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“A low angle shot of a dancer leaping gracefully into the air…”
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“A young female martial artist hops to the right, before delivering a high left foot kick…”

“A professional woman in a white blouse … holding a sleek smartphone to her ear …”

“Amiddle-aged woman in a floral dress waving her hand before bending down gracefully…”

Figure 1: Qualitative advantage of CAMEO. Our approach, CAMEO produces more stable and
consistent human body articulation in complex motions, whereas vanilla CogVideoX-5B (Yang et al.,
2025) often shows pose distortion and inconsistent appearances. For instance, the vanilla model may
generate implausible artifacts such as a character repeatedly picking up and putting down a phone. In
contrast, our method maintains stable action continuity and prevents such inconsistencies.

ABSTRACT

Human video generation is becoming an increasingly important task with broad ap-
plications in graphics, entertainment, and embodied AI. Despite the rapid progress
of video diffusion models (VDMs), their use for general-purpose human video
generation remains underexplored, with most works constrained to image-to-video
setups or narrow domains like dance videos. In this work, we propose CAMEO,
a CAscaded framework for general human Motion vidEO generation. It seam-
lessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating
suboptimal factors that may arise in this process across both training and inference
through carefully designed components. Specifically, we analyze and prepare
both textual prompts and visual conditions to effectively train the VDM, ensuring
robust alignment between motion descriptions, conditioning signals, and the gen-
erated videos. Furthermore, we introduce a camera-aware conditioning module
that connects the two stages, automatically selecting viewpoints aligned with the
input text to enhance coherence and reduce manual intervention. We demonstrate
the effectiveness of our approach on both the MovieGen benchmark and a newly
introduced benchmark tailored to the T2M–VDM combination, while highlighting
its versatility across diverse use cases.

1 INTRODUCTION

Recent video diffusion models (VDMs) have achieved impressive performance across various video
generation tasks, fueled by large-scale datasets and scalable model architectures (Kong et al., 2024;
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Yang et al., 2025; Wan et al., 2025). Human-centric video generation, as one such task, has emerged
as an important avenue of research due to its broad applicability in areas such as digital avatar creation,
film production, and fashion (Xu et al., 2025; Kong et al., 2025; Karras et al., 2024). Despite its
significance, current VDMs still struggle to handle human-related content, as faithfully capturing
articulated body structures and the subtle nuances of human motion remains challenging. Since text
alone is often insufficient, yielding unstable results when expressing such detailed structures and
dynamics, many works turn to conditional video generative models, which leverage explicit visual
cues such as 2D keypoints (Gan et al., 2025), skeletons (Zhu et al., 2024), semantic part masks (Liu
et al., 2025b), or geometry-derived signals (Karras et al., 2023; Xu et al., 2024) as conditioning
inputs.

While effective, this line of research has predominantly focused on image-to-video (I2V) settings,
models trained primarily on narrow-domain datasets such as TikTok (Jafarian & Park, 2021) or
UBC fashion videos (Zablotskaia et al., 2019), making them less suitable for generating videos of
everyday scenes (Xue et al., 2025). Moreover, these approaches generally overlook the fundamental
question of where the motion signals should come from, which is a critical aspect for building a fully
end-to-end generative pipeline. Accordingly, T2V approaches have also begun to emerge with the
goal of building end-to-end pipelines. One example is HMTV (Kim et al., 2024), which connects a
text-to-motion (T2M) model with a 2D skeleton-conditioned video diffusion model to form a T2V
pipeline. However, this work merely links off-the-shelf components without specific adaptation for
human-centric video generation. For example, the motion produced by the T2M stage is canonical,
so the system requires explicit specification of the camera view for rendering, which in this work
must be manually provided via text. As a result, the pipeline remains fragmented rather than serving
as a complete end-to-end T2V solution.

To overcome these limitations in human-centric video generation, we introduce CAMEO, a CAscaded
framework for general human Motion vidEO generation, which couples a T2M model with a
conditioned VDM to produce coherent and controllable human motion videos. Our approach consists
of two main components: a training strategy that carefully designs textual prompts and conditioning
inputs to ensure effective alignment with motion, and an inference-time module that connects the
two stages by automatically determining suitable camera views. Together, these components enable
an integrated end-to-end pipeline that generates coherent and controllable human videos directly
from text, while improving stability and generalization to diverse scenarios. We demonstrate the
effectiveness of our approach on the MovieGen benchmark as well as on HuMoBench, a newly
introduced benchmark specifically designed for evaluating the integration of T2M and VDM. Beyond
evaluation, we further highlight the versatility of our framework through practical use cases, including
motion editing and camera view editing.

2 RELATED WORKS

2.1 CONDITIONED VIDEO DIFFUSION MODELS

As in the image domain, advances in video diffusion models (VDMs) have also led research to
increasingly expand toward controllability. A primary direction has been to steer the generation
process through conditioning. Conditioning signals have taken various forms, including textual
descriptions that specify the content of a video, initial frames that guide subsequent generation, and
low-level visual inputs such as edge maps, semantic masks, or depth information (Yang et al., 2025;
Wan et al., 2025; Geng et al., 2025; Wang et al., 2024). The latter, in particular, enable structural and
contextual control, and have been widely adopted in human-centric video generation, which will be
discussed later in this section. A representative framework in this line of work is ControlNet (Zhang
et al., 2023), which introduces an additional branch to guide diffusion models with structural signals.
Originally developed with UNet backbones, diffusion models for video have now largely transitioned
to Diffusion Transformer (DiT)-based architectures (Peebles & Xie, 2023), for which corresponding
ControlNet-style conditioning mechanisms have also been developed. For instance, AC3D (Bahmani
et al., 2025) demonstrated camera-controllable video generation by applying ControlNet conditioning
to CogVideoX (Yang et al., 2025). Motivated by the fact that both camera motion and human motion
can be regarded as forms of controllable motion, we design our framework to condition human-related
visual cues in a similar manner.
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2.2 HUMAN MOTION VIDEO GENERATION WITH DIFFUSION MODELS

Methods for human video generation can be broadly categorized into two primary approaches: vision-
driven and text-driven. Vision-driven approaches rely on explicit visual cues, which are then used to
guide the generation process. These cues often take the form of 2D signals such as keypoints (Gan
et al., 2025), skeletons (Wang et al., 2025), and semantic masks that capture body articulation (Liu
et al., 2025b). They can also include 3D or geometric information such as depth maps, normal maps,
or dense correspondence maps or even renderings of parametric 3D models (Karras et al., 2023; Xu
et al., 2024; Zhu et al., 2024; Cao et al., 2025). However, this reliance on detailed visual inputs,
while enabling precise control, has largely confined the application of these image-to-video (I2V)
methods to narrow domains. Moreover, they remain restricted to settings where motion cues are
extracted from external videos, with little exploration of more flexible approaches to obtain such
signals directly. Beyond these I2V settings, text-driven approaches have been relatively less explored,
with only a few notable examples. For instance, Text2Performer (Jiang et al., 2023) generates videos
that follow the intended action described in text. However, it also requires a reference image, it
cannot be regarded as a fully text-to-video approach. More recently, HMTV (Kim et al., 2024)
further extended this direction by explicitly coupling text-to-motion (T2M) generation with motion-
conditioned video synthesis, demonstrating the potential of text-driven pipelines for controllable
human video generation. To further unlock this potential, we propose methods that enhance the
generative ability of each stage and, more importantly, introduce dedicated modules that enable a
fully integrated text-to-video (T2V) pipeline.

2.3 TEXT-TO-MOTION GENERATION WITH DIFFUSION MODELS

Human motion can be represented in multiple ways, such as joint positions, joint rotations, or
parametric models like SMPL (Loper et al., 2023). Building on these representations, T2M generation
has been extensively studied as a means to bridge natural language and 3D human motion. In
particular, recent advances in diffusion models have propelled this direction, enabling substantial
progress in synthesizing realistic and semantically aligned motions from text (Tevet et al., 2023;
Yuan et al., 2023; Zhang et al., 2024). These models provide an intuitive way to generate human
movements directly from language, offering flexible control of animated characters with applications
in VR, gaming, HCI, and robotics. However, most studies have treated T2M as an isolated task, with
relatively few extending it to broader video generation pipelines. A notable exception is Move-in-
2D (Huang et al., 2025), which conditions motion on 2D inputs and demonstrates an application to
video synthesis, though it does not establish a full T2V pipeline. To better leverage these advances,
we establish a complete T2V pipeline by integrating T2M models with video diffusion models,
maximizing their complementary strengths. For the T2M component, we adopt STMC (Petrovich
et al., 2024) for its strong capability in fine-grained temporal and compositional control, making it
well-suited for generating coherent and continuous motions in video generation.

3 METHOD

Our key idea is to build a unified framework by integrating Text-to-Motion (T2M) models and Video
Diffusion Models (VDMs), two powerful approaches whose combined potential remains largely
unexplored. We realize this idea through CAMEO, a cascaded yet integrated design for human-centric
text-to-video generation. The method consists of two main components: a training strategy and
inference procedure. In Sec. 3.1, we first describe how to construct and adapt visual and textual
conditions to effectively guide our VDM in the human motion domain. In Sec. 3.2, we present our
inference procedure, which employs stage-specific prompting and a camera view selection module
that bridges the two models. An overview of our framework is provided in Fig. 2.

3.1 DATA CONDITIONING STRATEGY FOR TRAINING VDM

Our primary objective is to train a VDM conditioned on both a visual motion signal and a textual
description. This goal necessitates a training dataset composed of triplets, (x,m, t), containing the
source video x, the visual motion condition m, and the text condition t, respectively. For our training
data, we chose HOIGen-1M (Liu et al., 2025a) and Motion-X++ (Zhang et al., 2025), leveraging the
former’s coverage of daily-life activities and the latter’s diverse, complex motions. However, these

3
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CAMEO: Cascaded Text-to-Video Framework
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holding a phone under
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Figure 2: Overview of CAMEO. Given a text prompt, we first disentangle it to separate motion-
related and semantic components. The motion prompt is converted into an initial motion sequence
via a text-to-motion model. The sequence is rendered as SMPL-based guidance videos, where a
camera-aware conditioning module determines the viewpoints for rendering. Finally, the video
diffusion model synthesizes the human video, guided by the semantic prompt and motion condition,
seamlessly bridging text-to-motion and text-to-video generation.
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(a) Importance of caption refinement.

𝑡 = 1 𝑡 = 0.8 𝑡 = 0.7 𝑡 = 0.6 𝑡 = 0

(b) Denoising dynamics.

Figure 3: Analysis of training choices. (a) The model trained with the original coarse captions
often fails to learn fine-grained motion details, whereas the model trained with our refined captions
converges faster and produces more accurate motion details. (b) Macro body movements emerge
early in the denoising process, while finer details such as clearer body outlines appear later, around
t = 0.6.

datasets are not fully aligned with our needs: HOIGen-1M does not provide SMPL annotations, and
the captions in both datasets have limitation for our purpose. To address this, we design a dedicated
pipeline to construct them.

Refining text prompt In particular, the textual prompts required a separate treatment. The captions
provided in the datasets often mixed descriptions of successive motions with scene or appearance
details. Our initial attempts on training the conditional VDM naively with the captions provided in the
datasets showed conflict between the motion information against the visual conditions, consequently
hindering effective training. This is illustrated in Fig. 3a, which presents early-stage inference results
during training: the top row (original captions) shows a model conditioned on coarse character
location but failing to capture fine-grained motions, while the bottom row (refined captions) shows
faster convergence with more accurate motion details. Furthermore, Motion-X++ contains videos
recorded in laboratory environments, yet its captions omit such context and provide only the sparse
semantic descriptions. As a result, a model trained on such data often relied on spurious correlations,
producing videos that reflected lab-like settings rather than diverse environments.

To address these issues, we first recaptioned Motion-X++ using a vision-language model (VLM)
to enrich its semantic descriptions and contextual details omitted in the original captions. Building
on this, we applied a large language model (LLM) across all datasets to restructure the textual
annotations t into two complementary parts: motion caption tm and semantic caption ts, which
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capture contextual and scene-level information. We then utilized ts to train the VDM, while tm was
employed to guide the text-to-motion model during generation. See Appendix B for details.

Preparing visual motion cues We constructed the visual motion condition m by rendering 3D
SMPL meshes.1 For HOIGen-1M, which lacks SMPL annotations, we estimate per-frame SMPL
parameters from the videos x1:N using SMPLest-X (Yin et al., 2025); for Motion-X++, we directly
use the provided annotations. The resulting meshes are then rendered with lighting from their
corresponding estimated camera poses and assigned distinct colors to body-part regions (e.g., head,
torso, and limbs). This produces m1:N that encode both global body layout and localized articulation,
making them a more informative signal for motion-conditioned video generation.

Training conditioned VDM To enable conditioning, we adopt a ControlNet-based conditioning
approach (Zhang et al., 2023). In particular, we adapt the architecture of AC3D (Bahmani et al.,
2025), which shares our objective of achieving precise motion control and demonstrated strong
results. At the same time, human motion video generation poses requirements beyond generic
architectures: while camera control can often be achieved at a coarse level, human motion demands
both large-scale motion control and fine-grained articulation of body parts. Accordingly, we design
tailored conditioning strategies that leverage SMPL-based cues to support precise motion guidance
and highlight structural outlines along the denoising trajectory. This is evident in Fig. 3b, where large-
scale body movements are established very early in the denoising process, whereas finer details such
as clearer body outlines are not fully produced until around t = 0.6. Furthermore, we observe larger
variability in the timesteps required to achieve proper conditioning. Motivated by these observations,
when sampling the diffusion timestep during training, we adopt a truncated normal distribution over
the range [0.6, 1] as in AC3D, but 1) reduce the mean from 0.95 to 0.9 to account for the fine-grained
body outlines that appear later in the timestep, and 2) increase the standard deviation from 0.1 to 0.2
to account for the larger variability. During inference, the conditioning is applied only within this
range of timesteps. Once the training is complete, we proceed to the inference stage, where T2M
generation is followed by VDM synthesis.

3.2 END-TO-END INFERENCE: FROM T2M TO VDM

Stage1: Text-to-Motion generation The first stage of our inference process is to generate a motion
sequence handled by a T2M model M. This model is conditioned on the motion prompt tm, obtained
from our prompt disentanglement stage, which allows T2M to focus on motion-specific information
and thereby generate more accurate motions. It then outputs a sequence of low-dimensional SMPL
parameters, which are further converted into human body meshes represented by their 3D vertices
V1:K via the SMPL model.2 This process is defined as:

V1:K = M(tm), Vi ∈ RNv×3 (1)
where K is the number of frames, Nv is the number of mesh vertices (e.g., 6890 for SMPL), and Vi

contains the 3D coordinates of (x, y, z) of all vertices at frame i. After obtaining the sequence of
3D vertices, we project them into 2D space to be used as conditioning signals. (See Fig. 2, 1) for an
illustration.)

Stage2: Camera viewpoint selection & Conditioned video generation A crucial step here is
determining the camera parameters, since they define how the 3D meshes are viewed in the 2D
plane, thereby shaping the composition of the scene, including the subject’s location in the frame
and its apparent scale. To address this, we propose a text-aware camera selection module that
automatically determines suitable viewpoints for each generated video. Given that off-the-shelf
models for text–camera alignment are not available, and that training a dedicated module solely for
this purpose would be impractical, we exploit the generative prior of video diffusion models, which
implicitly captures p(camera | text) within their training objective of approximating p(video | text).

Concretely, we first use the original prompt t from the dataset-which contains both motion and
semantic information-to generate a reference video with the video diffusion model. We stop generation

1Here and throughout the paper, we use SMPL for simplicity, although our pipeline is compatible with both
SMPL and SMPL-X.

2When instantiated with SMPL instead of SMPL-X, the face and the hand is set as their default template
form.
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Table 1: Quantitative results for each benchmark. Our method achieves top performance across
benchmarks, excelling in both motion consistency and semantic alignment. Vanilla models without
visual conditioning show weak consistency, while other baselines that share the same motion con-
ditions as ours achieve reasonable consistency but fall behind in image quality and text alignment.
Bold: Best, Underline: Second Best.

Appearance Metrics Motion Metrics Prompt Fidelity

Benchmark Method Aesthetic
Quality

Image
Quality

Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Text
Alignment

MovieGen
-Human Activity
(Polyak et al., 2024)

Vanilla 0.539 0.592 0.933 0.950 0.981 0.644 0.272
HMTV 0.485 0.620 0.946 0.945 0.987 0.570 0.254
CamAnimate 0.441 0.580 0.961 0.958 0.981 0.585 0.226
Ours 0.548 0.613 0.952 0.957 0.983 0.545 0.258

HuMoBench

Vanilla 0.538 0.587 0.918 0.943 0.981 0.608 0.250
HMTV 0.526 0.614 0.949 0.947 0.989 0.641 0.252
CamAnimate 0.441 0.601 0.954 0.951 0.989 0.775 0.248
Ours 0.535 0.615 0.955 0.957 0.990 0.567 0.262

at an early denoising stage where the human shape becomes is sufficiently discernible for camera
extraction and use this partial output as an approximation. This procedure also keeps the computation
overhead minimal. We then compute the camera parameters (Ri, Ti) from the reference video that
best aligns the extracted vertices with the generated frames. Assuming that the vertices generated by
our T2M model, V1:K , lie in the same canonical space, we can render them into the reference view
using the estimated camera parameters:

mi = Π(RiVi
⊤ + Ti), mi ∈ RNv×2, (2)

where Π(·) denotes the perspective projection with estimated camera intrinsics, and mi gives the
2D coordinates of the projected vertices at frame i, as shown in Fig. 2, 2). This ensures that the
human generated by the T2M model is placed in the corresponding location of the reference scene.
Conditioned on the semantic prompt tsem and the visual motion signal m, we then perform inference
with the trained VDM (See Fig. 2, 3)). Consequently, CAMEO generates videos with camera views
naturally aligned to the given text, without requiring manual effort for camera view selection.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In Stage 1, we employ the off-the-shelf STMC (Petrovich et al., 2024), a text-to-motion (T2M)
approach that directly outputs SMPL pose parameters to produce 6-second motion sequences at
23fps. In Stage 2, we build on top of the CogVideoX-5B text-to-video diffusion model (Yang et al.,
2025), augmenting it with a ControlNet-style branch attached to the first 21 transformer layers. For
training, we use AdamW with β1 = 0.9, β2 = 0.95, a cosine learning rate schedule with a base
learning rate of 1×10−4, and a batch size of 16 with gradient accumulation. At inference, we apply a
guidance scale of 4.0 and a pose guidance scale of 2.0, generating 6-second videos with 49 frames at
8 fps. The input motions from Stage 1 are downsampled from their native 23 fps to align with this
frame rate. For Motion-X++ caption enrichment, we employed InternVL2.5-38B (Chen et al., 2024)
as the VLM to augment semantic descriptions and contextual details. Beyond this dataset-specific
augmentation, we further adopted Qwen3-32B (Qwen, 2025) as the LLM for caption refinement and
input formatting across all datasets. Detailed prompting strategies are provided in the Appendix B.
All experiments, including fine-tuning and inference, are conducted on 40GB A6000 GPUs.

4.2 QUANTITATIVE EVALUATION

Benchmarks We use two benchmarks for evaluation. First, we consider 204 prompts from the
human-activity category of the MovieGen (MGen) benchmark (Polyak et al., 2024). Additionally,
we introduce HuMoBench, a benchmark for evaluating pipelines that link T2M models with motion-
conditioned video generation, addressing the lack of an existing protocol. HuMoBench contains
120 entries, each consisting of three components: (1) a plain-text motion prompt, (2) a plain-text
semantic prompt describing a plausible context, and (3) a combined prompt merging motion and
semantic information. To construct the entries, we first employed an LLM to generate 120 motion
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“A young woman holding her smartphone while her other hand waves warmly to greet … ”
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“On a sunlit greet at country club, … amiddle-aged golfer swings a sleek iron club…” “In a cozy art studio …, a young female sculptor reaches to grasp a small chisel … ”
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“In a lively city park, a young woman… bends down beside a bench to pick up a sandwich… ”
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“A Japanese animated film of a young woman standing on a ship … ” “A young woman seated onto a park bench…, she run her fingers through the back of her hair…”

Figure 4: Qualitative comparisons. Our pipeline captures complex human structures and motions
more faithfully than baseline models, while also producing more natural and consistent camera views.

descriptions at the granularity understood by T2M models. Subsequently, the LLM was instructed to
infer plausible scenarios for each sequence and, on this basis, generate the remaining prompts. The
exact prompts and several representative benchmark examples are provided in Appendix B.

Baselines We benchmark our models against their base (pre-trained) versions, as well as
HMTV (Kim et al., 2024) and CamAnimate (Wang et al., 2024). HMTV was originally defined with
a unified prompt guiding a motion generator, which in turn provides keypoint conditioning to a video
model. However, as the benchmark tasks involve more diverse and challenging motions, directly
generating motion from the given prompt without additional strategy becomes infeasible. To enable a
fair comparison, we retain our motion generation pipeline; however, because HMTV requires the
camera view to be manually specified—a detail not typically available in the prompt—we place
the camera at the center of the scene. We then train the video diffusion model with a conditioning
scheme analogous to HMTV’s keypoint-based design, without our additional strategies such as text
refinement and timestep control. We also include CamAnimate (Wang et al., 2024), an image-to-video
(I2V) baseline for human animation trained on HumanVid. Since strong text-to-video models tailored
to our domain are not yet available, we adapt CamAnimate within our framework. Specifically, we
condition on keypoints following its original design, generating an initial frame from a skeleton input
via text-to-image synthesis and then applying the I2V model to produce the remaining frames.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

M
ot
io
n
2

M
ot
io
n
1

“A young women athlete in casual sportswear lowers into a squat and swinging both arms for balance. ”

(a) Motion editing results.
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“A man wearing black t-shirts holding a small figurine in a dimly lit room… ”

(b) Camera view editing results.

Figure 5: Extensions. (a) Motion editing: Initial motions are regenerated with SDEdit (Meng et al.,
2022), yielding variations while preserving overall semantics. (b) Camera view editing: guidance
videos are rendered with perturbed extrinsics, producing different viewpoints while preserving
semantics.

Metric - VBench We follow the quantitative evaluation protocol of Chefer et al. (2025), which
uses VBench (Huang et al., 2024) to evaluate video generators. While Chefer et al. (2025) reports
only appearance and motion scores, we additionally report the VBench text alignment score which
is based on CLIP Similarity. As shown in Tab. 1, our method achieves the best or second-best
performance across nearly all metrics. This demonstrates its balanced strength in both appearance
and motion quality, as well as superior text alignment. In particular, the largest margin over the
vanilla model appears in the consistency metrics. As also illustrated in the qualitative examples,
vanilla models often fail to maintain stable articulation under complex motions, leading to entangled
or distorted limbs. By contrast, our method exhibits far fewer such failures, which likely accounts for
the improved consistency scores. Other baseline models that leverage our T2M results also achieve
reasonable performance on consistency and motion smoothness, since the underlying motions are
shared. However, they fall short in aesthetic and image quality, largely due to the absence of a
camera-view module and the weaker VDM used in CamAnimate.

4.3 QUALITATIVE EVALUATION

Comprehensive qualitative results are shown in Fig. 4. The vanilla model often fails to reproduce
systematic motions, such as a golf swing, and struggles with basic actions by either stalling or
exhibiting unnatural velocities. While motion-conditioned methods yield more coherent results, they
introduce other challenges. CamAnimate, for instance, struggles with semantic fidelity and often
introduces noticeable visual artifacts. Similarly, HMTV represents motion reasonably well but lacks
a text refinement strategy. Consequently, it fails to disentangle textual artifacts from the motion data,
unnecessarily rendering elements like video subtitles from the training dataset. Our model addresses
this by utilizing refined captions that provide richer semantic descriptions. Furthermore, HMTV’s
absence of a camera-view selection mechanism leads to monotonous and often suboptimal viewpoints.
In contrast, our method produces diverse camera perspectives, from upper-body to full-body shots,
that are semantically aligned with the text to best depict the scene.

4.4 USER STUDY

Win Lose Tie

Motion
Quality 0.631 0.214 0.145

Visual
Quality 0.545 0.257 0.186

Table 2: User study results for mo-
tion and visual quality. Win indicates
the proportion of cases where Ours
was preferred over the baseline.

We conducted an A/B study by showing participants
paired videos from a baseline and our method for the
same prompts. The baselines matched those in the quali-
tative comparison (Vanilla, HMTV, CamAnimate), with
three samples each, yielding nine pairs. Participants
judged Motion / Action Quality and Video / Visual
Quality, choosing win, lose, or tie. Detailed partici-
pant instructions are provided in the Tab. 11. Among 44
participants, our method was preferred overall(Tab. 2).

4.5 ABLATION STUDIES

Importance of text refinement strategy To assess the effect of our text refinement strategy, we train
and evaluate the VDM using the original dataset captions, which mix both motion and semantic infor-
mation. In the case of Motion-X, these captions omit elements such as lab environments or subtitles

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Appearance
Metrics

Motion
Metric

Prompt
Fidelity

Ours 0.768 0.779 0.262
w/o Refine 0.761 0.791 0.261

w/o View Module 0.751 0.774 0.261

Table 3: Quantitative results for ablation
studies. w/o Refine: ablated on text refine-
ment; w/o View Module: ablated on view
selection.

“A museum curator, turns her head to the 
left and extends her arm to point… ”

w/o view module Ours

Figure 6: Qualitative results: ablation
on view selection. View selection leads to
improved quality.

that can significantly influence video quality, making
disentanglement more challenging. All other settings
and sampling are kept identical to our main model. On
HuMoBench, text refinement yields consistent gains
on most metrics, while the non-refined variant attains
a higher motion score, likely due to the metric’s bias
toward dynamics. Considering the full set of metrics, our
method achieves improvements without compromising
overall consistency. Beyond metrics, HMTV results
in Fig. 4 show that models without this strategy fail to
disentangle dataset artifacts and often reproduce them
in generated videos.

Importance of view selection module We also ablate
the view selection module by fixing the camera at the
scene center. As shown in Fig. 3 and Fig. 6, this leads to
monotonous, suboptimal viewpoints and a slight drop in
quality. We conjecture that this occurs because VDMs
perform better when inputs are closer to their training
distribution; thus, adaptive view selection provides more
in-domain views and ultimately improves performance.
We report results averaged over HuMoBench in the main
text, with detailed results for both ablation variants pro-
vided in Tab. 6 of the Appendix.

4.6 EXTENSIONS

In addition to evaluation, we demonstrate extensions
that are uniquely enabled by our cascaded approach. In
particular, we demonstrate motion editing and camera
view editing as representative use cases, highlighting the
broader applicability of our approach.

Motion editing For motion editing, we first generate an initial motion sequence from the text
prompt. We then apply the SDEdit (Meng et al., 2022) technique by re-noising the sequence to an
intermediate diffusion step and regenerating it with the same text input. By conditioning these edited
motions in our staged pipeline, users can refine motion details and obtain videos that better align with
their intended outcomes, as illustrated in Fig. 5a.

Camera view editing Another extension is to keep the motion fixed while modifying the camera
viewpoint. We perturb the estimated camera extrinsics by small rotations or translations and render
new guidance videos accordingly. Conditioning the video diffusion model on these variants produces
human videos from slightly different perspectives while largely preserving semantic consistency, as
illustrated in Fig. 5b.

5 CONCLUSION

In this work, we present CAMEO, a text-to-video pipeline that is both cascaded and integrated,
seamlessly bridging text-to-motion (T2M) and video diffusion models (VDM). To complete the
pipeline, we propose dedicated strategies and modules for human motion generation. First, to enable
effective training of the conditioned VDM, we redesign textual captions to mitigate conflicts between
the text-to-motion and video diffusion stages, and adopt training configurations better suited for
human motion generation. At the inference stage, we introduce a camera-view selection module that
encourages both natural perspectives and consistent appearance across frames. These contributions
allow our method to faithfully capture complex human structures and motions in natural scenes.
Through extensive experiments, we demonstrate the effectiveness of our approach in both quantitative
and qualitative evaluations, as well as several practical use cases.
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Limitations Our approach relies on an off-the-shelf T2M model as the starting point, which
inherently binds the performance of the overall pipeline to that of the underlying T2M model. For
example, current models still struggle to capture fine-grained finger articulation, leading to limitations
in generating highly detailed motions. Moreover, since our training is based on datasets with primarily
single-person scenes, the model may generalize poorly to out-of-domain scenarios such as crowded
or multi-person environments. These limitations are likely to diminish as both T2M model and VDM
advance, enabling finer-grained motion capture and stronger generalization to diverse and complex
scenes.
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A FURTHER EXPERIMENTS

In this section, we present additional experiment results, including qualitative visualizations of
generated videos and further ablation studies.

A.1 QUALITATIVE RESULTS

“A low-angle shot of a child reaching out to catch falling snowflakes, with … of tall evergreen trees”

“An astronaut runs on the surface of the moon, the low angle shot shows the vast background of the moon…”

“A young woman in hiking gear walks steadily along a sunlit forest trail … ”

“a woman wearing blue jeans and a white t shirt taking a pleasant stroll in Mumbai Indiaduring a beautiful sunset”

“In a home gym adorned with green plants…, a young woman bends her knees to lower into a deep squat, ”

“A middle-aged man in a tailored gray suit slowly walks down a dimly lit hallway of a museum… ”

“A baby is learning to walk with his mother.”

Figure 7: Additional qualitative results. Representative video samples generated by our method,
illustrating its ability to handle diverse actions and scenes with stable articulation and consistent
appearances.
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“The video begins with a woman standing in a kitchen, talking to the camera. She is wearing a black tank top…”

“In a sunlit backyard, a young boy wearing a red t-shirt and denim shorts pick up a stone from grass …”

“A cheerful young woman in dress strolls along a cobblestone path in a garden, then gracefully turns …”

“A young woman in casual jeans walks steadily along a dew-covered path …”

“In cozy living room, a young woman in fitted jeans bends down to pick up a dropped book… ”

“Amiddle-aged man in a cozy wool sweater strolls slowly through a quiet autumn forest …”

C
am
er
a
V
ie
w
C
ha
ng
es

O
cc
lu
de
d
/
Pa
rt
ia
lly
O
ut

L
ow
er
bo
dy

“A woman is standing in a kitchen, preparing a meal. She is wearing a red top and has a silver necklace …”

Figure 8: Additional qualitative results. Representative video samples generated by our method,
illustrating its ability to generalize across challenging scenarios such as rapidly changing camera
views, partially visible subjects, and varied body-region visibility, while maintaining stable articula-
tion and consistent appearances.
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M
ot
io
n
1

M
ot
io
n
1

M
ot
io
n
2

Top: “A young professional woman in a navy blazer and white blouse holds her smartphone to her ear … . ”
Bottom: “Amuseum guide wearing a navy vest stands in a hall holding a small walkie talkie to her ear …”

M
ot
io
n
2

Top: “In the morning mist of a quiet city park, a young woman in neon running jacket smoothly pivots to the right… ”
Bottom: “Young man walking through an indoor mall, wearing a navy hoodie, looking around calmly…”

Figure 9: Additional motion editing results. Supplementary examples of motion editing.

A.2 EXTENSION - MOTION EDITING

A.3 ADDITIONAL ABLATION STUDIES

Full metrics for ablation studies Tab. 4 reports the full set of evaluation metrics corresponding to
Fig. 3 in the main paper. Without the text refinement strategy, metrics such as consistency and motion
smoothness degrade. This suggests that, when both semantic and motion information are mixed in
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Table 4: Full quantitative results for ablation studies. We report detailed per-benchmark results
for the ablations on text refinement and the view selection module. w/o Refine denotes the variant
without text refinement, and w/o View Module denotes the variant without the view selection module.

Appearance Metrics Motion Metrics Prompt Fidelity

Method Aesthetic
Quality

Image
Quality

Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Text
Alignment

Ours 0.535 0.615 0.955 0.957 0.990 0.567 0.262
w/o Refine 0.540 0.613 0.936 0.956 0.982 0.600 0.261
w/o View Module 0.528 0.585 0.944 0.946 0.989 0.558 0.261

Table 5: Additional ablation studies: benefit of view selection over additional inference steps
and conditioning layer depth. Among the tested configurations, the 21-layer conditioning achieved
the best overall performance on HuMoBench.

Appearance Metrics Motion Metrics Prompt Fidelity

Method Aesthetic
Quality

Image
Quality

Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Text
Alignment

Ours (21 layers) 0.535 0.615 0.955 0.957 0.990 0.567 0.262

w/o View Module
+ longer inference 0.526 0.576 0.946 0.949 0.991 0.567 0.263

42 layers 0.528 0.585 0.944 0.946 0.989 0.558 0.261
10 layers 0.531 0.624 0.951 0.962 0.986 0.471 0.258

the captions, the VDM conditioning becomes noisier, leading to less stable and coherent motions. In
contrast, removing the view selection module primarily leads to drops in aesthetic quality and image
fidelity, highlighting its role in producing visually appealing and coherent frames.

Comparison between view selection and additional inference steps Our view selection module
introduces computational overhead. Therefore, a critical question is whether this additional computa-
tional budget could be more effectively utilized by the baseline model, for instance, by increasing its
number of diffusion steps. To address this, we compare our method against a baseline variant whose
inference time is extended to match the computational cost of our module. Specifically, since our
method performs view selection using videos generated with about 15 denoising steps, we account
for this overhead and compare against a baseline that generates videos with 70 denoising steps. The
results show that while some metrics exhibit marginal improvements, the gains are limited.

Number of conditioned layers The number of layers to which ControlNet conditioning is applied
directly affects training efficiency, memory consumption, and overall resource usage. To identify an
effective yet efficient configuration, we varied the number of conditioned layers and trained models
under each setting. We then evaluated their performance on our benchmark and selected the final
configuration based on both accuracy and stability. As shown in Tab. 5, conditioning 21 layers
provided the best trade-off and yielded the strongest overall performance.

A.4 FURTHER ANALYSIS

Figure 10: Camera Viewpoint Diver-
sity. Distribution of extracted 3D cam-
era translation vectors from 120 Hu-
moBench reference videos.

Analysis of Camera Viewpoint Distribution To further
assess the diversity of camera viewpoints in our system,
we analyzed the distribution of camera translation vectors
obtained from the reference videos that guide view selection.
For the 120 HuMoBenchclips, each reference video provides
a single translation vector of dimension (3) extracted from its
first frame. We visualized these vectors using a scatter plot
and summarized their statistics. The distribution exhibits
a wide spread along all three axes, demonstrating that the
generated reference views span a broad range of camera
positions rather than collapsing to a narrow region. This
coverage supports the view selection module by offering
varied positional cues during generation.
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Top: A person walks forward steadily, then pivots their body by turning to the right
Bottom: In the early morning mist of a quiet city park, a young woman … jogs steadily,

… then smoothly pivots to the right to follow the trail…

Top: A person walks in a quarter circle to the left, then raises their arm as they continue moving.
Bottom: In a sunlit studio with hardwood floors, … a young dancer gracefully walks in a quarter 

circle to the left, slowly raising their left arm …

Figure 11: T2M Qualitative Results. Representative examples showing how T2M models (Dai et al.,
2025) behave under different text prompt structures, illustrating their sensitivity to prompt complexity
and motion-centric phrasing.

Motivation for Prompt Disentanglement Disentangling the text prompt into motion focused and
appearance focused components offers benefits beyond preventing the text motion conflict discussed
in the main paper. This separation not only contributes to more stable VDM training by providing
clearer motion supervision but also improves the reliability of T2M inference. As illustrated in
Fig. 11, T2M models trained on datasets such as HumanML3D (Guo et al., 2022) often receive
short and motion centered descriptions, which makes them sensitive to complex prompts that mix
appearance, scene context, and stylistic cues. By supplying a clean motion oriented prompt to
the T2M module and handling appearance descriptions separately, we maintain consistent action
interpretation while allowing flexible control over visual attributes in the VDM stage.

B IMPLEMENTATION / EXPERIMENTAL DETAILS

B.1 DETAILS OF CAMERA VIEW EXTRACTION AND ALIGNMENT

In the main paper, we describe our camera-view alignment process as an equivariant procedure that
computes camera poses (Ri, Ti) from a reference video and projects the generated vertices into the
corresponding views. Here, we provide implementation details of how this is realized in practice,
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drawing heavily from SMPLest-X (Yin et al., 2025). Concretely, we first apply SMPLest-X to the
reference video frames to extract per-frame SMPL meshes, which we denote as Vref. Since SMPLest-
X outputs vertices already transformed into the camera coordinate system—where the camera center
is defined as the world origin (i.e., R = I , T = 0)-we can directly treat the returned meshes as
being expressed under this convention. We then adjust the camera intrinsics based on the detected
human bounding box: the focal lengths are rescaled to match the box size (width and height), and the
principal point is shifted to align with the box location in the original frame. This re-parameterization
allows the Vref to be projected back and overlaid accurately onto the reference frames. We then bring
the vertices generated by our T2M model, denoted as Vgen, into the coordinate system of Vref by
translating them so that the pelvis joints are placed at the same coordinate. As a result, the renderings
of Vgen with the camera poses estimated by SMPLest-X naturally inherit nearly identical viewpoints
and camera framing to those of the reference video. This practical implementation ensures that the
generated and extracted meshes remain consistent with each other, while preserving the equivariant
property of the camera alignment module described in the main text.

B.2 PROMPT TEMPLATES FOR VLM/LLM

In our experiments, we employed vision-language models (VLMs) InternVL2.5-38B (Chen et al.,
2024) and large language models (LLMs) Qwen3-32B (Qwen, 2025) in several key stages.

Semantic caption extension First, we used VLMs to recaption the Motion-X dataset. The goal
was to enrich missing semantic information such as lab environments or filming conditions that could
otherwise degrade video generation quality.

Motion–Semantic caption split Second, we applied prompting strategies to split mixed captions
into separate components. This allowed us to clearly separate motion-related descriptions from
semantic context, so that each could be more effectively used by the corresponding module.

Benchmark Construction Finally, we employed LLMs to construct benchmark scenarios. We first
generated combinations of actions, and then grounded them in plausible scenarios to produce both
motion and semantic captions.

User prompt:
You are an AI assistant specializing in rewriting video descriptions.
Your task is to split a single, detailed caption into two new, complete captions: a
"motion_caption" and a "semantic_caption".
1. motion_caption: A narrative that ONLY describes actions, movements, and dynamic
processes. It should read like a story of what is happening.
2. semantic_caption: A descriptive narrative that ONLY describes the people, objects, their
static attributes, and the setting. It should read like a description of a photograph.
You must return the result ONLY in a JSON object format with the keys "motion_caption"
and "semantic_caption".
Example:
Input Caption: "A woman in a red coat is walking her poodle through a snowy park. The
dog is jumping playfully in the snow."
Output JSON:
{

"motion_caption": "A woman is walking her dog through a park as the dog jumps
playfully in the snow.",

"semantic_caption": "The scene features a woman wearing a red coat and her poodle in a
snowy park."
}

Table 6: Prompts used for caption split.
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User prompt:
<image>
Based on the image and the given caption, describe additional details that are not covered in
the caption.
Keep the original caption in mind, and focus on complementing it, especially with
observations about the surrounding environment,
such as whether the scene appears to be in a lab, a controlled space, or a natural setting.
Mention visual cues like lighting, background objects, equipment, or any visible subtitles or
on-screen text.
Return your response as a plain paragraph without any lists, bullet points, or markdown
formatting.

Table 7: Prompts used for caption extension.

User prompt:
You are given a list of actions with their corresponding body parts:
{filtered_action_info}
Generate exactly {batch_size} short action sequences.
Each sequence must:
- Contain 2 or 3 actions only (never more than 3).
- Include at least one action that ends exactly at 7.0 seconds.
- Include some overlap between actions (e.g., one action starts before the previous ends).
- Use only actions from the list above.
- Use the exact body parts associated with each action (do not invent new ones).
Format each action as:
[action description] ## [start time] ## [end time] ## [body part 1] ##
[body part 2] ## ...
Separate each sequence by a blank line.
Return only the sequences. No extra explanation, no markdown.
Here is one example:
pick something with the left hand # 1.0 # 3.5 # left arm # spine
wave with both hands # 3.0 # 7.0 # left arm # right arm
Now generate the sequences:

Table 8: Prompts used for action timeline creation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

User prompt:
You are given a sequence of human actions with timestamps and involved body parts.
Each line follows this format:
[action description] # [start time] # [end time] # [body part 1] # [body
part 2] # ...
Based on the actions provided, generate the following three types of captions:
- motion_caption: Describe the sequence of body movements clearly and naturally,
focusing only on what the person is physically doing. Do not mention timestamps,
durations, or specific body parts like "left arm" or "right leg".
- semantic_caption: Describe a realistic situation in which this motion could happen.
Include relevant details such as the person’s clothing, environment, objects involved, and
social or emotional context (e.g., "wearing a suit in an office", "in a park during sunset").
- full_caption: Write a single, natural sentence or paragraph that blends both
motion_caption and semantic_caption into a concise, human-written description of a video
scene — something that could guide or inspire video generation. The result should feel
confident and fluent, without uncertain phrases like "might" or "possibly". You do not need
to include every detail; focus on what feels natural and visually grounded.
Return your output in the following format:
motion_caption: <your caption>
semantic_caption: <your caption>
full_caption: <your caption>
Here is the input sequence:

Table 9: Prompts used for scenario creation.
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B.3 BENCHMARK EXAMPLES

We provide several representative examples from the benchmark used in our experiments. Each entry
includes the input caption, the corresponding motion description, and the enriched semantic caption,
illustrating the diversity and level of detail present in the benchmark data. The full benchmark will be
released publicly.

Benchmark example 01

"caption": In the early morning light of a sun-dappled forest clearing, a young male park
ranger dressed in a khaki uniform and sturdy boots carefully bends on one leg to pick up a
discarded water bottle, then swiftly and purposefully throws it into a nearby recycling bin,
maintaining balance and focus to keep the trail clean and safe for visitors.

"motion_caption": A person bends down to pick up an object using their right hand while
balancing on one leg and engaging their spine, then swiftly throws the object forward with
their right hand.

"semantic_caption": A young male park ranger dressed in a khaki uniform and sturdy
boots, working on an early morning patrol in a sun-dappled forest clearing, is intent on
keeping the trail clean and safe for visitors.

Benchmark example 02

"caption": A young professional in a sleek navy suit stands in a sunlit, modern
glass-walled office at mid-afternoon, holding a phone to his ear as he speaks intently. After
listening carefully, he raises his hand and points decisively toward a digital presentation on a
nearby screen, emphasizing a key detail during the focused phone call.

"motion_caption": A person holds a phone to their ear with one hand while speaking, then
extends that hand forward to point at something.

"semantic_caption": A young professional in a sleek navy suit stands in a modern
glass-walled office at mid-afternoon, bathed in natural light. Clad in polished black shoes
and a crisp white shirt, he is engaged in a focused phone call near a digital presentation
displayed on a nearby screen, emphasizing a key detail during the conversation.

Benchmark example 03

"caption": A young female violinist in an elegant black gown stands center stage under
warm spotlights in a grand concert hall, expertly moving her arms in coordinated strokes as
she passionately performs a solo that fills the velvet-lined auditorium with rich, resonant
music.

"motion_caption": A person holds an instrument while moving their arms in coordinated,
repetitive motions to produce music.

"semantic_caption": A young female violinist dressed in an elegant black gown stands
center stage under the warm glow of spotlights in a grand concert hall. The attentive
audience seated in the velvet-lined auditorium listens as she immerses herself completely in
the music, while rich, resonant notes fill the air.

Table 10: Examples of HuMoBench

B.4 USER STUDY DETAILS

Participants were given the following instructions:
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"Overview": This survey is part of a research user study. In each question, participants are
shown two videos and asked to decide which video performs better according to two criteria.

"Motion / Action Quality":
- Whether the person’s movement accurately and naturally aligns with the textual description.
- Whether the person’s body is represented correctly without distortion or unnatural shapes.

"Video / Visual Quality":
- Whether the background, person, clothing, and other details described in the text are
accurately and clearly represented.
- Whether the overall scene looks consistent and natural.

"Response Options":
1. The left video looks better.
2. The two videos look similar.
3. The right video looks better.

Thank you for your participation.

Table 11: User study instructions used in our evaluation.

C LLM USAGE

The use of large language models in this study was strictly limited to improving grammar and
readability. All aspects of the research including ideation, methodological design, data analysis, and
interpretation were conducted solely by the authors.
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