
tion of problem spaces that are challenging to MFBO, and so we hope to expand our
study beyond into a wider variety of test functions.

• No-free-lunch theorem: Given the significant outperformance of MFBO in the
short-term over SFBO, it is reasonable to assume on an intuitive level, that long-term
MFBO will suffer from inefficiencies it traded for superior efficiency in the short-term.
We hope to explore this idea on a theoretical basis as a next step.

• Compounding errors: Considering that lower fidelities are ”noisier” than higher
fidelities, it is possible that the errors in measurements when using the lowest fidelities
accumulates, leading the optimization process to get stuck in a local minima in the
long-run.

5. Conclusion

We studied long-run behaviour of multi-fidelity Bayesian Optimisation (MBFO), observing
in the literature a possible under-performance compared to single-fidelity Bayesian optimi-
sation (SFBO). Our own empirical studies provide further evidence on these observations.
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With a multitude of MFBO algorithms available 1, it is important to evaluate their limita-
tions for the best outcome in applications of adaptive experimentation. We discussed a few
possible scenarios and hope to expand our empirical studies to characterise the long-run
behaviour of MFBO for a variety of applications beyond the test functions studied so far.
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