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Abstract

Existing methods utilize domain information to address the subpopulation shift
issue and enhance model generalization. However, the availability of domain infor-
mation is not always guaranteed. In response to this challenge, we introduce a novel
end-to-end method called DISK. DISK discovers the spurious correlations present
in the training and validation sets through KL-divergence and assigns spurious
labels (which are also the domain labels) to classify instances based on spurious
features. By combining spurious labels ys with true labels y, DISK effectively
partitions the data into different groups with unique data distributions P(x|y, ys).
The group partition inferred by DISK then can be seamlessly leveraged to design
algorithms to further mitigate the subpopulation shift and improve generalization
on test data. Unlike existing domain inference methods, such as ZIN [20] and
DISC [35], DISK reliably infers domains without requiring additional information.
We extensively evaluated DISK on different datasets, considering scenarios where
validation labels are either available or unavailable, demonstrating its effectiveness
in domain inference and mitigating subpopulation shift. Furthermore, our results
also suggest that for some complex data, the neural network-based DISK may
have the potential to perform more reasonable domain inferences, which high-
lights the potential effective integration of DISK and human decisions when the
(human-defined) domain information is available. Codes of DISK are available at
https://anonymous.4open.science/r/DISK-E23A/.

1 Introduction

Subpopulation shift is a common phenomenon in various real-world machine learning applications
where both training and test share the same subpopulations but differ in subpopulation probabilities
[3, 5]. This phenomenon poses significant challenges for Empirical Risk Minimization (ERM) in
practical scenarios. When ERM is applied solely based on the training dataset, it frequently encoun-
ters difficulties in generalizing to test sets exhibiting subpopulation shifts, resulting in substantial
performance degradation [31, 11]. For example, the CMNIST dataset in Figure 1 has two domains
(red and green) and two classes (0 and 1). In training, the class 0 ratio is 8:2 (red:green) and for class
1, it’s 2:8. In testing, the ratios shift to 1:9 for class 0 and 9:1 for class 1. This subpopulation shift
causes models to learn spurious correlations, like red-0 and green-1, which don’t apply in the testing
set.

Numerous methods have been proposed to encourage models to learn invariant features in order to
mitigate the subpopulation shift issue [28, 36, 15, 31, 21]. These methods rely on the availability of
domain information, which is commonly assumed to correlate with spurious features [38]. However,
practical acquisition can be challenging due to limited prior knowledge about spurious features
[8, 22, 20]. For example, whether the color or the digit shape of the CMNIST data corresponds to the
spurious feature cannot be determined.
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Existing methods for inferring domain information have notable limitations. For in-
stance, methods like EIIL [8] and LfF [24] struggle to reliably infer domain informa-
tion in heterogeneous data without prior invariant information. Consider two datasets CM-
NIST (COLOR-MNIST) and MCOLOR (MNIST-COLOR), both containing identical data;
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Figure 1: CMNIST with two domains.
Digit color is used as domain informa-
tion which is spuriously correlated with
training labels. The varying probabilities
in the four groups between training and
testing datasets imply the existence of
subpopulation shift.

however, in CMNIST, color signifies domain informa-
tion, while digits shape remains invariant, whereas in
MCOLOR, the roles are reversed, with shape as the do-
main and color as the invariant. EIIL and LfF rely on either
color or shape as the invariant feature to infer the domain.
However, for datasets like CMNIST and MCOLOR, where
data is the same, and invariant information is unknown,
EIIL and LfF would fail on at least one of them [20]. Ap-
proaches like DISC [35] and ZIN [20] require extra annota-
tions or the construction of the concept bank with potential
spurious features for domain inference, posing practical
challenges. For example, ZIN ignores color in its standard
annotations, limiting domain inference in CMNIST. Both
ZIN and DISC require specific data information, which
makes them less suitable as general frameworks. Even
when general data information exists, collecting additional
data details reduces their efficiency compared to purely
data-driven domain inference methods.

In this paper, we introduce a novel method called Domain Inference for discovering Spurious
Correlation with KL-Divergence (DISK). It aims to maximize the difference between the distributions
of the training and validation datasets to detect spurious features and infer domain information that is
highly correlated with these spurious features. DISK assigns spurious labels (also domain labels) to
instances, combines them with true labels for group partitioning, and uses group-based enhancement
techniques to improve generalization on the test set. As an end-to-end approach, DISK seamlessly
integrates its inferred domain information with downstream methods to mitigate subpopulation shift.
Importantly, DISK only requires an additional validation data for stable domain inference, eliminating
the need for collecting extra information. We thoroughly explore scenarios in which validation labels
are either available or unavailable and demonstrate the effectiveness of DISK in domain inference
and the alleviation of the subpopulation shift issue through extensive experiments. Our contributions
can be summarized as follows:

1. We propose DISK, a novel and effective end-to-end method for domain inference, that can
be effectively employed to mitigate subpopulation shift and improve generalization in the test
domain in Section 3. In particular, we design a KL-divergence-based objective for training the
DISK domain classifier, which maximizes the difference between “spurious correlations” of the
domain predictions for training data and (unlabeled) validation data. Notably, DISK only requires
(unlabeled) validation data to perform domain inference, without any additional information, thus
can be performed in a purely data-driven manner.

2. We introduce a simple yet effective metric for assessing the performance of domain partitioning
and demonstrate the effectiveness of DISK on multiple datasets in Section 4. Besides, when
further integrating DISK with the simple subsampling and retraining approach, we can achieve
nearly matching or even slightly better test performance compared with the methods that explicitly
rely on the true domain information. This justifies the effectiveness of DISK in mitigating the
subpopulation shift when the domain information is absent.

3. We provide new insights on domain inference, illustrating that when spurious features contain
complex information, the neural network-based DISK has greater potential to capture the essence
of the data than human decisions (section 4.2.2). DISK partitions domains more based on the
underlying similarities in patterns. This finding underscores the potential for effectively integrating
DISK with human decision-making to achieve accurate domain inference in complex settings.

2 Related Work

Many domain generalization methods utilize domain information to mitigate the issue of data
distribution shift. These methods include invariant learning, which aims to boost the correlation
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Figure 2: (a) DISK discovers the spurious correlation between the training and validation data,
assigning spurious labels ytrs to training instances. Subsequently, the training set is partitioned into
different groups with distinct distributions P(xs,xv|g) where g = (y, ys). The HCS operation aids
DISK in achieving a more precise inference of minority groups; (b) The training data from different
domains undergo enhancement techniques, such as subsampling, to achieve a balanced training
dataset with equal-sized groups for further training.

between invariant representations and labels, thereby generating predictors that remain unaffected by
different domains [27, 17]. For instance, IRM [2] and its variant IB-IRM [1] try to identify predictors
that perform consistently well across all domains through regularization. LISA [38] acquires domain-
invariant predictors by selectively combining samples with matching labels but differing domains
or matching domains but differing labels, using data interpolation. Additionally, a series of Group
Robustness methods are designed to address generalization challenges arising from subpopulation
shift. For example, group DRO [28] directly optimizes performance in the worst-case group scenario
through distributionally robust optimization. Some works [25, 32] proposed semi-supervised methods
aimed at improving the test performance in scenarios where group labels are provided for a small
fraction of the training data. Various other methods, including reweighting [29], regularization [6],
and downsampling [15], are employed to achieve a balance in the representation of both majority and
minority groups. Notably, the simple yet effective downsampling method, DFR [15], utilizes domain
information to downsample and obtain a small, balanced dataset for retraining the final layer of the
classification model.

When domain information is unavailable, EIIL [8] incorporates domain inference to directly identify
domains that provide the most valuable information for downstream invariant learning. However, it
relies solely on the training dataset and requires the invariant information, leading to instability in
detecting spurious features. ZIN [20], when supplemented with auxiliary information like timestamps
for time-series data, meta-annotations for images, and geographic data such as latitude and longi-
tude, improves domain information inference. Acquiring such auxiliary information poses similar
challenges to acquiring domain information, and the lack of prior knowledge limits ZIN’s universal
adaptability. Similarly, DISC [35] assists in inferring domain information by constructing a concept
bank with potential spurious features, yet it encounters similar practical challenges as ZIN.

3 Method

In this section, we begin by outlining the problem setup and important notations in Section 3.1.
Following that, we provide a formal definition for spurious labels in Section 3.2. Next, we discuss our
method, DISK, including the optimization functions in scenarios with and without validation labels
in Section 3.3. Lastly, Section 3.4 elucidates the seamless integration of DISK’s inferred domain
information into design algorithms to improve model generalization on test data.

3.1 Preliminaries

Consider the dataset D, which comprises n data point-label pairs, denoted as D = {(xi, yi)}ni=1.
The data x can be decomposed into invariant features xv and spurious features xs. Invariant features
xv capture the genuine causal relationship between the data x and the label y, whereas spurious
features xs are typically correlated with the class label but often lack generalizability. To represent
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the features extracted from x, we employ a feature extractor denoted as Φ, yielding z = Φ(x). It is
expected that the representation z contains valuable information relevant to y.

We adopt the unified definition of subpopulation shift proposed by [37] and consider group-based
spurious correlations as defined by [28], where the subpopulations (also groups) are defined based
on the attribute (domains) and labels. The training distribution is a mixture of K subpopulations,
represented as Ptr =

∑K
k rtrk Pk(xv,xs), where rtrk defines the mixture probabilities within the

training set, and the training subpopulation is defined as Dtr = {k : rtrk > 0}. Similarly, the test
distribution is also a mixture of K subpopulations, given by Pts =

∑K
k rtsk Pk(xv,xs), and the test

subpopulation is correspondingly defined as Dts = {k : rtsk > 0}. In subpopulation shift, the test
set includes subpopulations observed in the training set, although with varying proportions of each
subpopulation, denoted as Dts ⊆ Dtr, but with {rtsk } ≠ {rtrk }. Without domain information, it’s
impossible to partition the data into different groups, making it challenging to enhance generalization.

3.2 Formal Definition of Spurious Labels

In this section, we formally introduce the concept of spurious labels. Given the data x, the label y,
invariant features xv, and spurious features xs, alongside the data representation z, which includes
both the spurious representation zs and the invariant representation zv, we give the following
definition:
Definition 1. (Spurious Labels) The spurious label, denoted as ys, is determined by assigning labels
to instances only based on the spurious representation zs.

For example, in CMNIST, zs represents the color (spurious feature) representation, ys represents
the spurious labels assigned to instances based solely on the color representation. Since domain
information is typically assumed to be spuriously correlated with the true label [38], the spurious
representation-based label ys, can be considered as the domain label. Therefore, each group g
is jointly determined by both spurious labels and true labels, i.e., g = (y, ys). In the case of
CMNIST, color (red or green) serves as both the domain information and the spurious feature,
with corresponding labels representing the spurious labels (also the domain labels), denoted as
ys = {red, green}. When combined with the true labels y and ys, CMNIST is categorized into
four groups: {g1, g2, g3, g4} = {(0, red), (0, green), (1, red), (1, green)} as shown in Figure 2.
Dividing these groups allows the application of group-based domain generalization techniques to
address subpopulation shift.

3.3 Domain Inference based on Spurious Correlation with KL-Divergence

To obtain the spurious label ys, we introduce a novel method: Domain Inference based on Spurious
Correlation with KL-Divergence (DISK).

Consider three datasets that conform to subpopulation shift: the training set Dtr, the validation set
Dval, and the test set Dts. Spurious correlation [14, 10, 38, 9] results in a strong association between
the spurious label ys and the true label y in Dtr, whereas this correlation is weak or even absent
in Dval. By using KL-divergence KL(·||·) and mutual information I(·, ·), DISK aims to find the
spurious label by (1) maximizing the correlation between the true label y and spurious label ys in
training set Dtr; and (2) minimizing such correlation in validation set Dval. In particular, the first
objective can be conducted by maximizing the mutual information between y and ys (denoted as
Correlation Term), and the second objective will be performed by maximizing the discrepancy
between the spurious correlations in the training set Dtr and the validation set Dval (denoted as
Spurious Term). We employ a spurious classifier fDISK, which is designed to classify instances
based on spurious representation to estimate the spurious label ys, and the detailed design of our
training objective is provided as follows:

Correlation Term. In order to encourage the correlation between the true label and spurious label in
the training set, we consider the following optimization objective:

max
w

I(ytr; ŷtrs,w), (1)

where the estimated spurious label ŷtrs,w = fDISK(z
tr;w) and the w denotes the model parameter of

the spurious classifier fDISK. The representation ztr refers to the last-layer output of the pretrained
model (the model trained on the original training dataset).
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Spurious Term. In order to maximize the discrepancy between the correlations (e.g., the correlation
between y and ys) in the training and validation set, we consider applying the KL divergence between
their corresponding conditional distributions P(y|ŷs), leading to the following objective for predicting
the spurious label:

max
w

KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)), (2)

where the estimated spurious labels ŷtrs,w = fDISK(z
tr;w) and ŷvals,w = fDISK(z

val;w). Like ztr,
zval corresponds to the last linear layer’s output of the pretrained model when given validation data.

Overall Objective. By combining (1) and (2), we derive the overall objective of DISK as follows:

max
w

I(ytr; ŷtrs,w) + γKL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)), (3)

where γ > 0 is a weighting parameter used to balance the Correlation Term and the Spurious Term.

However, the overall objective of DISK in (3) faces certain issues in practical implementation. Firstly,
the mutual information term is difficult to accurately estimate [26, 4]. Secondly, the availability of
the true label yval for the validation set is not always guaranteed, thus the KL divergence term cannot
be calculated tractably.

To accurately compute the mutual information I(ytr; ŷtrs,w), we demonstrate in Appendix 1 that max-
imizing this mutual information can be transformed into minimizing the cross-entropy H(ytr, ŷtrs,w).
This conclusion aligns with intuition because maximizing mutual information between ytr and ŷtrs,w
essentially encourages a closer alignment of their distributions, which is consistent with the objective
of minimizing cross-entropy H(ytr, ŷtrs,w). Therefore, when we have access to the validation set
labels yval, we can reformulate the overall objective of DISK as follows:

min
w

H(ytr, ŷtrs,w)− γKL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)). (4)

In more typical scenarios, when the label yval of the validation set are unavailable or when the
validation set is sampled from an unlabeled test set, computing KL(·||·) in (4) becomes impractical.
To address this, we replace yval in KL(·||·) with the representation zval, which strongly correlates
with yval and is always accessible. We present the following theorem:
Theorem 1. [Lower Bound of Spurious Term without Accessible yval] Given representations ztr
and zval, the spurious term is lower bounded by the following expression as:

KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w) ≥ KL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)) (5)

As stated in Theorem 1, when the label of the validation data yval is missing, we resort to maximizing
KL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)) as an alternative for maximizing KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)).
We point out that maximizing a lower bound is meaningful as it provides the worst-case guarantee
over the original objective. The detailed proof of Theorem 1 is provided in Appendix A.2. Therefore,
when validation labels yval are unavailable, the overall objective of DISK can be redefined as follows:

min
w

H(ytr, ŷtrs,w)− γKL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)). (6)

We employ the MINE algorithm [4] to estimate the KL(·||·) terms in (4) and (6).

3.4 Mitigating Subpopulation Shift with DISK

In this section, we show how to leverage DISK to mitigate subpopulation shift. As shown in Figure 2,
the inferred spurious labels ytrs from DISK and the true labels y divide the data space into multiple
groups, each characterized by a distinct distribution P(xs,xv|y, ys). Based on the predicted group
information from DISK, we are able to apply the existing domain generalization methods, which
require the domain information of the data, to improve the generalization in the test domain. In
this work, we primarily employ the Subsampling strategy [15, 35], which downsamples the original
training dataset according to their group information (predicted by DISK), such that all groups are
balanced. Then, we can proceed to retrain a model using the subsampled dataset 1.

1Retraining the model is not mandatory and can also be done as suggested in [15, 13], where a pre-trained
model is employed, and only the last layer is fine-tuned.
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(b) Validation Acc = 0.69 (c) Test Acc = 0.73
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(f) Test Acc = 0.47
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(g) Training Acc = 0.82
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(h) Validation Acc = 0.87
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(i) Test Acc = 0.89

Figure 3: Illustration of the decision boundaries obtained by fvanilla, fDISK, fDISK. True decision
boundaries for spurious features and invariant features are vertical and horizontal respectively. (a-c)
Decision Boundary and Prediction Accuracy for fvanilla. (d-f) DISK with Accessible yval: Decision
Boundary and Prediction Accuracy for fDISK. (g-i) DISK with Subsampling: Decision Boundary
and Prediction Accuracy for fDISK.

Intuitively, in the subsampled dataset, spurious features are distributed evenly within each group, so
that their correlations with the labels in the training dataset can be eliminated. However, since the
domain inference performance of DISK may not be perfect, directly applying the raw predictions of
DISK cannot guarantee balanced spurious features in the subsampled dataset. The reason behind the
imperfect domain inference is that the (true) groups in the original dataset are extremely unbalanced.
For instance, in CMNIST dataset, the sample size of red digits with label 1 (or green digits with label
0) is much smaller than that of red digits with label 0 and green digits with label 1 (see Figure 1). Such
minority groups may be difficult to be perfectly identified by DISK compared to the majority groups,
which further affects the balance (with respect to spurious features) of the constructed subsampled
dataset. To address this issue, we introduce a straightforward strategy called High Confidence
Selection (HCS). The intuition is that although the spurious label of some examples in the minority
groups may be misclassified, they are mostly close to the classification boundary, i.e., falling in
the low-confidence region. Therefore, regarding the minority groups identified by DISK (i.e., the
groups with smaller size), we only pick the examples with high-confidence predictions (parameterized
by > α for some α > 0.5, based on the predicted probability) while ignoring the low-confidence
examples. Then, based on the smallest size of the predicted groups (after performing HCS), we will
equally pick the same number of data points from all groups to form the subsampled dataset, which
will be used for mitigating the subpopulation shift and enhance the generalization performance in the
test domain.

4 Experiments

In this section, we extensively evaluate DISK on a 2D synthetic dataset and five real-world image
datasets, primarily addressing the following questions:

Q1. Can DISK accurately infer domains and effectively facilitate subpopulation shift mitigation?
Q2. If the inference is inaccurate, why is there inconsistency between DISK and human decisions in

domain inference?

We also address the challenge posed by [20] in inferring domains for CMNIST and MCOLOR in
Appendix B.3.3 to demonstrate that DISK accurately infers domain information in heterogeneous
data without facing the same difficulties as EIIL and LfF.

4.1 Synthetic 2D Data

We begin with a synthetic 2D dataset to show how DISK partitions domains by learning from spurious
correlations. This dataset comprises three sets: training (Dtr), validation (Dval), and test (Dts).

6



These sets are generated by blending four two-dimensional Gaussian distributions, each with different
means, equal variances, and zero correlation coefficients. Varying mixing probabilities across datasets
induce subpopulation shift in Dtr, Dval, and Dts. The first dimension, x1, represents the spurious
feature, while the second dimension, x2, is the invariant feature. More details about the synthetic
data can be found in Appendix B.1. We trained a single-layer neural network, referred to as fvanilla,
on Dtr and visualized its decision boundary in the top row of Figure 3. We observed a significant
accuracy gap between the training and test sets, with fvanilla aligning its decision boundary more
closely with the vertical boundary determined by the spurious feature x1 rather than the horizontal
boundary determined by the invariant feature x2. This indicates that fvanilla heavily relied on x1 for
classification, resulting in poor test set generalization.

When yval is available, we used DISK to train fDISK with the same model architecture as fvanilla,
assigning distinct spurious labels to each instance, representing different domains. As shown in
the second row of Figure 3, DISK indeed caused the decision boundary of fDISK to align more
closely with the vertical boundary, leading to a more significant difference in prediction accuracy
between the training and validation sets. Spurious labels and true labels divided the data space into
four groups. We then applied a subsampling strategy to obtain an equal number of instances from
each group, creating a balanced subsampled dataset. Subsequently, we trained the same single-layer
neural network, denoted as fDISKS, on this subsampled data and obtained its decision boundary and
accuracy, as depicted in the third row of Figure 3. Compared to fvanilla, the decision boundary of
fDISK is noticeably more horizontal, and the test accuracy improved from 0.73 to 0.89, indicating
reduced reliance on spurious features and enhanced model generalization. Additional experimental
results without yval in Appendix B.1 yield similar outcomes.

4.2 Real-World Data

To address Q1 in Section 4, we report the test prediction accuracy of DISK with Subsampling
(abbreviated as DISKS) and baselines on five public real-world datasets, along with a metric to
clarify domain inference effectiveness. To address Q2, we then conduct dataset-specific analysis
based on the results from Q1. This analysis aims to explain the sources of discrepancies between
the domain information inferred by DISK and by humans (oracle). Additionally, we showcase
DISK’s effectiveness when combined with other enhanced techniques, such as Mixup (abbreviated as
DISKM), in Appendix B.3.4.

4.2.1 Experimental Setup

Datasets. We consider image classification tasks with various spurious correlations. Specifically, the
CMNIST dataset [2] involves noisy digit recognition where digit colors (red or green) are spurious
features linked to digit values. MNIST-FashionMNIST and MNIST-CIFAR [30, 15] are both synthetic
datasets combining MNIST (spurious features) with FashionMNIST and CIFAR datasets, respectively.
Additionally, we consider the Waterbirds dataset [28], which associates bird types with spurious
background (water or land). Moreover, the CelebA dataset [23] focuses on hair color recognition,
influenced by spurious gender-related features. More details of datasets are available in Appendix
B.2.1.

Table 1: Average and worst accuracy comparison (%). DISKS outperforms ERM, effectively
mitigating the subpopulation shift issue without relying on domain information. The experimental
results for LISA, GroupDRO, and IRM are directly sourced from [38].

Method Domain
Info

CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds CelebA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ERM × 37.8±1.1 32.4±1.2 71.1±2.0 69.6±2.0 9.8±0.3 9.6±6.0 63.4±4.0 34.4±8.2 94.7±0.8 38.0±3.4

IRM ✓ 72.2±1.1 70.3±0.8 - - - - 87.5±0.7 75.6±3.1 94.0±0.4 77.8±3.9

GroupDRO ✓ 72.3±1.2 68.6±0.8 - - - - 91.8±0.3 90.6±1.1 91.2±0.4 87.2±1.6

LISA ✓ 74.0±0.1 73.3±0.2 92.9±0.7 92.6±0.8 - - 91.8±0.3 89.2±0.6 92.4±0.4 89.3±1.1

DFR ✓ 64.1±1.5 67.9±1.8 95.8±0.4 95.5±0.5 69.3±0.9 70.0±1.2 79.3±2.2 78.2±3.6 91.1±0.1 85.0±2.1

DISKS w/ yval × 65.1±1.7 67.6±2.0 92.3±0.8 92.6±0.9 69.0±0.4 69.2±0.6 91.1±1.4 85.5±3.0 88.8±0.3 64.8±1.3

DISKS w/o yval × 62.5±4.4 65.5±3.0 91.8±2.8 93.0±2.7 68.1±1.2 68.4±1.2 80.8±1.5 81.1±0.4 87.9±0.4 63.0±4.6
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Baselines. As discussed in Section 2, existing domain inference methods have limitations, including
instability (as seen in EIIL and LfF) and data-specific applicability (as seen in ZIN and DISC), which
restricts their usefulness as reliable baselines. Therefore, except for vanilla ERM [33], we consider
domain generalization models that directly leverage oracle domain information, including IRM [2],
GroupDRO [28], LISA [38], and DFR [15] as our baseline methods. Importantly, DFR uses oracle
domain information for subsampling which makes comparing DISKS to DFR a direct validation of
DISKS’ effectiveness. Especially when the oracle domain information accurately represents spurious
features, DFR sets the upper limit for DISKS’ performance.

Model Training. We adopt the neural network architectures and hyperparameters from [38], employ-
ing ResNet [12] models as the feature extractor Φ(x), which updates during training. We conduct
three repetitions for each model, reporting mean and standard deviation following [38]. Further
training specifics are in Appendix B.2.2.

Evaluation. For all datasets, we evaluate average-group and worst-group prediction accuracies.
Additionally, we introduce a new metric, Minority Domain Inference Precision (PM), to showcase
DISK’s ability to identify challenging minority groups. This metric is defined as follows:

Definition 2 (Minority Domain Inference Precision). The index set of instances from minority groups
inferred by oracle domain information is denoted as Ioracle, while those inferred by DISK are denoted
as IDISK. We define Minority Domain Inference Precision (PM) as P

M
= |Ioracle∩IDISK|

|IDISK| .

4.2.2 Results

Can DISK accurately infer domains and effectively facilitate subpopulation shift mitigation?

Table 1 presents a performance comparison of DISKS with baseline models across five datasets.
DISKS consistently achieves significantly improved average and worst accuracy compared to tradi-
tional ERM, regardless of the availability of yval. On some datasets, DISKS nearly matches or even
surpasses the performance of models like DFR, which utilize oracle domain information directly.
We also observed that in most datasets, DISKS without yval exhibits slightly lower average/worst
accuracy compared to those with yval. This might be attributed to the challenges associated with opti-
mizing the KL-divergence of high-dimensional inputs (i.e., the representation z) by DISKS without
yval [4]. Furthermore, it’s worth noting that DISK’s performance improvements are less pronounced
on the CelebA dataset, possibly due to the limited introduction of additional domain information
resulting from the close alignment between the training and validation set distributions. Table 2

Table 2: Average PM. DISK maintains high precision in recognizing minority groups.

Method CMNIST MNIST
FashionMNIST

MNIST
CIFAR

WaterBirds CelebA

DISK w/ yval 99.1±0.2 91.8±1.7 99.2±0.1 70.3±3.1 71.3±2.0
DISK w/o yval 98.5±0.5 94.9±2.4 98.3±1.3 76.7±3.0 69.7±2.2

further summarizes DISK’s accuracy in identifying minority groups. Across all datasets, the average
precision (PM) for minority groups consistently exceeds 70%, and in some cases, even reaches as
high as 90%. Furthermore, Figure 4 visualizes the distribution of spurious features in the subsampled
data. DISK enables the creation of subsampled data with more balanced spurious feature distributions
within each class, facilitating models in learning invariant features and improving generalization. In
Appendix B.3.2, we also show the ablation experiment results to demonstrate that DISK, without
performing HCS, still accurately infers domains and effectively mitigates subpopulation shift.

Why is there inconsistency between DISK and human decisions in domain inference?

We noticed an interesting phenomenon in Table 1 and Table 2: in the Waterbirds dataset, DISK
only achieves around 70% precision on minority groups, yet its performance approaches or even
exceeds that of DFR. To explain this, Figure 5 displays ten random instances from the minority
groups identified by DISK. We observe two main categories of misclassified images: (1) Land images
with typical water features, like extensive blue regions (Figure 2), often lead DISK to misclassify
land as water. (2) Water images with typical land features, such as abundant tree branches (Figure 8),
ponds with lush green vegetation (Figure 9), or large tree reflections (Figure 10), frequently cause
DISK to misclassify water as land. Specifically, in Figure 2 of Figure 5, DISK misclassifies it as
water when it is actually land. We notice that it shares nearly identical background structures with
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Figure 4: Subsampled data visualization. The x-axis shows the spurious feature ratio P(xs=0|y=0)
P(xs=1|y=0) in

class 0 , the y-axis shows the ratio P(xs=0|y=1)
P(xs=1|y=1) in class 1 , and bubble size represents sample size.

Compared to the original data, subsampled data by DISK exhibits improved balance of spurious
features within each class, approaching closer to the perfectly balanced data (closer to (1,1)).

Figure 5: Comparing DISK-inferred and oracle minority groups. Each image has labels from both
DISK and the oracle, with “waterbird/landbird” as true labels and “water/land” as spurious (domain)
labels. Red highlights the DISK and oracle mismatch in domain classification.

Figures 1, 3, and 4 in Figure 5: vast blue areas (ocean or sky) and yellow/green land. It’s reasonable
for DISK to group them due to similar backgrounds. Unlike Figures 8 and 9 in Figure 5, which were
misclassified as land because their main content directly includes many land elements, such as green
foliage and tree branches, Figure 10 is classified as land by DISK, despite its water background, due
to the abundance of vertical linear structures resembling typical land features (tree branches).

Appendix B.3.5 includes additional visualizations that support our conclusion: for the Waterbirds
dataset, DISK achieves more coherent domain partitioning than human decisions by grouping spurious
features (backgrounds) with similar underlying patterns into the same category. For instance, DISK
identifies similarities between tree branches and water reflections, recognizes scenes resembling vast
blue skies and oceans, and groups them accordingly. And DISK provides domain inference that
is entirely based on the neural network perspective. This maintains perspective consistency with
subsequent neural networks trained on datasets without domain interference, thereby creating an
end-to-end process that can mitigate the adverse effects arising from differences in cognition between
humans and neural networks.

5 Conclusion

To address subpopulation shift without domain information, we introduce DISK, a novel method for
inferring domain labels. We evaluate its effectiveness across various datasets, emphasizing its domain
inference capabilities. In the WaterBirds dataset, DISK outperforms human decisions, suggesting
its potential in capturing the essence of data and demonstrating DISK’s value even when domain
information is available. However, limitations become evident in datasets like CelebA, where closely
aligned distributions challenge the recognition of spurious correlations.
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A Proof Details

A.1 Proof of the transformation of I(ytr; ytrs,w)

Given ytr, the maximization of mutual information I(ytr; ytrs,w) can be transformed into the mini-
mization of cross-entropy H(ytr, ytrs,w).

To demonstrate this assertion, we establish the following lemma:
Lemma 1. Given ytr, the correlation term is lower bounded by the difference between the entropy of
ytr and the cross-entropy between ytr and ytrs,w:

I(ytr; ytrs,w) ≥ H(ytr)−H(y
tr, ytrs,w).

Proof. First, we expand the mutual information term:

I(ytr; ytrs,w) = H(ytr)−H(ytr|ytrs,w)

Since, the cross-entropy can be expanded as:

H(ytr, ytrs,w) = −
∑

P(ytr) logP(ytrs,w)

=
∑

P(ytr) log
P(ytr)
P(ytrs,w)

−
∑

P(ytr) logP(ytr)

= DKL(y
tr||ytrs,w) +H(ytr)

≥ DKL(y
tr||ytrs,w) +H(ytr|ytrs,w)

≥ H(ytr|ytrs,w)

Then we have,

I(ytr; ytrs,w) = H(ytr)−H(y|ytrs,w)

≥ H(ytr)−H(ytr, ytrs,w)

According to Lemma 1, when ytr is given, maximizing the mutual information I(ytr; ytrs,w) can be
equivalently transformed into minimizing H(ytr, ytrs,w), which is more computationally tractable in
practice.

A.2 Proof of Theorem 1

To prove Theorem 1, we first show the causal structure between ys , z and y. Definition 1 describes
the following causal relationships: ys ← zs and zv → y. This relationship is reasonable and further
complements the research by [19]. In their work, they assume D ← z→ y, where the variable D
represents the domain, which corresponds to the spurious labels ys. Here, z = (zs, zv), and we
provide a detailed description of how z determines both the domain label and the true label through
zs and zv . The fork causal structure [18] between ys , z and y exhibits the following properties:
Property 1. The fork causal relationship ys ← z→ y adheres to the following properties:

1. ys ̸⊥ y means the true label y and the spurious label ys are dependent.

2. y ⊥ ys | z means given the representation z, the true label y and the spurious label ys are
conditionally independent.

Then, we establish the following two lemmas:
Lemma 2. Given representations ztr and zval, maximizing the spurious term is equivalent to
maximizing the following expression:

max
w

KL(P(ytr|ytrs,w)||P(yval|yvals,w))

⇔max
w

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))
(7)
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Proof. According to the properties of KL divergence [7], we have the following:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))−KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr|ytrs,w)

P(yval, zval|yvals,w)
]− E(ytr,ztr,ytr

s,w)[log
P(ztr|ytr, ytrs,w)

P(zval|yval, yvals,w)
]

= E(ytr,ztr,ytr
s,w)[log

P(ytr|ytrs,w)

P(yval|yvals,w)
]

= E(Y tr,ytr
s,w)[log

P(Y tr|ytrs,w)

P(Y val|yvals,w)
]

= KL(P(ytr|ytrs,w)||P(yval|yvals,w))

(8)

Term KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w)) captures the similarity between the groups in the
training and validation sets. According to the definition of subpopulation shift in Section 3.1, we
have P(ztr|ytr, ytrs,w) = P(zval|yval, yvals,w). Therefore,

KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w)) =
∑

P(ytr, ytrs,w)
∑

P(ztr|ytr, ytrs,w) log
P(ztr|ytr, ytrs,w)

P(zval|yval, yvals,w)

=
∑
k

rtrk
∑

Pk log
Pk

Pk
= 0

(9)

Consequently, maximizing the spurious term KL(P(ytr|ytrs,w)||P(yval|yvals,w)) is tantamount to maxi-
mizing KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)).

Lemma 3. Given representations ztr and zval, the equivalence of the spurious term is lower bounded
by the following expression:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (10)

The tighter the bound is as KL(P(ytr|ztr)||P(yval|zval)) becomes smaller.

Proof. Expanding the objective term, we have:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr|ytrs,w)

P(yval, zval|yvals,w)
]

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr, ytrs,w)

P(yval, zval, yvals,w)
]− Eytr

s,w
[log

P(ytrs,w)

P(yvals,w)
]

(a)
= E(ytr,ztr,ytr

s,w)[log
P(ytr|ztr)P(ztr, ytrs,w)

P(yval|zval)P(zval, yvals,w)
]−KL(P(ytrs,w)||P(yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr|ztr)
P(yval|zval)

] + E(ytr,ztr,ytr
s,w)[log

P(ztr, ytrs,w)

P(zval, yvals,w)
]−KL(P(ytrs,w)||P(yvals,w))

= KL(P(ytr|ztr)||P(yval|zval)) + KL(P(ztr|ytrs,w)||P(zval|yvals,w))

≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w))
(11)

(a) achieves by the Property 1 where we have:

P(y, z, ys) = P(y|z)P(ys|z)P(z) = P(y|z)P(ys, z) (12)

By Equation 11, we prove the lower bound of KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)) is
KL(P(ztr|ytrs,w)||P(zval|yvals,w)) and the tighter the bound is as KL(P(ytr|ztr)||P(yval|zval)) be-
comes smaller.
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Theorem 2. (Restatement of Theorem 1) Given representations ztr and zval, the spurious term is
lower bounded by the following expression as:

KL(P(ytr|ytrs,w)||P(yval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (13)

Proof. Based on Lemma 2 and 3, we can directly deduce:

KL(P(ytr|ytrs,w)||P(yval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (14)

B Experiments

B.1 Synthetic Toy Data

Consider a 2D synthetic dataset with the following distribution:
Example 1. (Synthetic 2D data) Let x = (x1,x2) ∈ R2 represent 2-dimensional features, with the
spurious feature X1 and the invariant feature x2, and y ∈ R1 denoting labels. The synthetic data
comprises four groups (domains), namely G1, G2, G3, and G4. The distributions and sample sizes in
the training, validation, and test sets for each group are as follows:

G1 : (x1,x2) ∼ N
([

4

5

]
,

[
1 0

0 1

])
;Y = 0; (N tr, Nval, N ts) = (3900, 854, 3000)

G2 : (x1,x2) ∼ N
([

4

8

]
,

[
1 0

0 1

])
;Y = 1; (N tr, Nval, N ts) = (100, 287, 3000)

G3 : (x1,x2) ∼ N
([

8

8

]
,

[
1 0

0 1

])
;Y = 1; (N tr, Nval, N ts) = (3900, 18, 3000)

G4 : (x1,x2) ∼ N
([

8

5

]
,

[
1 0

0 1

])
;Y = 0; (N tr, Nval, N ts) = (100, 828, 3000)

(15)

The varying sample sizes in groups G1, G2, G3, and G4 indicate subpopulation shift across the
training, validation, and test sets.

Figure 6 visualizes the synthetic data and annotates the centers of the four groups. Subpopulation shift
can be clearly observed in the training, validation, and test datasets. Specifically, all three datasets
contain four groups: G1, G2, G3, and G4. However, the proportions of these groups vary significantly
across the datasets. Such distribution shift leads to challenges in generalization, as models trained on
the training set may struggle to perform well on the validation and test sets, resulting in poor overall
generalization performance.
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Figure 6: Visualization of Synthetic Data. The centers of the four groups G1, G2, G3, and G4 are
labeled. We can observe the subpopulation shift phenomenon in the training, validation, and test
datasets.

The second row of Figure 7 visualizes the decision boundary of fDISK without access to yval.
Compared to fvanilla, a decision boundary that aligns more closely with the vertical decision driven
by the spurious feature x1 is observed. This implies that fDISK without yval has learned more
spurious features, resulting in poorer generalization on the test data.
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(h) Validation Acc = 0.82 (i) Test Acc = 0.87

Figure 7: (a-c) Decision Boundary and Prediction Accuracy for fvanilla. (d-f) DISK without Acces-
sible Y val: Decision Boundary and Prediction Accuracy for fDISK. (g-i) DISK with Subsampling:
Decision Boundary and Prediction Accuracy for fDISKS.

The third row of Figure 7 visualizes fDISKS, which is furthermore trained based on the domain
information inferred by DISK using the Subsampling strategy. Compared to fvanilla, fDISKS exhibits
a more horizontal decision boundary and higher test prediction accuracy. This indicates that DISK
can effectively infer domain information to help mitigate subpopulation shift.

B.2 Real Data

B.2.1 Dataset Details

CMNIST[2] is a noisy digit recognition task. The binary feature (green and red), referred to as color,
serves as a spurious feature, while the binary feature (digit contours) acts as the invariant feature. The
CMNIST dataset involves two classes, where class 0 corresponds to the original digits (0,1,2,3,4),
and class 1 represents digits (5,6,7,8,9). Following the approach recommended in [38], we construct
a training set with a sample size of 30,000. In class 0, the ratio of red to green samples is set at 8:2,
while in class 1, it is set at 2:8. For the validation set consisting of 10,000 samples, the proportion of
green to red samples is equal at 1:1 for all classes. The test set, containing 20,000 samples, features a
proportion of green to red samples at 1:9 in class 0 and 9:1 in class 1. Additionally, label flipping is
applied with a probability of 0.25.

MNIST-FashionMNIST are synthetic datasets derived from the Dominoes datasets [30, 15]. MNIST-
FashionMNIST is generated by combining the MNIST dataset with the FashionMNIST dataset. In
these datasets, each image is divided into two halves: the top half displays MNIST digits from
classes 0, 1, while the bottom half showcases Fashion-MNIST images from classes coat, dress. For
MNIST-FashionMNIST, in the training set with 10,825 samples, in the class Dress, the ratio of digit
0 to digit 1 samples is set at 9:1, while in the class Coat, it is set at 1:9. In the validation set with
1,175 samples, in the class Dress, the ratio of digit 0 to digit 1 samples is approximately set at 7:3,
while in the class Coat, it is approximately set at 3:7. In the test set with 2,000 samples, 95% of the
samples in the Dress class are associated with the digit 1, while 95% of the samples in the Coat class
are associated with the digit 0.

MNIST-CIFAR are also synthetic datasets created by combining the MNIST dataset with the CIFAR
datasets [30, 15]. To increase the diversity of the data, we included all samples from CIFAR-10, rather
than just the samples car, truck as included in [15]. First, the labels of CIFAR-10 were binarized,
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Table 3: Hyperparameter settings for Different Datasets. Parameters inside parentheses indicate
differences between cases when DISK yval is not available and when yval is available. Parameters
inside parentheses correspond to DISK with yval not available.

Hyperparameters CMNIST MNIST
FashionMNIST

MNIST
CIFAR Waterbirds CelebA

fvanilla

Learning rate 1e-3 1e-2 1e-2 1e-3 1e-3
Weight decay 1e-4 1e-3 1e-3 1e-4 1e-4
Architecture ResNet50 ResNet18 ResNet18 ResNet18 ResNet50

Epoch 300 300 300 300 50

fspurious
DISK

Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5
Momentum 0.9 0.9 0.9 0.9 0.9
Architecture 1-layer NN 1-layer NN 1-layer NN 1-layer NN 1-layer NN

Epoch 100 (50) 500 (500) 300 (300) 200 (100) 180 (180)

f correlation
DISK

Learning rate 1e-5 1e-4 1e-5 1e-5 1e-5
Momentum 0.9 0.9 0.9 0.9 0.9
Architecture 1-layer NN 1-layer NN 1-layer NN 1-layer NN 1-layer NN

Epoch 100 (50) 500 (500) 300 (300) 200 (100) 180 (180)

Common
Parameters

γ 1 (1) 5 (1) 1 (1) 1 (1) 4 (4)
α 0.9 0.95 0.9 0.8 -

Batch size 16 32 32 16 16
Optimizer SGD SGD SGD SGD SGD

where samples originally labeled as airplane, automobile, bird, cat, or deer were relabeled as 0, and
samples originally labeled as dog, frog, horse, ship, or truck were relabeled as 1. In these datasets,
each image is divided into two halves: the top half displays MNIST digits from classes 0, 1, while
the bottom half showcases CIFAR-10 images from the new classes 0, 1. MNIST-CIFAR exhibits
more extreme distributions of spurious features (MNIST) and invariant features (CIFAR-10). For the
training set with 4,500 samples, 99% of samples labeled as 0 are associated with digit 0, and 99% of
samples labeled as 1 are associated with digit 1. In the validation set with 5,000 samples, 70% of
samples labeled as 0 are associated with digit 0, and 70% of samples labeled as 1 are associated with
digit 1. In the test set with 10,000 samples, only 10% of samples labeled as 0 are associated with
digit 0, and 10% of samples labeled as 1 are associated with digit 1.

Waterbirds aims to classify bird images as either waterbirds or landbirds, with each bird image
falsely associated with either a water or land background. Waterbirds is a synthetic dataset where each
image is generated by combining bird images sampled from the CUB dataset [34] with backgrounds
selected from the Places dataset [39]. We directly load the Waterbirds dataset using the Wilds library
in PyTorch [16]. The dataset consists of a total of 4,795 training samples, with only 56 samples
labeled as waterbirds on land and 184 samples labeled as landbirds on water. The remaining training
data includes 3,498 samples from landbirds on land and 1,057 samples from waterbirds on water.

CelebA [23, 28] is a hair-color prediction task, similar to the study conducted by [38], and follows
the data preprocessing procedure outlined in [28]. Given facial images of celebrities as input, the task
is to identify their hair color as either blond or non-blond. This labeling is spuriously correlated with
gender, which can be either male or female. In the training set, there are 71,629 instances (44%) of
females with dark hair, 66,874 instances (41%) of non-blond males, 22,880 instances (14%) of blond
females, and 1,387 instances (1%) of blond males. In the validation set, there are 8535 instances
(43%) of females with dark hair, 8276 instances (42%) of non-blond males, 2874 instances (14%) of
blond females, and 182 instances (1%) of blond males.

B.2.2 Training Details

We use a pre-trained ResNet model [12] for image data. For Subsampling, assuming a minimum
sample size of T for each domain after DISK partitioning, we sample T samples from each domain
to form a subsampled dataset. Each method is repeated three times with random seeds 0, 1, and 2.
Detailed parameters used in the experiments are shown in Table 3.
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B.3 More Experiments

B.3.1 The accuracy discrepancy of fDISK between the training and validation sets

Figure 8 visualizes the difference in predictive accuracy of fDISK between the training and validation
sets. fDISK encourages a more pronounced spurious correlation to learn spurious information,
resulting in an increase in the gap in predictive accuracy between the training and validation sets.
This phenomenon is indeed observed in Figure 8, demonstrating the effectiveness of DISK.

CMNIST MNIST-FashionMNIST MNIST-CIFAR Waterbirds CelebA
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Figure 8: The difference in predictive accuracy of fDISK between the training and validation sets.
We observe that DISK indeed encourages an increase in the gap in predictive accuracy between the
training and test sets by learning spurious information, resulting in poorer generalization.

B.3.2 Ablation Study

Table 2 demonstrates that the HCS operation assists DISK in better identifying minority groups.
To further understand the factors influencing DISK’s domain partitioning ability, we present abla-
tion experiment results in Tables 4 and 5, without the HCS operation, on the CMNIST, MNIST-
FashionMNIST, MNIST-CIFAR, and Waterbirds datasets (the CelebA dataset did not undergo the
HCS operation). We can observe that even without the HCS operation, DISK still significantly
improves average/worst performance, regardless of the availability of yval. This suggests that while
HCS helps DISK better identify hard-to-recognize minority group samples, DISK’s ability to partition
domain information originates from its own core capabilities.

Table 4: Results of the ablation experiments. Even without HCS, significant improvements in
performance relative to ERM are still observed for DISK, indicating that DISK’s domain partitioning
ability stems from its core capabilities instead of the HCS operation. The CelebA dataset is not
included because CelebA does not use HCS.

Method HCS CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds

Avg. Worst Avg. Worst Avg. Worst Avg. Worst

DISKS w/ yval ✓ 65.1±1.7 67.6±2.0 92.3±0.8 92.6±0.9 69.0±0.4 69.2±0.6 91.1±1.4 85.5±3.0

DISKS w/o yval ✓ 62.5±4.4 65.5±3.0 91.8±2.8 93.0±2.7 68.1±1.2 68.4±1.2 80.8±1.5 81.1±0.4

DISKS w/ yval × 60.9±0.9 60.1±1.0 90.5±2.2 90.5±2.3 66.3±1.7 65.9±2.1 81.9±3.8 75.8±4.6

DISKS w/o yval × 57.7±5.6 56.7±6.5 85.7±2.9 85.5±3.0 66.2±2.5 65.7±3.0 80.8±2.1 70.1±2.5
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Table 5: Average Minority Domain Inference Precision PM on four datasets without HCS. We observe
that even without the HCS operation, DISK maintains high precision in recognizing challenging-to-
identify minority groups. Although there is a slight decrease in accuracy compared to when HCS
operation is applied, this suggests that DISK’s performance in recognizing minority groups and
inferring domain information primarily originates from its inherent capabilities.

Method CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds

DISK w/ yval 81.2±1.9 80.4±4.7 86.9±1.1 35.8±4.0
DISK w/o yval 73.7±0.9 77.7±4.5 86.9±2.4 51.5±2.9

B.3.3 The Stability of DISK

The challenge addressed by [20] revolves around testing the stability of domain inference algorithms.
Specifically, it questions whether domain inference methods can learn invariant models from hetero-
geneous data originating from multiple environments with unknown environmental indices, aiming to
demonstrate their stability. In the context of CMNIST, digits are considered as invariant features (x1),
while colors are regarded as spurious features (x2). A variant of CMNIST, known as MCOLOR,
has been created, where color assumes the role of the invariant feature, and digit shape serves as the
spurious feature. The joint distribution P(x1,x2, y) of MCOLOR and CMNIST remains identical.
The only distinction lies in the fact that CMNIST treats digits as the invariant feature, color as the
spurious feature, and the prediction target is digit prediction. In contrast, MCOLOR treats color as
the invariant feature, digits as the spurious feature, and the prediction target is color prediction. To
underscore the poorer generalization of MCOLOR in this experiment, we retained only the digits 0
and 1 for both CMNIST and MCOLOR, eliminating the need for binary processing.

Table 6: Results on CMNIST and MCOLOR for DISK. DISK improves the performance of ERM on
the test data for both CMNIST and MCOLOR, even when the data distributions are identical. This
demonstrates that DISK can reliably identify spurious information for domain information inference.

Method CMNIST MCOLOR
Train Acc(%) Test ACC(%) Train Acc(%) Test ACC(%)

ERM 89.0±0.7 31.1±1.7 79.6±1.2 59.8±0.4
DFR 61.8±6.1 66.1±1.8 65.4±3.0 68.1±0.5

DISKS w/ yval 58.6±3.1 62.8±3.1 63.0±3.1 63.9±1.2
DISKS w/o yval 58.1±2.1 62.1±1.6 57.3±0.9 60.6±0.7

Table 6 also reports the training and test accuracy of DISK on CMNIST and MCOLOR. We observe
that compared to CMNIST, MCOLOR exhibits fewer severe generalization issues, with an average
test accuracy that approaches 60%. This suggests that color might be a feature easier to learn than
digit shapes. We also notice that DISK significantly improves the performance of ERM on the test set
for both CMNIST and MCOLOR, particularly when yval is available. This underscores the stability
of DISK in domain information inference.

B.3.4 DISK with Mixup

To demonstrate that DISK can be combined with additional enhancement techniques, we present
the performance of DISK and Mixup (DISKM) using the MNIST-FashionMNIST, and Waterbirds
datasets as examples. Similar to LISA, Mixup includes two strategies: Intra-label Mixup (interpolating
samples with the same label from different domains) and Intra-domain Mixup (interpolating samples
from the same domain but different instances) [38]. LISA is essentially a method that applies
Mixup based on oracle domain information, representing the upper performance limit achievable
by DISKM if the oracle domain information is accurate enough. Figure 9 describes the algorithmic
process of DISKM for enhancing generalization. For Mixup, we sample the interpolation ratio
parameter from a Beta(2, 2) distribution, as recommended by LISA. Table 7 illustrates that DISKM
significantly improves the accuracy of ERM, demonstrating the potential of combining DISK with
various enhancement techniques.
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(a) Domain Inference (b) Generalization Enhancement
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Figure 9: (a) DISK discovers the spurious correlation between the training and validation data,
assigning spurious labels ytrs to training instances. Subsequently, the training set is partitioned into
different groups with distinct distributions P(xs,xv|g) where g = (y, ys). The HCS operation aids
DISK in achieving a more precise inference of minority groups; (b) The training data from different
domains undergo enhancement techniques, such as Mixup, which involves mixing up images across
domains or across labels for further training.

Table 7: Comparison of Accuracy (%). DISKM achieves performance improvements compared to
ERM, effectively addressing the challenge of weak ERM generalization without relying on domain
information. We adopt the experimental results as reported in the original LISA paper by default,
with the exception of the blue results for LISA on the Waterbirds dataset, which were obtained from
our own experiments.

Method Domain
Info

MNIST
FashionMNIST WaterBirds

Avg. Worst Avg. Worst

ERM × 71.1±2.0 69.6±2.0 63.4±4.0 34.4±8.2

IRM ✓ - - 87.5±0.7 75.6±3.1

GroupDRO ✓ - - 91.8±0.3 90.6±1.1

LISA ✓ 92.9±0.7 92.6±0.8 78.2±0.3 / 91.8±0.3 78.0±0.2 / 89.2±0.6
DISKM w/ yval × 94.3±0.4 94.1±0.5 78.5±0.7 77.8±0.1

DISKM w/o yval × 93.6±1.2 94.7±1.2 78.5±0.3 78.1±0.5

B.3.5 More Visualizations on Waterbirds

In this section, we present additional instances of Minority Group and Majority Group inferred by
DISK, and investigate the similarity of DISK’s partitioning when different random number seeds are
used.

First, we visualize 40 instances of Minority Groups inferred by DISK under the same experimental
settings, with the random seed set to 2, as in Section 4.2.2. In Figures 10, 11, 12 and 13 We observe
that the reasons for Land (or Water) being misclassified as Water (Land), consistent with the findings
in Section 4.2.2, are due to the fact that Land backgrounds, which are actually Land, contain typical
Water features such as extensive blue areas (sky), which might lead DISK to categorize them as
Water, which also has extensive blue regions like oceans. Conversely, Water backgrounds, which are
actually Water, contain typical Land features such as vertical linear structures (tree branches or trunks
or water ripples) and green tree leaves, which might lead DISK to classify them as Land. These
findings, in conjunction with the results in Section 4.2.2, reveal that DISK infers domains based more
on the similarity of underlying patterns rather than the patterns themselves.

Without loss of generality, we also observed the Minority Groups and Majority Groups inferred by
DISK when the random seed is set to 0. We observed consistent results, as emphasized in Section 3.4,
that DISK’s instance recognition accuracy for Majority Groups is relatively higher than for Minority
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Figure 10: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason for Figure 1 being misclassified as Water by DISK is consistent with the misclassification
reasons shown in Figure 5. In both cases, it is due to the background consisting of vast blue skies
(a feature of water) and land. The misclassification of Figures 8 and 9 as Land instead of Water by
DISK is also attributed to the presence of green foliage and extensive tree branches.

Figure 11: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason Figure 4 is misclassified by DISK as Water instead of Land is due to its background consisting
of extensive blue skies (a characteristic of water) and land. Similarly, Figure 9 is misclassified by
DISK as Land instead of Water because it contains a significant number of tree branches (linear
structures).

Groups. In the randomly selected 8 images, there were no misclassified samples within the Majority
Group. However, for the misclassified samples within the Minority Groups, we found that it was
still due to Land backgrounds containing extensive blue areas (sky) or water-like patterns, or Water
backgrounds containing numerous land features, such as trees and tree branch reflections, which
exhibit vertical stripe structures. By visualizing the Minority Groups and Majority Groups samples
partitioned by DISK under different random seeds, we once again realize that DISK categorizes
images based on the inherent similarity of their patterns. This neural network-based perspective of
partitioning may introduce discrepancies compared to human decisions.
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Figure 12: Comparison between DISK-inferred and oracle minority domains. We observed that the
reason for Figure 2 being misclassified by DISK as Water instead of Land is due to its background
consisting of extensive blue sky (a characteristic of water). Similarly, Figures 6 and 8 being misclassi-
fied as Land by DISK instead of Water is attributed to the presence of numerous tree branches (linear
structures) and green trees, which are typical land features.

Figure 13: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason Figure 4 is misclassified by DISK as Water instead of Land is due to its background featuring
extensive blue sky (a characteristic of water). Figures 7, 8, 9, and 10 being misclassified as Land
instead of Water by DISK are attributed to the presence of numerous linear structures resembling
tree branches in the images, or the absence of prominent water features (unlike Figures 1, 2, 3, 5,
where backgrounds typically include extensive blue areas; even in the case of Figures 8 and 9, the
backgrounds lack extensive blue areas and are dominated by yellow land, people, and clutter often
seen on land).
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Figure 14: Comparison between DISK-inferred and oracle minority domains. We observe that Figures
6 and 7 are misclassified as Water by DISK due to their backgrounds consisting of extensive blue
skies (a water-related feature) or horizontally striped branches that resemble rippling water surfaces,
which can be confusing for DISK. On the other hand, Figures 13, 14, and 15 are misclassified as
Land by DISK because they contain a significant amount of vertical linear structures, tree elements,
tree reflections, and other land-related features.
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