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ABSTRACT

Processing point cloud data is an important component of many real-world sys-
tems. As such, a wide variety of point-based approaches have been proposed,
reporting steady benchmark improvements over time. We study the key ingredi-
ents of this progress and uncover two critical results. First, we find that auxiliary
factors like different evaluation schemes, data augmentation strategies, and loss
functions, which are independent of the model architecture, make a large dif-
ference in performance. The differences are large enough that they obscure the
effect of architecture. When these factors are controlled for, PointNet++, a rel-
atively older network, performs competitively with recent methods. Second, a
very simple projection-based method, which we refer to as SimpleView, performs
surprisingly well. It achieves on par or better results than sophisticated state-of-
the-art methods on ModelNet40 while being half the size of PointNet++. It also
outperforms state-of-the-art methods on ScanObjectNN, a real-world point cloud
benchmark, and demonstrates better cross-dataset generalization.

1 INTRODUCTION

Processing 3D point cloud data accurately is crucial in many applications including autonomous
driving (Navarro-Serment et al., 2010) and robotics (Rusu et al., 2009). In these settings, sensors like
LIDAR produce unordered sets of points that correspond to object surfaces. Correctly classifying
objects from this data is important for 3D scene understanding (Uy et al., 2019). While classical
approaches for this problem have relied on hand-crafted features (Arras et al., 2007), recent efforts
have focused on the design of deep neural networks (DNNs) to learn features directly from raw point
cloud data (Qi et al., 2017a). Deep learning-based methods have proven effective in aggregating
information across a set of 3D points to accurately classify objects.

The most widely adopted benchmark for comparing methods for point cloud classification has been
ModelNet40 (Wu et al., 2015b). The accuracy on ModelNet40 has steadily improved over the last
few years from 89.2% by PointNet (Qi et al., 2017a) to 93.6% by RSCNN (Liu et al., 2019c) (Fig. 1).
This progress is commonly perceived to be a result of better designs of network architectures. How-
ever, after performing a careful analysis of recent works we find two surprising results. First, we find
that auxiliary factors including differing evaluation schemes, data augmentation strategies, and loss
functions affect performance to such a degree that it can be difficult to disentangle improvements
due to the network architecture. Second, we find that a very simple projection-based architecture
works surprisingly well, outperforming state-of-the-art point-based architectures.

In deep learning, as results improve on a benchmark, attention is generally focused on the novel
architectures used to achieve those results. However, there are many factors beyond architecture
design that influence performance including data augmentation and evaluation procedure. We refer
to these additional factors as a method’s protocol. A protocol defines all details orthogonal to
the network architecture that can be controlled to compare differing architectures. Note that it is
possible for some specific form of loss or data augmentation to be tied to a specific architecture and
inapplicable to other architectures. In these cases, it would be inappropriate to treat them as part of
the protocol. However, for all the methods we consider in this paper, their losses and augmentation
schemes are fully compatible with each other and can be considered independently.

We do experiments to study the effect of protocol and discover that it accounts for a large difference
in performance, so large as to obscure the contribution of a novel architecture. For example, the
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Figure 1: Performance of point-based models on
ModelNet40. Those using > 1024 points or nor-
mals are marked with triangle. Line joins the top-
performing models across times.
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Figure 2: The SimpleView Architecture. The
depth images are colored only for illustration.
SimpleView takes in single channel depth im-
ages as input.

performance of the PointNet++ architecture (Qi et al., 2017b) jumps from 90.0±0.3 to 93.3±0.3,
when switching from its original protocol to RSCNN’s protocol (Liu et al., 2019c). We further
find that the protocols that lead to the strongest performance rely on feedback from the test set,
which differs from conventional evaluation setups. We re-evaluate prior architectures using the best
augmentation and loss functions, while not using any feedback from the test set. We find that by
taking protocol into account, the PointNet++ architecture performs competitively with more recent
ones in various settings.

In addition to the surprising importance of protocol, in reviewing past approaches, another surprising
discovery is that a very simple projection based baseline works very well. One needs to simply
project the points to depth maps along the orthogonal views, pass them through a light-weight CNN
and fuse the features. We refer to this baseline as SimpleView.

Compared to previous projection-based method (Roveri et al., 2018; Sarkar et al., 2018) for point-
cloud classification, SimpleView is very simple. Prior methods have developed special modules
for view selection, rendering, and feature merging, as well as use larger CNN backbones that are
pretrained on ImageNet (refer to Sec. 2 for more details). In contrast, SimpleView has no such
special operations, and only requires simple point projections, a much smaller CNN backbone, and
no ImageNet pretraining.

The discovery of SimpleView is surprising because recent state-of-the-art results have all been
achieved by point-based architectures of increasing sophistication. In recent literature, it is often
assumed that point-based methods are the superior choice for point-cloud processing as they “do not
introduce explicit information loss” (Guo et al., 2020). Prior work has stated that “convolution oper-
ation of these methods lacks the ability to capture nonlocally geometric features” (Yan et al., 2020),
that a projection-base method “often demands a huge number of views for decent performance” (Liu
et al., 2019c), and that projection-based methods often “fine-tune a pre-trained image-based archi-
tecture for accurate recognition” (Liu et al., 2019c). It is thus surprising that a projection-based
method could achieve state-of-the-art results with a simple architecture, only a few views, and no
pretraining.

On ModelNet40, SimpleView performs on par or better than more sophisticated state-of-the-art
networks across various protocols, which includes the ones used by prior methods (Table. 3) as well
as our protocol (Table. 5). At the same time, SimpleView outperforms state-of-the-art architectures
on ScanObjectNN (Uy et al., 2019), a real-world dataset where point clouds are noisy (background
points, occlusions, holes in objects) and are not axis-aligned. SimpleView also demonstrates better
cross-dataset generalization than prior works. Furthermore, SimpleView uses less parameters than
state-of-the-art networks (Table. 5).

Note that we are not proposing a new architecture or method, but simply evaluating a simple and
strong projection-based baseline for point-cloud classification that is largely ignored in the literature.
We do not claim any novelty in the design of SimpleView because all of its components have ap-
peared in the literature. Our contribution is showing that such a simple baseline works surprisingly
well, which is a result absent in existing literature.
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It is worth noting that one might think that projection-based methods are not directly comparable
with point-based methods because projection-based methods may have the full mesh as input, as
opposed to just a point cloud. While this is true for existing results in the literature, it is not the
case with SimpleView, whose input is the exact same point cloud given to a point-based method.
In other words, SimpleView is directly comparable to a point-based method because they solve the
exact same task.

In summary, our contributions are threefold:
• We show that training and evaluation factors independent of network architecture have a large

impact on point-cloud classification performance. With these factors controlled for, PointNet++
performs as well as more recent architectures.

• We demonstrate how SimpleView, a very simple projection based baseline performs surprisingly
well on point-cloud classification. It performs on par with or better than prior networks on Mod-
elNet40 while using fewer parameters. It also outperforms state-of-the-art methods on real-world
point-cloud classification and achieves better cross-dataset generalization.

2 RELATED WORK

Point-Based Methods for Point-Cloud Analysis: A broad class of DNNs have emerged to process
3D points directly (Simonovsky & Komodakis, 2017; Zaheer et al., 2017; Klokov & Lempitsky,
2017; Xu et al., 2018; Atzmon et al., 2018; Wang et al., 2018a; Li et al., 2018a; Groh et al., 2018;
Ben-Shabat et al., 2018; Xie et al., 2018; Li et al., 2018b; Liu et al., 2019a; Thomas et al., 2019;
Komarichev et al., 2019; Liu et al., 2019b; Yan et al., 2020; Su et al., 2018; Zhang et al., 2019; Liu
et al., 2019a; Atzmon et al., 2018). PointNet (Qi et al., 2017a) proposed one of the first strategies,
where features are updated for each point with MLP layers, and aggregated with global max pool-
ing. However, no local comparisons are performed in PointNet, which motivates PointNet++(Qi
et al., 2017b). PointNet++ breaks subsets of points into local regions that are processed first. More
explicit modeling of the spatial relations between points is performed with more recent methods (Li
et al., 2018b; Liu et al., 2019c; Wu et al., 2019). For example, PointConv learns functions to define
continuous 3D convolutions that can be applied to arbitrary sets of points in a neighborhood (Wu
et al., 2019). RSCNN uses MLPs conditioned on the spatial relationship of two points to update
and aggregate features around an individual sampled point (Liu et al., 2019c). There exist many
variations to these methods, but the emerging trend is an increase in sophistication.

Projection-Based Methods for Point-Cloud Classification: Projection-based methods for point
cloud classification have been proposed in the literature. Notably, Roveri et al. (2018) learn to pre-
dict viewing angles and classify images in an end-to-end differentiable way. They use the ResNet50
model, pretrained on ImageNet as their backbone and a depth-image generation pipeline. Sarkar
et al. (2018) propose a special multi-height rendering and feature merging scheme, and use a larger
backbone network pretrained on ImageNet. Ahmed et al. (2019) manually define important views
for each object category, create binary edge maps, and train an ensemble of PointNet++ and CNN.
However, numbers in Ahmed et al. (2019) are not directly comparable to other approaches as there
is a manual alignment of objects in the test set which is different from the standard ModelNet40
test set. This was confirmed with the authors. It is worth noting that even though prior work has
shown sophisticated operations to be useful for achieving good results, we find that when controlling
for method protocols, strong performance can be achieved with fixed orthogonal views, a smaller
network, no ImageNet pretraining, and simpler rendering of points.

Projection-Based Methods for Other Point-Cloud Analysis Tasks: There is a rich litera-
ture for using projection-based methods on various point-cloud analysis problems like segmenta-
tion (Ladickỳ et al., 2010; Tighe & Lazebnik, 2010; Riemenschneider et al., 2014; Qin et al., 2018;
Dai & Nießner, 2018; Kalogerakis et al., 2017; Tatarchenko et al., 2018), reconstruction (Pittaluga
et al., 2019) and rendering (Aliev et al., 2019). Notably, Boulch et al. (2017) use point cloud density
to create scene meshes, which are then put into a mesh renderer to generate many image views at
different scales. Lawin et al. (2017) render a scene point cloud from 120 views for different modal-
ities like color, depth, and surface normal. Information from multiple modalities is then fused to
generate point-wise predictions. For a detailed survey of various projection approaches on differ-
ent point-cloud processing tasks, we encourage readers to check the recent survey paper by (Guo
et al., 2020). In this work, SimpleView serves as a stripped-down projection-based baseline for
point-cloud classification that uses a few orthogonal views and simple point projections.
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Table 1: Summary of various protocols.
Protocol Data Augmentation Model Selection Loss Ensemble Training Points

PointNet++ jitter, random rotation, final model cross-entropy Rotation Vote fixed
random scaling and trans.

DGCNN random scaling and trans. best test model smooth-loss No vote fixed
RSCNN random scaling and trans. best test model cross-entropy Repeated Scaling Vote resampled
SimpleView random scaling and trans. final model smooth-loss No vote fixed

3D shape Analysis using Rendered Images and Voxels: Many works use images rendered from
object meshes for 3D shape analysis (Maturana & Scherer, 2015; Wu et al., 2015b; Yu et al., 2018;
Guo et al., 2016; Shi et al., 2015; Hackel et al., 2017; Song & Xiao, 2016; 2014; Huang & You,
2016; Tchapmi et al., 2017). MVCNN exemplifies this strategy by applying a shared CNN to many
rendered views and max-pooling to aggregate features (Su et al., 2015). Subsequent approaches
include RotationNet which trains the network to also predict the viewpoint for each image (Kanezaki
et al., 2018), GVCNN which groups features from subsets of views together before aggregating into
a final prediction (Feng et al., 2018), and hypergraph methods that consider the correlation across
training samples (Zhang et al., 2018; Feng et al., 2019). One notable exception is Qi et al. (2016),
who use a multi-resolution variant of MVCNN, but instead of object meshes, use a voxelized version
of the object for rendering. In contrast to the prior view-based methods that use object meshes with
point connectivity information, and render images using basic shading and/or depth; SimpleView
takes as input raw point clouds.

Another class of methods is voxel-based methods that convert points to a fixed 3D grid instead,
which enables the use of 3D CNNs (Qi et al., 2016; Wu et al., 2015a; Maturana & Scherer, 2015).
Given the added dimension, such methods are usually restricted to a much lower resolution to rep-
resent objects. Though some strategies such as octrees have been used to address those limita-
tions (Wang et al., 2017), the advantages to processing 3D data directly in this manner do not yet
appear to outweigh the additional overhead introduced.

3 METHOD OVERVIEW

3.1 VARIATIONS IN EXISTING PROTOCOLS

We analyze the key ingredients in the progress in point-cloud classification. Critical to our study is
controlling for factors which are independent of network architecture. We refer to the factors as a
method’s protocol. A protocol used by one method can be transferred to another. For our study,
we analyze a subset of the highest performing methods over the past few years. This choice was fur-
ther based on availability and usability of official source-code. Specifically, we choose PointNet (Qi
et al., 2017a), PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2018b) and RSCNN (Liu et al.,
2019c). Note that we also do direct comparisons to networks apart from the ones mentioned here
(Table 4).

For our purposes, we do not consider any variations in input, namely the use of surface normals or
more than 1024 points. Using normals or more points have been shown to improve performance in
the literature. Our objective is to study factors that are not commonly perceived as a major source
of performance increase. So we scope our analysis to the most widely adopted input scheme which
uses 1024 points with only x, y, z coordinates.

Data Augmentation: Various data augmentation strategies like jittering, random
rotation along y-axis, random scaling and random translation. Different
methods use different combinations of these augmentations. PointNet and PointNet++ use all
the above augmentations. However, as objects in ModelNet40 are aligned, random rotation
along y-axis adversely affects the performance of a model. Hence recent methods, includ-
ing RSCNN and DGCNN, do not use it. They use only random translation and random
scaling. Some methods including PointCNN make a distinction between whether or not random
rotation along y-axis is used, but it is not a common practice.

Input Points: PointNet and PointNet++ use a fixed set of 1024 points per object to train the network.
We refer to it as the fixed points strategy. RSCNN and PointCNN randomly sample points
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Table 2: DGCNN aug. and smooth loss improve the performance of all architectures
Data Augmentation Model Selection Loss Architecture

PN++ DGCNN Final Best Test C.E. Smooth PointNet PN++ DGCNN RSCNN

X X X 89.7±0.3 91.0±0.3 90.5±0.2 90.4±0.3
X X X 89.0±0.2 89.8±0.2 90.0±0.4 89.4±0.1

X X X 89.1±0.2 92.1±0.1 91.1±0.3 91.1±0.3
X X X 89.2±0.9 92.7±0.1 91.9±0.2 91.7±0.3

during each epoch, effectively exposing the model to more than 1024 points per object during the
training process. We refer to this as the resampled points strategy.

Loss Function: cross-entropy (CE) is used by most of the methods. However, DGCNN uses
smooth-loss, where the ground-truth labels are smoothed out before calculating cross-entropy.
We observe that smooth-loss improves the performance of all network architectures.

Selecting Model for Testing: PointNet and PointNet++ use the final converged model to evaluate
on the test set. Since the number of epochs is a hyper-parameter that depends on factors like data,
model, optimizer, and loss, in our experiments, we create a validation set from the training set to
tune the number of epochs. We then retrain the model with the complete training set to the tuned
number of epochs. We refer to this strategy as final model selection. We find that some
methods including DGCNN and RSCNN evaluate the model on the test set after every epoch and
use the best test performance as the final performance. We refer to this strategy as best test
model selection.

Ensemble Scheme: Some methods use an ensemble to further improve the performance. PointNet
and PointNet++ apply the final network to multiple rotated and shuffled versions of the point cloud,
and average the predictions to make the final prediction. We refer to this strategy as Rotation
Vote. The shuffling operation induces randomness in prediction for PointNet++ and RSCNN as
they are not strictly invariant to the order of the points (Sec. 3.3 in Qi et al. (2017b)). Hence, while
evaluating Rotation Vote, we do the inference 10 times per run for PointNet++ and RSCNN,
and report mean and standard deviation. SimpleView and PointNet are invariant to the order of the
points and hence are not affected by shuffling. Some methods, including RSCNN and DensePoint,
create multiple randomly scaled and randomly sampled versions of a test object. They then evaluate
the final network on these multiple versions of the object and average the prediction. Since the
scaling is random, it makes the test set performance random as well. RSCNN and DensePoint repeat
this procedure 300 times on the test set and report the best accuracy. We refer to it as Repeated
Scaling Vote. DGCNN does not use any ensemble.

Table 1 summarizes the PointNet++, DGCNN and RSCNN protocols. Besides these three protocols,
we also include variants of these protocols in table 3 and table 4, such as PointNet++ no Vote
(i.e. PointNet++ but without the Rotation Vote), DGCNN CE (i.e. DGCNN but with CE
loss intead of smooth loss), DGCNN CE Final (i.e. DGCNN CE but with final model
selection instead of best test model selection) and RSCNN no Vote (i.e. RSCNN
but without the Rotation Vote). These protocols represent prototypical settings and have been
used with slight modifications in many other prior works.

For example, DeepSets (Zaheer et al., 2017) used the PointNet++ no Vote protocol without jittering
and translation; SO-Net (Li et al., 2018a) used the DGCNN CE protocol with jittering and ran-
dom scaling instead of random scaling and translation; 3DmFV (Ben-Shabat et al., 2018) used the
DGCNN CE protocol with additional jittering; PCNN (Atzmon et al., 2018) used the DGCNN CE
Final protcol1; PointCNN (Li et al., 2018b) used the DGCNN CE protocol with randomly sampled
points and small (10◦) rotation augmentation; DensePoint (Liu et al., 2019b) used the RSCNN pro-
tocol; PointASL (Yan et al., 2020) used the DGCNN CE protocol but with additional point jittering
augmentation and voting.

Our Protocol: Based on our findings, we define our SimpleView protocol, which uses the best aug-
mentation and loss functions while not using any information from the test set. Table 2 shows that

1It is unclear from code if the best test or final model selection is used. We assume final model selection to
err on the side of caution.
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Table 3: Performance of various architectures on ModelNet40. Protocol affects performance by a
large amount. SimpleView performs on par or better than prior architectures across protocols.

Protocol→ PointNet++ RSCNN DGCNN

Architecture ↓ no Vote Vote no Vote Vote CE Smooth
PointNet 89.0 ± 0.2 89.1 ± 0.2 90.0 ± 0.3 90.1 ± 0.2 90.1 ± 0.2 90.5 ± 0.1
PointNet++ 89.8 ± 0.2 90.0 ± 0.3 92.7 ± 0.1 93.3 ± 0.3 92.6 ± 0.2 93.1 ± 0.2
DGCNN 90.0 ± 0.4 90.5 ± 0.4 92.2 ± 0.1 92.8 ± 0.5 91.9 ± 0.2 92.7 ± 0.1
RSCNN 89.4 ± 0.1 90.2 ± 0.2 92.1 ± 0.1 92.5 ± 0.2 91.9 ± 0.2 92.5 ± 0.1
SimpleView 90.7 ± 0.3 91.0 ± 0.2 92.9 ± 0.2 93.2 ± 0.1 93.1 ± 0.1 93.6 ± 0.3

Table 4: Performance of various architectures on ModelNet40. Includes prior works not in Table 3.
* indicates small differences in protocol as identified in Sec. 3.1

Architecture # Points Closest Protocol Acc. PN++ Acc. SimpleView Acc.

DeepSets (Zaheer et al.) 5000 PointNet++ no Vote* 90.0 ± 0.3 89.8 ± 0.2 90.7 ± 0.3
SO-Net (Li et al.) 2048 DGCNN CE* 90.9 92.6 ± 0.2 93.1 ± 0.1
3DmFV (Ben-Shabat et al.) 1024 DGCNN CE* 91.4 92.6 ± 0.2 93.1 ± 0.1
PCNN (Atzmon et al.) 1024 DCNN CE Final* 92.3 92.1 ± 0.1 92.5 ± 0.3
PointCNN (Li et al.) 1024 DGCNN CE* 92.5 92.6 ± 0.2 93.1 ± 0.1
DensePoint (Liu et al.) 1024 RSCNN no Vote 92.8 92.7 ± 0.1 92.9 ± 0.2
RSCNN-Multi (Liu et al.) 1024 RSCNN no Vote 92.9 92.7 ± 0.1 92.9 ± 0.2
PointANSL (Yan et al.) 1024 DGCNN CE* 92.9 92.6 ± 0.2 93.1 ± 0.1

DGCNN’s augmentation (i.e random translation and scaling) and smooth-loss
improve performance of all prior networks, so we use them in the SimpleView protocol. Further,
similar to PointNet, PointNet++ and DGCNN, we use the fixed dataset of 1024 points instead of
re-sampling different points at each epoch. Re-sampling points for each epoch effectively increases
the training dataset of points, making numbers incomparable to methods using a fixed dataset. We
avoid any feedback from the test set and use the final model selection, where we first tune
the number of epochs on the validation set then retrain the model on the entire train set. Lastly,
similar to DGCNN, we do not use ensemble as it is more standard in Machine Learning to compare
models without ensemble.

3.2 SIMPLEVIEW

Given a set of points SimpleView, projects them onto the six orthogonal planes to create sparse
depth images. It then extracts features from the depth images using a CNN and fuses, which is then
used to classify the point-cloud as shown in Fig. 1.

Generating Depth Images from Point Cloud: Let (x, y, z) be the coordinates of a point in the
point cloud with respect to the camera. We apply perspective projection to get the 2D coordinate
(x̃ = x/z, ỹ = y/z) of p at depth z. We also do ablations with orthographic projection and
found perspective projection to work better (Table. 7). Since coordinates on image plane have to be
discrete, we use (dx̃e, dỹe) to be the final coordinate of p on the image plane. Multiple points may
be projected to the same discrete location on the image plane. To produce depth value at an image
location, we do ablations on two choices, one the minimum depth of all points, and other weighted
average depth with more weight ( 1z ) given to closer points (Table. 7). Empirically, we find both
perform similar with the later performing slightly better. This could be because of reduction in noise
due to the averaging of nearby pixels on the surface. The depth images are of resolution 128 X 128.

SimpleView Architecture: To make the number of parameters comparable to point-based methods,
we use ResNet18 with one-fourth filters (ResNet18/4) as the backbone. For fusing features, we do
ablation with two choices, pooling and concatenation. Empirically, we find concatenation to work
better than pooling them (Table. 7). This could be because pooling features throws away the view
information like which views are adjacent to one another. One concern could be that concatenation
could make features sensitive to viewpoint, and hence the network could fail on rotated objects.
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Table 5: Performance of various architectures
on ModelNet40 when using the best data-
augmentation and loss function; and not using
any feedback from test set. SimpleView out-
performs prior architectures, while having fewest
parameters and comparable inference time.

Acc. Class Para. Time
Architecture ↓ Acc. (M) (ms)

PointNet 89.2 ± 0.9 85.1 ± 0.6 3.5 3.0
PointNet++ 92.7 ± 0.1 90.0 ± 0.3 1.7 20.7
DGCNN 92.3 ± 0.3 89.1 ± 0.3 1.8 7.3
RSCNN 91.7 ± 0.3 88.5 ± 0.4 1.3 4.3
SimpleView 93.0 ± 0.4 90.5 ± 0.8 0.8 5.0

Table 6: Performance of various architectures on
ScanObjectNN, and cross-dataset generalization.
SimpleView achieves state-of-the-art results and
shows better cross dataset generalization. Num-
bers for prior works are from (Uy et al., 2019).

TR: SONN TR: MN40 TR: SONN
Architecture ↓ TE: SONN TE: SONN TE: MN40

3DmFV (Shabat et al.) 63.0 24.9 51.5
PointNet (Qi et al.) 68.2 31.1 50.9
SpiderCNN (Xu et al.) 73.7 30.9 46.6
PointNet++ (Qi et al.) 77.9 32.0 47.4
DGCNN (Wang et al.) 78.1 36.8 54.7
PointCNN (Li et al.) 78.5 24.6 49.2
SimpleView 79.5±0.5 40.5±1.4 57.9±2.1

Table 7: Ablation of various choices for SimpleView on ModelNet40. The performance is evalu-
atated on the validation set.

Number of Views Image Projection Feature Fusion Image Depth

1 3 6 Orthographic Perspective Pool Concat Minimum Weighted Avg.

Accuracy 90.7 ± 0.1 92.1 ± 0.2 92.9 ± 0.3 92.7 ± 0.3 92.9 ± 0.3 91.8 ± 0.3 92.9 ± 0.3 92.8 ± 0.4 92.9 ± 0.3

However, empirically, we observe that this issue is largely mitigated by rotation augmentation and
SimpleView is able to achieve state-of-the-art performance on ScanObjectNN where objects are
rotated. The point-clouds are scaled to be in [1,−1]3, we keep the cameras at a distance of 1.4
units from the center with 90◦ fov. We also do ablations with different number of views, comparing
only front views, three orthogonal views and six orthogonal views. We find that using all six views
performs the best (Table 7). We do not use ImageNet pretraining, thus making the comparison with
point-based methods strictly fair, without any additional data.

4 EXPERIMENTS

ModelNet40: ModelNet40 is a the most widely adopted benchmark for point-cloud classification.
It contains objects from 40 common categories. There are 9840 objects in the training set and 2468
in the test set. Objects are aligned to a common up and front direction.

ScanObjectNN: ScanObjectNN is a recent real-world point cloud classification dataset. It consists
of 15 classes, 11 of which are also in ModelNet40. There are a total of 15k objects in the dataset.
Unlike ModelNet40, the objects in ScanObjectNN are obtained from real-world 3D scans. Hence,
point clouds are noisy (occlusions, background points) and have geometric distortions such as holes.
Also, unlike ModelNet40, the objects are not axis-aligned.

4.1 EXPERIMENTS ON MODELNET40

Implementation Details: We use PyTorch (Paszke et al., 2019) to implement all models and proto-
cols while reusing the official code wherever possible. We use the official version of DGCNN and
RSCNN. We confirm with the authors that the code for RSCNN-Multi, another version of RSCNN,
is yet to be released. Hence we use the reported numbers of RSCNN-Multi in Table 4. PointNet and
PointNet++ are officially released in TensorFlow (Abadi et al., 2015). For PointNet, we adapt our
code from PointNet.pytorch (Xia, accessed June, 2020) as recommended in the official repository.
For PointNet++, we adapt the model code from Pointnet2 PyTorch (Wijmans, accessed June, 2020).
We further make sure that the third party PyTorch code closely matches the official TensorFlow
code.

We use Adam (Kingma & Ba, 2014) with an initial learning rate of 1e-3 and a decay-on-plateau
learning rate scheduler. The batch size and weight decay for each model are kept the same as the
official version in Table 3. We use a batch size of 18 and no weight decay for SimpleView. To
give the prior models the best chance on our protocol (Table 5), we additionally tune their hyper-
parameters on the validation set. We find that the official hyper-parameters already perform close to
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Figure 3: Failure Cases for SimpleView and PointNet++. The first row shows cases where both
SimpleView and PointNet++ fail; the second row shows cases where SimpleView succeeds but
PointNet++ fails; the third row shows cases where SimpleView fails but PointNet++ succeeds.

optimal. We train each model for 1000 epochs. Since there are small variations in final performance
across different runs, we do 4 runs and report the mean and standard deviation.

Performance under various Prior Protocols: Table 3 shows the performance different architec-
tures under various protocols. The mean performance of PointNet++ improves from 89.8% to 93.3%
when we switch from the PointNet++ no Vote to the RSCNN Vote protocol. Similarly the perfor-
mance of SimpleView improves from 90.7% to 93.6% when we switch from PointNet++ no Vote
to DGCNN Smooth. Since there is variance in performance across runs, we refrain from making
any claims about absolute ordering between prior works. However, we do observe that in terms of
mean performance, SimpleView performs on par or better than other methods under all protocols.
Note that in RSCNN Vote, voting on the test set is done 300 times with reshuffled and randomly
augmented points, from which the highest accuracy is selected. Hence models that have the largest
variance in prediction, i.e. PointNet++ and RSCNN gain the most from it, as they are not strictly
invariant to the order of points (Sec. 3.3 in Qi et al. (2017b)).

Performance under the SimpleView Protocol: Table 5 shows that SimpleView outperforms prior
architectures on our controlled protocol in terms of mean performance. SimpleView has the fewest
number of parameters and a competitive inference speed. Inference speed is measured on an
NVIDIA 2080Ti averaged across 100 runs.

Fig. 3 show examples where both SimpleView and PointNet++ fail, as well as examples where one
of them fails and the other succeeds. Qualitatively, we find that the failure modes of SimpleView and
PointNet++ are similar. We also find that a major failure mode in both SimpleView and PointNet++
is the confusion between the ‘flower pot’ and ‘plant’ category (see Sec. A Fig. I and Fig. II). This
could be because of the lack of color information.

Comparison with More Methods: In Table 4, we do one-on-one comparison between SimpleView
and recent state-of-the-art methods, other than PointNet, PointNet++, RSCNN and DGCNN. We
identify the closest protocol to the one used in the paper from the ones we evaluate. Table 4 shows
the competitiveness of PointNet++ and SimpleView with other recent state-of-the-art methods.
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4.2 EXPERIMENTS ON SCANOBJECTNN

Implementation Details: ScanObjectNN’s official repository trains and evaluates the state-of-the-
art models under the same protocol. We implement SimpleView in TensorFlow and use the official
ScanObjectNN protocol for fairness. This protocol is different from the SimpleView protocol as
it normalizes the point clouds and randomly samples points. We optimize our model with Adam.
We use a batch size of 20 and no weight decay to train SimpleView for 300 epochs with an initial
learning rate 0.001, and use the final model for testing. We use standard image-based cropping
and scaling augmentation to prevent over-fitting. The hyper-parameter for cropping and scaling is
found on a validation set made from ScanObjecNN’s train set. We conduct 4 runs for SimpleView.
ScanObjectNN does not use a fixed set of points during test time. It instead randomly samples points
from the point cloud, which adds randomness to test set performance. Hence, we evaluate each run
10 times. We report the final performance as the mean and variance of the 40 evaluations (4 runs ×
10 evaluations per run).

Performance on ScanObjectNN: As shown in Table 6, SimpleView outperforms prior networks on
ScanObjectNN. This shows the SimpleView is effective in real world settings, with noisy and mis-
aligned point clouds. We also perform transfer experiments to test generalizability of SimpleView.
We train on ScanObjectNN and test on ModelNet40 and vice versa. Table 6 shows that SimpleView
transfers across datasets better than prior methods.

5 DISCUSSION

In this work, we demonstrate how auxiliary factors orthogonal to the network architecture have a
large effect on performance for point-cloud classification. When controlling for these factors, we
find that a relatively older method, PointNet++ (Qi et al., 2017b), performs competitively with more
recent ones. Furthermore, we show that a simple baseline performs on par or better than state-of-
the-art architectures.

Our results show that for future progress we should control for protocols while comparing network
architectures. Our code base could serve as a useful resource for developing new models and com-
paring them with prior works. Our results show that the existing evidence for point-based methods
is not as strong when auxiliary factors are properly controlled for, and that SimpleView is a strong
baseline. But our results are not meant to discourage future research on point-based methods. It
is still entirely possible that point-based methods come out ahead with additional innovations. We
believe it is beneficial to explore competing approaches, including the ones that are underperforming
at a particular time, as long as the results are compared in a controlled manner.

Our analysis in this work was limited to point cloud classification, which is an important problem
in 3D scene understanding and forms a critical part of object detection and retrieval systems. An
exciting future direction would be to expand this analysis to other problems that involve point cloud
data such as scene and part segmentation.
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A APPENDIX

Figure I: Confusion matrix for SimpleView when trained under our protocol

Figure II: Confusion matrix for PointNet++ when trained under our protocol
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Table I: Performance of various architectures on ModelNet40 when using different amount of train-
ing data.

Per. of Training Data RSCNN DGCNN PointNet PointNet++ SimpleView

25 % 88.2 ± 0.4 89.1 ± 0.2 86.3 ± 0.4 89.6 ± 0.4 89.7 ± 0.3
50 % 90.4 ± 0.4 91.0 ± 0.3 88.2 ± 0.3 91.5 ± 0.2 92.1 ± 0.3

100 % 91.7 ± 0.3 92.3 ± 0.3 89.2 ± 0.9 92.7 ± 0.3 93.0 ± 0.4
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