
Exploiting Contextual Structure to Generate Useful
Auxiliary Tasks

Benedict Quartey
Department of Computer Science

Brown University

Ankit Shah
Department of Computer Science

Brown University

George Konidaris
Department of Computer Science

Brown University

Abstract

Reinforcement learning requires interaction with environments, which can be pro-
hibitively expensive, especially in robotics. This constraint necessitates approaches
that work with limited environmental interaction by maximizing the reuse of previ-
ous experiences. We propose an approach that maximizes experience reuse while
learning to solve a given task by generating and simultaneously learning useful
auxiliary tasks. To generate these tasks, we construct an abstract temporal logic
representation of the given task and leverage large language models to generate
context-aware object embeddings that facilitate object replacements. Counter-
factual reasoning and off-policy methods allow us to simultaneously learn these
auxiliary tasks while solving the given target task. We combine these insights into
a novel framework for multitask reinforcement learning and experimentally show
that our generated auxiliary tasks share similar underlying exploration require-
ments as the given task, thereby maximizing the utility of directed exploration. Our
approach allows agents to automatically learn additional useful policies without
extra environment interaction.

1 Introduction

Reinforcement learning (RL) is a general-purpose paradigm that models agents interacting with
environments. It has proven to be a robust approach to sequential decision-making and has recently
seen several exciting successes (1; 2; 3). However, to learn valuable behaviors that accomplish tasks,
an agent must explore by repeatedly interacting with its environment, which can be prohibitively
expensive, especially in robotics. Therefore it is imperative to make efficient use of experience data.
One approach is to exploit the fact that, while exploring to solve any given task, an agent acquires
environmental experiences that could be valuable for learning to solve many closely related tasks.
Consider the task of learning to make tea in an unfamiliar house. To solve this task, a simple sequence
of goals could be: get to the kitchen, get a cup, get a teabag, get water from the faucet, and get milk
from the fridge. Once an agent discovers the location of a fridge while learning to solve this task, it
should be able to reuse that experience to solve a related task, such as get a drink from the fridge.

Prior experience replay works (4; 5; 6) introduce effective methods of reusing previous experiences,
and off-policy learning algorithms (7; 8; 9) also enable cross-task learning; the agent can use data
generated by a behavior policy to learn to perform a different target policy. However, these approaches
are limited in their ability to specify auxiliary tasks that maximally benefit from counterfactual
experience reasoning and off-policy learning, in part because they do not make any assumptions
about task structure.

NeurIPS 2023 Workshop on Generalization in Planning (GenPlan 2023).

Figure 1: HomeGrid, a deterministic discrete grid-world domain. Agents in this world complete
tasks by visiting grid locations corresponding to objects in the environment. Tasks are specified with
LTL formulae that represent the sequence/ordering of subgoals necessary for completing a given
task. Satisfying these tasks involves visiting relevant grid cells in an acceptable order determined
by the task specification. As an example, the numbered arrows in the diagram indicate a policy for
satisfying the Goto Fridge task.

We posit that task structure, as well as semantic and contextual structure in object-centric envi-
ronments, can be exploited to generate auxiliary tasks. We propose a new method TaskExplore,
that given a target task, uses temporal logic expressions as a means for generating contextually
similar auxiliary tasks, by swapping objects using context-aware embeddings generated by large
language models. In this setting, we can leverage counterfactual reasoning and off-policy methods to
simultaneously learn these auxiliary tasks while learning the given task, with a behavior policy only
conditioned on the given task. Our approach maximizes the utility of directed exploration experience,
particularly in complex environments that require agents to constrain/direct their exploration. We
show empirically that auxiliary tasks generated by TaskExplore maximally leverage the directed
experience of a single-task curriculum.

In summary, we present two main contributions in this paper:

1. We present a method of using context-aware object embeddings and abstract temporal logic
task representations to generate useful auxiliary tasks that share underlying exploration
requirements with a given target task.

2. We demonstrate empirically that this class of generated tasks results in better experience
transfer than randomly generated tasksets and uniquely benefits from directed exploration
on the primary task.

2 Background

In this work, we focus on object-centric environments and leverage linear temporal logic (10) to
describe temporally extended tasks involving objects. These tasks are learned using off-policy
learning for linear temporal logic (9).

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) (10), presents an expressive grammar to specify temporal behavior.
LTL expressions/formulae are composed of atomic propositions, the logical connectives: negation
(¬), conjunction (∧), disjunction (∨), implication (→); and a set of temporal operators: next (⃝),
until (U), always (□) and eventually(♢). The minimal syntax of an LTL formula is defined below:

φ := p | ¬φ1 | φ1 ∧ φ2 | ⃝ φ | φ1Uφ2 (1)

2

where p is an atomic proposition, a boolean literal that captures a property of the environment; φ1

and φ2 are valid LTL formulas. LTL formulas present an alternative, often more expressive and
natural way of specifying reward objectives in the reinforcement learning setting (11). They allow
the expression of explicit specifications that characterize the successful execution of a task. Consider
a sequential navigation task of visiting a kitchen and then visiting a fridge, where Kitchen and Fridge
are Boolean atomic propositions that can be observed. The LTL formula below can be used to specify
this task:

♢(Kitchen ∧ (♢Fridge)) (2)

LTL formulas can be progressed given a sequence of truth assignments of propositions (12) to
determine which parts of the formula have been satisfied by the states seen so far and which parts
remain. This is particularly useful in the reinforcement learning domain as this provides a method
of tracking non-Markovian objectives. In fact, a class of reinforcement learning algorithms such
as geometric-LTL (G-LTL) (11), Q-learning for Reward machines (Q-RM) (8) and LPOPL (9)
leverage this to construct and solve a product MDP using the environment state space and automaton
representation of LTL specifications.

2.2 Off-policy Learning with LTL

Off-policy RL methods address the setting where an agent learns a desired Target Policy while
interacting in the environment using a different Behavior Policy. LTL Progression for Off-Policy
Learning (LPOPL) (9) adapts the Q-learning off-policy algorithm (13) to simultaneously learn policies
for multiple LTL tasks during the same environment interaction.

Given a set of LTL task specifications ϕ, LPOPL first extracts subtasks from each specification via
LTL progression (12), ie. progressing every given formula over all possible truth assignments of the
set of environment propositions. LPOPL then iteratively performs a series of episodes and learns
a separate Q-value function for each task and extracted subtasks (also expressed as LTL formulae).
At each iteration, a task is selected from ϕ and used as the objective of the episode and actions are
selected with an epsilon greedy behavior policy conditioned on that task. However, all Q-value
functions are updated at each step via off-policy updates, allowing the agent to make progress on
tasks that may not be its current objective.

To help describe LPOPL, consider an example with the given set of tasks ϕ = {♢(a∧♢b),♢(c∧♢b)}.
Progressing both tasks would result in extracting the subtask ♢b. LPOPL will then initialize three
Q-value functions Q♢(a∧♢b), Q♢(c∧♢b) and Q♢b. To run an episode, a task will be selected from
ϕ, say ♢(a ∧ ♢b), then actions will be selected epsilon greedy on Q♢(a∧♢b). Once the proposition
a becomes true during the episode, the behavior policy becomes epsilon greedy on Q♢b, since
progressing ♢(a ∧ ♢b) with an assignment of True for the proposition a transforms the LTL formula
to ♢b. This leads to a desirable property of LPOPL: task specifications that share progressed LTL
forms can share subtask policies.

We borrow LPOPL’s subtask extraction and Q-value function update strategies to accelerate off-policy
learning of multiple tasks. However, our approach differs as we do not learn from a curriculum of
tasks. We instead use a behavior policy conditioned on a single given task and apply counterfactual
reasoning on experiences from this task to simultaneously solve generated auxiliary tasks.

3 Related Work

Experience replay methods consider single-task curriculum problems where the cardinality of the set
of tasks used in extracting samples for transfer is one (1) and includes only the target task (14). The
focus in these works is discovering optimal methods of organizing and training on the experience
acquired from single tasks. Prioritized experience replay (5) improves on Experience Replay (4),
which uniformly sampled from a replay memory, by prioritizing important transitions so they are
sampled more frequently. Hindsight experience replay (HER) (6) employed exploration as an implicit
curriculum and introduced learning from alternate realizations from experiences in the replay memory,
by relabelling experiences based on goals that were actually achieved rather than what the agent
was aiming to achieve. HER’s counterfactual experience reuse is limited to singular goal states,
and so cannot encode expressive temporally extended behaviors such as reaching a goal state while

3

Figure 2: This figure depicts the TaskExplore framework. Given a task specified in linear temporal
logic, we construct an abstract task template that replaces instance object propositions in the given
formula with large language model embeddings of their descriptions, capturing various relevant
attributes of each object. We then generate auxiliary tasks by selecting objects from the environment
for each proposition node in our abstract task template using the cosine similarity metric. We initialize
policies (Q-value functions) for the given task and all auxiliary tasks and perform RL where actions
are selected ϵ-greedy on only the given task, gathering directed experiences necessary for solving the
given task. At each learning step, all Q-value functions are updated via off-policy Q-learning updates.

encountering specific intermediary states (7). Additionally, HER’s alternative goals are intermediate
samples of the target task and not distinct alternative tasks.

Other works such as Counterfactual experiences for reward machines (CRM) (7), Q-learning for
Reward Machines (8) and LPOPL (9) introduce algorithms for applying off-policy updates to
simultaneously learn multiple action-value functions. They address HER’s limitation in applying
counterfactual experience to temporally extended alternative tasks. However, in these works, the
alternative tasks that benefit from counterfactual reasoning are assumed to be known or given.
Additionally, behavior policies that dictate environment interactions from which counterfactual
experiences are generated are conditioned on curricula consisting of multiple tasks–typically including
the alternative tasks that benefit from these synthetic experiences.

Our work seeks to present a solution to how agents might automatically generate expressive temporally
extended auxiliary tasks—-in contrast to intermediate tasks—-that can maximally leverage the
directed experience of a single-task curriculum in object-centric environments. TaskExplore is
distinct from the limited task generation works in curriculum learning literature (15; 16), where
tasks are not manually designed. The goal of our approach is not to generate good intermediate
tasks to obtain experience samples, as is the goal in task generation for curriculum learning (14).
Our focus is rather to generate distinct auxiliary tasks that maximally leverage directed experience
from single-task curricula, which is more akin to life-long learning contexts, where agents learn to
generalize from very small or constrained datasets (17).

4 Problem Definition

To define our problem formally we propose Object Oriented Non-Markovian reward decision process
(OO-NMRDP), combining ideas from the Object-Oriented Markov decision process (OOMDP) (18)
and Non-Markovian reward decision process (NMRDP) (19; 20; 21) formalisms. An OO-NMRDP is
an 8-tuple M = <O,C,L, S,A, T,Rφ, γ>, where O is a set of Boolean propositions representing
objects present in the environment and detectable by a labeling function L : S → 2O that maps states
to these Boolean propositions, specifying which propositions are true in which states. C is the set
of object classes, S is the set of states, A is a set of actions, γ ∈ [0, 1] is the discount factor and
T : S ×A× S → [0, 1] represents the transition dynamics of the environment. Unlike regular MDPs
the reward function Rφ is defined over state histories, where the agent receives a reward of 1 if and
only if the sequence of seen states in a given episode satisfies the LTL formula φ.

Rφ(⟨s0, ..., sn⟩) =
{
1 if δ0:n−1 ⊭ φ and δ0:n |= φ

0 otherwise,
(3)

where δi:j = ⟨L(si), ..., L(sj)⟩. The learning agent does not have access to either the set of object
classes C or the transition dynamics of the environment T . We express sequential (11) or soft
ordering constraint tasks (22) as LTL formulas over the set of propositions O.

4

Figure 3: This figure depicts how TaskExplore constructs and leverages context-aware object em-
beddings and abstract task representations/templates. In Figure a, we use an autoregressive LLM to
generate detailed descriptions for the list of objects in our environment and use an encoder language
model to encode these generated descriptions into a 768-dimensional vector for each object. We
then cluster these description embeddings, discovering object classes that capture the semantic and
contextual similarity between objects. In Figure b, our approach constructs a task template by
representing proposition nodes in the abstract syntax graph of a given LTL formula with embeddings
of corresponding objects. With this task template, we can create new contextually similar tasks by
selecting objects from the environment based on their cosine similarity, balancing selections between
highly correlated objects and relevant yet unseen objects.

5 Exploiting contextual structure
to generate auxiliary tasks

Humans can exploit the structure inherent in object-centric environments, in terms of objects and
their relationships with each other, and the compositional structure of tasks. With this structure, they
are able to learn tasks while thinking of alternate ways in which the experience gathered may be
useful for other tasks. This ability allows humans to gain multiple useful skills when learning any one
specific thing. We present how abstract temporal logic representations of tasks and context-aware
embeddings of objects in an environment could be used to equip RL agents with this ability.

Figure 2 illustrates the high-level steps in our method. Given a sequential task specified in linear
temporal logic φ1, our framework leverages the compositional syntax of LTL and real-world con-
textual relationships between objects to develop a set of auxiliary tasks Auxφ1= {a1, ..., an} that
possess similar underlying exploration requirements as φ1, via object swaps. We then initialize a
policy bank with Q-value functions for φ1 and each task in the generated auxiliary task set Auxφ1.
We simultaneously learn a policy for φ1, and all the auxiliary tasks using off-policy updates akin
to LPOPL (9). The agent always follows an ϵ-greedy policy with respect to φ1. A key distinction
between our learning approach and LPOPL is the absence of a multi-task curriculum of target tasks
and our behavior policy which is conditioned on just the given task, constraining exploration in the
environment.

In section 5.1 we present a detailed look into how we construct context-aware object embeddings
from our environment, these embeddings are used to determine relevant objects for swaps. Section
5.2 looks at how we use these object embeddings to construct abstract task templates from which we
generate auxiliary tasks. Figure 3 visualizes these two processes. Finally, in Section 5.3 we explain

5

Figure 4: This figure depicts the results of performing k-means clustering on 768-dimensional
embedding vectors for each environment object, results are visualized in a 2D latent space. Em-
beddings for each object in Figure (a) are generated by encoding the shown object name using the
Sentence-T5 model. Conversely, embeddings in Figure (b) are generated by Sentence-T5 encoding
text descriptions of each object generated by text-davinci-003. The number of clusters used in the
k-means algorithm was four(4) based on the number distinct exploration zones in HomeGrid. Note
that embeddings generated from LLM object descriptions improved the separation of emergent
cluster boundaries, and desirably increased the distance in latent space between similar yet
contextually different objects such as Kitchen Cabinet and Bathroom Cabinet.

how counterfactual reasoning and off-policy learning are used to simultaneously learn policies for the
generated auxiliary tasks.

5.1 Exploiting Structure in Object Relationships

Large language models are trained on large text corpora and encode useful common-sense and context-
aware human knowledge, as such act as good priors for structuring relationships between objects in
object-centric environments. Our method leverages this class of models to generate discriminative
context-aware embeddings of objects. Autoregressive language models such as GPT (23) are adept at
language generation as they are trained to maximize the likelihood of the next token given previous
tokens. Encoder-decoder and encoder-only large language models such as T5 (24) and BERT (25)
on the other hand are adept at generating compact representations that effectively capture sentence
context and semantics. We use the InstructGPT text-davinci-003 model (26) to generate detailed
descriptions for the list of objects in our environment and use the Sentence-T5 encoder model (27) to
encode these generated descriptions into a 768-dimensional vector for each object. We then cluster
these description embeddings using the K-means algorithm (28; 29) with K-means++ initialization
(30).

As an ablation, we investigate Sentence-T5’s ability to generate context-aware embeddings for cluster-
ing based on object name alone, shown in Figure 4a. Figure 4b alternatively shows the improvement
in clustering results using descriptions generated by the text-davinci-003 model, presenting insights
into the benefits of using large language models for context-aware data augmentation for downstream
tasks.

5.2 Exploiting Structure in Task Composition

We leverage the inherent compositionality of LTL to create generalizable representations or templates
of tasks given an instance LTL formula. This task template allows us to generate related auxiliary
tasks. Similar to the representation format used in prior works (31) we parse a given formula φ1 into
its abstract syntax tree and represent it as a directed graph Gφ1

= (Vφ1
, Eφ1

). Edges Eφ1
in this

6

graph connect parent operators to their subformulas and Vertices Vφ1 represent nodes that are either
operators or atomic propositions, as shown in Figure 3b.1. This representation allows us to efficiently
exploit the structure of the given task in constructing auxiliary tasks.

We create an abstract task template by traversing Gφ1
and replacing instance proposition nodes–

–which represent objects in our environment––with embeddings of their descriptions as shown in
Figure 3b.2. With this abstract task template, we generate x new auxiliary tasks by swapping relevant
objects from the environment at each proposition node. We select objects whose embedding lies in
the same embedding cluster and prioritize those with the highest cosine similarity with the template
embedding node being considered. We introduce a simple value-dependent object selection metric
based on upper confidence bounds (32) that balances out selecting high cosine similarity objects and
relevant but unseen objects.

Equation 4 governs object selection for each embedding node in a given template.

Objt
vi = max

obj
[sim(Etext(G

vi
φ1
),Etext(obj)) + c

√
logNt

Nobj
t

] (4)

where Objt
vi is the chosen object proposition for template node i at trial t;

sim(Etext(G
vi
φ1
),Etext(obj)) is the cosine similarity between the embedding of object obj

and the embedding at node vi of the template Gφ1
; c is a tuneable parameter that balances selecting

high-cosine similarity objects vs relevant but unseen objects; Nt is the total number of object
selection trails; Nobj

t is the number of trails where object obj was selected.

5.3 Off-policy Updates via Counterfactual Experience

Concerning off-policy updates, when an episode is run with an epsilon greedy behavior policy on
the given LTL formula, the Q-value function of each auxiliary task will also be updated as if their
corresponding formula was the current objective. Assuming an action a is taken in state s resulting
in a new state s

′
, to update a specific Qφ, the reward that would have been observed during that

transition if the agent’s objective was φ is computed. To achieve this, φ is progressed through the
new state s

′
; if the resulting formula φ

′
is true the reward is 1, and 0 otherwise. Qφ is then updated

using the following rule:

Qφ(s, a)← Qφ(s, a) + α(r + γmax
a′

Qφ′ (s
′
, a

′
)−Qφ(s, a)) (5)

As shown in LPOPL (9) learning is globally optimal as Qφ(s, a) is updated with the maximum of
every action a

′
from its progressed subtask Qφ′ (s

′
, a

′
).

6 Experiments

The task specification used in our experiments was a food preparation task where the agent had to
go to the kitchen cabinet, obtain a cooking pot, obtain seasoning, then go to the fridge, obtain
chicken, and finally go to the stove. In HomeGrid, this task corresponds to visiting the right cells
in the correct order. The LTL formula below represents this task using the atomic propositions that
represent each of the relevant objects:

♢(C ∧ ♢(P ∧ ♢(I ∧ ♢(F ∧ ♢(H ∧ ♢Y))))) (6)

See Figure 1 for a description of our environment HomeGrid. We find that a good heuristic for
choosing the minimum number of object clusters is the number of distinct exploration zones in the
environment. For HomeGrid, this is four (4) since there are four distinct useful exploration regions
namely "Kitchen", "Bathroom", "Living room" and "Bedroom". We evaluate our approach with the
following three conditions:

1. Ours: Given our food preparation task φ1 we generate 20 auxiliary tasks following our
approach. We learn these tasks simultaneously with φ1 with a behavior policy epsilon
greedy on φ1, directing exploration towards more relevant experiences for φ1.

7

Figure 5: Figure (a) shows the normalized discounted reward obtained by the agent on the given task
as it learns to solve it simultaneously with TaskExplore generated auxiliary tasks using a random
behavior policy (πrandom) and an epsilon greedy behavior policy (π∗). Figure (b) shows the task
success rate on auxiliary tasks as learning progresses. Learning TaskExplore generated tasks while
using epsilon greedy (π∗) behavior policy on the given task significantly outperforms all other
baselines. All results are normalized over 7 different seeded runs

2. Baseline 1: To demonstrate that tasks generated by TaskExplore uniquely leverage the
directed experience of a single-task curriculum, we repeat the approach described above,
replacing the behavior policy with a random one that explores more widely.

3. Baseline 2: To show that tasks generated by TaskExplore more relevantly benefit from
directed exploration experience than the general set of possible tasks, we generate 20
auxiliary tasks by randomly sampling sequential tasks from the set of propositions in our
environment, as typically done in prior works (31; 22). These tasks are sampled to have
the same length of propositions as the given task which places them in the same level of
difficulty. We learn these tasks simultaneously with φ1, using a behavior policy epsilon
greedy on φ1.

7 Results and Discussion

Figure 5 presents the results from our experiments, which highlight several interesting properties
of the auxiliary task set developed by TaskExplore. Firstly, in Figure 5a, we see that our approach
which simultaneously learns to solve auxiliary tasks with a behavior policy ϵ-greedy on the given task
does not adversely affect performance on the given task. However, performance on the given task
deteriorates when using a random behavior policy, highlighting the relevance of directed exploration.

Intuitively, learning with a random behavior policy gathers more diverse experiences which should
benefit multiple auxiliary tasks more than the experience gathered during directed exploration.
However, our results in 5b show that the auxiliary tasks developed by TaskExplore maximally
leverage that constrained experience and actually performs better than when using a random behavior
policy. This is because the generated tasks are contextually similar to the given task and share similar
underlying exploration requirements.

Figure 6 presents further insights into this phenomenon. It shows a sample exploration heatmap of a
single complete run of our experiment learning the food preparation task with random and epsilon-
greedy behaviour policies. In the first episode both behaviour policies explore widely, however as
learning progresses the epsilon-greedy policy leads to more directed and constrained experiences
that focuses on the Kitchen exploration zone. The random behaviour policy on the other hand still
explores widely, not paying much attention to the kitchen exploration zone it needs to be focusing on
to make progress on relevant auxiliary tasks.

Finally, the results in 5b show that developing a curriculum of randomly sampled tasks from the
general distribution space of possible tasks in the environment cannot leverage directed exploration
experience as well as auxiliary tasks developed by TaskExplore.

8

Figure 6: This figure shows a sample exploration heatmap of the random and e-greedy behavior
policies while learning the given food preparation task with counterfactual updates on TaskExplore
generated auxiliary tasks. The agent starts each episode in cell (x-axis=14,y-axis=13) and darker
cell colors correlates to the number of times the agent visited that cell. This is an ablative diagram
that helps visualize the beneficial effects of directed exploration in complex environments and
how this directed experience can benefit contextually similar auxiliary tasks that share the same
underlying exploration requirements, more than an exploration strategy that may produce more
diverse experiences.

8 Conclusion

This paper introduced an approach to how agents might automatically generate expressive temporally
extended auxiliary tasks that can maximally leverage the directed experience of a single-task cur-
riculum in object-centric environments. This approach to auxiliary task generation is particularly
valuable in the lifelong learning setting, as agents can generate and solve new tasks from constrained
datasets. In the spirit of reusing computation, a policy bank of these policies can be saved and
reused to accelerate learning future tasks. Modern vision-language models (VLMs) that detect open
vocabulary objects in real world environemnts can be employed in future work to relax TaskExplore’s
dependence on a predefind set of object propositions from which tasks can be expressed and labelling
functions that map states to proposition truth values,

References
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement learning,” arXiv
preprint arXiv:1912.06680, 2019.

[4] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning, planning and
teaching,” Machine learning, vol. 8, pp. 293–321, 1992.

[5] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

9

[6] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-
bin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” Advances in neural
information processing systems, vol. 30, 2017.

[7] R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Reward machines: Exploiting
reward function structure in reinforcement learning,” Journal of Artificial Intelligence Research,
vol. 73, pp. 173–208, 2022.

[8] R. T. Icarte, T. Klassen, R. Valenzano, and S. McIlraith, “Using reward machines for high-level
task specification and decomposition in reinforcement learning,” in International Conference
on Machine Learning, pp. 2107–2116, PMLR, 2018.

[9] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Teaching multiple tasks to an
rl agent using ltl,” in Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’18, p. 452–461, International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

[10] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th Annual Symposium on
Foundations of Computer Science, SFCS ’77, p. 46–57, IEEE Computer Society, 1977.

[11] M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan, “Environment-
independent task specifications via gltl,” arXiv preprint arXiv:1704.04341, 2017.

[12] F. Bacchus and F. Kabanza, “Using temporal logics to express search control knowledge for
planning,” Artificial intelligence, vol. 116, no. 1-2, pp. 123–191, 2000.

[13] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, 1992.

[14] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone, “Curriculum
learning for reinforcement learning domains: A framework and survey,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 7382–7431, 2020.

[15] S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone, “Source task creation for curriculum learning,”
in Proceedings of the 2016 international conference on autonomous agents & multiagent systems,
pp. 566–574, 2016.

[16] F. L. D. Silva and A. H. R. Costa, “Object-oriented curriculum generation for reinforcement
learning,” in Proceedings of the 17th international conference on autonomous agents and
multiagent systems, pp. 1026–1034, 2018.

[17] S. Thrun, “Lifelong learning algorithms.,” Learning to learn, vol. 8, pp. 181–209, 1998.

[18] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representation for efficient rein-
forcement learning,” in Proceedings of the 25th international conference on Machine learning,
pp. 240–247, 2008.

[19] R. Brafman, G. De Giacomo, and F. Patrizi, “Ltlf/ldlf non-markovian rewards,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 32, 2018.

[20] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith, “Non-markovian rewards expressed in ltl:
guiding search via reward shaping,” in Tenth annual symposium on combinatorial search, 2017.

[21] S. Thiébaux, C. Gretton, J. Slaney, D. Price, and F. Kabanza, “Decision-theoretic planning with
non-markovian rewards,” Journal of Artificial Intelligence Research, vol. 25, pp. 17–74, 2006.

[22] J. X. Liu, A. Shah, E. Rosen, G. Konidaris, and S. Tellex, “Skill transfer for temporally-extended
task specifications,” arXiv preprint arXiv:2206.05096, 2022.

[23] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving language understanding
by generative pre-training,” 2018.

[24] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,
“Exploring the limits of transfer learning with a unified text-to-text transformer,” The Journal of
Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

10

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[26] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al., “Training language models to follow instructions with human feedback,”
arXiv preprint arXiv:2203.02155, 2022.

[27] J. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang, “Sentence-t5: Scalable
sentence encoders from pre-trained text-to-text models,” arXiv preprint arXiv:2108.08877,
2021.

[28] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28,
no. 2, pp. 129–137, 1982.

[29] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in
Proc. 5th Berkeley Symposium on Math., Stat., and Prob, p. 281, 1965.

[30] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” tech. rep.,
Stanford, 2006.

[31] P. Vaezipoor, A. C. Li, R. A. T. Icarte, and S. A. Mcilraith, “Ltl2action: Generalizing ltl
instructions for multi-task rl,” in International Conference on Machine Learning, pp. 10497–
10508, PMLR, 2021.

[32] P. Auer, “Using confidence bounds for exploitation-exploration trade-offs,” Journal of Machine
Learning Research, vol. 3, no. Nov, pp. 397–422, 2002.

11

	Introduction
	Background
	Linear Temporal Logic
	Off-policy Learning with LTL

	Related Work
	Problem Definition
	Exploiting contextual structure to generate auxiliary tasks
	Exploiting Structure in Object Relationships
	Exploiting Structure in Task Composition
	Off-policy Updates via Counterfactual Experience

	
	Results and Discussion
	Conclusion

