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Abstract

Large language models (LLMs) are challeng-
ing to retrain frequently due to the high costs
associated with their massive scale. However,
updates are necessary to equip LLMs with new
skills and keep them current with rapidly evolv-
ing human knowledge. This paper surveys re-
cent works on continual learning for LLMs.
We introduce a novel multi-staged categoriza-
tion scheme for continual learning techniques,
encompassing continual pre-training, instruc-
tion tuning, and alignment. We compare con-
tinual learning for LLMs with simpler adap-
tation methods used in smaller models and
other enhancement strategies such as retrieval-
augmented generation and model editing. Ad-
ditionally, informed by a discussion of bench-
marks and evaluations, we identify several chal-
lenges and future research directions for this
critical task.

1 Introduction

Recent years have witnessed the rapid advances
of large language models’ capabilities in solving a
diverse range of problems. At the same time, it is
vital for LLMs to be regularly updated to accurately
reflect the ever-evolving human knowledge, values
and linguistic patterns, calling for the investigation
of continual learning for LLMs. Whilst continual
learning bears some resemblance to other strate-
gies for model improvements, such as retrieval-
augmented generation (RAG) (Lewis et al., 2020)
and model editing (Yao et al., 2023), their main
purposes differ (Table 1). Unlike these strategies,
whose primarily focus is on refining the domain-
specific accuracy or expanding the model’s fac-
tual knowledge base, continual learning aims to
enhance the overall linguistic and reasoning ca-
pabilities of LLLMs. This distinction is crucial as
it shifts the focus from merely updating informa-
tion to developing a model’s ability to process and
generate language in a more comprehensive and
nuanced manner (Zhang et al., 2023e).
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Figure 1: Continual learning for large language models
involves hybrid multi-stage training with multiple train-
ing objectives.

Continual learning for LLMs also differs from
its use in smaller models, including smaller pre-
trained language models. Due to their vast size and
complexity, LLMs require a multi-faceted approach
to continual learning. We categorise it into three
different stages, i.e. continual pre-training to ex-
pand the model’s fundamental understanding of lan-
guage (Jin et al., 2022), continual instruction tun-
ing to improve the model’s response to specific user
commands (Zhang et al., 2023d), and continual
alignment to ensure the model’s outputs adhere to
values, ethical standards and societal norms (Zhang
et al., 2023a). This multi-stage process is distinct
from the more linear adaptation strategies used in
smaller models, as illustrated in Figure 1, high-
lighting the unique challenges and requirements of
applying continual learning to LLMs.

This survey differentiates itself from previous
studies by its unique focus and structure. While
previous surveys in the field are typically orga-
nized around various continual learning strate-
gies (Biesialska et al., 2020), ours is the first to
specifically address continual learning in the con-
text of LLMs. We structure our analysis around
the types of information that is updated continu-
ally and the distinct stages of learning involved
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Figure 2: The continual learning of LLMs involves multi-stage and cross-stage iteration, which may lead to
substantial forgetting problems. For example, when the instruction-tuned model resumes continual pre-training, it
may encounter cross-stage forgetting, resulting in reduced performance on instruction-following tasks.
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Table 1: Continual Learning v.s. RAG and Model Edit-
ing

in LL.Ms. This survey offers a detailed and novel
perspective on how continual learning is applied
to LLMs, shedding light on the specific challenges
and opportunities of this application. Our goal is
to provide a thorough understanding of the effec-
tive implementation of continual learning in LLMs,
contributing to the development of more advanced
and adaptable language models in the future.

2 Preliminary and Categorization

2.1 Large Language Model

Large language models (LLMs) like ChatGPT' and
LLaMa (Touvron et al., 2023) have shown supe-
rior performance in many tasks. They are usually
trained in multiple stages, including pre-training,
instruction tuning, and alignment, as illustrated
in Figure 1. In the pre-training stage, LLMs are
trained on a large corpus in a self-supervised man-
ner (Dong et al., 2019), where the training text is
randomly masked and the LLMs are asked to pre-
dict the masked tokens. In the instruction tuning
stage, LLLMs are finetuned on a set of instruction-
output pairs in a supervised fashion (Zhang et al.,
2023b). Given a task-specific instruction as in-
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put, LLMs are asked to generate the corresponding
output. In the alignment stage, LLMs are further
finetuned with human feedback to align their out-
puts with human expectations (Wang et al., 2023d).
The output of LLMs is scored by human annota-
tors, and the LLMs are updated to generate more
human-like responses.

2.2 Continual Learning

Continual learning focuses on developing learn-
ing algorithms to accumulate knowledge on non-
stationary data, often delineated by classes, tasks,
domains or instances. In supervised continual learn-
ing, a sequence of tasks {Dy,...,Dr} arrive in a
streaming fashion. Each task D; = { (!, y!) }"
contains a separate target dataset, where ! € X
, Yy € V4. A single model needs to adapt to them
sequentially, with only access to D; at the t-th task.
This setting requires models to acquire, update, ac-
cumulate, and exploit knowledge throughout their
lifetime (Biesialska et al., 2020).

The major challenge conventional continual
learning tackles is that of catastrophic forgetting,
where the performance of a model on old tasks
significantly diminishes when trained with new
data. Existing studies can be roughly grouped
into three categories, e.g., experience replay meth-
ods (Chaudhry et al., 2019; Wu et al., 2021),
regularization-based methods (Kirkpatrick et al.,
2017; Chen et al., 2023b), and dynamic archi-
tecture methods (Mallya et al., 2018). Recently,
researchers have designed some hybrid methods
that take advantage of the aforementioned tech-
niques (Chen et al., 2023a; He et al., 2024). Our
paper stands out (Shi et al., 2024) by organizing
around multi-stage continual learning and high-
lighting cross-stage forgetting issues.
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2.3 Continual Learning for LLMs

Continual Learning for Large Language Models
aims to enable LLMs to learn from a continuous
data stream over time. Despite the importance, it
is non-trivial to directly apply existing continual
learning settings for LLMs. We now provide a
forward-looking framework of continual learning
for LLMs, then present a categorization of research
in this area.

Framework Our framework of continual learn-
ing for LLMs is illustrated in Figure 2. We align
continual learning for LLMs with the different
training stages, including Continual Pre-training
(CPT), Continual Instruction Tuning (CIT), and
Continual Alignment (CA). The Continual Pre-
training stage aims to conduct training on a se-
quence of corpus self-supervisedly to enrich LLMs’
knowledge and adapt to new domains. The Con-
tinual Instruction Tuning stage finetunes LLMs on
a stream of supervised instruction-following data,
aiming to empower LLMs to follow users’ instruc-
tions while transferring acquired knowledge for
subsequent tasks. Responding to the evolving na-
ture of human values and preferences, Continual
Alignment (CA) tries to continuously align LLMs
with human values over time.

While continual learning on LLMs can be con-
ducted in each stage sequentially, the iterative ap-
plication of continual learning also makes it essen-
tial to transfer across stages without forgetting the
ability and knowledge learned from previous stages.
For instance, we can conduct continual pre-training
based on either instruction-tuned models or aligned
models. However, we do not want the LLM to lose
their ability to follow users’ instructions and align
with human values. Therefore, as shown in Figure
2, we use arrows with different colors to show the
transfer between stages.

Categorization To better understand the research
in this area, we provide a fine-grained categoriza-
tion for each stage of the framework.

Continual Pre-training (CPT)
* CPT for Updating Facts includes works that
adapt LLMs to learn new factual knowledge.

* CPT for Updating Domains includes research
that tailors LLMs to specific fields like medi-
cal and legal domains.

» CPT for Language Expansion includes studies
that extend the languages LLMs supports.

Continual Instruction Tuning (CIT)

» Task-incremental CIT contains works that
finetune LLMs on a series of tasks and ac-
quire the ability to solve new tasks.

e Domain-incremental CIT contains methods
that finetune LLMs on a stream of instructions
to solve domain-specific tasks.

* Tool-incremental CIT contains research that
continually teaches LLMs to use new tools to
solve problems.

Continual Alignment (CA)

* Continual Value Alignment incorporates stud-
ies that continually align LL.Ms with new eth-
ical guidelines and social norms.

» Continual Preference Alignment incorporates
works that adapt LLMs to dynamically match
different human preferences.

Besides categorizing methods based on train-
ing stages, we also provide an alternative catego-
rization based on the information updated during
continual learning. In Table 2, we list some rep-
resentative information that is updated for LLMs,
e.g., facts, domains, tasks, values, and preferences.
Based on the training objectives of LLMs, this in-
formation can be updated in different stages of
LLM continual learning. The taxonomy in Fig-
ure 3 shows our categorization scheme and recent
representative work in each category.

Information Pre-training Instruction-tuning ~ Alignment

Fact
Domain
Language
Task
Skill (Tool use)
Value
Preference

X XXX QOO
X X ©@O x ® x
®E x X X x X

Table 2: Information updated during different stages of
continual learning for LLMs.

3 Continual Pre-training (CPT)

Continual pre-training in large language models
is essential for keeping the LLMs relevant and ef-
fective. This process involves regularly updating
the models with the latest information (Jang et al.,
2022a; Ibrahim et al., 2024), adapting them to spe-
cialized domains (Ke et al., 2023), enhancing their
coding capabilities (Yadav et al., 2023), and ex-
panding their linguistic range (Castellucci et al.,
2021). With CPT, LLMs can stay current with
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Figure 3: Taxonomy of trends in continual learning for large language models.

new developments, adapt to evolving user needs,
and remain effective across diverse applications.
Continual pre-training ensures LLMs are not just
knowledgeable but also adaptable and responsive
to the changing world.

CPT for Updating Facts The capability of LLMs
to integrate and adapt to recent information is cru-
cial. A pivotal strategy here is the employment of
dynamic datasets that facilitate the real-time assim-
ilation of data from a variety of sources like news
feeds (Sun et al., 2020), scholarly articles (Cossu
et al., 2022), and social media (Cossu et al., 2022).
Sun et al. (2020) presents ERNIE 2.0, which is
a continual pre-training framework that incremen-
tally builds and learns from multiple tasks to max-
imize knowledge extraction from training data.
Jang et al. (2022b) introduces continual knowledge
learning, a method for updating temporal knowl-
edge in LLMs, reducing forgetting while acquir-
ing new information. Jang et al. (2022a) shows
that continual learning with different data achieves
comparable or better perplexity in language mod-
els than training on the entire snapshot, confirming
that factual knowledge in LMs can be updated ef-
ficiently with minimal training data. CEM (Zhao
et al., 2024a) continually evaluates LL.Ms to iden-
tify knowledge deficiencies based on their mistakes,
collecting relevant data from multiple sources to
supplement training in a targeted manner. Integral
to knowledge updating is the implementation of
automated systems for the verification of newly
acquired data, ensuring both the accuracy and de-
pendability of the information.

CPT for Updating Domains Continual pre-
training updates domain knowledge through two
approaches: 1) domain-incremental pre-training
accumulates knowledge across multiple domains,

and 2) domain-specific continual learning, which
evolves a general model into a domain expert
by training on domain-specific datasets and tasks.
In domain-incremental pre-training, (Cossu et al.,
2022) explores how models can be continually pre-
trained on new data streams for both language and
vision, preparing them for various downstream
tasks. Qin et al. (2023b) examines continual re-
training by assessing model compatibility and ben-
efits of recyclable tuning via parameter initializa-
tion and knowledge distillation. Ke et al. (2023)
introduces a soft-masking mechanism to update
language models (LMs) with domain corpora, aim-
ing to boost performance while preserving gen-
eral knowledge. For domain-specific continual
learning, Xie et al. (2023) develops FinPythia-6.9B
through domain-adaptive pre-training for the finan-
cial sector. EcomGPT-CT (Ma et al., 2023) inves-
tigates the effects of continual pre-training in the
E-commerce domain. These studies collectively
highlight the evolving landscape of continual pre-
training, demonstrating its effectiveness in enhanc-
ing model adaptability and expertise across a wide
range of domains.

CPT for Language Expansion Expanding the
range of languages that LLMs can understand and
process is essential for ensuring broader accessibil-
ity (Castellucci et al., 2021). This expansion is not
just about including a wider variety of languages,
particularly underrepresented ones, but also about
embedding cultural contexts into language process-
ing. A significant challenge here is the model’s
ability to recognize and interpret regional dialects
and contemporary slangs (Gogoulou et al., 2023),
which is crucial for effective communication across
diverse racial, social and cultural groups.

In addition to mastering natural languages,



LLMs have also made significant strides in under-
standing and generating programming languages.
Yadav et al. (2023) introduced CodeTask-CL, a
benchmark for continual code learning that encom-
passes a diverse array of tasks, featuring various
input and output formats across different program-
ming languages. Zan et al. (2022) explore using
an unlabeled code corpus for training models on
library-oriented code generation, addressing the
challenge of scarce text-code pairs due to exten-
sive library reuse by programmers. They introduce
CERT, a method where a "sketcher" outlines a code
structure, and a "generator” completes it, both con-
tinuously pre-trained on unlabeled data to capture
common patterns in library-focused code snippets.
Yildiz et al. (2024) comprehensively examines the
impact of model size on learning efficacy and for-
getting, as well as how the progression and simi-
larity of emerging domains affect the knowledge
transfer within these models. These developments
highlight LLMs’ potential to transform both natu-
ral and programming language processing, leading
to more efficient coding practices.

4 Continual Instruction Tuning (CIT)

LLMs have shown great instruction following abil-
ities that can be used to complete different tasks
with a few-shot task prompt. Continual Instruc-
tion Tuning (CIT) involves continually finetun-
ing the LLMs to learn how to follow instructions
and transfer knowledge for future tasks (Zhang
et al., 2023d). Based on the ability and knowl-
edge updated during instruction tuning, we can
further divide CIT into three categories: /) task-
incremental CIT, 2) domain-incremental CIT, and
tool-incremental CIT.

Task-incremental CIT Task-incremental Con-
tinual Instruction Tuning (Task-incremental CIT)
aims to continuously finetune LLMs on a sequence
of task-specific instructions and acquire the abil-
ity to solve novel tasks (Wang et al., 2024). A
straightforward solution is to continuously gener-
ate instruction-tuning data for new tasks and di-
rectly finetune LLMs on it (Wang et al., 2023c).
However, studies have shown that continuously
finetuning LLMs on task-specific data would cause
a catastrophic forgetting of the learned knowledge
and problem-solving skills in previous tasks (Kotha
et al.,, 2023). TAPT (Gururangan et al., 2020)
presents a simple data selection strategy that re-
trieves unlabeled text from the in-domain corpus,

aligning it with the task distribution. This retrieved
text is then utilized to finetune LLMs, preventing
catastrophic forgetting and enhancing argument
performance. To mitigate catastrophic forgetting,
Contunual-TO (Scialom et al., 2022) employs re-
hearsal with a memory buffer (Shin et al., 2017)
to store previous tasks data and replay them dur-
ing training. ConTinTin (Yin et al., 2022) presents
InstructionSpeak, which includes two strategies
that make full use of task instructions to improve
forward-transfer and backward-transfer. The first
strategy involves learning from negative outputs,
while the second strategy focuses on revisiting
instructions from previous tasks. RationaleCL
(Xiong et al., 2023) conducts contrastive rationale
replay to alleviate catastrophic forgetting. Dynalnst
(Mok et al., 2023) proposes a hybrid approach in-
corporating a Dynamic Instruction Replay and a
local minima-inducing regularizer. These two com-
ponents enhance the generalizability of LLMs and
decrease memory and computation usage in the
replay module. Unlike previous replay-based or
regularization-based methods, SLM (PENG et al.,
2024) incorporates vector space retrieval into the
language model, which aids in achieving scalable
knowledge expansion and management. This en-
ables LLMs’ quick adaptation to novel tasks with-
out compromising performance caused by catas-
trophic forgetting.

LLMs with billions of parameters introduce a
huge computational burden for conducting contin-
ual learning. To address this issue, the Progres-
sive Prompts technique (Razdaibiedina et al., 2023)
freezes the majority of parameters and only learns
a fixed number of tokens (prompts) for each new
task. Progressive Prompts significantly reduce the
computational cost while alleviating catastrophic
forgetting and improving the transfer of knowledge
to future tasks. ELM (Jang et al., 2023) first trains
a small expert adapter on top of the LLM for each
task. Then, it employs a retrieval-based approach
to choose the most pertinent expert LLM for ev-
ery new task. Based on the parameter-efficient
tuning (PET) framework, O-LoRA (Wang et al.,
2023b) proposes an orthogonal low-rank adapta-
tion for CIT. O-LoRA incrementally learns new
tasks in an orthogonal subspace while fixing the
LoRA parameters learned from past tasks to min-
imize catastrophic forgetting. Similarly, DAPT
(Zhao et al., 2024b) proposes a novel Dual Atten-
tion Framework to align the learning and selection
of LoRA parameters via the Dual Attentive Learn-



ing&Selection module. LLaMA PRO (Wu et al.,
2024a) proposes a novel block expansion technique,
which enables the injection of new knowledge into
LLMs and preserves the initial capabilities with
efficient post-training.

Domain-incremental CIT Domain-incremental
Continual Instruction Tuning (Domain-incremental
CIT) aims to continually finetune LLMs on a se-
quence of domain-specific instructions and acquire
the knowledge to solve tasks in novel domains.
TAPT (Gururangan et al., 2020) adaptively tunes
the LLMs on a series of domain-specific data in-
cluding biomedicine, computer science, news, and
shopping reviews. ConPET (Song et al., 2023)
applies previous continual learning methods, ini-
tially developed for smaller models, to LLMs using
PET and a dynamic replay strategy. This approach
significantly reduces tuning costs and mitigates
overfitting and forgetting problems. AdaptLL.M
(Cheng et al., 2023a) adapts LLMs to different do-
mains by enriching the raw training corpus into a
series of reading comprehension tasks relevant to
its content. Plugl.M (Cheng et al., 2023b) uses a
differentiable plug-in memory (DPM) to explicitly
store the domain knowledge. Plugl.M could be
easily adapted to different domains by plugging in
in-domain memory. Zhang et al. (2023c) designs an
adapt-retrieve-revise process that adapts LLMs to
new domains. It first uses the initial LLMS’ respose
to retrieve knowledge from the domain database.
Dong et al. (2023) analyze the LLMs continuously
tuned on different domains and find that the se-
quence of training data has a significant impact
on the performance of LLMs. They also offer a
Mixed Finetuning (DMT) strategy to learn multiple
abilities in different domains.

Tool-incremental CIT Tool-incremental Contin-
ual Instruction Tuning (Tool-incremental CIT) aims
to finetune LLMs continuously, enabling them to
interact with the real world and enhance their abili-
ties by integrating with tools, such as calculators,
search engines, and databases (Qin et al., 2023a).
With the rapid emergence of new tools like ad-
vanced software libraries, novel APIs, or domain-
specific utilities (Liang et al., 2023; Jin et al., 2023),
there is a growing need to continually update LLMs
so they can quickly adapt and master these new
tools. Llemma (Azerbayev et al., 2023) contin-
ues tuning LLMs on a dataset with a mixture of
math-related text and code to enable LLMs to solve
mathematical problems by using external tools.
ToolkenGPT (Hao et al., 2023) represents each

tool as a new token (toolken) whose embedding is
learned during instruction tuning. This approach
offers an efficient way for LLMs to master tools
and swiftly adapt to new tools by adding tokens.

5 Continual Alignment (CA)

LLMs need to adapt to evolving societal values, so-
cial norms and ethical guidelines. Furthermore,
there exists substantial diversity in preferences
across different demographic groups, as well as
individuals’ changing preferences over time. The
need to respond to these changes give rise to con-
tinual alignment. In the context of continual align-
ment, two scenarios emerge: (i) the requirement to
update LLMs to reflect shifts in societal values and
(i1) integrating new demographic groups or value
types to existing LLMs, which we will describe in
the following subsections.

Continual Value Alignment Continual value
alignment aims to continually incorporate ethical
guidelines or adapt to cultural sensitivities and
norms. As the preliminary study, Puthumanail-
lam et al. (2024) examines the challenges of em-
bedding the evolving spectrum of human values
into LLMs, highlights the discrepancies between
static models and the dynamic nature of human
societies, explores potential strategies to address
these alignment issues, and suggests a path for-
ward towards more adaptable and responsive Al
systems. Although research on continual human
value alignment is currently limited, it is essential
to be proactive. As model capabilities improve
through continual learning, ongoing alignment is
necessary to ensure safety.

Continual Preference Alignment Adding new
demographic groups or value types aligns with con-
tinual learning problems, aiming to guide LLMs in
generating responses aligned with emerging values
while adhering to previously learned ones. Pre-
vious works have demonstrated proof-of-concept
of such agents. However, there is a lack of stan-
dardized benchmarks to systematically evaluate the
learning capabilities of new preferences over time.
CPPO (Zhang et al., 2024b) utilizes a sample-wise
weighting on the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) to bal-
ance policy learning and knowledge retention in
imitating the old policy output. On the other hand,
COPF(Zhang et al., 2023a) extend the Direct Pref-
erence Optimization (DPO) algorithm (Rafailov
et al., 2023) to the continual learning setting by



employing Monte Carlo estimation to derive a
sequence of optimal policies for the given se-
quences of tasks and incorporate them to regularize
the policy learning on new tasks. Furthermore,
COPR (Zhang et al., 2024a) adopts the Lagrangian
Duality (LD) method to dynamically regularize
the current policy based on the historically opti-
mal policy to prevent forgetting and re-balance the
incremental preferences objectives. Compared to
other paradigms, continual alignment, which has
recently emerged in LLMs, lacks both benchmark
datasets and established methods, necessitating fur-
ther exploration.

6 Benchmarks

The systematic evaluation of LLMs’ continual
learning performance demands benchmarks with
high-quality data sources and diverse content. Be-
low we summarize notable benchmark datasets.
Benchmarks for CPT TemporalWiki (Jang et al.,
2022a) serves as a lifelong benchmark, training
and evaluating LMs using consecutive snapshots
of Wikipedia and Wikidata, helping assess an
LM’s ability to retain past knowledge and acquire
new knowledge over time. Additional social me-
dia datasets like Firehose (Hu et al., 2023) com-
prise 100 million tweets from one million users
over six years. CKL (Jang et al., 2022b) fo-
cuses on web and news data, aiming to retain
time-invariant world knowledge from initial pre-
training while efficiently learning new knowledge
through continued pre-training on different corpora.
TRACE (Wang et al., 2023c) encompasses eight
diverse datasets covering specialized domains, mul-
tilingual tasks, code generation, and mathematical
reasoning. These datasets are harmonized into a
standard format, facilitating straightforward and au-
tomated evaluation of LLMs. Due to the fast-paced
nature of data, time-sensitive datasets quickly be-
come outdated, requiring frequent updates to con-
tinual pre-training benchmarks for model evalua-
tion.

Benchmarks for CIT The Continual Instruction
Tuning Benchmark (CITB) (Zhang et al., 2023d)
is based on SuperNI, encompassing over 1,600
Natural Language Processing (NLP) tasks across
76 types like language generation and classifica-
tion, all in a text-to-text format. ConTinTin (Yin
et al., 2022), another benchmark derived from
NATURAL-INSTRUCTIONS, includes 61 tasks
across six categories, such as question generation

and classification. CoIN (Chen et al., 2024) com-
prises 10 commonly used datasets spanning 8 task
categories for multi-modal evaluation, ensuring a
diverse range of instructions and tasks in linguistic
and visual understanding. When using these bench-
marks for evaluating black-box language learning
models that cannot access their training data, the
selection of datasets is crucial to avoid task contam-
ination and ensure reliable performance assessment
in continual instruction tuning.

Benmarks for CA COPF (Zhang et al., 2023a)
conduct experiments for continual alignment us-
ing datasets like the Stanford Human Preferences
(SHP) (Ethayarajh et al., 2022) and Helpful &
Harmless (HH) Datasets (Bai et al., 2022). The
SHP Dataset comprises 385,000 human prefer-
ences across 18 subjects, from cooking to legal
advice. The HH Dataset consists of two parts: one
where crowdworkers interact with AI models for
helpful responses, and another where they elicit
harmful responses, selecting the more impactful
response in each case. Despite the growing interest
in this field, there is a notable absence of dedicated
benchmarks for continual alignment, presenting an
opportunity for future research and development.

7 Evaluation

Evaluation for Target Task Sequence Continual
learning for large language models involves evalu-
ating the model’s performance over a task sequence.
Performance can be measured by three typical con-
tinual learning metrics: (1) average performance;
(2) Forward Transfer Rate (FWT), and (3) Back-
ward Transfer Rate (BWT) (Lopez-Paz and Ran-
zato, 2017; Wu et al., 2022), see Appendix A.1 for
the detailed formulations.

Evaluation for Cross-stage Forgetting Large
language models continually trained on different
stages can experience the issue of unconscious for-
getting (Lin et al., 2023), which shows that con-
tinual instruction tuning can erode the LLM’s gen-
eral knowledge. Additionally, previous studies (Qi
et al., 2023) also demonstrate that the behavior of
safely aligned LLMs can be easily affected and
degraded by instruction tuning. To quantify these
limitations, TRACE (Wang et al., 2023c) proposes
to evaluate LLMs by using three novel metrics:
General Ability Delta (GAD), Instruction Follow-
ing Delta (IFD), and Safety Delta (SD). See Ap-
pendix A.2 for the detailed formulations. These
metrics assess how LLMs’ adherence to instruc-



tions, and safety change after continual learning,
focusing on retaining skills and aligning with hu-
man preferences

8 Challenges and Future Works

Computation-efficient Continual Learning In
the realm of computation efficiency, the focus is
on enhancing the continual pre-training process
with minimized computational resources (Verwimp
et al., 2023; Ibrahim et al., 2024). This involves
developing innovative architectures that can han-
dle the increasing complexity of pre-training tasks
without proportional increases in computational
demands (Malla et al., 2024). Efficiency in al-
gorithms and data structures becomes crucial, es-
pecially in managing the extensive data involved
in pre-training (Que et al., 2024). Additionally,
energy-efficient learning models are vital for sus-
tainable scaling of LLMs, aligning with Green Al
initiatives (Verwimp et al., 2023). This area re-
quires balancing the computational cost with the
benefits in terms of model capabilities.

Social Good Continual Learning Social respon-
sibility in continual learning encompasses ensur-
ing privacy and data security, particularly in the
context of continual instruction tuning (Gabriel,
2020). As LLMs are finetuned with more specific
instructions or tasks, the handling of sensitive or
personal data must be managed securely and eth-
ically. Aligning with human values and culture
is also paramount (Puthumanaillam et al., 2024).
This involves incorporating ethical Al principles
and cultural sensitivities to ensure that the model’s
outputs are aligned with societal norms and values.

Automatic Continual Learning A significant
challenge lies in creating systems capable of au-
tonomously overseeing their learning processes,
seamlessly adjusting to novel tasks (instruction tun-
ing) and user preferences (alignment) while relying
solely on the inherent capabilities of LLMs, all
without the need for manual intervention (Qiao
et al., 2024). Automatic continual learning in-
cludes multi-agent systems capable of collabora-
tive learning and self-planning algorithms that can
autonomously adjust learning strategies based on
performance feedback, leading to a significant ad-
vancement in the autonomy of LLMs.

Continual Learning with Controllable Forget-
ting Controllable forgetting is particularly rele-
vant to continual pre-training. The ability to se-
lectively retain or forget information as the model

is exposed to new data streams can prevent catas-
trophic forgetting (Qi et al., 2023) and enhance
model adaptability (Wang et al., 2023c). This chal-
lenge also extends to managing misinformation and
unlearning incorrect or outdated information (Chen
and Yang, 2023), ensuring the accuracy and relia-
bility of the LLM over time.

Continual Learning with History Tracking Ef-
fective history tracking is vital for understanding
the evolution of the LLM through its phases of pre-
training, instruction tuning, and preference learn-
ing, similar to version management in software
development (Wu et al., 2024b). Managing history
in model parameters and using external memory
architectures can help in tracking the influence of
past learning on current model behavior and de-
cisions (Mialon et al., 2023). This is crucial for
analyzing the effectiveness of continual learning
processes and making informed adjustments.

Theoretical insights on LLM in Continual
Learning Numerous evaluation studies have ex-
amined the issue of cross-stage forgetting (Lin
et al., 2023) and demonstrated the weak robustness
of aligned LL.Ms (Qi et al., 2023). However, theo-
retical analyses of how multi-stage training impacts
the performance of large language models in sub-
sequent continual learning tasks are scarce (Wang
et al., 2023a). This gap highlights the need for a
deeper understanding of the changes multi-stage
training introduces to LLMs’ learning capabilities.

9 Conclusion

Continual learning holds the vital importance of
allowing large language models to be regularly and
efficiently updated to remain up-to-date with the
constantly changing human knowledge, language
and values. We showcase the complex, multi-stage
process of continual learning in LLMs, encompass-
ing continual pre-training, instruction tuning, and
alignment, a paradigm more intricate than those
used in continual learning on smaller models. As
the first survey of its kind to thoroughly explore
continual learning in LLMs, this paper categorizes
the updates by learning stages and information
types, providing a detailed understanding of how to
effectively implement continual learning in LLMs.
With a discussion of major challenges and future
work directions, our goal is to provide a comprehen-
sive account of recent developments in continual
learning for LLMs, shedding light on the develop-
ment of more advanced language models.



10 Limitations

Given the broader research on continual updates of
LLMs, we only include methods that require contin-
ual parameter updates through training processes.
Methods like augmented models (e.g., retrieval-
augmented generation or model fusion), which also
enhance models with the latest information, are ex-
cluded. Additionally, this paper primarily focuses
on NLP applications, omitting the continual learn-
ing of foundation models in vision or robotics.

References

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
et al. 2023. Llemma: An open language model for
mathematics. CoRR.

Yuntao Bai, Andy Jones, Kamal Ndousse, et al. 2022.
Training a helpful and harmless assistant with rein-
forcement learning from human feedback. CoRR.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussa. 2020. Continual lifelong learn-
ing in natural language processing: A survey. In
COLING.

Giuseppe Castellucci, Simone Filice, Danilo Croce, and
Roberto Basili. 2021. Learning to solve NLP tasks
in an incremental number of languages. In ACL.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, et al. 2019. On tiny episodic memories in
continual learning. arXiv:1902.10486.

Cheng Chen, Junchen Zhu, Xu Luo, Hengtao Shen,
Lianli Gao, and Jingkuan Song. 2024. Coin:
A benchmark of continual instruction tuning
for multimodel large language model. CoRR,
abs/2403.08350.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for llms. In
EMNLP.

Xiang Chen, Jintian Zhang, Xiaohan Wang, et al. 2023a.
Continual multimodal knowledge graph construction.
CoRR.

Yongrui Chen, Xinnan Guo, Tongtong Wu, et al. 2023b.
Learn from yesterday: A semi-supervised continual
learning method for supervision-limited text-to-sql
task streams. In AAAL

Daixuan Cheng, Shaohan Huang, and Furu Wei. 2023a.
Adapting large language models via reading compre-
hension. arXiv:2309.09530.

Xin Cheng, Yankai Lin, Dongyan Zhao, and Rui Yan.
2023b. Language model with plug-in knowledge
memory.

Andrea Cossu, Tinne Tuytelaars, Antonio Carta, et al.
2022. Continual pre-training mitigates forgetting in
language and vision. CoRR.

Guanting Dong, Hongyi Yuan, Keming Lu, et al.
2023. How abilities in large language models are
affected by supervised fine-tuning data composition.
arXiv:2310.05492.

Li Dong, Nan Yang, Wenhui Wang, et al. 2019. Uni-
fied language model pre-training for natural language
understanding and generation. NeurlPS.

Kawin Ethayarajh, Yejin Choi, and Swabha
Swayamdipta. 2022. Understanding dataset
difficulty with V-usable information. In ICML,
volume 162.

Tason Gabriel. 2020. Artificial Intelligence, Values, and
Alignment. Minds and Machines.

Evangelia Gogoulou, Timothée Lesort, Magnus Boman,
and Joakim Nivre. 2023. A study of continual learn-
ing under language shift. CoRR.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, et al. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks.
arXiv:2004.10964.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2023. Toolkengpt: Augmenting frozen lan-
guage models with massive tools via tool embeddings.
arXiv:2305.11554.

Tao He, Tongtong Wu, Dongyang Zhang, Guiduo Duan,
Ke Qin, and Yuan-Fang Li. 2024. Towards life-
long scene graph generation with knowledge-ware
in-context prompt learning. CoRR.

Hexiang Hu, Ozan Sener, Fei Sha, and Vladlen Koltun.
2023. Drinking from a firehose: Continual learn-
ing with web-scale natural language. IEEE Trans.
Pattern Anal. Mach. Intell., 45(5).

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta,
Mats L. Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. 2024. Simple
and scalable strategies to continually pre-train large
language models. CoRR, abs/2403.08763.

Joel Jang, Seungone Kim, Seonghyeon Ye, et al. 2023.
Exploring the benefits of training expert language
models over instruction tuning. arXiv:2302.03202.

Joel Jang, Seonghyeon Ye, Changho Lee, et al. 2022a.
Temporalwiki: A lifelong benchmark for training
and evaluating ever-evolving language models. In
EMNLP.

Joel Jang, Seonghyeon Ye, Sohee Yang, et al. 2022b.
Towards continual knowledge learning of language
models. In ICLR.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.
2023. Genegpt: Augmenting large language models
with domain tools for improved access to biomedical
information. arXiv:2304.09667.


https://doi.org/10.48550/arXiv.2403.08350
https://doi.org/10.48550/arXiv.2403.08350
https://doi.org/10.48550/arXiv.2403.08350
https://doi.org/10.48550/arXiv.2403.08350
https://doi.org/10.48550/arXiv.2403.08350
https://openreview.net/forum?id=Plr5l7r0jY6
https://openreview.net/forum?id=Plr5l7r0jY6
https://openreview.net/forum?id=Plr5l7r0jY6
https://doi.org/10.48550/arXiv.2403.08763
https://doi.org/10.48550/arXiv.2403.08763
https://doi.org/10.48550/arXiv.2403.08763
https://doi.org/10.48550/arXiv.2403.08763
https://doi.org/10.48550/arXiv.2403.08763

Xisen Jin, Dejiao Zhang, Henghui Zhu, et al. 2022.
Lifelong pretraining: Continually adapting language
models to emerging corpora. In NAACL.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi,
Gyuhak Kim, and Bing Liu. 2023. Continual pre-
training of language models. In /CLR.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
et al. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the national
academy of sciences.

Yilun Kong, Jingqing Ruan, Yihong Chen, et al. 2023.
Tptu-v2: Boosting task planning and tool usage of
large language model-based agents in real-world sys-
tems. arXiv:2311.11315.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghu-
nathan. 2023. Understanding catastrophic forget-

ting in language models via implicit inference.
arXiv:2309.10105.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus,
et al. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS.

Yaobo Liang, Chenfei Wu, Ting Song, et al. 2023.
Taskmatrix. ai: Completing tasks by connect-
ing foundation models with millions of apis.
arXiv:2303.16434.

Yong Lin, Lu Tan, Hangyu Lin, et al. 2023. Spe-
ciality vs generality: An empirical study on catas-
trophic forgetting in fine-tuning foundation models.
arXiv:2309.06256.

David Lopez-Paz and Marc’ Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
NeurlPS.

Shirong Ma, Shen Huang, Shulin Huang, et al. 2023.
Ecomgpt-ct: Continual pre-training of e-commerce
large language models with semi-structured data.
CoRR.

Srikanth Malla, Joon Hee Choi, and Chiho Choi. 2024.
COPAL: continual pruning in large language genera-
tive models. CoRR, abs/2405.02347.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik.
2018. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights. In ECCV.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, et al.
2023. Augmented language models: a survey. CoRR.

Jisoo Mok, Jaeyoung Do, Sungjin Lee, et al. 2023.
Large-scale lifelong learning of in-context instruc-
tions and how to tackle it. In ACL.

Bohao PENG, Zhuotao Tian, Shu Liu, Ming-Chang
Yang, and Jiaya Jia. 2024. Scalable language model
with generalized continual learning. In The Twelfth
International Conference on Learning Representa-
tions.

10

Gokul Puthumanaillam, Manav Vora, Pranay Thangeda,
and Melkior Ornik. 2024. A moral imperative: The
need for continual superalignment of large language
models. CoRR, abs/2403.14683.

Xiangyu Qi, Yi Zeng, Tinghao Xie, et al. 2023. Fine-
tuning aligned language models compromises safety,
even when users do not intend to! arXiv:2310.03693.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. CoRR.

Yujia Qin, Shihao Liang, Yining Ye, et al. 2023a. Tool-
IIm: Facilitating large language models to master
16000+ real-world apis. arXiv:2307.16789.

Yujia Qin, Cheng Qian, Xu Han, et al. 2023b. Recy-
clable tuning for continual pre-training. In Findings
of ACL.

Haoran Que, Jiaheng Liu, Ge Zhang, Chenchen Zhang,
Xingwei Qu, Yinghao Ma, Feiyu Duan, Zhiqi Bai, Ji-
akai Wang, Yuanxing Zhang, Xu Tan, Jie Fu, Wenbo
Su, Jiamang Wang, Lin Qu, and Bo Zheng. 2024.
D-cpt law: Domain-specific continual pre-training
scaling law for large language models. CoRR,
abs/2406.01375.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In NeurlPS.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, et al.
2023. Progressive prompts: Continual learning for
language models. arXiv:2301.12314.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In EMNLP.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin,
Wenyuan Wang, Yibin Wang, and Hao Wang. 2024.
Continual learning of large language models: A com-
prehensive survey. CoRR, abs/2404.16789.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. NeurIPS.

Chenyang Song, Xu Han, Zheni Zeng, et al. 2023. Con-
pet: Continual parameter-efficient tuning for large
language models. arXiv:2309.14763.

Yu Sun, Shuohuan Wang, Yu-Kun Li, et al. 2020.
ERNIE 2.0: A continual pre-training framework for
language understanding. In AAAL

Hugo Touvron, Thibaut Lavril, Gautier Izacard, et al.
2023. Llama: Open and efficient foundation lan-
guage models. arXiv:2302.13971.


https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.48550/arXiv.2405.02347
https://doi.org/10.48550/arXiv.2405.02347
https://doi.org/10.48550/arXiv.2405.02347
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://openreview.net/forum?id=mz8owj4DXu
https://doi.org/10.48550/arXiv.2403.14683
https://doi.org/10.48550/arXiv.2403.14683
https://doi.org/10.48550/arXiv.2403.14683
https://doi.org/10.48550/arXiv.2403.14683
https://doi.org/10.48550/arXiv.2403.14683
https://arxiv.org/abs/2406.01375
https://arxiv.org/abs/2406.01375
https://arxiv.org/abs/2406.01375
https://doi.org/10.48550/arXiv.2404.16789
https://doi.org/10.48550/arXiv.2404.16789
https://doi.org/10.48550/arXiv.2404.16789

Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias
Bethge, et al. 2023. Continual learning: Applications
and the road forward. CoRR.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu.
2023a. A comprehensive survey of continual learn-
ing: Theory, method and application. CoRR.

Xiao Wang, Tianze Chen, Qiming Ge, et al. 2023b.
Orthogonal subspace learning for language model
continual learning. arXiv:2310.14152.

Xiao Wang, Yuansen Zhang, Tianze Chen, et al. 2023c.
Trace: A comprehensive benchmark for continual
learning in large language models. CoRR.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen
Chen, Haonan Lu, and Yujiu Yang. 2024. In-
scl: A data-efficient continual learning paradigm for
fine-tuning large language models with instructions.
CoRR, abs/2403.11435.

Yufei Wang, Wanjun Zhong, Liangyou Li, et al. 2023d.
Aligning large language models with human: A sur-
vey. arXiv:2307.12966.

Chengyue Wu, Yukang Gan, Yixiao Ge, et al. 2024a.
Llama pro: Progressive llama with block expansion.
arXiv:2401.02415.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang
Li, Guilin Qi, and Gholamreza Haffari. 2022. Pre-
trained language model in continual learning: A com-
parative study. In /CLR.

Tongtong Wu, Xuekai Li, Yuan-Fang Li, Gholamreza
Haffari, Guilin Qi, Yujin Zhu, and Guogiang Xu.
2021. Curriculum-meta learning for order-robust
continual relation extraction. In AAAL

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu,
Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing,
Yuan-Fang Li, and Gholamreza Haffari. 2024b. Versi-
code: Towards version-controllable code generation.
CoRR, abs/2406.07411.

Yong Xie, Karan Aggarwal, and Aitzaz Ahmad. 2023.
Efficient continual pre-training for building domain
specific large language models. CoRR.

Weimin Xiong, Yifan Song, Peiyi Wang, and Sujian
Li. 2023. Rationale-enhanced language models are
better continual relation learners. arXiv:2310.06547.

Prateek Yadav, Qing Sun, Hantian Ding, et al. 2023. Ex-
ploring continual learning for code generation mod-
els. In ACL.

Xianjun Yang, Junfeng Gao, Wenxin Xue, and Erik
Alexandersson. 2024. Pllama: An open-source large
language model for plant science. CoRR.

Yunzhi Yao, Peng Wang, Bozhong Tian, et al. 2023.
Editing large language models: Problems, methods,
and opportunities. In EMNLP.

11

Cagatay Yildiz, Nishaanth Kanna Ravichandran, Pr-
ishruit Punia, Matthias Bethge, and Beyza Ermis.
2024. Investigating continual pretraining in large
language models: Insights and implications. CoRR,
abs/2402.17400.

Wenpeng Yin, Jia Li, and Caiming Xiong. 2022. Con-
tintin: Continual learning from task instructions.
arXiv:2203.08512.

Daoguang Zan, Bei Chen, Dejian Yang, et al. 2022.
CERT: continual pre-training on sketches for library-
oriented code generation. In IJCAL

Han Zhang, Lin Gui, Yu Lei, Yuanzhao Zhai, Yehong
Zhang, Yulan He, Hui Wang, Yue Yu, Kam-Fai Wong,
Bin Liang, and Ruifeng Xu. 2024a. COPR: continual
human preference learning via optimal policy regu-
larization. CoRR, abs/2402.14228.

Han Zhang, Lin Gui, Yuanzhao Zhai, et al. 2023a. Copf:
Continual learning human preference through opti-
mal policy fitting. arXiv:2310.15694.

Han Zhang, Yu Lei, Lin Gui, Min Yang, Yulan He, Hui
Wang, and Ruifeng Xu. 2024b. CPPO: Continual
learning for reinforcement learning with human feed-
back. In The Twelfth International Conference on
Learning Representations.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, et al. 2023b.
Instruction tuning for large language models: A sur-
vey. arXiv:2308.10792.

Yating Zhang, Yexiang Wang, Fei Cheng, et al. 2023c.
Reformulating domain adaptation of large language
models as adapt-retrieve-revise. arXiv:2310.03328.

Zihan Zhang, Meng Fang, Ling Chen, and Mohammad-
Reza Namazi-Rad. 2023d. Citb: A benchmark for
continual instruction tuning. arXiv:2310.14510.

Zihan Zhang, Meng Fang, Ling Chen, et al. 2023e. How
do large language models capture the ever-changing
world knowledge? A review of recent advances. In
EMNLP.

Haokun Zhao, Haixia Han, Jie Shi, Chengyu Du, Jiaging
Liang, and Yanghua Xiao. 2024a. Large language
model can continue evolving from mistakes. CoRR,
abs/2404.08707.

Weixiang Zhao, Shilong Wang, Yulin Hu, et al. 2024b.
Dapt: A dual attention framework for parameter-
efficient continual learning of large language models.
arXiv:2401.08295.


https://doi.org/10.48550/arXiv.2403.11435
https://doi.org/10.48550/arXiv.2403.11435
https://doi.org/10.48550/arXiv.2403.11435
https://doi.org/10.48550/arXiv.2403.11435
https://doi.org/10.48550/arXiv.2403.11435
https://arxiv.org/abs/2406.07411
https://arxiv.org/abs/2406.07411
https://arxiv.org/abs/2406.07411
https://doi.org/10.48550/arXiv.2402.17400
https://doi.org/10.48550/arXiv.2402.17400
https://doi.org/10.48550/arXiv.2402.17400
https://doi.org/10.48550/arXiv.2402.14228
https://doi.org/10.48550/arXiv.2402.14228
https://doi.org/10.48550/arXiv.2402.14228
https://doi.org/10.48550/arXiv.2402.14228
https://doi.org/10.48550/arXiv.2402.14228
https://openreview.net/forum?id=86zAUE80pP
https://openreview.net/forum?id=86zAUE80pP
https://openreview.net/forum?id=86zAUE80pP
https://openreview.net/forum?id=86zAUE80pP
https://openreview.net/forum?id=86zAUE80pP
https://doi.org/10.48550/arXiv.2404.08707
https://doi.org/10.48550/arXiv.2404.08707
https://doi.org/10.48550/arXiv.2404.08707

A Evaluation Metrics

A.1 Evaluation for Target Task Sequence

Continual learning for large language models in-
volves evaluating the model’s performance over
a task sequence. Performance can be mea-
sured by three typical continual learning metrics:
(1) average performance; (2) Forward Transfer
Rate (FWT), and (3) Backward Transfer Rate
(BWT) (Lopez-Paz and Ranzato, 2017; Wu et al.,
2022):

(1) FWT assesses the impact of knowledge ac-
quired from previous tasks on the initial ability to
perform a new task, prior to any dedicated training
for that new task.

=
FWT = 7= 3 Ani—b (D
=2
(2) BWT measures catastrophic forgetting by
comparing a model’s performance on old tasks be-

fore and after learning new ones.

T—1
BWT = % Z Ar; — Aij 2)
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(3) Average Performance, e.g., the average accu-
racy assesses the ability of a model or algorithm to
effectively learn from and adapt to a sequence of
data streams or tasks over time.

T
1
Avg. ACC = Z; Ar; 3)

where A;; is the accuracy of models on the test
set of ¢th task after model learning on the tth task
and b; is the test accuracy for task ¢ at random
initialization.

A.2 Evaluation for Cross-stage Forgetting

Large language models continually trained on dif-
ferent stages can experience the issue of uncon-
scious forgetting (Lin et al., 2023), which shows
that continual instruction tuning can erode the
LLM’s general knowledge. Additionally, previ-
ous studies (Qi et al., 2023) also demonstrate that
the behavior of safely aligned LLMs can be easily
affected and degraded by instruction tuning. To
quantify these limitations, TRACE (Wang et al.,
2023c) proposes to evaluate LLMs by using three
novel metrics: General Ability Delta (GAD), In-
struction Following Delta (IFD), and Safety Delta
(SD):
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(1) GAD assesses the performance difference of
an LLM on general tasks after training on sequen-
tial target tasks.

T
1 e
GAD = - Y (RE -R

i=1

o) @)

(2) IFD assesses the changes of model’s
instruction-following ability after training on se-
quential different tasks.

T
1
IFD = f Z(R{z - Ré,i)
i=1

&)

(3) SD assesses the safety variation of a model’s
response after sequential training.

T
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Sp— 1 ©)

N

The baseline performance of the initial LLM on the
i-th task is represented by Ry ;. After incrementally
learning up to the ¢-th task, the score on the i-th
task becomes I; ;. And RS, R! and R® represent
the performance of LLM on general tasks (assess-
ing the information obtained from pre-training),
instruction-following tasks, and alignment tasks,
respectively. These measure changes in an LLM’s
overall capabilities, adherence to instructions, and
safety after continual learning, going beyond tradi-
tional benchmarks by focusing on maintaining in-
herent skills and aligning with human preferences.
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