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ABSTRACT

We propose an effective and efficient visual-LiDAR odometry framework named
ST-VLO, which establishes the unified spatio-temporal correlation with Mamba
models and addresses the long-standing cumulative drift problem with temporal
compensation for the localization in 4D dynamic environments. Specifically, ST-
VLO includes a novel unified spatial-temporal correlation module established on
Mamba to fuse heterogeneous visual and LiDAR information across multi-frame
video clips, overcoming the insufficient temporal information exploration in pre-
vious pairwise odometry methods. Furthermore, a Temporal Drift Compensation
module is designed to minimize cumulative drifts by iteratively learning correc-
tion residuals from multiple history frames. To strengthen the spatial feature rep-
resentation on salient features, we also propose a Keypoint-Aware Auxiliary Loss
with a winner-takes-all strategy. ST-VLO achieves state-of-the-art performance
on two commonly-used autonomous driving datasets, surpassing previous meth-
ods with a 19% trel and 22% rrel reduction on KITTI, and a 18% ATE and 16%
RPE reduction on Argoverse.

1 INTRODUCTION

The odometry task aims to estimate relative pose transformations between consecutive frames in au-
tonomous systems, which has various downstream applications, such as self-driving vehicles (Wang
et al., 2021a; Hu et al., 2023; Jiang et al., 2023), SLAM systems (Lipson et al., 2024b; Teed et al.,
2024; Deng et al., 2024; Teed & Deng, 2021; Campos et al., 2021; Yuan et al., 2023; 2024b; Zheng
et al., 2022; 2024), and robot navigation (Liu et al., 2024b;c).

Recently, multi-modal approaches (Wang et al., 2021b; Graeter et al., 2018; Zhuoins et al., 2023; Liu
et al., 2024a) have gained significant attention for improving odometry estimation, which combine
visual (Kendall et al., 2015; Wang et al., 2017; Shan et al., 2024; Deng et al., 2023b; Wang et al.,
2024b) and LiDAR (Chen et al., 2023; Yuan et al., 2022; Wang et al., 2022b;a; Zhang et al., 2024b;
Deng et al., 2023a; Wang et al., 2019) data to address issues like structure misalignment (Liu et al.,
2024a), single sensor degradation (Deng et al., 2023b), and poor robustness in dynamic outdoor
environments (Wang et al., 2021b). However, most existing odometry frameworks primarily rely
on pairwise frame inputs (Liu et al., 2024a; 2023a; Li et al., 2022; Xu et al., 2022; Li et al., 2019),
neglecting essential temporal information within multi-frame sequences.

In this paper, we present ST-VLO, which efficiently and effectively fuses multi-modal data from
both images and LiDAR. Crucially, rather than limiting the estimation process to isolated source-
target frame pairs while discarding previously observed frames, we propose a novel method that not
only estimates relative motion from consecutive frames but also utilizes motion priors from history
frames. We introduce a differentiable mechanism that enables end-to-end learning, allowing the
model to retrieve and incorporate long-term temporal cues from the entire LiDAR sequences.

ST-VLO seamlessly integrates heterogeneous multi-modal fusion and temporal modeling through a
unified MMG (MaxPooling, Mamba (Gu & Dao, 2024), gMLP (Liu et al., 2021a)) architecture, in-
spired by sparse deformable query fusion (Zhu et al., 2021). As shown in Fig. 1, ST-VLO captures
spatial and temporal dependencies by fusing heterogeneous inputs adaptively, creating a cohesive
representation that enables precise pose estimation over extended sequences. Unlike existing pair-
wise methods, ST-VLO leverages multi-frame video clips, aggregating history poses and features
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Figure 1: Comparison with previous odometry methods. Previous methods typically encode spa-
tial and temporal features separately, relying on pairwise correlations between consecutive frames.
In contrast, we propose a unified module to jointly extract spatial and temporal features, and a dif-
ferentiable temporal compensation to mitigate accumulative drifts.

with MMG to model long-term dependencies effectively. To further reduce accumulative drifts,
ST-VLO employs a novel Temporal Drift Compensation technique, which minimizes drifts itera-
tively by directly learning the residual error reduction over certain frame intervals. Additionally,
to achieve robust spatial understanding and be less susceptible to noise in sequential data, ST-VLO
incorporates a Keypoint-Aware Auxiliary Loss, which refines high-salient feature regions by selec-
tively optimizing the top-k queries with the smallest error relative to the ground truth pose, using a
winner-takes-all loss strategy (Makansi et al., 2019). Based on these proposed components, ST-VLO
serves as a systematical and scalable solution for low-drift odometry across dynamic environments.

Overall, our key contributions are as follows:

• We propose a novel visual-LiDAR odometry network named ST-VLO. A modality-agnostic
MMG architecture captures unified spatial information in visual and LiDAR data and long-
term temporal dependencies across multiple frames for accurate pose estimation.

• The Temporal Drift Compensation mechanism predicts cumulative pose errors over a se-
quence of frames, effectively compensating for the pairwise motion estimation to address
the drift problem of multi-frame temporal inputs.

• We design a Keypoint-Aware Auxiliary Loss to selectively optimize high-salient features
focusing on regions associated with static objects for stable reference, refining 3D spatial
representations for accurate pose estimation.

• Extensive experiments on the KITTI odometry (Geiger et al., 2012) and Argoverse
dataset (Chang et al., 2019b) show that our method surpasses all recent deep learning-based
LiDAR, visual, and visual-LiDAR-fusion odometry approaches across most sequences.

2 RELATED WORK

2.1 VISUAL-LIDAR ODOMETRY

Visual-LiDAR odometry combines the strengths of visual and LiDAR sensors, leveraging 2D tex-
ture (Huang et al., 2025; Bie et al., 2025) and 3D geometric (Lai et al., 2025; Li et al., 2025; Zhao
et al., 2025) information to improve pose estimation. Previous approaches are broadly classified into
loosely and tightly integrated methods. Loosely integrated methods (Zhang et al., 2017; Graeter
et al., 2018; Shin et al., 2020; Huang et al., 2020a) use LiDAR data to enhance depth estimation
and visual data for pose tracking. However, these approaches rely on interpolation between 3D
points and 2D pixels, which introduces potential errors due to the inaccurate point-to-pixel corre-
spondences. Tightly integrated methods (Zhang & Singh, 2015; An et al., 2022; Shubodh et al.,
2024) aim for a seamless fusion of visual and LiDAR data to enhance consistency. For the learning-
based methods, MVL-SLAM (An et al., 2022) fuses RGB images and LiDAR using RCNNs. LIP-
Loc (Shubodh et al., 2024) applies contrastive learning for cross-modal localization. Nevertheless,
they struggle with the structural differences between point clouds and images. Recent works (Lai
et al., 2022; Liu et al., 2024a) introduce descriptor fusion or clustering techniques to further im-
prove the structural alignment. However, these approaches often suffer from increasing computa-
tional costs due to the additional feature processing, limiting their real-time applicability in practical
scenarios. Moreover, previous methods are commonly constrained by pairwise inputs, which, how-
ever, lack multi-frame temporal information. To our knowledge, our work is the first visual-LiDAR
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Figure 2: Overview of the ST-VLO framework. The unified MMG (Maxpooling, Mamba, gMLP)
module fuses visual and LiDAR features with Deformable Mamba, while Temporal Mamba lever-
ages memory banks for long-term modeling. The predicted pose is iteratively refined and further
corrected through Temporal Drift Compensation.

odometry method designing Deformable Mamba and Temporal Mamba for efficient query-based
fusion across multiple frames, thereby enabling a unified multi-modal representation.

2.2 MEMORY MECHANISMS FOR AUTONOMOUS DRIVING

Memory-based temporal modeling is crucial for robust driving under occlusions and sensor
dropouts (Han et al., 2023; Yang et al., 2023; Yuan et al., 2024a). Feature-level approaches like
BEVFormerv2 (Yang et al., 2023) and VideoBEV (Han et al., 2023) propagate BEV queries across
frames, while vectorized models such as Sparse4Dv2/3 (Lin et al., 2023a;b) adopt recurrent or de-
noising strategies for object queries. These designs highlight the importance of temporal consistency
and have also inspired HD mapping frameworks (Yuan et al., 2024a). Our method builds upon these
insights by maintaining both implicit feature memory and explicit pose memory to handle long-term
temporal dependencies.

2.3 TEMPORAL MODELING WITH MAMBA

Sequential models for forecasting and planning often rely on RNNs (Salzmann et al., 2020;
Varadarajan et al., 2022) or Transformers (Vaswani et al., 2017; Ngiam et al., 2022), but state
space models (SSMs) (Gu et al., 2021a;b; Ke et al., 2025; Liu et al., 2025a) are emerging as ef-
ficient alternatives. Mamba (Gu & Dao, 2024) introduces selective SSMs with hardware-friendly
pipelines, while VMamba (Liu et al., 2024d) and Mamba-ND (Li et al., 2024) extend to images
and multi-dimensional data. Recent works further integrate SSMs into diffusion models for efficient
generation (Yan et al., 2023). Inspired by these, we combine Mamba-based implicit feature memory
with explicit pose memory to achieve more robust temporal modeling.

3 METHOD

The architecture of ST-VLO is shown in Fig. 2. ST-VLO begins with the Unified Spatio-Temporal
Correlation (Sec. 3.1) with deformable spatial Mamba and temporal Mamba fusion, which integrates
visual and LiDAR features across frames into a unified representation. This unified representation is
utilized to predict the pose estimates. In addition, the predicted pose is compensated with long-term
temporal information using Temporal Drift Compensation (Sec. 3.2) to mitigate error accumulation,
refining the final pose. The loss functions including our designed Keypoint-Aware Auxiliary Loss
with a winner-takes-all strategy is specified in Sec. 3.3.

Before we delve into the detailed model design, we follow Wang et al. (2022a); Liu et al. (2023a;
2024a) for point encoding and (Huang et al., 2020b) for image encoding to extract hierarchical fea-
tures for both modalities. 3D points are first projected onto a cylindrical surface (Wang et al., 2022a)
to organize the originally irregular points, where the original 3D coordinates are further filled in cor-
responding projected 2D positions to preserve raw point geometry, converting the point cloud into
pseudo-images of size HP×WP×3. Then these pseudo-images are passed to a point encoder (Wang
et al., 2022a), producing multi-scale point features represented as FP ∈ RHP×WP×D, where D is
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the feature dimension. The 2D input images I ∈ RH×W×3 are processed through a convolutional
feature pyramid network (Liu et al., 2024a), generating multi-level image features represented as
FI ∈ RH×W×C , where H , W , and C correspond to the height, width, and channels, respectively.

3.1 UNIFIED SPATIO-TEMPORAL CORRELATION

We design a Unified Spatio-Temporal Correlation block consisting of MaxPooling, Mamba (Gu &
Dao, 2024), and gMLP (Liu et al., 2021a) (MMG) to extract spatial and temporal representations
of point and image features. It harmonizes diverse input representations across different modalities
and temporal dimensions: The gMLP encodes sequential information into a unified feature space,
providing a foundation for learning from varied data sources. Mamba then establishes temporal
interactions within the sequences, capturing long-term dependencies across frames. We extend the
Mamba structure into a Deformable Mamba for spatial modeling and a Temporal Mamba for tempo-
ral modeling, in order to achieve effective and efficient modality-agnostic modeling by harnessing
diverse input representations across modalities and temporal dimensions, which are detailed below.
Finally, MaxPooling condenses the sequence into a single, unified representation, preserving essen-
tial information in a compact form.

Deformable Mamba. We propose a deformable Mamba-based feature fusion module by extending
the concept of deformable attention proposed in Deformable DETR (Zhu et al., 2021). As shown
in Fig. 2, LiDAR features FP , which encode 3D spatial information, serve as queries to efficiently
combine LiDAR and camera data. Specifically, we first project the LiDAR point onto the image
plane using the camera intrinsic and extrinsic parameters, obtaining the reference point. Then, we
sample the visual features Fsample using a bilinear interpolation from the image features FI around
the reference point with adaptive offsets. Consequently, the sampled visual features Fsample are fused
with the LiDAR features FP using MMG as:

Ffused = MaxPool(Mamba(Gf (Fsample ⊕ FP ))), (1)
where ⊕ denotes concatenation, Gf is the gMLP layer, and Mamba refers to the standard Mamba
block in (Gu & Dao, 2024). This multi-modal fusion enriches the LiDAR feature space with visual
context while maintaining efficiency by focusing on adaptive local receptive fields.

Finally, the fused multi-modal features Ffused from consecutive frame pairs are correlated by the cost
volume module (Wang et al., 2021a; 2022a), producing a cross-frame motion feature Eego ∈ RN×D,
where N is the number of downsampled points in the coarsest layer.

Temporal Mamba. To effectively model the temporal information, Mamba-based Memory Feature
Bank (MFB) and Memory Pose Bank (MPB) are leveraged to store historical feature representations
and pose information.

In the MFB, we store historical ego-motion features from the Deformable Mamba above,
namely [Eego, t−Th+1, . . . , Eego, t−1], which integrate historical semantic and geometric con-
texts. An MMG with another gMLP Ge enables effective temporal interactions by first includ-
ing the current frame’s ego-motion feature Eego,t into the MFB, forming the history list F =
[Eego, t−Th+1, . . . , Eego, t] ∈ RN×Th×D, and then computing the updated ego-motion feature:

Êego = MaxPool
(
Mamba

(
Ge(F)

))
. (2)

In the MPB, we store historical quaternions Q = [qt−Th+1, . . . ,qt−1] and translations P =
[pt−Th+1, . . . ,pt−1]. Another pair of MMGs, with Gq and Gp, respectively, encodes these his-
torical pose states, yielding temporal embeddings Qenc and Penc:

Qenc = MaxPool
(
Mamba

(
Gq(Q)

))
, Penc = MaxPool

(
Mamba

(
Gp(P)

))
. (3)

Both MFB and MPB are initialized with zeros and iteratively updated as new frames are sequentially
observed, as shown in Fig. 2.

Finally, we construct a unified scene representation {Eego, Êego,Qenc,Penc} by unifying the multi-
modal and long-term temporal information across these MMGs. The initial quaternion q(1) =
Φq(Êego⊕Qenc)

∥Φq(Êego⊕Qenc)∥
is calculated as the normalized output of the MLP Φq, while the initial transla-

tion p(1) = Φp(Êego ⊕ Penc) is predicted using the MLP Φp. We then refine these through an
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iterative refinement module in multiple upper layers (Wang et al., 2021a), obtaining the refined pose
q(2),p(2) at each time step.

3.2 TEMPORAL DRIFT COMPENSATION

After obtaining finer frame-to-frame poses p(2) and q(2), ST-VLO also incorporates an optimization
technique here to reduce the cumulative errors to achieve low-drift and more precise long-range
odometry estimation as shown in Fig. 3. Specifically, we accumulate multiple pose estimates through
the cumulative multiplication of poses from the nearest historical Tg frames: (qcumul

t ,pcumul
t ) =

(q
(2)
t ,p

(2)
t )◦(q(2)

t−1,p
(2)
t−1)◦· · ·◦(q

(2)
t−Tg+1,p

(2)
t−Tg+1), where the operation ◦ is calculated as qa◦b =

qa ∗ qb and [0,pa◦b] = qa [0,pb]q
−1
a + [0,pa] , with ∗ denoting the quaternion product.

Given the source point cloud data (PCTt−Tg ∈ RN×3) back to the time step Tt−Tg, we then use the
accumulative pose estimates above to warp it to the current frame Tt as follows:

[0, P̂CTt
] = qcumul

t [0,PCTt−Tg
] (qcumul

t )−1 + [0,pcumul
t ]. (4)

Subsequently, at the current step, the residual pose error (∆q(2),∆p(2)) between the warped source
point cloud P̂CTt and the target point cloud PCTt+1 is calculated by the Pyramid, Warping, Cost
volume (PWC) structure (Wang et al., 2021a).

Finally, as shown in the lower part of Fig. 2, the residual pose error is incorporated into the current
pose at Tt to iteratively refine the final pose as follows (the time step is omitted below for simplicity):

q(3) = ∆q(2) ∗ q(2), [0,p(3)] = ∆q(2) [0,p(2)] (∆q(2))−1 + [0,∆p(2)]. (5)
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Figure 3: Illustration of the Temporal Drift Com-
pensation.

Compared to pairwise estimated pose er-
rors, point cloud warping allows back-
tracking to much earlier observed point
cloud data. This enables the compensation
mechanism to amplify pose errors across
a sequence of accumulated frames, which
penalizes cumulative drift and in turn en-
hances alignment accuracy over multiple
frames. During training, to fully optimize
model parameters, we compute the com-
pensation loss for cumulative pose error
whenever the history of pose frames ex-
ceeds Tg. During inference, this is ap-
plied to cumulative poses every Tg frames
to maintain efficiency. This compensation
loss is embedded into the regression loss for pose estimation, as specified in equation 6.

3.3 LOSS FUNCTION

The overall loss function mainly consists of three parts:

Regression Loss. We predict poses at three stages: initial (q(1),p(1)), refined (q(2),p(2)), and drift-
compensated (q(3),p(3)). For each stage, the loss follows Wang et al. (2022a); Liu et al. (2024a):

L = ∥p̂− p∥ exp(−kt) + kt + ∥q̂− q∥2 exp(−kq) + kq, (6)

where kt, kq are learnable scalars for translation (L1) and rotation (L2); p̂, q̂ denote ground truth
and p,q predictions. For the residual pose output from the Temporal Drift Compensation mod-
ule, we narrow differences between ground truth cumulative pose (q̂cumul, p̂cumul) and predicted
cumulative pose (qcumul,pcumul). The total regression loss is a weighted sum over stages, i.e.,
Lreg = α1L(1) + α2L(2) + α3L(3). where (L(1),L(2),L(3)) are computed from (q(1),p(1)),
(q(2),p(2)), and (q(3),p(3)), respectively.

Keypoint-Aware Auxiliary Loss. Learning discriminative features with strong robustness to noise
is crucial for our odometry accuracy, as ST-VLO relies on feature-based pose regression. To
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Table 1: Comparison with different odometry methods on the KITTI odometry (Geiger et al.,
2013). trel and rrel represent the average sequence translational RMSE (%) and sequence rotational
RMSE (°/100m) respectively in the length of 100, 200, ..., 800m. The best results are bold, and the
second best results are underlined. * represents the models trained on the 00-08 sequences.

Method 00 01 02 03 04 05 06 07 08 09 10 mean (07-10)
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Visual Odometry Methods

SfMLearner* (Zhou et al., 2017) 21.32 6.19 22.41 2.79 24.10 4.18 12.56 4.52 4.32 3.28 12.59 4.66 15.55 5.58 12.61 6.31 10.66 3.75 11.32 4.07 15.25 4.06 12.46 4.55
DFVO* (Zhan et al., 2021) 2.01 0.79 61.17 18.96 2.46 0.79 3.27 0.89 0.79 0.56 1.50 0.74 1.95 0.76 2.28 1.16 2.11 0.74 3.21 0.59 2.89 0.97 2.62 0.87
Cho et al.* (Cho & Kim, 2023) 1.77 0.79 64.38 16.87 2.62 0.74 3.06 0.89 0.65 0.55 1.31 0.74 1.60 0.56 1.06 0.67 2.28 0.76 2.66 0.53 2.95 0.95 2.24 0.73
LiDAR Odometry Methods

LO-Net (Li et al., 2019) 1.47 0.72 1.36 0.47 1.52 0.71 1.03 0.66 0.51 0.65 1.04 0.69 0.71 0.50 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.75 0.79
PWCLO (Wang et al., 2021a) 0.89 0.43 1.11 0.42 1.87 0.76 1.42 0.92 1.15 0.94 1.34 0.71 0.60 0.38 1.16 1.00 1.68 0.72 0.88 0.46 2.14 0.71 1.47 0.72
DELO (Ali et al., 2023) 1.43 0.81 2.19 0.57 1.48 0.52 1.38 1.10 2.45 1.70 1.27 0.64 0.83 0.35 0.58 0.41 1.36 0.64 1.23 0.57 1.53 0.90 1.18 0.63
TransLO (Liu et al., 2023a) 0.85 0.38 1.16 0.45 0.88 0.34 1.00 0.71 0.34 0.18 0.63 0.41 0.73 0.31 0.55 0.43 1.29 0.50 0.95 0.46 1.18 0.61 0.99 0.50
EfficientLO (Wang et al., 2022a) 0.80 0.37 0.91 0.40 0.94 0.32 0.51 0.43 0.38 0.30 0.57 0.33 0.36 0.23 0.37 0.26 1.22 0.48 0.87 0.38 0.91 0.50 0.86 0.41
DSLO (Zhang et al., 2024a) 0.78 0.40 0.66 0.23 0.77 0.34 0.67 0.37 0.31 0.47 0.50 0.30 0.57 0.38 0.58 0.41 1.16 0.51 0.72 0.33 1.29 0.49 0.94 0.44
Zhou et al. (Zhou et al., 2025) — — — — — — — — — — — — — — 0.50 0.40 1.30 0.60 1.16 0.61 1.21 0.68 1.04 0.57
LAGLO* (Tang et al., 2025) 1.21 0.27 1.92 0.37 1.99 0.36 1.16 0.45 0.63 0.38 0.93 0.21 1.26 0.38 1.02 0.30 1.48 0.29 2.29 0.55 2.00 0.61 2.15 0.56
Multi-modal Odometry Methods

An et al.* (An et al., 2022) 2.53 0.79 3.76 0.80 3.95 1.05 2.75 1.39 1.81 1.48 3.49 0.79 1.84 0.83 3.27 1.51 2.75 1.61 3.70 1.83 4.65 0.51 3.59 1.37
H-VLO* (Aydemir et al., 2022) 1.75 0.62 4.32 0.46 2.32 0.60 2.52 0.47 0.73 0.36 0.85 0.35 0.75 0.30 0.79 0.48 1.35 0.38 1.89 0.34 1.39 0.52 1.36 0.43
DVLO (Liu et al., 2024a) 0.80 0.35 0.85 0.33 0.81 0.29 0.59 0.36 0.26 0.13 0.41 0.23 0.33 0.17 0.46 0.33 1.09 0.44 0.85 0.36 0.88 0.46 0.82 0.41
DVLO4D (Liu et al., 2025b) 0.68 0.33 0.77 0.23 0.76 0.31 0.49 0.33 0.22 0.13 0.39 0.21 0.32 0.21 0.43 0.32 0.95 0.36 0.77 0.33 0.76 0.46 0.73 0.37
ST-VLO (Ours) 0.59 0.27 0.73 0.21 0.65 0.23 0.47 0.31 0.21 0.12 0.33 0.15 0.31 0.19 0.26 0.23 0.79 0.28 0.63 0.28 0.65 0.39 0.59 0.29

strengthen feature learning, we introduce an auxiliary loss focusing on critical areas in the fea-
ture space. Specifically, we leverage the cost volume E = {ei | ei ∈ Rc}Ni=1 to predict pose
(qkey ∈ RN×4,pkey ∈ RN×3) for each query in the feature map. We apply a winner-takes-all loss
(Makansi et al., 2019) to optimize only the top-k queries (qkey ∈ RK×4,pkey ∈ RK×3) with the
smallest error relative to the ground truth pose. As demonstrated in Fig. 6, this selective loss func-
tion helps the model focus on static regions, with the auxiliary loss defined as Laux = 1

K

∑K
k=1 Lk.

where Lk indicates the regression losses between the poses of the top selected k queries with the
ground truth pose as calculated in the equation 6.

Collective Average Loss. We employ the Collective Average Loss (CAL) inspired by MOTR (Zeng
et al., 2022), which aggregates losses across multiple frames. Specifically, the total loss of ST-VLO
Ltotal is computed as the average loss over frames within each sub-clip Ts, i.e., Ltotal =

1
Ts

∑Ts

t=1 Lt,
where Lt = Lreg

t + α4Laux
t .

4 EXPERIMENT

4.1 DATASETS AND METRICS

KITTI Odometry Dataset (Geiger et al., 2013) contains 22 sequences from a Velodyne LiDAR and
stereo cameras. Following prior work (Wang et al., 2021a; Liu et al., 2024a), we use the monocular
left camera and LiDAR data, with sequences 00–06 for training and 07–10 for testing.

Argoverse Dataset (Chang et al., 2019a) provides 113 sequences with LiDAR and stereo images,
split into 65/24/24 for training, validation, and testing.

Evaluation Metrics. We report (1) average translational RMSE (%) and (2) average rota-
tional RMSE (◦/100m) as in PWCLO (Wang et al., 2021a), and also Absolute Trajectory Error
(ATE) (Sturm et al., 2012) for SLAM comparison (Engel et al., 2017; Teed & Deng, 2021; Campos
et al., 2021).

4.2 IMPLEMENTATION DETAILS

Data Pre-processing. Following the sparse sampling approach for LiDAR points from (Wang et al.,
2022a), we also design a fusion mask that flags LiDAR queries that can interact with image features,
given the substantial difference in spatial range between the LiDAR and camera data.

Hyper-parameters. We use the Adam optimizer with β1 = 0.9 and β2 = 0.999. The initial learning
rate is 0.001 and decays exponentially every 13 epochs until reaching 0.00001. We use a batch size
of 8. The values for αi across different module outputs are set to 1.6, 0.8, 1.6, and 1.6, respectively.
The learnable parameters kt and kq are initialized to 0.0 and -2.5, respectively. For each feature
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Table 2: Comparison with traditional visual SLAM (with loop closure) on KITTI 00-10 se-
quences in ATE[m]↓.

Method 00 01 02 03 04 05 06 07 08 09 10 Mean(00-10)
ATE ATE ATE ATE ATE ATE ATE ATE ATE ATE ATE ATE

ORB-SLAM2 (Mur-Artal & Tardós, 2017) 8.27 ✗ 26.86 1.21 0.77 7.91 12.54 3.44 46.81 76.50 6.61 -
ORB-SLAM3 (Campos et al., 2021) 6.77 ✗ 30.50 1.04 0.93 5.54 16.61 9.70 60.69 7.89 8.65 -
LDSO(Gao et al., 2018) 9.32 11.68 31.98 2.85 1.22 5.10 13.55 2.96 129.02 21.64 17.36 22.42
DROID-SLAM(Teed & Deng, 2021) 92.11 344.62 ✗ 2.38 1.00 118.51 62.47 21.78 161.60 ✗ 118.70 -
DPV-SLAM(Lipson et al., 2024a) 112.80 11.50 123.53 2.50 0.81 57.80 54.86 18.77 110.49 76.66 13.65 53.03
DPV-SLAM++(Lipson et al., 2024a) 8.30 11.86 39.64 2.50 0.78 5.74 11.60 1.52 110.9 76.70 13.70 25.76
MambaVO++(Wang et al., 2025) 6.19 8.04 27.73 1.94 0.59 3.05 11.79 1.7 105.42 63.24 10.51 21.84
Ours 9.28 19.72 15.23 3.51 0.76 4.90 3.61 1.00 7.74 7.27 2.73 6.91

Table 3: Comparison with traditional visual-LiDAR SLAM on KITTI 00-10 sequences.

Method 00 01 02 03 04 05 06 07 08 09 10 Mean(00-10)
trel trel trel trel trel trel trel trel trel trel trel trel

DVL-SLAM (Shin et al., 2020) 0.93 1.47 1.11 0.92 0.67 0.82 0.92 1.26 1.32 0.66 0.70 0.98
TVL-SLAM (Chou & Chou, 2021) 0.59 ✗ 0.74 ✗ ✗ 0.32 0.32 0.36 0.88 0.64 ✗ -
HVL-SLAM (Wang et al., 2024a) 0.75 1.86 0.81 0.87 1.09 0.57 0.70 0.80 1.08 0.71 0.81 0.91
SDV-LOAM (Yuan et al., 2023) 0.67 0.96 0.75 0.86 0.77 0.66 0.44 0.74 1.07 0.53 0.51 0.72
Ours 0.59 0.73 0.65 0.47 0.21 0.33 0.31 0.26 0.79 0.63 0.51 0.50

level, the number of LiDAR queries is set to 116, 228, 904, and 3600. During training, the KITTI
sequences 00-06 are divided into video clips with a duration of TC = 60 frames (6s), with further
segmentation into sub-clips of Ts = 3 frames (0.3s) for the collective average loss calculation. The
maximum history length Th and the compensation interval Tg are set as 30 and 20 respectively. The
value of top-k is set as 100 for the winner-takes-all loss.

4.3 QUANTITATIVE RESULTS

Comparison with Deep Odometry Methods on KITTI. We compare our model with recent
learning-based visual odometry (VO), LiDAR odometry (LO), and multi-modal methods. Follow-
ing (Wang et al., 2021a), our model is trained on sequences 00-06. The main results on the KITTI
dataset are presented in Table 1, demonstrating that ST-VLO surpasses these methods on most se-
quences. Specifically, compared to deep visual odometry methods (Zhan et al., 2021; Cho & Kim,
2023), our method has lower estimation errors on sequences 07-10 with a 75% trel and 60% rrel
reduction, respectively. It is worth mentioning that while these VO methods are generally trained on
a larger dataset (00-08), ST-VLO still achieves significantly better results. Compared to recent state-
of-the-art LO methods, ST-VLO exceeds EfficientLO (Wang et al., 2022a), DSLO (Zhang et al.,
2024a), and LAGLO (Tang et al., 2025) on most sequences. Compared to multi-modal odometry
methods, ST-VLO achieves a reduction in average translation error by 19% and average rotation
error by 22% compared to the state-of-the-art visual-LiDAR odometry method DVLO (Liu et al.,
2024a), highlighting ST-VLO’s capabilities in effective spatial and temporal modeling.

Comparison with Traditional SLAMs on KITTI. To further validate the efficacy of our method
in long-term temporal modeling for drift mitigation, we compare ST-VLO with recent traditional
visual SLAM systems (Table 2) and traditional visual-LiDAR SLAM systems (Table 3).

ST-VLO outperforms these methods on most sequences in terms of Absolute Trajectory Error (ATE)
and relative translation errors, consistently demonstrating its effectiveness in mitigating drift. It is
worth noting that these SLAM systems rely on global optimization and loop closure across a se-
quence of frames to reduce accumulative errors, whereas our method leverages Temporal Drift Com-
position to backtrack previously observed frames and compensate for accumulative errors, without
requiring explicit mapping or loop closure. This property makes ST-VLO more adaptable to se-
quences of arbitrary lengths in various driving scenes.

Comparison Results on Argoverse. To evaluate our method’s generalization capability, we perform
experiments on the Argoverse dataset (Chang et al., 2019a). Following the protocol in (Zhang et al.,
2024a), we employ Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) as evaluation
metrics. ST-VLO is trained and evaluated using the official Argoverse training/testing split. As
shown in Table 4, ST-VLO surpasses four traditional geometry-based odometry methods (Shan &
Englot, 2018; Behley & Stachniss, 2018; Dellenbach et al., 2021; Qin & Cao) without mapping for
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Table 4: Experiments on the Argoverse dataset (Chang et al., 2019a).
Method LeGO-LOAM SUMA PyLiDAR A-LOAM DSLO DVLO DVLO4D ST-VLO

(Shan & Englot, 2018) (Behley & Stachniss, 2018) (Dellenbach et al., 2021) (Qin & Cao) (Zhang et al., 2024a) (Liu et al., 2024a) (Liu et al., 2025b) (Ours)

ATE 4.537 3.663 6.900 4.138 0.111 0.103 0.089 0.073
RPE 0.110 0.039 0.109 0.066 0.027 0.026 0.025 0.021

Ground TruthOurs Start Point

c) 3D trajectory of seq.09 d) 3D trajectory of seq.10 a) 3D trajectory of seq.02 b) 3D trajectory of seq.08 

Figure 4: Trajectory of our estimated pose on KITTI.

a fair comparison and also the recent state-of-the-art learning-based method DSLO (Zhang et al.,
2024a) by 18% in ATE and 16% in RPE.

4.4 QUALITATIVE RESULTS

We provide 3D trajectory visualizations derived from our estimated poses in Fig. 4. The results il-
lustrate that our odometry approach closely aligns with the ground truth trajectory. Additionally, we
perform experiments to compare the trajectory accuracy and estimation errors between our method
and the classical LOAM method (Zhang & Singh, 2014) in Fig. 5. Notably, even though our odom-
etry only serves as the front end and does not include mapping, it achieves superior localization
accuracy compared to LOAM with mapping.

Moreover, we plot the top-k query points in Fig. 6 to showcase the high-salient feature regions. Most
points are located in regions of static objects such as buildings, and static cars, but fewer points are
seen on dynamic objects such as moving cars and pedestrians. This is because dynamic objects
introduce inconsistent motions, undermining the accuracy of localization (Liu et al., 2023b), while
static objects provide a more reliable reference to estimate the ego-vehicle’s motions.

4.5 LATENCY ANALYSIS

As presented in Table 5, we compare ST-VLO latency with other multi-modal odometry methods
on a single NVIDIA 4090 GPU. Efficiency is critical for real-time SLAM, as KITTI LiDAR is
sampled at 10 Hz. Many existing multi-modal approaches (Wang et al., 2021b; Shu & Luo, 2022;
Liu et al., 2024a) struggle to meet the 100 ms real-time threshold. In contrast, our method achieves
an inference latency of 74 ms, showcasing its potential for real-time applications.

Table 5: Average inference time of different methods on the sequence 07-10 of KITTI dataset.

Method PL-LOAM DV-LOAM Shu et al. DVLO ST-VLO
(Huang et al., 2020a) (Wang et al., 2021b) (Shu & Luo, 2022) (Liu et al., 2024a) (Ours)

Time (ms) 200 167 100 99 74

4.6 ABLATION STUDIES

We conduct various ablation studies to demonstrate the effectiveness of each component in our
proposed ST-VLO network on the KITTI dataset. They are a) the unified MMG for both spatial and
temporal inputs, b) the Temporal Drift Compensation, c) the Key Points-Aware Auxiliary Loss, and d)
integrating all components. As shown in Table 6, overall, removing any of the proposed components
leads to inferior performance in mean translation and rotation errors, highlighting the significance of
each design choice in our architecture. This is most profound for the unified MMG, which enhances
performance by creating a unified feature space for harnessing spatial and temporal information
from the visual-LiDAR data. Second, Temporal Drift Compensation improves results by iteratively
correcting cumulative errors, which is also evidently visible as shown in Fig 7. Last, the Key Points-
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Ground TruthLOAM LOAM w/o mapping Ours

Figure 5: Trajectory and error comparison on KITTI (seq. 07).

Figure 6: Visualization of the Keypoints-
Aware Auxiliary Loss. Green points mark the
top-k queries with the smallest errors, concen-
trated in static regions (green boxes) and fewer
in dynamic objects (red boxes).

HM-VLO w/o Composation

GT

ST-VLO

ST-VLO w/o Compensation

large cumulative drift 

drift after compensation 

Figure 7: Comparison of with vs. without the
Temporal Drift Compensation. Our designed
Temporal Drift Compensation module can adjust
the estimation drifts by iteratively calculating the
accumulated errors.

Aware Auxiliary Loss strengthens the learning of robust feature regions, which contributes to an
overall better performance by 12%.

We explore fusion strategies to evaluate deformable Mamba, which achieves the highest accu-
racy and second fastest latency (74 ms), outperforming attention-based (Liu et al., 2021b), cluster-
based (Liu et al., 2024a), and deformable attention-based (Zhu et al., 2021) methods (Table 7).

Additional ablation studies on query numbers in the top-k winner-takes-all loss, frame lengths Th

and Tg , and extra visualizations are provided in the supplementary materials.

Table 6: Ablation study of main design
choices. The best results are in bold.

Method 07 08 09 10 Mean

trel rrel trel rrel trel rrel trel rrel trel rrel

(a) w/o Unified MMG 0.33 0.35 0.91 0.44 0.69 0.34 0.87 0.38 0.70 0.38

(b) w/o Compensation 0.35 0.32 0.83 0.39 0.74 0.33 0.88 0.40 0.70 0.36

(c) w/o Auxiliary Loss 0.31 0.29 0.87 0.43 0.71 0.34 0.79 0.44 0.67 0.38

(d) ST-VLO 0.27 0.21 0.79 0.28 0.63 0.28 0.65 0.39 0.59 0.29

Table 7: Ablation study of multi-modal fusion
strategies. The best results are in bold.

Method 07 08 09 10 Mean Latency
trel rrel trel rrel trel rrel trel rrel trel rrel (ms)

CNN (Huang et al., 2020b) 0.39 0.34 1.11 0.49 0.81 0.44 0.91 0.52 0.81 0.45 71
Clustering (Liu et al., 2024a) 0.34 0.37 0.93 0.41 0.78 0.43 0.92 0.43 0.74 0.41 87
Attention (Liu et al., 2021b) 0.36 0.28 0.97 0.41 1.01 0.49 0.85 0.48 0.80 0.42 171
Deform DETR (Zhu et al., 2021) 0.32 0.35 0.87 0.37 0.71 0.32 0.69 0.34 0.65 0.35 76
Deform Mamba 0.27 0.21 0.79 0.28 0.63 0.28 0.65 0.39 0.59 0.29 74

5 CONCLUSION

In this work, we introduced ST-VLO, a visual-LiDAR odometry framework designed to address
the challenges of accumulative drifts and computational efficiency in the odometry task. By inte-
grating a unified MMG architecture, ST-VLO combines visual and LiDAR data, enabling robust
feature fusion while capturing essential spatiotemporal dependencies. Our model leverages a Tem-
poral Drift Compensation module to minimize the cumulative drift. Moreover, a Keypoint-Aware
Auxiliary Loss is proposed to enhance spatial feature representations in high-salient regions. Ex-
tensive experiments demonstrate that ST-VLO achieves state-of-the-art performance in both KITTI
and Argoverse datasets. Notably, ST-VLO is efficient with an inference speed of over 10 Hz, which
has the potential for real-time application in autonomous driving scenes.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
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APPENDIX

A OVERVIEW

The supplementary materials are structured as follows:

• We give more detailed illustrations about the network architecture of the MMG module in
Section B;

• More experimental results about the ablation studies are provided in Section C.

• We display more visualization results in Section D.

• Section E discloses the limited and strictly assistive usage of a large language model (LLM)
during manuscript polishing.

• Also, a video demo of real-world driving scenes is appended to the supplement materials.

B ARCHITECTURE OF THE MMG MODULE
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Figure 8: The detailed network structure of the MMG module.

Fig. 8 shows the detailed network structure of MMG (MaxPooling, Mamba (Gu & Dao, 2024), and
gMLP (Liu et al., 2021a)). MMG harmonizes diverse input representations across different modal-
ities and temporal dimensions: The gMLP encodes sequential information into a unified feature
space, providing a foundation for learning from varied data sources. Mamba then establishes tem-
poral interactions within the sequences, effectively capturing long-term dependencies across frames.
Finally, MaxPooling condenses the sequence into a single, unified representation, preserving essen-
tial information in a compact form.

In this paper, we incorporate the Mamba block proposed in (Gu & Dao, 2024) into our method for
processing image and LiDAR data due to its excellent performance and speed. Mamba (Gu & Dao,
2024) is designed for linear-time sequence modeling using structured state space sequence models
(SSMs) (Gu et al., 2022). These models are extended to selectively propagate or forget information
along the temporal dimension based on the current input token. Specifically, let X denote the input
features derived from the image and point cloud data processed by the gMLP layer. These features
then serve as the input tokens for the Mamba block:

X̂=LN(X), (7)

X = σ(Conv1D(Linear(X̂))), (8)

X̂ = σ(Linear(X̂)), (9)

Y = Linear(SSM(X))⊙ X̂ +X, (10)

where σ denotes the SiLU activation function (Hendrycks & Gimpel, 2016), Conv1D denotes a 1D
convolution layer, LN denotes the linear normalization, and SSM is the standard selective state space
model proposed by Gu & Dao (2024). The output Y denotes the temporally encoded features for
the consequent Maxpooling Layer.
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C ADDITIONAL ABLATION STUDIES

We provide more ablation and generalization studies on KITTI (Geiger et al., 2013), Argov-
erse (Chang et al., 2019a), and Hilti SLAM’22/’23 (Nair et al., 2024; Helmberger et al., 2022)
datasets to analyze different settings of our proposed method.

C.1 GENERALIZATION ABILITY

Generalization to Indoor 6-DoF Scenarios. We evaluate on the Hilti SLAM’22/’23 (Nair et al.,
2024; Helmberger et al., 2022) open 6-DoF dataset, which stresses odometry with strong elevation
changes, unconstrained rotations, long corridors, stairwells, and low-light rooms. Across these di-
verse scenes, our method consistently yields trajectories that adhere closely to ground truth (Fig.9
and outperforms SDV-LOAM (Yuan et al., 2023) on the vast majority of sequences (Table 8). We
observe fewer drift accumulations at vertical transitions and better stability in texture-poor or dim
environments, indicating that the unified spatio-temporal correlation and deformable multi-modal
fusion provide stronger constraints than purely geometric pipelines. Notably, these gains are ob-
tained without explicit loop closure or global mapping and at real-time latency, underscoring practi-
cality for indoor robotics.

Table 8: Evaluation on 6-DoF scenes (Hilti SLAM’22/’23). Lower is better.
Method Con. gr Con. m Con. st Long corr. Cupola Low. gall. Attic→up. gall. Floor 0
SDV-LOAM (Yuan et al., 2023) 25.1 12.6 9.2 19.5 9.3 11.2 4.6 4.6
Ours 20.1 13.3 8.2 17.3 7.6 9.3 5.1 4.0
Method Floor 1 Floor 2 Base. Stairs P. 3×flr L. rm. L. rm. (dark) Mean
SDV-LOAM (Yuan et al., 2023) 8.0 7.9 6.2 9.0 20.0 16.8 15.0 11.9
Ours 6.3 3.3 2.9 5.3 15.2 19.1 9.9 9.8

Attic→up. gall.Low. gall. Basement

Figure 9: Estimated 6-DoF pose trajectories on the Hilti dataset.
Cross-Dataset Generalization. Trained on KITTI and tested on Argoverse, ST-VLO degrades
much less than DVLO: relative to in-domain training on Argoverse, ST-VLO increases by +32.9%
(ATE) and +19.0% (RPE), whereas DVLO increases by +81.6% and +34.6%, respectively. Under
this cross-domain setting, ST-VLO still outperforms DVLO (ATE: 0.097 vs. 0.187; RPE: 0.025 vs.
0.035), indicating stronger generalization ability of our method.

Table 9: Pose errors on Argoverse (cross-dataset from KITTI). Percentages (in red) denote the
relative increase vs. each method’s in-domain result (trained on Argoverse); lower is better.

Method Training Testing ATE (m) RPE (m)
DVLO (Liu et al., 2024a) Argoverse Argoverse 0.103 0.026
ST-VLO Argoverse Argoverse 0.073 0.021
DVLO (Liu et al., 2024a) KITTI Argoverse 0.187 (+81.6%) 0.035 (+34.6%)
ST-VLO KITTI Argoverse 0.097 (+32.9%) 0.025 (+19.0%)

C.2 PERFORMANCE ON COMPLEX MOTION

We further probe two challenging regimes on KITTI—high dynamics (fast ego motion) and high ro-
tation rate—where pairwise or short-horizon models typically struggle. As summarized in Table10,
introducing long-range temporal modeling and drift compensation stabilizes pose estimates during
rapid accelerations, sharp turns, and heading changes: trajectories remain well aligned, corners are
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preserved rather than over-smoothed, and heading oscillations are markedly reduced. Qualitative in-
spection reveals fewer slip events and faster recovery in feature-sparse spans, supporting our claim
that robust temporal cues—not merely stronger per-frame features—are critical for reliable odome-
try under aggressive maneuvers.

Table 10: Performance on high-dynamics and high-rotation scenarios of KITTI.

Method High Dynamics High Rotation Rate
trel rrel trel rrel

DVLO (Liu et al., 2024a) 0.91 0.39 1.63 0.69
ST-VLO 0.67 0.20 0.79 0.28

C.3 ABLATION STUSIES

Query Numbers in the Top-k Winner-takes-all Loss. As shown in Table 11, by increasing the
number of queries from 50 to 200, the performance on most of the sequences starts to decrease after
k = 100. Hence, we opt k = 100 for the top-k winner-takes-all of the keypoint-aware auxiliary loss.

Table 11: The impact of varying the number of queries (top-k) for the winner-takes-all loss.

top-k 07 08 09 10 Mean
trel rrel trel rrel trel rrel trel rrel trel rrel

50 0.34 0.23 0.83 0.30 0.68 0.30 0.69 0.43 0.64 0.32
100 0.26 0.23 0.79 0.28 0.63 0.28 0.65 0.39 0.59 0.29
200 0.38 0.40 0.77 0.25 0.69 0.33 0.79 0.42 0.66 0.35

Varying Frame Lengths. We also analyze the impact of frame lengths for the sub-clip Ts, the max-
imum history frame length Th, and the compensation interval Tg . As shown in Table 12, aggregating
losses (Section 3.3 in the main paper) multiple frames (Ts = 3) leads to a better performance than
the single-frame (Ts = 1) losses. By varying the maximum history frame length Th from 15 to 45,
the performance first increases and then starts to decrease after increasing Th to 30. Similarly, the
compensation interval Tg = 20 yields the best performance among the other frame lengths. Overall,
when Ts = 3, Th = 30, and Tg = 20, our method achieves the best performance.

Table 12: The impact of varying the sub-clip length Ts, the maximum history frame length Th,
and the compensation interval Tg . The best results are bold.

Ts Th Tg
07 08 09 10 Mean

trel rrel trel rrel trel rrel trel rrel trel rrel
1 30 20 0.33 0.29 0.91 0.38 0.85 0.43 0.89 0.53 0.75 0.41
3 15 20 0.29 0.31 0.76 0.29 0.67 0.31 0.70 0.35 0.61 0.32
3 30 20 0.26 0.23 0.79 0.28 0.63 0.28 0.65 0.39 0.59 0.29
3 45 20 0.30 0.33 0.83 0.29 0.67 0.32 0.70 0.41 0.63 0.34
3 30 10 0.35 0.39 0.87 0.35 0.73 0.37 0.71 0.43 0.67 0.39
3 30 30 0.31 0.32 0.87 0.32 0.61 0.31 0.75 0.45 0.64 0.35

D VISUALIZATION OF THE RESULTS

D.1 2D & 3D TRAJECTORY VISUALIZATION

We display the 2D and 3D trajectories on all the evaluation sequences 00-10 of the KITTI dataset
respectively in Fig. 10 and Fig. 11. As shown in these figures, our estimated trajectories consis-
tently overlap with the ground truth ones well, which demonstrates the superiority of our proposed
odometry method.
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D.2 KEYPOINTS-AWARE AUXILIARY LOSS

In Fig. 12 and Fig. 13, we also show more visualizations of the selected top-k keypoints with min-
imal error relative to the ground truth pose in our designed keypoints-aware auxiliary loss. From
these figures, most keypoints are located in the regions of static objects, such as buildings, trees, and
unmoving/parked cars, because these static objects contribute the most to a consistent ego-motion
estimation. In contrast, there are very few selected keypoints located in the regions of dynamic ob-
jects since, e.g., moving cars or pedestrians can introduce different motion patterns that degrade the
motion consistency. Our carefully designed top-k winner-takes-all strategy avoids this undesirable
effect in the keypoints-aware auxiliary loss.

E LLM USAGE STATEMENT

A large language model (ChatGPT) was used only for limited editing support during manuscript
preparation. Its role was restricted to: (i) checking spelling and grammar; (ii) light phrasing and
wording adjustments to improve readability without changing technical content, methodology, anal-
yses, or conclusions; and (iii) occasional condensation of repetitive sentences and suggestions for
consistent formatting. The LLM did not participate in research ideation, problem formulation,
method design, experiments, data processing, result analysis, drafting of technical material, or draw-
ing conclusions. It is not an author and bears no responsibility for the manuscript’s content.
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2D trajectory of seq.00 2D trajectory of seq.01 2D trajectory of seq.02

2D trajectory of seq.03 2D trajectory of seq.04 2D trajectory of seq.05

2D trajectory of seq.06 2D trajectory of seq.07 2D trajectory of seq.08

2D trajectory of seq.09 2D trajectory of seq.10

Figure 10: The 2D trajectories of ground-truth pose and our estimated pose. Comprehensive
2D trajectory results are shown here on 00-10 sequences of the KITTI dataset.
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3D trajectory of seq.00 3D trajectory of seq.01 3D trajectory of seq.02

3D trajectory of seq.03 3D trajectory of seq.04 3D trajectory of seq.05

3D trajectory of seq.06 3D trajectory of seq.07 3D trajectory of seq.08

3D trajectory of seq.09 3D trajectory of seq.10

Figure 11: The 3D trajectories of ground-truth pose and our estimated pose. Comprehensive
3D trajectory results are shown here on 00-10 sequences of the KITTI dataset.
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Figure 12: Visualization of the Keypoints-Aware Auxiliary Loss (1). Green points indicate the
top-k queries with minimal error relative to the ground truth pose, showing that they are primarily
located in regions associated with static objects, while less focus on dynamic objects (red boxes).
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Figure 13: Visualization of the Keypoints-Aware Auxiliary Loss (2). Green points indicate the
top-k queries with minimal error relative to the ground truth pose, showing that they are primarily
located in regions associated with static objects, while less focus on dynamic objects (red boxes).
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