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Abstract
Large language models (LLMs) are challeng-001
ing to retrain frequently due to the high costs002
associated with their massive scale. However,003
updates are necessary to equip LLMs with new004
skills and keep them current with rapidly evolv-005
ing human knowledge. This paper surveys re-006
cent works on continual learning for LLMs.007
We introduce a novel multi-staged categoriza-008
tion scheme for continual learning techniques,009
encompassing continual pre-training, instruc-010
tion tuning, and alignment. We compare con-011
tinual learning for LLMs with simpler adap-012
tation methods used in smaller models and013
other enhancement strategies such as retrieval-014
augmented generation and model editing. Ad-015
ditionally, informed by a discussion of bench-016
marks and evaluations, we identify several chal-017
lenges and future research directions for this018
critical task.019

1 Introduction020

Recent years have witnessed the rapid advances021

of large language models’ capabilities in solving a022

diverse range of problems. At the same time, it is023

vital for LLMs to be regularly updated to accurately024

reflect the ever-evolving human knowledge, values025

and linguistic patterns, calling for the investigation026

of continual learning for LLMs. Whilst continual027

learning bears some resemblance to other strate-028

gies for model improvements, such as retrieval-029

augmented generation (RAG) (Lewis et al., 2020)030

and model editing (Yao et al., 2023), their main031

purposes differ (Table 1). Unlike these strategies,032

whose primarily focus is on refining the domain-033

specific accuracy or expanding the model’s fac-034

tual knowledge base, continual learning aims to035

enhance the overall linguistic and reasoning ca-036

pabilities of LLMs. This distinction is crucial as037

it shifts the focus from merely updating informa-038

tion to developing a model’s ability to process and039

generate language in a more comprehensive and040

nuanced manner (Zhang et al., 2023e).041
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Figure 1: Continual learning for large language models
involves hybrid multi-stage training with multiple train-
ing objectives.

Continual learning for LLMs also differs from 042

its use in smaller models, including smaller pre- 043

trained language models. Due to their vast size and 044

complexity, LLMs require a multi-faceted approach 045

to continual learning. We categorise it into three 046

different stages, i.e. continual pre-training to ex- 047

pand the model’s fundamental understanding of lan- 048

guage (Jin et al., 2022), continual instruction tun- 049

ing to improve the model’s response to specific user 050

commands (Zhang et al., 2023d), and continual 051

alignment to ensure the model’s outputs adhere to 052

values, ethical standards and societal norms (Zhang 053

et al., 2023a). This multi-stage process is distinct 054

from the more linear adaptation strategies used in 055

smaller models, as illustrated in Figure 1, high- 056

lighting the unique challenges and requirements of 057

applying continual learning to LLMs. 058

This survey differentiates itself from previous 059

studies by its unique focus and structure. While 060

previous surveys in the field are typically orga- 061

nized around various continual learning strate- 062

gies (Biesialska et al., 2020), ours is the first to 063

specifically address continual learning in the con- 064

text of LLMs. We structure our analysis around 065

the types of information that is updated continu- 066

ally and the distinct stages of learning involved 067
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Extract facts from the 
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Messi relocated to Spain 
from Argentina aged 13 
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Figure 2: The continual learning of LLMs involves multi-stage and cross-stage iteration, which may lead to
substantial forgetting problems. For example, when the instruction-tuned model resumes continual pre-training, it
may encounter cross-stage forgetting, resulting in reduced performance on instruction-following tasks.

Information RAG Model Editing Continual Learning

Fact ○ ○ ○
Domain ○ × ○

Language × × ○
Task × × ○

Skills (Tool use) × × ○
Values × × ○

Preference × × ○

Table 1: Continual Learning v.s. RAG and Model Edit-
ing

in LLMs. This survey offers a detailed and novel068

perspective on how continual learning is applied069

to LLMs, shedding light on the specific challenges070

and opportunities of this application. Our goal is071

to provide a thorough understanding of the effec-072

tive implementation of continual learning in LLMs,073

contributing to the development of more advanced074

and adaptable language models in the future.075

2 Preliminary and Categorization076

2.1 Large Language Model077

Large language models (LLMs) like ChatGPT1 and078

LLaMa (Touvron et al., 2023) have shown supe-079

rior performance in many tasks. They are usually080

trained in multiple stages, including pre-training,081

instruction tuning, and alignment, as illustrated082

in Figure 1. In the pre-training stage, LLMs are083

trained on a large corpus in a self-supervised man-084

ner (Dong et al., 2019), where the training text is085

randomly masked and the LLMs are asked to pre-086

dict the masked tokens. In the instruction tuning087

stage, LLMs are finetuned on a set of instruction-088

output pairs in a supervised fashion (Zhang et al.,089

2023b). Given a task-specific instruction as in-090

1https://openai.com/blog/chatgpt

put, LLMs are asked to generate the corresponding 091

output. In the alignment stage, LLMs are further 092

finetuned with human feedback to align their out- 093

puts with human expectations (Wang et al., 2023d). 094

The output of LLMs is scored by human annota- 095

tors, and the LLMs are updated to generate more 096

human-like responses. 097

2.2 Continual Learning 098

Continual learning focuses on developing learn- 099

ing algorithms to accumulate knowledge on non- 100

stationary data, often delineated by classes, tasks, 101

domains or instances. In supervised continual learn- 102

ing, a sequence of tasks {D1, . . . ,DT } arrive in a 103

streaming fashion. Each task Dt =
{(

xt
i, y

t
i

)}nt

i=1
104

contains a separate target dataset, where xt
i ∈ Xt 105

, yt
i ∈ Yt. A single model needs to adapt to them 106

sequentially, with only access to Dt at the t-th task. 107

This setting requires models to acquire, update, ac- 108

cumulate, and exploit knowledge throughout their 109

lifetime (Biesialska et al., 2020). 110

The major challenge conventional continual 111

learning tackles is that of catastrophic forgetting, 112

where the performance of a model on old tasks 113

significantly diminishes when trained with new 114

data. Existing studies can be roughly grouped 115

into three categories, e.g., experience replay meth- 116

ods (Chaudhry et al., 2019; Wu et al., 2021), 117

regularization-based methods (Kirkpatrick et al., 118

2017; Chen et al., 2023b), and dynamic archi- 119

tecture methods (Mallya et al., 2018). Recently, 120

researchers have designed some hybrid methods 121

that take advantage of the aforementioned tech- 122

niques (Chen et al., 2023a; He et al., 2024). Our 123

paper stands out (Shi et al., 2024) by organizing 124

around multi-stage continual learning and high- 125

lighting cross-stage forgetting issues. 126
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2.3 Continual Learning for LLMs127

Continual Learning for Large Language Models128

aims to enable LLMs to learn from a continuous129

data stream over time. Despite the importance, it130

is non-trivial to directly apply existing continual131

learning settings for LLMs. We now provide a132

forward-looking framework of continual learning133

for LLMs, then present a categorization of research134

in this area.135

Framework Our framework of continual learn-136

ing for LLMs is illustrated in Figure 2. We align137

continual learning for LLMs with the different138

training stages, including Continual Pre-training139

(CPT), Continual Instruction Tuning (CIT), and140

Continual Alignment (CA). The Continual Pre-141

training stage aims to conduct training on a se-142

quence of corpus self-supervisedly to enrich LLMs’143

knowledge and adapt to new domains. The Con-144

tinual Instruction Tuning stage finetunes LLMs on145

a stream of supervised instruction-following data,146

aiming to empower LLMs to follow users’ instruc-147

tions while transferring acquired knowledge for148

subsequent tasks. Responding to the evolving na-149

ture of human values and preferences, Continual150

Alignment (CA) tries to continuously align LLMs151

with human values over time.152

While continual learning on LLMs can be con-153

ducted in each stage sequentially, the iterative ap-154

plication of continual learning also makes it essen-155

tial to transfer across stages without forgetting the156

ability and knowledge learned from previous stages.157

For instance, we can conduct continual pre-training158

based on either instruction-tuned models or aligned159

models. However, we do not want the LLM to lose160

their ability to follow users’ instructions and align161

with human values. Therefore, as shown in Figure162

2, we use arrows with different colors to show the163

transfer between stages.164

Categorization To better understand the research165

in this area, we provide a fine-grained categoriza-166

tion for each stage of the framework.167

Continual Pre-training (CPT)168

• CPT for Updating Facts includes works that169

adapt LLMs to learn new factual knowledge.170

• CPT for Updating Domains includes research171

that tailors LLMs to specific fields like medi-172

cal and legal domains.173

• CPT for Language Expansion includes studies174

that extend the languages LLMs supports.175

Continual Instruction Tuning (CIT) 176

• Task-incremental CIT contains works that 177

finetune LLMs on a series of tasks and ac- 178

quire the ability to solve new tasks. 179

• Domain-incremental CIT contains methods 180

that finetune LLMs on a stream of instructions 181

to solve domain-specific tasks. 182

• Tool-incremental CIT contains research that 183

continually teaches LLMs to use new tools to 184

solve problems. 185

Continual Alignment (CA) 186

• Continual Value Alignment incorporates stud- 187

ies that continually align LLMs with new eth- 188

ical guidelines and social norms. 189

• Continual Preference Alignment incorporates 190

works that adapt LLMs to dynamically match 191

different human preferences. 192

Besides categorizing methods based on train- 193

ing stages, we also provide an alternative catego- 194

rization based on the information updated during 195

continual learning. In Table 2, we list some rep- 196

resentative information that is updated for LLMs, 197

e.g., facts, domains, tasks, values, and preferences. 198

Based on the training objectives of LLMs, this in- 199

formation can be updated in different stages of 200

LLM continual learning. The taxonomy in Fig- 201

ure 3 shows our categorization scheme and recent 202

representative work in each category. 203

Information Pre-training Instruction-tuning Alignment

Fact ○ × ×
Domain ○ ○ ×

Language ○ × ×
Task × ○ ×

Skill (Tool use) × ○ ×
Value × × ○

Preference × × ○

Table 2: Information updated during different stages of
continual learning for LLMs.

3 Continual Pre-training (CPT) 204

Continual pre-training in large language models 205

is essential for keeping the LLMs relevant and ef- 206

fective. This process involves regularly updating 207

the models with the latest information (Jang et al., 208

2022a; Ibrahim et al., 2024), adapting them to spe- 209

cialized domains (Ke et al., 2023), enhancing their 210

coding capabilities (Yadav et al., 2023), and ex- 211

panding their linguistic range (Castellucci et al., 212

2021). With CPT, LLMs can stay current with 213
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Continual Alignment (§5)
Update Values (§5) Puthumanaillam et al. (2024)
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Figure 3: Taxonomy of trends in continual learning for large language models.

new developments, adapt to evolving user needs,214

and remain effective across diverse applications.215

Continual pre-training ensures LLMs are not just216

knowledgeable but also adaptable and responsive217

to the changing world.218

CPT for Updating Facts The capability of LLMs219

to integrate and adapt to recent information is cru-220

cial. A pivotal strategy here is the employment of221

dynamic datasets that facilitate the real-time assim-222

ilation of data from a variety of sources like news223

feeds (Sun et al., 2020), scholarly articles (Cossu224

et al., 2022), and social media (Cossu et al., 2022).225

Sun et al. (2020) presents ERNIE 2.0, which is226

a continual pre-training framework that incremen-227

tally builds and learns from multiple tasks to max-228

imize knowledge extraction from training data.229

Jang et al. (2022b) introduces continual knowledge230

learning, a method for updating temporal knowl-231

edge in LLMs, reducing forgetting while acquir-232

ing new information. Jang et al. (2022a) shows233

that continual learning with different data achieves234

comparable or better perplexity in language mod-235

els than training on the entire snapshot, confirming236

that factual knowledge in LMs can be updated ef-237

ficiently with minimal training data. CEM (Zhao238

et al., 2024a) continually evaluates LLMs to iden-239

tify knowledge deficiencies based on their mistakes,240

collecting relevant data from multiple sources to241

supplement training in a targeted manner. Integral242

to knowledge updating is the implementation of243

automated systems for the verification of newly244

acquired data, ensuring both the accuracy and de-245

pendability of the information.246

CPT for Updating Domains Continual pre-247

training updates domain knowledge through two248

approaches: 1) domain-incremental pre-training249

accumulates knowledge across multiple domains,250

and 2) domain-specific continual learning, which 251

evolves a general model into a domain expert 252

by training on domain-specific datasets and tasks. 253

In domain-incremental pre-training, (Cossu et al., 254

2022) explores how models can be continually pre- 255

trained on new data streams for both language and 256

vision, preparing them for various downstream 257

tasks. Qin et al. (2023b) examines continual re- 258

training by assessing model compatibility and ben- 259

efits of recyclable tuning via parameter initializa- 260

tion and knowledge distillation. Ke et al. (2023) 261

introduces a soft-masking mechanism to update 262

language models (LMs) with domain corpora, aim- 263

ing to boost performance while preserving gen- 264

eral knowledge. For domain-specific continual 265

learning, Xie et al. (2023) develops FinPythia-6.9B 266

through domain-adaptive pre-training for the finan- 267

cial sector. EcomGPT-CT (Ma et al., 2023) inves- 268

tigates the effects of continual pre-training in the 269

E-commerce domain. These studies collectively 270

highlight the evolving landscape of continual pre- 271

training, demonstrating its effectiveness in enhanc- 272

ing model adaptability and expertise across a wide 273

range of domains. 274

CPT for Language Expansion Expanding the 275

range of languages that LLMs can understand and 276

process is essential for ensuring broader accessibil- 277

ity (Castellucci et al., 2021). This expansion is not 278

just about including a wider variety of languages, 279

particularly underrepresented ones, but also about 280

embedding cultural contexts into language process- 281

ing. A significant challenge here is the model’s 282

ability to recognize and interpret regional dialects 283

and contemporary slangs (Gogoulou et al., 2023), 284

which is crucial for effective communication across 285

diverse racial, social and cultural groups. 286

In addition to mastering natural languages, 287
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LLMs have also made significant strides in under-288

standing and generating programming languages.289

Yadav et al. (2023) introduced CodeTask-CL, a290

benchmark for continual code learning that encom-291

passes a diverse array of tasks, featuring various292

input and output formats across different program-293

ming languages. Zan et al. (2022) explore using294

an unlabeled code corpus for training models on295

library-oriented code generation, addressing the296

challenge of scarce text-code pairs due to exten-297

sive library reuse by programmers. They introduce298

CERT, a method where a "sketcher" outlines a code299

structure, and a "generator" completes it, both con-300

tinuously pre-trained on unlabeled data to capture301

common patterns in library-focused code snippets.302

Yildiz et al. (2024) comprehensively examines the303

impact of model size on learning efficacy and for-304

getting, as well as how the progression and simi-305

larity of emerging domains affect the knowledge306

transfer within these models. These developments307

highlight LLMs’ potential to transform both natu-308

ral and programming language processing, leading309

to more efficient coding practices.310

4 Continual Instruction Tuning (CIT)311

LLMs have shown great instruction following abil-312

ities that can be used to complete different tasks313

with a few-shot task prompt. Continual Instruc-314

tion Tuning (CIT) involves continually finetun-315

ing the LLMs to learn how to follow instructions316

and transfer knowledge for future tasks (Zhang317

et al., 2023d). Based on the ability and knowl-318

edge updated during instruction tuning, we can319

further divide CIT into three categories: 1) task-320

incremental CIT, 2) domain-incremental CIT, and321

tool-incremental CIT.322

Task-incremental CIT Task-incremental Con-323

tinual Instruction Tuning (Task-incremental CIT)324

aims to continuously finetune LLMs on a sequence325

of task-specific instructions and acquire the abil-326

ity to solve novel tasks (Wang et al., 2024). A327

straightforward solution is to continuously gener-328

ate instruction-tuning data for new tasks and di-329

rectly finetune LLMs on it (Wang et al., 2023c).330

However, studies have shown that continuously331

finetuning LLMs on task-specific data would cause332

a catastrophic forgetting of the learned knowledge333

and problem-solving skills in previous tasks (Kotha334

et al., 2023). TAPT (Gururangan et al., 2020)335

presents a simple data selection strategy that re-336

trieves unlabeled text from the in-domain corpus,337

aligning it with the task distribution. This retrieved 338

text is then utilized to finetune LLMs, preventing 339

catastrophic forgetting and enhancing argument 340

performance. To mitigate catastrophic forgetting, 341

Contunual-T0 (Scialom et al., 2022) employs re- 342

hearsal with a memory buffer (Shin et al., 2017) 343

to store previous tasks data and replay them dur- 344

ing training. ConTinTin (Yin et al., 2022) presents 345

InstructionSpeak, which includes two strategies 346

that make full use of task instructions to improve 347

forward-transfer and backward-transfer. The first 348

strategy involves learning from negative outputs, 349

while the second strategy focuses on revisiting 350

instructions from previous tasks. RationaleCL 351

(Xiong et al., 2023) conducts contrastive rationale 352

replay to alleviate catastrophic forgetting. DynaInst 353

(Mok et al., 2023) proposes a hybrid approach in- 354

corporating a Dynamic Instruction Replay and a 355

local minima-inducing regularizer. These two com- 356

ponents enhance the generalizability of LLMs and 357

decrease memory and computation usage in the 358

replay module. Unlike previous replay-based or 359

regularization-based methods, SLM (PENG et al., 360

2024) incorporates vector space retrieval into the 361

language model, which aids in achieving scalable 362

knowledge expansion and management. This en- 363

ables LLMs’ quick adaptation to novel tasks with- 364

out compromising performance caused by catas- 365

trophic forgetting. 366

LLMs with billions of parameters introduce a 367

huge computational burden for conducting contin- 368

ual learning. To address this issue, the Progres- 369

sive Prompts technique (Razdaibiedina et al., 2023) 370

freezes the majority of parameters and only learns 371

a fixed number of tokens (prompts) for each new 372

task. Progressive Prompts significantly reduce the 373

computational cost while alleviating catastrophic 374

forgetting and improving the transfer of knowledge 375

to future tasks. ELM (Jang et al., 2023) first trains 376

a small expert adapter on top of the LLM for each 377

task. Then, it employs a retrieval-based approach 378

to choose the most pertinent expert LLM for ev- 379

ery new task. Based on the parameter-efficient 380

tuning (PET) framework, O-LoRA (Wang et al., 381

2023b) proposes an orthogonal low-rank adapta- 382

tion for CIT. O-LoRA incrementally learns new 383

tasks in an orthogonal subspace while fixing the 384

LoRA parameters learned from past tasks to min- 385

imize catastrophic forgetting. Similarly, DAPT 386

(Zhao et al., 2024b) proposes a novel Dual Atten- 387

tion Framework to align the learning and selection 388

of LoRA parameters via the Dual Attentive Learn- 389
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ing&Selection module. LLaMA PRO (Wu et al.,390

2024a) proposes a novel block expansion technique,391

which enables the injection of new knowledge into392

LLMs and preserves the initial capabilities with393

efficient post-training.394

Domain-incremental CIT Domain-incremental395

Continual Instruction Tuning (Domain-incremental396

CIT) aims to continually finetune LLMs on a se-397

quence of domain-specific instructions and acquire398

the knowledge to solve tasks in novel domains.399

TAPT (Gururangan et al., 2020) adaptively tunes400

the LLMs on a series of domain-specific data in-401

cluding biomedicine, computer science, news, and402

shopping reviews. ConPET (Song et al., 2023)403

applies previous continual learning methods, ini-404

tially developed for smaller models, to LLMs using405

PET and a dynamic replay strategy. This approach406

significantly reduces tuning costs and mitigates407

overfitting and forgetting problems. AdaptLLM408

(Cheng et al., 2023a) adapts LLMs to different do-409

mains by enriching the raw training corpus into a410

series of reading comprehension tasks relevant to411

its content. PlugLM (Cheng et al., 2023b) uses a412

differentiable plug-in memory (DPM) to explicitly413

store the domain knowledge. PlugLM could be414

easily adapted to different domains by plugging in415

in-domain memory. Zhang et al. (2023c) designs an416

adapt-retrieve-revise process that adapts LLMs to417

new domains. It first uses the initial LLMs’ respose418

to retrieve knowledge from the domain database.419

Dong et al. (2023) analyze the LLMs continuously420

tuned on different domains and find that the se-421

quence of training data has a significant impact422

on the performance of LLMs. They also offer a423

Mixed Finetuning (DMT) strategy to learn multiple424

abilities in different domains.425

Tool-incremental CIT Tool-incremental Contin-426

ual Instruction Tuning (Tool-incremental CIT) aims427

to finetune LLMs continuously, enabling them to428

interact with the real world and enhance their abili-429

ties by integrating with tools, such as calculators,430

search engines, and databases (Qin et al., 2023a).431

With the rapid emergence of new tools like ad-432

vanced software libraries, novel APIs, or domain-433

specific utilities (Liang et al., 2023; Jin et al., 2023),434

there is a growing need to continually update LLMs435

so they can quickly adapt and master these new436

tools. Llemma (Azerbayev et al., 2023) contin-437

ues tuning LLMs on a dataset with a mixture of438

math-related text and code to enable LLMs to solve439

mathematical problems by using external tools.440

ToolkenGPT (Hao et al., 2023) represents each441

tool as a new token (toolken) whose embedding is 442

learned during instruction tuning. This approach 443

offers an efficient way for LLMs to master tools 444

and swiftly adapt to new tools by adding tokens. 445

5 Continual Alignment (CA) 446

LLMs need to adapt to evolving societal values, so- 447

cial norms and ethical guidelines. Furthermore, 448

there exists substantial diversity in preferences 449

across different demographic groups, as well as 450

individuals’ changing preferences over time. The 451

need to respond to these changes give rise to con- 452

tinual alignment. In the context of continual align- 453

ment, two scenarios emerge: (i) the requirement to 454

update LLMs to reflect shifts in societal values and 455

(ii) integrating new demographic groups or value 456

types to existing LLMs, which we will describe in 457

the following subsections. 458

Continual Value Alignment Continual value 459

alignment aims to continually incorporate ethical 460

guidelines or adapt to cultural sensitivities and 461

norms. As the preliminary study, Puthumanail- 462

lam et al. (2024) examines the challenges of em- 463

bedding the evolving spectrum of human values 464

into LLMs, highlights the discrepancies between 465

static models and the dynamic nature of human 466

societies, explores potential strategies to address 467

these alignment issues, and suggests a path for- 468

ward towards more adaptable and responsive AI 469

systems. Although research on continual human 470

value alignment is currently limited, it is essential 471

to be proactive. As model capabilities improve 472

through continual learning, ongoing alignment is 473

necessary to ensure safety. 474

Continual Preference Alignment Adding new 475

demographic groups or value types aligns with con- 476

tinual learning problems, aiming to guide LLMs in 477

generating responses aligned with emerging values 478

while adhering to previously learned ones. Pre- 479

vious works have demonstrated proof-of-concept 480

of such agents. However, there is a lack of stan- 481

dardized benchmarks to systematically evaluate the 482

learning capabilities of new preferences over time. 483

CPPO (Zhang et al., 2024b) utilizes a sample-wise 484

weighting on the Proximal Policy Optimization 485

(PPO) algorithm (Schulman et al., 2017) to bal- 486

ance policy learning and knowledge retention in 487

imitating the old policy output. On the other hand, 488

COPF(Zhang et al., 2023a) extend the Direct Pref- 489

erence Optimization (DPO) algorithm (Rafailov 490

et al., 2023) to the continual learning setting by 491
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employing Monte Carlo estimation to derive a492

sequence of optimal policies for the given se-493

quences of tasks and incorporate them to regularize494

the policy learning on new tasks. Furthermore,495

COPR (Zhang et al., 2024a) adopts the Lagrangian496

Duality (LD) method to dynamically regularize497

the current policy based on the historically opti-498

mal policy to prevent forgetting and re-balance the499

incremental preferences objectives. Compared to500

other paradigms, continual alignment, which has501

recently emerged in LLMs, lacks both benchmark502

datasets and established methods, necessitating fur-503

ther exploration.504

6 Benchmarks505

The systematic evaluation of LLMs’ continual506

learning performance demands benchmarks with507

high-quality data sources and diverse content. Be-508

low we summarize notable benchmark datasets.509

Benchmarks for CPT TemporalWiki (Jang et al.,510

2022a) serves as a lifelong benchmark, training511

and evaluating LMs using consecutive snapshots512

of Wikipedia and Wikidata, helping assess an513

LM’s ability to retain past knowledge and acquire514

new knowledge over time. Additional social me-515

dia datasets like Firehose (Hu et al., 2023) com-516

prise 100 million tweets from one million users517

over six years. CKL (Jang et al., 2022b) fo-518

cuses on web and news data, aiming to retain519

time-invariant world knowledge from initial pre-520

training while efficiently learning new knowledge521

through continued pre-training on different corpora.522

TRACE (Wang et al., 2023c) encompasses eight523

diverse datasets covering specialized domains, mul-524

tilingual tasks, code generation, and mathematical525

reasoning. These datasets are harmonized into a526

standard format, facilitating straightforward and au-527

tomated evaluation of LLMs. Due to the fast-paced528

nature of data, time-sensitive datasets quickly be-529

come outdated, requiring frequent updates to con-530

tinual pre-training benchmarks for model evalua-531

tion.532

Benchmarks for CIT The Continual Instruction533

Tuning Benchmark (CITB) (Zhang et al., 2023d)534

is based on SuperNI, encompassing over 1,600535

Natural Language Processing (NLP) tasks across536

76 types like language generation and classifica-537

tion, all in a text-to-text format. ConTinTin (Yin538

et al., 2022), another benchmark derived from539

NATURAL-INSTRUCTIONS, includes 61 tasks540

across six categories, such as question generation541

and classification. CoIN (Chen et al., 2024) com- 542

prises 10 commonly used datasets spanning 8 task 543

categories for multi-modal evaluation, ensuring a 544

diverse range of instructions and tasks in linguistic 545

and visual understanding. When using these bench- 546

marks for evaluating black-box language learning 547

models that cannot access their training data, the 548

selection of datasets is crucial to avoid task contam- 549

ination and ensure reliable performance assessment 550

in continual instruction tuning. 551

Benmarks for CA COPF (Zhang et al., 2023a) 552

conduct experiments for continual alignment us- 553

ing datasets like the Stanford Human Preferences 554

(SHP) (Ethayarajh et al., 2022) and Helpful & 555

Harmless (HH) Datasets (Bai et al., 2022). The 556

SHP Dataset comprises 385,000 human prefer- 557

ences across 18 subjects, from cooking to legal 558

advice. The HH Dataset consists of two parts: one 559

where crowdworkers interact with AI models for 560

helpful responses, and another where they elicit 561

harmful responses, selecting the more impactful 562

response in each case. Despite the growing interest 563

in this field, there is a notable absence of dedicated 564

benchmarks for continual alignment, presenting an 565

opportunity for future research and development. 566

7 Evaluation 567

Evaluation for Target Task Sequence Continual 568

learning for large language models involves evalu- 569

ating the model’s performance over a task sequence. 570

Performance can be measured by three typical con- 571

tinual learning metrics: (1) average performance; 572

(2) Forward Transfer Rate (FWT), and (3) Back- 573

ward Transfer Rate (BWT) (Lopez-Paz and Ran- 574

zato, 2017; Wu et al., 2022), see Appendix A.1 for 575

the detailed formulations. 576

Evaluation for Cross-stage Forgetting Large 577

language models continually trained on different 578

stages can experience the issue of unconscious for- 579

getting (Lin et al., 2023), which shows that con- 580

tinual instruction tuning can erode the LLM’s gen- 581

eral knowledge. Additionally, previous studies (Qi 582

et al., 2023) also demonstrate that the behavior of 583

safely aligned LLMs can be easily affected and 584

degraded by instruction tuning. To quantify these 585

limitations, TRACE (Wang et al., 2023c) proposes 586

to evaluate LLMs by using three novel metrics: 587

General Ability Delta (GAD), Instruction Follow- 588

ing Delta (IFD), and Safety Delta (SD). See Ap- 589

pendix A.2 for the detailed formulations. These 590

metrics assess how LLMs’ adherence to instruc- 591

7



tions, and safety change after continual learning,592

focusing on retaining skills and aligning with hu-593

man preferences594

8 Challenges and Future Works595

Computation-efficient Continual Learning In596

the realm of computation efficiency, the focus is597

on enhancing the continual pre-training process598

with minimized computational resources (Verwimp599

et al., 2023; Ibrahim et al., 2024). This involves600

developing innovative architectures that can han-601

dle the increasing complexity of pre-training tasks602

without proportional increases in computational603

demands (Malla et al., 2024). Efficiency in al-604

gorithms and data structures becomes crucial, es-605

pecially in managing the extensive data involved606

in pre-training (Que et al., 2024). Additionally,607

energy-efficient learning models are vital for sus-608

tainable scaling of LLMs, aligning with Green AI609

initiatives (Verwimp et al., 2023). This area re-610

quires balancing the computational cost with the611

benefits in terms of model capabilities.612

Social Good Continual Learning Social respon-613

sibility in continual learning encompasses ensur-614

ing privacy and data security, particularly in the615

context of continual instruction tuning (Gabriel,616

2020). As LLMs are finetuned with more specific617

instructions or tasks, the handling of sensitive or618

personal data must be managed securely and eth-619

ically. Aligning with human values and culture620

is also paramount (Puthumanaillam et al., 2024).621

This involves incorporating ethical AI principles622

and cultural sensitivities to ensure that the model’s623

outputs are aligned with societal norms and values.624

Automatic Continual Learning A significant625

challenge lies in creating systems capable of au-626

tonomously overseeing their learning processes,627

seamlessly adjusting to novel tasks (instruction tun-628

ing) and user preferences (alignment) while relying629

solely on the inherent capabilities of LLMs, all630

without the need for manual intervention (Qiao631

et al., 2024). Automatic continual learning in-632

cludes multi-agent systems capable of collabora-633

tive learning and self-planning algorithms that can634

autonomously adjust learning strategies based on635

performance feedback, leading to a significant ad-636

vancement in the autonomy of LLMs.637

Continual Learning with Controllable Forget-638

ting Controllable forgetting is particularly rele-639

vant to continual pre-training. The ability to se-640

lectively retain or forget information as the model641

is exposed to new data streams can prevent catas- 642

trophic forgetting (Qi et al., 2023) and enhance 643

model adaptability (Wang et al., 2023c). This chal- 644

lenge also extends to managing misinformation and 645

unlearning incorrect or outdated information (Chen 646

and Yang, 2023), ensuring the accuracy and relia- 647

bility of the LLM over time. 648

Continual Learning with History Tracking Ef- 649

fective history tracking is vital for understanding 650

the evolution of the LLM through its phases of pre- 651

training, instruction tuning, and preference learn- 652

ing, similar to version management in software 653

development (Wu et al., 2024b). Managing history 654

in model parameters and using external memory 655

architectures can help in tracking the influence of 656

past learning on current model behavior and de- 657

cisions (Mialon et al., 2023). This is crucial for 658

analyzing the effectiveness of continual learning 659

processes and making informed adjustments. 660

Theoretical insights on LLM in Continual 661

Learning Numerous evaluation studies have ex- 662

amined the issue of cross-stage forgetting (Lin 663

et al., 2023) and demonstrated the weak robustness 664

of aligned LLMs (Qi et al., 2023). However, theo- 665

retical analyses of how multi-stage training impacts 666

the performance of large language models in sub- 667

sequent continual learning tasks are scarce (Wang 668

et al., 2023a). This gap highlights the need for a 669

deeper understanding of the changes multi-stage 670

training introduces to LLMs’ learning capabilities. 671

9 Conclusion 672

Continual learning holds the vital importance of 673

allowing large language models to be regularly and 674

efficiently updated to remain up-to-date with the 675

constantly changing human knowledge, language 676

and values. We showcase the complex, multi-stage 677

process of continual learning in LLMs, encompass- 678

ing continual pre-training, instruction tuning, and 679

alignment, a paradigm more intricate than those 680

used in continual learning on smaller models. As 681

the first survey of its kind to thoroughly explore 682

continual learning in LLMs, this paper categorizes 683

the updates by learning stages and information 684

types, providing a detailed understanding of how to 685

effectively implement continual learning in LLMs. 686

With a discussion of major challenges and future 687

work directions, our goal is to provide a comprehen- 688

sive account of recent developments in continual 689

learning for LLMs, shedding light on the develop- 690

ment of more advanced language models. 691
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10 Limitations692

Given the broader research on continual updates of693

LLMs, we only include methods that require contin-694

ual parameter updates through training processes.695

Methods like augmented models (e.g., retrieval-696

augmented generation or model fusion), which also697

enhance models with the latest information, are ex-698

cluded. Additionally, this paper primarily focuses699

on NLP applications, omitting the continual learn-700

ing of foundation models in vision or robotics.701
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A Evaluation Metrics995

A.1 Evaluation for Target Task Sequence996

Continual learning for large language models in-997

volves evaluating the model’s performance over998

a task sequence. Performance can be mea-999

sured by three typical continual learning metrics:1000

(1) average performance; (2) Forward Transfer1001

Rate (FWT), and (3) Backward Transfer Rate1002

(BWT) (Lopez-Paz and Ranzato, 2017; Wu et al.,1003

2022):1004

(1) FWT assesses the impact of knowledge ac-1005

quired from previous tasks on the initial ability to1006

perform a new task, prior to any dedicated training1007

for that new task.1008

FWT =
1

T − 1

T−1∑
i=2

AT,i − b̃i (1)1009

(2) BWT measures catastrophic forgetting by1010

comparing a model’s performance on old tasks be-1011

fore and after learning new ones.1012

BWT =
1

T − 1

T−1∑
i=1

AT,i −Ai,i (2)1013

(3) Average Performance, e.g., the average accu-1014

racy assesses the ability of a model or algorithm to1015

effectively learn from and adapt to a sequence of1016

data streams or tasks over time.1017

Avg. ACC =
1

T

T∑
i=1

AT,i (3)1018

where At,i is the accuracy of models on the test1019

set of ith task after model learning on the tth task1020

and b̃i is the test accuracy for task i at random1021

initialization.1022

A.2 Evaluation for Cross-stage Forgetting1023

Large language models continually trained on dif-1024

ferent stages can experience the issue of uncon-1025

scious forgetting (Lin et al., 2023), which shows1026

that continual instruction tuning can erode the1027

LLM’s general knowledge. Additionally, previ-1028

ous studies (Qi et al., 2023) also demonstrate that1029

the behavior of safely aligned LLMs can be easily1030

affected and degraded by instruction tuning. To1031

quantify these limitations, TRACE (Wang et al.,1032

2023c) proposes to evaluate LLMs by using three1033

novel metrics: General Ability Delta (GAD), In-1034

struction Following Delta (IFD), and Safety Delta1035

(SD):1036

(1) GAD assesses the performance difference of 1037

an LLM on general tasks after training on sequen- 1038

tial target tasks. 1039

GAD =
1

T

T∑
i=1

(RG
t,i −RG

0,i) (4) 1040

(2) IFD assesses the changes of model’s 1041

instruction-following ability after training on se- 1042

quential different tasks. 1043

IFD =
1

T

T∑
i=1

(RI
t,i −RI

0,i) (5) 1044

(3) SD assesses the safety variation of a model’s 1045

response after sequential training. 1046

SD =
1

T

T∑
i=1

(RS
t,i −RS

0,i) (6) 1047

The baseline performance of the initial LLM on the 1048

i-th task is represented by R0,i. After incrementally 1049

learning up to the t-th task, the score on the i-th 1050

task becomes Rt,i. And RG, RI , and RS represent 1051

the performance of LLM on general tasks (assess- 1052

ing the information obtained from pre-training), 1053

instruction-following tasks, and alignment tasks, 1054

respectively. These measure changes in an LLM’s 1055

overall capabilities, adherence to instructions, and 1056

safety after continual learning, going beyond tradi- 1057

tional benchmarks by focusing on maintaining in- 1058

herent skills and aligning with human preferences. 1059
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