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Abstract

Variational Inference approximates an unnormalized distribution via the minimization of
Kullback-Leibler (KL) divergence. Although this divergence is efficient for computation and
has been widely used in applications, it suffers from some unreasonable properties. For ex-
ample, it is not a proper metric, i.e., it is non-symmetric and does not preserve the triangle
inequality. On the other hand, optimal transport distances recently have shown some
advantages over KL divergence. To make use of these advantages, we propose a new varia-
tional inference method by minimizing sliced Wasserstein distance. This sliced Wasserstein
distance can be approximated simply by running very few MCMC steps without solving
any optimization problem. Our approximation also does not require a tractable density
function of variational distributions so that approximating families can be amortized by
generators like neural networks. Experiments on synthetic and real data are illustrated to
show the performance of the proposed method.

1. Introduction

Variational inference (VI) is a method that recasts Bayesian inference as an optimization
problem where it utilizes Kullback-Leibler (KL) divergence as a measurement to capture
the discrepancy of two probability distributions. Unlike inference methods that utilizes
Monte Carlo Markov Chains which needs to sample from the target probability space, VI
is fast and lightweight in terms of computation. Therefore, it is preferred in many modern
machine learning tasks.

Optimal Transport (OT) (Villani, 2009) has recently gained significant attention in the
machine learning community. Compared to KL divergence, OT gives a valid metric that is
symmetric and preserves triangular inequality. It is reported to show good performances
in some downstream applications (Arjovsky et al., 2017; Gulrajani et al., 2017). While OT
provides us with a new horizon to some old machine learning scenarios, the original OT
problem requires a computationally demanding optimization procedure which impedes the
popularity of applying the original optimal transport methods. To address this difficulty,
sliced Wasserstein distance (Bonneel et al., 2015) reduces the computational inefficiency
of OT by projecting high dimensional probability distributions into univariate slices where
OT has a closed form solution. Sliced Wasserstein distance is successfully used in many
practical tasks (Deshpande et al., 2018; Kolouri et al., 2018b,a) but it has not yet been
applied to variational inference tasks.

In this paper, we extend sliced Wasserstein distance to variational inference tasks. Our
methods utilize a small number of steps of MCMC to obtain an estimation of the distance.
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The advantage is that by leveraging the sliced Wasserstein distance, our method does not
rely on simultaneous adversarial training (Mescheder et al., 2017; Li et al., 2017; Zhang
et al., 2020) to estimate the discrepancy but can still perform amortized inference (Gersh-
man and Goodman, 2014), i.e., use a parameterized function as a sampler to capture target
distributions. Similar work is contrastive divergence Hinton (2002), in which the gradient
approximation is obtained with MCMC. However, our method uses MCMC to estimate the
discrepancy between two distributions.

2. Background

2.1. Variational Inference

Given a joint probability distribution p(x, z), where z is latent variables and x refers to
observations, variational inference is finding a distribution qϕ(z) which approximates the
posterior p(z|x) as close as possible. Such approximations can be obtained via minimizing
Kullback-Leibler (KL) divergence

DKL

(
qϕ(z)||p(z|x)

)
=

∫
qϕ(z) log

qϕ(z)

p(z|x)
dz (1)

Note that DKL(qϕ(z)||p(z|x)) = 0 if and only if qϕ(z) = p(z|x). However, Eq(1) is in-
tractable because the posterior p(z|x) is unnormalized. Instead, we can equivalently maxi-
mize Evidence Lower Bound (ELBO) L(ϕ)

log p(x) ≥ L(ϕ) = Eqϕ(z)

[
log p(x, z)− log qϕ(z)

]
(2)

Since we observe that the model evidence log p(x) is a constant w.r.t. ϕ and the above
inequality becomes tight if DKL

(
qϕ(z)||p(z|x)

)
= 0. Optimization of ELBO requires the

differentiation of the r.h.s. expectation. Gradient descent is a standard approach that
allows for such optimization. To obtain a valid estimation of the gradient, a solution is
to apply the score function method (Paisley et al., 2012) (Ranganath et al., 2014). An
alternative solution to obtain the gradient of ELBO is the reparameterization trick (Kingma
and Welling, 2014) (Rezende et al., 2014). Vanilla VI leverages KL divergence but this can
be substituted by any other f -divergence and importance sampling (Jerfel et al., 2021; Wan
et al., 2020) can be used to obtain gradient estimation for general f -divergences.

2.2. Wasserstein Distance

Wasserstern distance arises in optimal transport (Villani, 2009) in which a distribution is
transformed to another by moving probability mass. Wasserstern distance measures the cost
of such a transformation. Given two marginal distributions p(x) and q(y) over domains X
and Y, let Π(p, q) be a set of any coupled joint distributions γ(x, y) where

∫
γ(x, y)dx = q(y)

and
∫
γ(x, y)dy = p(x). The c−Wasserstein distance is defined as

Wc(p, q) =

{
inf

γ∈Π(p,q)

∫
X×Y

∥x− y∥cdγ(x, y)
} 1

c

(3)

where ∥x− y∥ is a cost function of moving a point from X to Y. Intuitively, the c−Wasserstein
distance aims to find an optimal joint distribution γ(x, y) where the expected cost specified
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by Eq(3) achieves its minimum. Solving this optimization problem is generally difficult but
we can rewrite p−Wasserstein distance in a univariate case as

Wc(p, q) =

{∫ 1

0

∣∣∣F−1
p (t)− F−1

q (t)
∣∣∣cdt} 1

c

=

{∫
X

∣∣∣x− F−1
q (Fp(x))

∣∣∣cdx} 1
c

(4)

where F (·) is a cumulative distribution function and F−1(·) is a quantile function of a prob-
ability distribution and the composition F−1

v Fu(·) defines a transportation map that moves
mass from p(x) to q(y). Given two empirical distributions, we can simply utilize Eq(4) to
estimate c−Wasserstein distance by sorting samples.

2.3. Sliced Wasserstein Distance

Motivated by the computational efficiency of estimating Wasserstein distance with univari-
ate distributions. We give a brief review of sliced Wasserstein distance (Bonneel et al.,
2015). We first introduce Radon transformation (Beylkin, 1984).

Let h(·) be a function h : Rd −→ R. Radon transform is defined as

hRθ (l) =

∫
S:l=⟨x,θ⟩

h(x)dS (5)

Eq(5) defines a surface integral on a hyper-plane S : l = ⟨x, θ⟩ where l ∈ R and θ ∈ Sd−1

where Sd−1 is a unit ball embedded in Rd. For any pair of vectors θ and h, we obtain a
sliced function hRθ (·). We note that marginalization of a high dimensional joint probability
distribution can be regarded as a special case of the Radon transform with θ = ei, where ei
is an all-zero vector with only 1 at the i-th position. Note that the sliced function yielded
by Eq(5) is univariate. Leveraging this property, we define sliced Wasserstein distance for
probability distributions p(x) and q(y) as the averaged distance of these slices.

SWc(p, q) =

(∫
θ∈Sd−1

Wc
c (p

R
θ , q

R
θ )dθ

) 1
c

(6)

Given an empirical distribution described by p̂ = 1
n

∑n
i=1 δxi , it is trivial to write down its

Radon transformation defined in Eq(5) as p̂Rθ = 1
n

∑n
i=1 δ⟨xi,θ⟩. We summarize the procedure

of calculating sliced wasserstein distance via empirical samples in Algorithm 1.

3. Proposed Method

This method is named sliced Wasserstein variational inference (SWVI). We use the following
notation: qϕ(z) as the variational distribution parameterized by ϕ, and p(z|x) as the target
distribution. The question we are interested in is finding an optimal parameter ϕ∗ that
minimizes sliced Wasserstein distance between the variational distribution and the target
distribution.

ϕ∗ = argminϕ SWc(p, qϕ) (7)

Motivated by the intractability of the target distribution p(z|x), the main idea of SWVI is
to use MCMC methods to estimate the distance between the variational distribution and
the target distribution.
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Algorithm 1: Estimation of Sliced Wasserstein Distance with Samples

Require: p̂ = 1
n

∑n
i=1 δxi and q̂ = 1

n

∑n
i=1 δyi

for k = 0, 1 · · ·m

1. Sample θk from Sd−1 uniformly,

2. Obtain slices and sort {⟨xi, θk⟩} −→ {⟨xj , θk⟩} and {⟨yi, θk⟩} −→ {⟨yj , θk⟩}

return SWc(p̂, q̂) =
(

1
mn

∑m
k=1

∑n
j=1

∣∣∣⟨xj , θk⟩ − ⟨yj , θk⟩∣∣∣c) 1
c

3.1. Estimating Distances with MCMC

Let K(·|·) be a transition kernel of a MCMC with the stationary distribution p(z|x), and
qϕ(z) be the initial distribution of the corresponding MCMC. We denote by qt(z) the
marginal distribution of the Markov chain after applying t times transitions.

qt(z) =

∫
qt−1(z′)K(z|z′)dz′ where q0(z) = qϕ(z) (8)

Given a sufficiently long run, qt(z) converges to p(z|x) because of the stationary property of
Markov chain. At the current stage, one can directly evaluate sliced Wasserstein distance
SWc(p, qϕ) via

SWc(p, qϕ) = SWc(q
t, qϕ) as t→∞ (9)

Unfortunately, running a long enough MCMC chain is time consuming and it might be
difficult to diagnose the burn-in period. To solve this difficulty, we instead evaluate a local
distance SWc(q

t, qϕ) with a few number of steps t of iterating MCMC algorithms. Next we
update parameters ϕ via gradient descent with the learning rate α

ϕ′ ← ϕ− α∇ϕSWc(q
t, qϕ) (10)

Since qt(z) is an improvement of qϕ, minimizing the sliced Wasserstein distance between
them guides the variational distribution qϕ(z) towards the target distribution p(z|x).

3.2. Stochastic Optimization

MCMC methods approximate an unnormalized probability distribution in a non-parametric
manner, i.e., by particle approximations. We can thus use Monte Carlo methods to estimate
SWc(q

t, qϕ), which is described by Algorithm 1. The approximation can be done by
drawing samples respectively from qϕ(z) and qt(z). Suppose that {z0i }i=1,2···n ∼ qϕ(z) and
{zti}i=1,2···n ∼ qt(z). Sliced Wasserstein is then approximated by

SWc(q
t, qϕ) ≈ L({z0i }, {zti}) (11)

Here we rewrite the approximate distance as a function L(·, ·) of two sets of samples.

In order to optimize of the parameter of the variational distribution qϕ(z), we still need
to reparameterize samples {z0i }i=1,2···n. This can be done by an amortized sampler that can
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Figure 1: Approximating Diagonal 2D Gaussian Distributions with VI and SWVI

be either a parametric probability distribution or a flexible neural network. The amortized
sampler is written as z(ϕ) = gϕ(ϵ), ϵ ∼ r(ϵ), where r(ϵ) is a noise distribution and gϕ is a
parametric model. We can use chain rule to obtain the gradient estimation of Eq(11),

∇ϕL({z0i }, {zti}) =
n∑

i=1

∇ziL({z0i }, {zti})∇ϕz
0
i . (12)

This can be implemented easily via back-propagation. The overall procedure of SWVI is
summarized in Algorithm 2

Algorithm 2: Sliced Wasserstein Variational Inference (SWVI)

Require: An unnormalized probability distribution p(z|x) and learning rate α.
Initialize sampler qϕ0(z).
for m = 0, 1, 2 · · · s− 1

1. Sample {z0i }i=1,2···n from qϕm(z)

2. Run MCMC towards p(z|x) with particles initialized at {z0i }i=1,2···n to get {zti}i=1,2···n

3. ϕm+1 = ϕm − α∇ϕL({z0i }, {zti})

return qϕs(z)

4. Experiments

For all experiments, we use sliced 1-Wasserstein distance.

4.1. 2D Experiment

In this experiment, we set target distributions as a bivariate Gaussian distribution and a bi-
modal Gaussian mixture. The sampler is a Gaussian distribution. We fit the sampler model
to the target distribution with vanilla variational inference under KL divergence and the
proposed method SWVI. In our method, we adopt the random walk Metropolis-Hastings
algorithm as our MCMC instance and we run the Markov chain with 5 steps. The proposal
distribution for Metropolis-Hastings algorithm is a standard Gaussian distribution. In first
figure of Figure 1, we use a diagonal Gaussian distribution as the sampler model and it
shows that SWVI results in an approximation with a larger variance compared to standard
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VI which uses the KL divergence that is mode seeking. In the second figure, we use a
regular Gaussian distribution with full trainable covariance matrix, both VI and SWVI can
approximate the target distribution well. For the 3rd and 4th figures, the target distribution
is set as a Gaussian mixture model, VI always fits one mode but SWVI can have different
behaviours if we tune the step size of random walk in MCMC (step sizes are 1.0 and 2.5).

4.2. Neural Samplers

Figure 2: Fitting a mixture distribution with
SVGD (L) and SWVI (R)

In this subsection, we show an experiment
where we have amortized SWVI with a neu-
ral sampler, where the density function is
no longer tractable. Note that the pro-
posed method in Algorithm 2 does not
require a closed form of density function of
qϕ(z). Hence, we can easily adapt a neural
sampler that can generate samples from a
more flexible distribution. For comparison,
we also implemented amortized Stein vari-
ational gradient (SVGD) method (Liu and
Wang, 2016; Feng et al., 2017). The target distribution is a mixture of two Gaussians but
one with a larger variance and another with a smaller variance. We fit a neural sampler to
this distribution with SWVI and amortized SVGD. This experiment shows that amortized
SVGD fails to capture the other mode. The reason is that the kernel function (RBF) cannot
adjust the bandwidth to the two modes with different ranges of variance. However, with
the asymptotic guarantees of MCMC, the neural sampler trained with the proposed method
can efficiently capture two different modes and outputs considerably better samples.

4.3. Bayesian Logistic Regression

We apply SWVI to binary classification tasks in the UCI repository (Asuncion and Newman,
2007) with Bayesian logistic regression models. We use a constant prior distribution for the
Bayesian logistic model and 20 steps Langevin Dynamics (with learning rate 0.0001) (Neal,
2011; Welling and Teh, 2011) as the MCMC instance. The fitted distributions are both
diagonal Gaussians for SWVI and VI. We present results in Table 1 and it can be seen that
the performance of SWVI is on par with the vanilla VI.

Test Accuracy

Dataset SWVI VI

Heart 0.852±0.019 0.855±0.030
Wine 0.716±0.025 0.731±0.012

Ionosphere 0.771±0.071 0.767±0.062

Table 1: Test accuracy for Bayesian logistic regression (32 posterior samples are used).
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