

000 001 002 003 004 005 006 007 008 009 010 CARTAN NETWORKS: GROUP THEORETICAL HYPER- BOLIC DEEP LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Hyperbolic deep learning leverages the metric properties of hyperbolic spaces
012 to develop efficient and informative embeddings of hierarchical data. Here, we
013 focus on the solvable group structure of hyperbolic spaces, which follows naturally
014 from their construction as symmetric spaces. This dual nature of Lie groups and
015 Riemannian manifolds allows us to propose a new class of hyperbolic deep learning
016 algorithms where group homomorphisms are interleaved with metric-preserving
017 diffeomorphisms. The resulting algorithms, which we call *Cartan networks*, show
018 promising results on various benchmark datasets and open the way for a novel class
019 of hyperbolic deep learning architectures.

021 1 INTRODUCTION

023 The concept of distance is the core of machine learning and pattern recognition. While much classical
024 machine learning can be recast as learning distances directly from data (e.g. Bishop (2006)), recent
025 developments have pointed out that common data structures, such as trees and graphs, cannot be
026 easily accommodated within Euclidean spaces, thus requiring a more radical rethink of the geometry
027 of data spaces. In this context, the n -dimensional hyperbolic space \mathbb{H}^n has received significant
028 attention as a suitable space in which to embed hierarchically structured data (Nickel & Kiela,
029 2017), spurring a productive line of research combining hyperbolic geometry with various deep
030 learning architectures (Ganea et al., 2018; Chami et al., 2019; Gulcehre et al., 2019; Shimizu et al.,
031 2021; Chen et al., 2022; Peng et al., 2022; Bdeir et al., 2024). These so-called *hyperbolic neural*
032 *networks* have found applications in fields as diverse as neuroscience (Gao et al., 2020), single-cell
033 transcriptomics (Klimovskaia et al., 2020), and recommender systems (Chamberlain et al., 2019).

034 Geometrically \mathbb{H}^n is a n -dimensional hyperboloid, namely the quadric locus $\sum_{i=1}^n X_i^2 - X_{n+1}^2 = -1$
035 in \mathbb{R}^{n+1} . It is also a *coset manifold*, namely the quotient of a Lie Group modulo a maximal Lie
036 subgroup, $\mathbb{H}^n \simeq \text{SO}(1, n)/\text{SO}(n)$, and more specifically a *symmetric space*. The study and classi-
037 fication of symmetric spaces is one of the monumental achievements of the French mathematician
038 Élie Cartan (Cartan, 1926; Helgason, 1962; Magnea, 2002; Fré, 2023). The non-compact symmetric
039 spaces are all metrically equivalent to a corresponding solvable Lie group S of the same dimension, a
040 mathematical result that was discovered and developed in the context of Supergravity Theory (Andri-
041 anopoli et al., 1997b;a; Fré et al., 2007; Alekseevsky, 1975; Cortés, 1996; Alekseevsky et al., 2004),
042 and amply reviewed and systematically reorganized for machine learning applications in Bruzzo et al.
(2025).

043 This result, to our knowledge, is not known so far in the machine learning literature, and has significant
044 algorithmic consequences. The dual nature of group and Riemannian manifold of the hyperbolic
045 space \mathbb{H}^n enables us to construct a deep learning framework based entirely on *intrinsic* geometric
046 operations, where group homomorphisms are interleaved with metric-preserving diffeomorphisms
047 in creating a powerful function approximation machine. Importantly, the nonlinearities naturally
048 arising from group-theoretic exponential and logarithmic maps give flexibility to the framework,
049 which achieves promising results on benchmark datasets when compared with similar-sized standard
050 deep learning architectures.

051 The main contributions of this work are as follows:

052 • We highlight the metric equivalence of the hyperbolic space with a solvable Lie group to
053 exploit the group structure as a tool in architectural design.

054 • We propose a new deep learning architecture where each layer is a solvable Lie group
 055 S_i and where the map from layer i to layer $i + 1$ can be represented as a combination of
 056 homomorphisms from the solvable Lie group S_i to the next one S_{i+1} and the isometries of
 057 S_{i+1} . The construction is general for any symmetric space, and we implement it for the
 058 hyperbolic space \mathbb{H}^n .
 059 • We extensively benchmark these architectures on real and synthetic datasets, showing
 060 competitive or better performance w.r.t. Euclidean and standard hyperbolic neural networks.
 061

062 1.1 PREVIOUS LITERATURE
 063

064 Early works in hyperbolic deep learning focused on hyperbolic embeddings for hierarchical
 065 data. (Nickel & Kiela, 2017) introduced *Poincaré embeddings*, showing superior hierarchical repre-
 066 sentation compared to Euclidean embeddings. Ganea et al. (2018) and subsequent works (Shimizu
 067 et al., 2021; Chen et al., 2022; Bdeir et al., 2024; Peng et al., 2022), extended hyperbolic geometry to
 068 deep learning by developing *hyperbolic neural networks*, using Möbius operations (Ungar, 2009).
 069 Various generalizations of hyperbolic networks have been explored. Convolutional networks (Dai
 070 et al., 2021; Skliar & Weiler, 2023; Ghosh et al., 2024), graph neural networks (Chami et al., 2019),
 071 and attention mechanisms (Gulcehre et al., 2019) hyperbolic variants were introduced to handle
 072 different datasets, as well as methods of dimensionality reduction (Chami et al., 2021; Fan et al.,
 073 2022).

074 Lie groups and Lie algebras are often studied in deep learning for their equivariance properties (Cohen
 075 et al., 2019; Chen et al., 2020; Otto et al., 2024). Architectures based on semisimple Lie algebras have
 076 been introduced under the name Lie Neurons (Lin et al., 2024), focusing on making these networks
 077 adjoint-equivariant.

078 The notion that \mathbb{H}^n is isometric to a Lie group was explored in the context of probability distributions
 079 and Fréchet means by Jaćimović (2025). However, the isometry between symmetric spaces and
 080 solvable groups was not highlighted in full generality, and the knowledge was never applied to the
 081 study of deep learning architectures.

082 2 THEORETICAL PRELIMINARIES
 083

084 We will assume basic knowledge of Lie groups (see Appendix A for a brief introduction).

085 **Solvable groups and Cartan subalgebras.**

086 **Definition 2.1** (Subalgebra commutator). Let $\mathfrak{h}_1, \mathfrak{h}_2$ be two subalgebras of \mathfrak{g} . Their commutator
 087 subalgebra is

$$[\mathfrak{h}_1, \mathfrak{h}_2] := \{[h_1, h_2] \in \mathfrak{g} \mid h_1 \in \mathfrak{h}_1, h_2 \in \mathfrak{h}_2\} \quad (1)$$

088 where $[\cdot, \cdot]$ denotes the Lie bracket of the algebra.

089 **Definition 2.2** (Derived series). Let \mathfrak{g} be a Lie algebra. Its *derived series* is the series

$$\mathfrak{g}^{(0)} = \mathfrak{g}, \quad \mathfrak{g}^{(n+1)} = [\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}] \quad \forall n \in \mathbb{N} \quad (2)$$

090 The derived series is a decreasing sequence of ideals in the algebra.

091 **Definition 2.3** (Solvable algebras). A Lie algebra \mathfrak{g} is *solvable* if its derived series is eventually 0,
 092 that is to say, if

$$\exists n \in \mathbb{N} \text{ s.t. } \mathfrak{g}^{(n)} = 0$$

093 A Lie group is solvable if its Lie Algebra is solvable.

094 In practice, solvable groups are best understood in terms of their matrix representation. In fact,

095 **Theorem 2.1** (Lie's theorem (Humphreys, 1972)). *Let \mathfrak{g} be a solvable subalgebra of the general
 096 linear group \mathfrak{gl}_V . Then there exists a basis of V with respect to which \mathfrak{g} is made of upper trian-
 097 gular matrices.*

098 This theorem shows we can think of solvable groups as upper-triangular matrix Lie groups.

099 **Definition 2.4** (Cartan subalgebras). Let $\mathfrak{g} \subseteq \mathfrak{gl}_n(\mathbb{R})$ be a matrix Lie algebra consisting of upper
 100 triangular matrices. Its *Cartan subalgebra* is the subspace of diagonal matrices.

108 **Symmetric spaces.** Let G be a Lie group and H a normal subgroup, \mathfrak{g} and \mathfrak{h} the corresponding
 109 Lie algebras. A coset manifold G/H is a symmetric space if and only if there is an orthogonal
 110 decomposition of \mathfrak{g} , as a vector space, as follows:

$$112 \quad \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \quad ; \quad \begin{cases} [\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h} \\ [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m} \\ [\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h} \end{cases} \quad 113 \quad 114 \quad 115 \quad (3)$$

116 One interesting class of non-compact symmetric spaces is given by
 117

$$118 \quad 119 \quad \mathcal{M}^{[r, r+p]} = \frac{\mathrm{SO}(r, r+p)}{\mathrm{SO}(r) \times \mathrm{SO}(r+p)}, \quad r > 0, p \geq 0 \quad 120 \quad 121 \quad (4)$$

122 This family of manifolds is easily tractable thanks to the metric equivalence between these and an
 123 appropriate *solvable Lie group*, studied in the context of theoretical physics in Bruzzo et al. (2025),
 124

$$125 \quad \mathcal{M}^{[r, p]} \simeq \mathrm{Exp} [\mathrm{Solv}_{[r, p]}]$$

126 where we denote $\mathrm{Solv}_{[r, p]}$ the solvable Lie algebra of the solvable Lie subgroup $S_{[r, p]} \subset \mathrm{SO}(r, r+p)$
 127 with r Cartan generators. For $r = 1$ we realize the hyperbolic space $\mathbb{H}^{p+1} \simeq \mathcal{M}^{[1, 1+p]}$ (where \simeq
 128 denotes a metric equivalence).
 129

130 **Solvable coordinates of hyperbolic space.** The hyperbolic space \mathbb{H}^n (and all the other non-
 131 compact symmetric spaces) is metrically equivalent to an appropriate solvable Lie group, whose
 132 structure was never used in statistical learning.
 133

$$134 \quad 135 \quad \mathbb{H}^{q+1} \simeq \frac{\mathrm{SO}(1, 1+q)}{\mathrm{SO}(1+q)} = \mathcal{M}^{[1, 1+q]} \simeq \mathrm{Exp} [\mathrm{Solv}_{[1, 1+q]}] \quad 136 \quad 137 \quad (5)$$

138 As this manifold is a Lie group, we will parametrize the manifold with a set of coordinates
 139

$$140 \quad \Upsilon = [\Upsilon_1, \Upsilon_2]^\top = [\Upsilon_1, \Upsilon_{2,1}, \dots, \Upsilon_{2,q}]^\top, \quad 141 \quad (6)$$

142 called the *solvable coordinates* of the manifold (Bruzzo et al., 2025), and we will use them for our
 143 formulation of hyperbolic learning. We separate the first component Υ_1 (which we will call the
 144 Cartan coordinate since it corresponds to the unique generator of the Cartan subalgebra) from the
 145 others (which we call the paint coordinates following Bruzzo et al. (2025)). This choice of coordinate
 146 system for the hyperbolic space is convenient for many reasons discussed throughout this work. A
 147 convenient property of all non-compact symmetric spaces is that they can be easily parametrized by a
 148 single chart with domain \mathbb{R}^n , thus bypassing the numerical problems of the Lorentz and Poincaré
 149 models exposed by Mishne et al. (2023).
 150

151 **Group operation.** The group operation is the matrix multiplication between the solvable group
 152 elements. Given two points $\Upsilon, \Psi \in \mathcal{M}^{[1, q]}$, the group operation is
 153

$$154 \quad \Psi * \Upsilon = \begin{bmatrix} \Upsilon_1 + \Psi_1 \\ \Psi_2 + e^{-\Upsilon_1} \Psi_2 \end{bmatrix} \quad 155 \quad 156 \quad (7)$$

157 Similarly, the inverse element is given by $\Upsilon^{-1} = [-\Upsilon_1, -e^{\Upsilon_1} \Upsilon_2]^\top$. The matrix representative
 158 is expressed in Eq. 23 in Appendix B, alongside a deeper discussion of the solvable coordinates
 159 parametrization, and the identity element is the point $\Upsilon = \mathbf{0}$. The group operations can be expressed
 160 in terms of the non-solvable Poincaré ball coordinates (see Eq. 30 in Appendix B for the transition
 161 function) or other coordinate systems. Appendix C discusses various Riemannian operations in this
 coordinate system, including the distance between points.

162

3 LEARNING IN SYMMETRIC SPACES

163

3.1 GENERAL PRINCIPLES OF CARTAN NETWORKS

164 We propose creating a network whose layers are a sequence of solvable groups $\{S_i\}_{i=1}^N$.165 The map from layer $i - 1$ to layer i is the composition of a group homomorphism with an isometry
166 of the target space. Specifically, each transformation consists of a homomorphism (a map between
167 groups that preserves the group operation):
168

169
$$h_i(W_i) : S_{i-1} \longrightarrow S_i, \quad (8)$$

170 from one solvable Lie group to the next, defined intrinsically by parameters W_i , composed with an
171 isometry (a metric-preserving, and thus distance-preserving, map) acting on S_i :
172

173
$$\varphi_i(\theta_i) : S_i \longrightarrow S_i \quad (9)$$

174 parametrized by θ_i . In the following, we develop the architecture in the case of the hyperbolic space,
175 so $S_i \simeq \mathcal{M}^{[1, 1+q_i]}$.
176Figure 1: **Structure of Cartan network (binary classification).** This figure illustrates the composition of the proposed Cartan networks between symmetric spaces. By alternating homomorphisms and isometries, our networks parametrize a larger class of maps while only using geometrically motivated functions.201

3.2 MAPS BETWEEN HYPERBOLIC SPACES

202 **Isometries.** The set of isometries of $\mathcal{M}^{[1, 1+q]}$ into itself is given by $\text{SO}(1, 1+q)$ (these are
203 parameterized in terms of the Poincarè ball coordinates by Jaćimović (2025); Jaćimović & Crnkić
204 (2025). These isometries are a composition of three distinct isometries, namely the *paint rotation* (an
205 orthogonal transformation of the paint coordinates Υ_2), the *group operation*, and the *fiber rotation*,
206 which mixes Cartan and paint coordinates. Of these, only the paint rotation is also a homomorphism
207 of the group into itself. Refer to Appendix D for a detailed derivation.208 A general isometry $\varphi \in \text{Iso}(\mathcal{M}^{[1, 1+q]})$ can be parametrized as
209

210
$$\varphi(\Upsilon; Q, \beta, u) = R_u \left(\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} * \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} \Upsilon_1 \\ \Upsilon_2 \end{bmatrix} \right), \quad (10)$$

211 where $Q \in \text{SO}(q)$, $\beta \in \mathcal{M}^{[1, 1+q]}$, $u \in \mathbb{S}^{q+1}$ is a parameter on the n-sphere, and the fiber rotation
212 R_u is given by
213

216

217

$$R_u(\Upsilon) = \begin{bmatrix} -\log\left(-\frac{1}{2}(e^{\Upsilon_1}(1 + \|\Upsilon_2\|^2) + e^{-\Upsilon_1})(1 + u_0) + e^{-\Upsilon_1}u_0 - \Upsilon_2 \cdot u'\right) \\ \Upsilon_2 - \left(\frac{\Upsilon_2 \cdot u'}{1 + u_0} + \frac{1}{2}(e^{\Upsilon_1}(1 + \|\Upsilon_2\|^2) - e^{-\Upsilon_1})\right)u' \end{bmatrix}, \quad (11)$$

222

223 having defined $u = [u_0, u_1, \dots, u_q]^\top \in \mathbb{S}^{q+1}$, and $u' = [u_1, \dots, u_q]^\top$.

224

Solvable group homomorphisms. The set of group homomorphisms is given by the linear maps between the corresponding solvable algebras that preserve the group structure. These are not linear in the coordinates in general, but the equations simplify in the $r = 1$ case. This class of transformations is the primary innovation of our architectures. It is important to note that, since the metric is left-invariant but not bi-invariant, the Riemannian logarithmic map and the Lie logarithmic map are not equivalent. If they were, our formulation would reduce to the same set of functions introduced by Ganea et al. (2018).

Theorem 3.1. *Let $h \in \text{Hom}(\mathcal{M}^{[1, 1+q]}, \mathcal{M}^{[1, 1+p]})$, $p, q \geq 1$, $\dim(h(\mathcal{M}^{[1, 1+q]})) > 1$. Then there exist a unique $W \in \mathbb{R}^{p \times q}$ and $b \in \mathbb{R}^p$ such that*

234

$$h(\Upsilon) = \begin{bmatrix} \Upsilon_1 \\ W\Upsilon_2 + (1 - e^{-\Upsilon_1})b \end{bmatrix}. \quad (12)$$

Conversely, for every pair $(W, b) \in \mathbb{R}^{p \times q} \times \mathbb{R}^p$, the map h defined by equation 12 is a homomorphism.

238

The proof of the theorem is in Appendix E, and relies on defining the homomorphisms on the algebra generators. Notice that we can also use a non-square W to change the manifold dimension.

241

General linear layer. We want to define the linear layer as a composition of homomorphisms from a solvable group to the next one and isometries from the group to itself, as discussed in Sec. 2. By combining Eq. 10-12, we find the hyperbolic linear layer as the transformation $f_{\text{lin}} : \mathcal{M}^{[1, 1+q]} \rightarrow \mathcal{M}^{[1, 1+r]}$ given by

246

$$f_{\text{lin}}(\Upsilon) = R_u \left(\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} * \begin{bmatrix} \Upsilon_1 \\ W\Upsilon_2 + b \end{bmatrix} \right), \quad (13)$$

where $W \in \mathbb{R}^{r \times q}$, $b \in \mathbb{R}^r$, $\beta \in \mathcal{M}^{[1, 1+r]}$ and $u \in \mathbb{S}^{r+1}$, which are the parameters that are learned during training. Notice that the orthogonal matrix Q of Eq. 10 has been absorbed in the matrix W .

Our formulation of hyperbolic layers is different from previous iterations (Ganea et al., 2018; Shimizu et al., 2021), which rely on Riemannian logarithmic and exponential maps. The hyperbolic linear layers are usually defined as

255

256

$$y = \exp_b(P_{\mathbf{0} \rightarrow b} W \log_{\mathbf{0}}(x)), \quad (14)$$

258

where $\exp_b : T_b \mathcal{M} \rightarrow \mathcal{M}$ is the Riemannian exponential map in the point $b \in \mathcal{M}^{[1, 1+q]}$, $\log_{\mathbf{0}} : \mathcal{M} \rightarrow T_{\mathbf{0}} \mathcal{M}$ is the Riemannian logarithmic map in the origin, $P_{\mathbf{0} \rightarrow b}$ is the parallel transport from $\mathbf{0}$ to b , and $W \in \mathbb{R}^{(q+1) \times (q+1)}$.

261

As any $\varphi \in \text{Iso}(\mathcal{M}^{[1, 1+q]})$ can be written (from the Cartan–Ambrose–Hicks theorem (Cheeger, 1975) through the Riemannian exponential map substituting W with $Q \in \text{SO}(1+q)$ in Eq. 14, we find that existing architectures parametrize all the isometries of the space. However, since W is a generic linear operation on the coordinates, it is a generic nonlinear operation on the algebra, and hence breaks the symmetries between layers.

266

Each application of a hyperbolic linear layer (Eq. 13) mixes the Cartan coordinate and the fiber coordinates through the fiber rotation. The first coordinate of Eq. 11 is then exponentiated in the following layer, adding nonlinearities to the expression, so stacking hyperbolic layers increases expressivity even without the addition of an activation function.

270 3.3 HYPERBOLIC SOFTMAX
271

272 **Hyperbolic hyperplanes.** In analogy to Euclidean space, we consider the set of geodesically
273 complete submanifolds that separate $\mathcal{M}^{[1, 1+q]}$ into two halves. These manifolds are the same
274 subspaces as the Poincaré hyperplanes of Ganea et al. (2018); Shimizu et al. (2021) and are introduced
275 as geodesically convex hulls in Chami et al. (2021). They are given by all possible isometric
276 immersions of $\mathcal{M}^{[1, q]}$ into $\mathcal{M}^{[1, 1+q]}$.

277 The general equation for these hyperplanes in solvable coordinates is as follows:
278

$$279 \quad H_{\alpha, \beta, \mathbf{w}} = \{\Upsilon \in \mathcal{M}^{[1, 1+q]} \text{ s.t.} \\ 280 \quad h_{\alpha, \beta, \mathbf{w}}(\Upsilon) = \alpha e^{-\Upsilon_1} + \langle \mathbf{w}, \Upsilon_2 \rangle + \beta e^{\Upsilon_1} (1 + \|\Upsilon_2\|^2) = 0 \quad (15) \\ 281 \quad \text{with: } \|\mathbf{w}\|^2 - 4\alpha\beta > 0, \quad \alpha, \beta \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^q \\ 282 \\ 283$$

284 where $\langle \cdot, \cdot \rangle$ is the Euclidean scalar product. For details on the derivation, refer to Appendix F.
285

287 Figure 2: **Hyperplanes in $\mathcal{M}^{[1,2]} \simeq \mathbb{H}^n$.** This figure illustrates an example of the hyperplanes that
288 divide the hyperbolic space. For $q = 1$, they correspond to the set of all the geodesics. (a) In the
289 Poincarè disk model, the geodesics consist of all arcs of Euclidean circles orthogonal to the disk
290 boundary, plus all the disk diameters. (b) Geodesics obtained by applying the isometry given by left
291 multiplication (Eq. 7) to the whole space. (c) Geodesics obtained by applying a fiber rotation (Eq. 11)
292 (d). The same geodesics as b) in solvable coordinates.
293
294

303 304 **Logistic regression layer.** The general formula for logistic regression in hyperbolic space is
305

$$306 \quad p(y = 1 | \Upsilon) = \hat{y}(\Upsilon) = \sigma(h_{\alpha, \beta, \mathbf{w}}(\Upsilon)). \quad (16) \\ 307 \\ 308$$

309 The distance of a point Υ from a generic separator is
310

$$311 \quad d(\Upsilon, H_{\alpha, \beta, \mathbf{w}}(\Upsilon)) = \frac{1}{2} \text{arccosh} \left(1 + 2 \frac{h_{\alpha, \beta, \mathbf{w}}^2(\Upsilon)}{\|\mathbf{w}\|^2 - 4\alpha\beta} \right), \quad (17) \\ 312 \\ 313$$

314 where the distance from a subspace \mathcal{S} is defined as $d(\Upsilon, \mathcal{S}) = \min_{\Psi \in \mathcal{S}} d(\Upsilon, \Psi)$. The argument of the
315 sigmoid in eq. 16 is then a nonlinear monotonic function of the distance between each point and
316 the hyperplane (notice the subtle difference from the Euclidean case). Similarly, when classifying
317 between K classes in hyperbolic space, we can define the analogous hyperbolic softmax regression as
318

$$320 \quad p(y = k | \Upsilon) = \frac{\exp(h_k(\Upsilon))}{\sum_{j=1}^K \exp(h_j(\Upsilon))}, \quad (18) \\ 321 \\ 322$$

323 where $h_j(\Upsilon) = h_{\alpha_j, \beta_j, \mathbf{w}_j}(\Upsilon)$.

324 3.4 HYPERBOLIC CARTAN NETWORKS
325326 We construct the simplest hyperbolic neural network by stacking L hyperbolic linear layers such that
327

328
$$h^\ell = R_{\mathbf{u}^\ell} \left(\beta^\ell * \begin{bmatrix} h_1^{\ell-1} \\ W^\ell h_2^{\ell-1} + \mathbf{b}^\ell \end{bmatrix} \right), \quad (19)$$

330

331 and predicting on the L -th layer representations through the logistic layer (binary classification) or
332 the logistic softmax (multiclass classification).
333334 We also propose that the initial embedding of the starting data points $\mathbf{x}_i \in \mathbb{R}^d$ into the first hyperbolic
335 layer $\mathcal{M}^{[1, 1+d]}$ is as follows:
336

337
$$h^1 = \begin{bmatrix} 0 \\ \mathbf{x} \end{bmatrix}. \quad (20)$$

338

339 Notice that by setting $\mathbf{u}^\ell = \mathbf{0}$, $\beta_1^\ell = 0 \forall \ell$ this architecture becomes a stack of Euclidean linear
340 layers.
341342 **Universal approximation properties.** A composition of Cartan layers is not a universal approxi-
343 mator: its expressivity is at most polynomial in the input variables, with order depending on network
344 depth. In contrast to Euclidean linear layers, however, stacking these hyperbolic layers creates an
345 increasingly more expressive function class.
346347 Given a pointwise nonlinearity $\sigma : \mathbb{R} \rightarrow \mathbb{R}$, we can apply it to our coordinates by
348

349
$$\sigma(\Upsilon) = \begin{bmatrix} \Upsilon_1 \\ \sigma(\Upsilon_2) \end{bmatrix}. \quad (21)$$

350

351 Cartan networks with such nonlinearities are universal approximators. In fact, from Eq. 19, the choice
352 of $\beta_1 = 0$, $\mathbf{u} = (1, 0, \dots, 0)$ removes all nonlinearities deriving from the hyperbolic nature of the
353 layers. For this particular choice of parameters, the hyperbolic linear layer reverts to a fully connected
354 Euclidean linear layer in the fiber coordinates, so the functional class of Cartan networks includes that
355 of Euclidean neural networks, and hence inherits all the universal approximation results applicable to
356 linear layers with activation functions. This application of nonlinearities is conceptually different
357 from iterations of hyperbolic networks that applied nonlinearities to the tangent spaces (Peng et al.,
358 2022; Fan et al., 2022).
359360 **Architectural flexibility.** Cartan networks preserve the architectural flexibility of other hyperbolic
361 architectures, as it is possible to impose the convolutional bias at the homomorphism level, thus
362 achieving a function class with translation invariance that still extends the Euclidean convolutional
363 neural network, as detailed in Appendix G. Using this grading of coordinates, it is possible to
364 implement layers incorporating other architectural biases, such as batch normalization, dropout,
365 and pooling. Much like activation functions, a naive but effective approach we take in this paper
366 is to perform these operations by applying them only to the fiber coordinates. Better versions of
367 these operations, accounting for the geometry of the space, could be developed by reiterating their
368 design from their functional principles, in the solvable manifold (e.g., the running mean of batch
369 normalization realized with geodesic averages).
370371 These architectures can then be optimized on traditional loss functions (such as MSE and categorical
372 cross-entropy) using Riemannian SGD or Adam (Bonnabel, 2013; Becigneul & Ganea, 2019). We
373 will discuss optimization in depth in Appendix H.
374375 4 RESULTS
376377 We compare the performance of hyperbolic Cartan networks trained on real datasets with that
378 of traditional neural networks and other hyperbolic neural networks (the datasets and models are
379 discussed in Appendices I.1 and I.2). Notice that the comparison is warranted given that an Euclidean
380

378 Table 1: Accuracy on real-world datasets (mean \pm std, $n = 5$)
379

380 Problem	381 Cartan	382 Euclidean	383 Hyperbolic++	384 Fully Hyperbolic	385 Poincaré
Cifar10	52.6 ± 0.3	52.6 ± 0.5	52 ± 1	52.4 ± 0.8	52.5 ± 0.3
FMNIST	89.3 ± 0.3	89.3 ± 0.1	87.9 ± 0.5	89.2 ± 0.2	89.4 ± 0.2
KMNIST	90.10 ± 0.07	90.0 ± 0.1	89 ± 1	90.29 ± 0.10	90.2 ± 0.2
MNIST	98.27 ± 0.02	98.27 ± 0.02	98.0 ± 0.1	98.14 ± 0.04	98.19 ± 0.06

386
387 fully-connected layer ($Wx + b$) from n to m neurons has $m(n+1)$ parameters, while a Lie hyperbolic
388 linear layer $\mathcal{M}^{[1, n]} \rightarrow \mathcal{M}^{[1, m]}$ has $m(n+1) - 1$ parameters. Given this, we compare networks
389 with the same number of layers and the same size. A brief comparison of the number of operations in
390 Cartan layers versus Euclidean ones is provided in Appendix I.3.

391 To characterize the performance of the proposed architecture, we train fully-connected Cartan
392 networks on the real-world classification datasets, varying depth (1-4 layers) and hidden layer size
393 (20, 40, 100, and 200 neurons), with and without nonlinearities, comparing their test accuracy to
394 Euclidean and different hyperbolic networks. The best accuracies across configurations for these tasks
395 are shown in Tab. 1, while training parameters and computation time are discussed in Appendices I.4
396 and I.5. We underline the model with the highest performance, and any others whose results are
397 statistically equivalent to it. If no model is underlined, it means that no statistically significant best
398 performer could be identified. Our proposed architecture achieves performance comparable to the
399 alternatives across a wide range of hyperparameters, matching or surpassing the Euclidean variant.

400 To demonstrate the capacity of our framework to generalize to convolutional architectures, we test
401 our architecture on a hyperbolic variant of AlexNet (Krizhevsky et al., 2012), where we replace
402 all layers with their Cartan counterparts. This construction mirrors the original AlexNet design in
403 terms of depth, filter sizes, and overall structure, ensuring that any performance differences can
404 be attributed to the shift from Euclidean to hyperbolic representations. We discuss the technical
405 details in more depth in Appendix G. We then benchmark this Cartan AlexNet against the standard
406 Euclidean AlexNet on some real-world datasets, and we summarize the results in Tab. 2. The results
407 show that adding hyperbolic flexibility to established architectures can improve their performance on
408 moderately complex tasks. We additionally test ResNet and its hyperbolic variant, where the group
409 operation takes the place of the residual connection, on the TinyImagenet dataset.

410 Table 2: Test accuracy (%) for AlexNet and ResNet (mean \pm std, $n_{\text{runs}} = 5$)
411

412 Problem	413 Alexnet	414 H-Alexnet
CelebA	77.8 ± 0.5	77.4 ± 0.7
Cifar10	88.42 ± 0.09	88.4 ± 0.5
Cifar100	54.4 ± 0.3	59.5 ± 0.8
TinyImagenet	38.1 ± 0.7	44.6 ± 0.3
418 Problem	419 ResNet18	420 H-ResNet18
TinyImagenet	61.4 ± 0.2	61.5 ± 0.1

421
422

5 DISCUSSION

423

424 This work introduced *Cartan networks*, a novel hyperbolic deep learning architecture based entirely
425 on intrinsic group-theoretical and Riemannian operations. The long-term goal of this new theoretical
426 construction is to develop a framework for machine learning algorithms that is both expressive and
427 mathematically consistent, resulting in models that can be more easily analyzed and interpreted.

428 Cartan networks complement the view of hyperbolic neural networks as a sequence of exponential
429 and logarithmic maps (Ganea et al., 2018). Our architecture exploits the dual nature of hyperbolic
430 spaces as solvable groups and Riemannian manifolds, alternating isometries and homomorphisms in
431 its layers, both intrinsically defined and geometrically motivated operations.

432 The experiments performed, although not exhaustive, demonstrate that the proposed architecture is
 433 competitive with comparable Euclidean and hyperbolic architectures on a range of real and synthetic
 434 tasks. The performance of hyperbolic convolutional architectures demonstrates the approach’s
 435 flexibility and scalability. These results are particularly encouraging because the hyperbolic space is
 436 the simplest representative of the family of non-compact symmetric spaces; exploring more complex
 437 manifolds and investigating how to specialize existing layers to hyperbolic geometry are major
 438 directions for future research.

439 While our results demonstrate the potential of the proposed framework, several limitations must
 440 be acknowledged. First, due to resource constraints, our experiments were conducted on a limited
 441 number of datasets and with a relatively narrow range of hyperparameter configurations. Secondly,
 442 the architectural modifications introduced to incorporate group-theoretical structure lead to increased
 443 computational overhead. While this is somewhat inevitable given the high optimization of standard
 444 neural network software, improving the computational performance of our approach is an important
 445 step to ensure its adoption.

447 6 REPRODUCIBILITY STATEMENT

449 The code used for the experiments in this work is based on PyTorch, an open-source deep learning
 450 Python library (Paszke et al., 2019). Optimization routines, particularly those involving geometry-
 451 aware methods, utilize the Geoopt library (Kochurov et al., 2020). The entire code to reproduce all
 452 the results shown in this article is available at

453 <https://github.com/CartanNetworks/CartanNetworks>

455 REFERENCES

457 Dmitri V. Alekseevsky. Classification of quaternionic spaces with a transitive solvable group of
 458 motions. *Mathematics of the USSR-Izvestiya*, 9:297–339, 1975.

459 Dmitri V. Alekseevsky, Vicente Cortés, Chandrashekhar Devchand, and Antoine Van Proeyen. Polyvec-
 460 tor superPoincare algebras. *Communications in Mathematical Physics*, 253:385–422, 2004.

462 Laura Andrianopoli, Riccardo D’Auria, Sergio Ferrara, Pietro G. Fré, Ruben Minasian, and Mario
 463 Trigiante. Solvable Lie algebras in type IIA, type IIB and M-theories. *Nuclear Physics B*, 493(1-2):
 464 249–277, 1997a.

465 Laura Andrianopoli, Riccardo D’Auria, Sergio Ferrara, Pietro G. Fré, and Mario Trigiante. R-R
 466 scalars, U-duality and solvable Lie algebras. *Nuclear Physics B*, 496(3):617–629, 1997b.

468 Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully Hyperbolic Convolutional Neural
 469 Networks for Computer Vision. In *International Conference on Learning Representations*. Curran
 470 Associates, Inc., 2024.

471 Gary Becigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization Methods. In
 472 *International Conference on Learning Representations*. Curran Associates, Inc., 2019.

474 Christopher Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

475 Silvère Bonnabel. Stochastic Gradient Descent on Riemannian Manifolds. *IEEE Transactions on
 476 Automatic Control*, 58(9):2217–2229, 2013.

478 Ugo Bruzzo, Pietro G. Fré, and Mario Trigiante. The Paint Group Tits Satake Theory of Hyperbolic
 479 Symmetric Spaces: the distance function, paint invariants and discrete subgroups. *arXiv preprint
 480 arXiv:2503.07626 [math.DG]*, 2025.

481 Élie Cartan. Sur une classe remarquable d’espaces de Riemann. *Bulletin de la Société Mathématique
 482 de France*, 54:214–264, 1926.

484 Benjamin Paul Chamberlain, Stephen R. Hardwick, David R. Wardrobe, Fabon Dzogang, Fabio
 485 Daolio, and Saúl Vargas. Scalable Hyperbolic Recommender Systems. *arXiv preprint
 arXiv:1902.08648 [cs.IR]*, 2019.

486 Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic Graph Convolutional
 487 Neural Networks. In *Advances in Neural Information Processing Systems*, volume 32. Curran
 488 Associates, Inc., 2019.

489 Ines Chami, Albert Gu, Dat P. Nguyen, and Christopher Re. HoroPCA: Hyperbolic Dimensionality
 490 Reduction via Horospherical Projections. In *Proceedings of the 38th International Conference on
 491 Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 1419–1429,
 492 2021.

493 Jeff Cheeger. Compact Manifolds of Nonpositive Curvature. In *Comparison Theorems in Riemannian
 494 Geometry*, volume 9 of *North-Holland Mathematical Library*, pp. 154–167. Elsevier, 1975.

495 Shuxiao Chen, Edgar Dobriban, and Jane H. Lee. A Group-Theoretic Framework for Data Augmen-
 496 tation. *Journal of Machine Learning Research*, 21(245):1–71, 2020.

497 Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie
 498 Zhou. Fully Hyperbolic Neural Networks. In *Proceedings of the 60th Annual Meeting of the
 499 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5672–5686. Association
 500 for Computational Linguistics, 2022.

501 Taichi Clanuwat, Marc Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Ku Yamamoto, and David Ha.
 502 Deep learning for classical Japanese literature. *arXiv preprint arXiv:1812.01718 [cs.CV]*, 2018.

503 Taco S. Cohen, Mario Geiger, and Maurice Weiler. A General Theory of Equivariant CNNs on
 504 Homogeneous Spaces. In *Advances in Neural Information Processing Systems*, volume 32. Curran
 505 Associates, Inc., 2019.

506 Vicente Cortés. Alekseevskian spaces. *Differential Geometry and its Applications*, 6(2):129–168,
 507 1996.

508 Jindou Dai, Yuwei Wu, Zhi Gao, and Yunde Jia. A Hyperbolic-to-Hyperbolic Graph Convolutional
 509 Network. In *2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 510 pp. 154–163, 2021.

511 Manfredo P. do Carmo. *Riemannian Geometry*. Mathematics: Theory & Applications. Birkhäuser,
 512 1992.

513 Xiran Fan, Chun-Hao Yang, and Baba C. Vemuri. Nested hyperbolic spaces for dimensionality
 514 reduction and hyperbolic nn design. In *2022 IEEE/CVF Conference on Computer Vision and
 515 Pattern Recognition (CVPR)*, pp. 356–365, 2022.

516 Pietro G. Fré. *Gravity, a Geometrical Course*, volume 1, 2. Springer Science & Business Media,
 517 2012.

518 Pietro G. Fré. *Discrete, Finite and Lie Groups*. De Gruyter, 2023.

519 Pietro G. Fré, Floriana Gargiulo, and Ksenya Rulik. Cosmic billiards with painted walls in non-
 520 maximal supergravities: a worked out example. *Nuclear Physics B*, 737(1):1–48, 2006.

521 Pietro G. Fré, Floriana Gargiulo, Jan Rosseel, Ksenya Rulik, Mario Trigiante, and Antoine
 522 Van Proeyen. Tits-Satake projections of homogeneous special geometries. *Classical and Quantum
 523 Gravity*, 24:27–78, 2007.

524 Octavian-Eugen Ganea, Gary Becigneul, and Thomas Hofmann. Hyperbolic Neural Networks. In
 525 *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018.

526 Siyuan Gao, Gal Mishne, and Dustin Scheinost. Poincaré Embedding Reveals Edge-Based Functional
 527 Networks of the Brain. In *Medical Image Computing and Computer Assisted Intervention*, pp.
 528 448–457. Springer International Publishing, 2020.

529 Sagar Ghosh, Kushal Bose, and Swagatam Das. On the Universal Statistical Consistency of Expansive
 530 Hyperbolic Deep Convolutional Neural Networks. *arXiv preprint arXiv:2411.10128 [stat.ML]*,
 531 2024.

540 Robert Gilmore. *Lie groups, Lie algebras, and some of their applications*. Dover Publications, 2016.
 541

542 Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
 543 Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
 544 Hyperbolic Attention Networks. In *International Conference on Learning Representations*. Curran
 545 Associates, Inc., 2019.

546 Brian C. Hall. *Lie Groups, Lie Algebras, and Representations: An Elementary Introduction*, volume
 547 222 of *Graduate Texts in Mathematics*. Springer International Publishing, 2015.

548

549 Sigurdur Helgason. *Differential geometry and symmetric spaces*. Academic press, 1962.

550 James E. Humphreys. Semisimple Lie Algebras. In *Introduction to Lie Algebras and Representation
 551 Theory*, pp. 15–41. Springer, 1972.

552

553 Vladimir Jaćimović. A group-theoretic framework for machine learning in hyperbolic spaces. *arXiv
 554 preprint arXiv:2501.06934 [cs.LG]*, 2025.

555

556 Vladimir Jaćimović and Aladin Crnkić. Clustering in hyperbolic balls. *arXiv preprint
 557 arXiv:2501.19247 [cs.LG]*, 2025.

558

559 Anna Klimovskaia, David Lopez-Paz, Léon Bottou, and Maximilian Nickel. Poincaré maps for
 560 analyzing complex hierarchies in single-cell data. *Nature Communications*, 11(1):2966, 2020.

561

562 Shoshichi Kobayashi and Katsumi Nomizu. *Foundations of Differential Geometry*, volume 2. Wiley,
 563 1963.

564

565 Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian Optimization in PyTorch.
 566 *arXiv preprint arXiv:2005.02819 [cs.CG]*, 2020.

567

568 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 569 Technical report, University of Toronto, 2009.

570

571 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
 572 volutional Neural Networks. In *Advances in Neural Information Processing Systems*, volume 25.
 573 Curran Associates, Inc., 2012.

574

575 Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

576

577 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 578 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

579

580 Tzu-Yuan Lin, Minghan Zhu, and Maani Ghaffari. Lie Neurons: Adjoint-Equivariant Neural
 581 Networks for Semisimple Lie Algebras. In *Proceedings of the 41st International Conference on
 582 Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 30529–30545,
 583 2024.

584

585 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face Attributes in the Wild.
 586 In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, pp. 3730–3738,
 587 2015.

588

589 Ulrika Magnea. An introduction to symmetric spaces. *arXiv preprint arXiv:cond-mat/0205288*, 2002.

590

591 Gal Mishne, Zhengchao Wan, Yusu Wang, and Sheng Yang. The Numerical Stability of Hyperbolic
 592 Representation Learning. In *Proceedings of the 40th International Conference on Machine
 593 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 24925–24949, 2023.

594

595 Maximillian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Representa-
 596 tions. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 597 2017.

598

599 Samuel E. Otto, Nicholas Zolman, J. Nathan Kutz, and Steven L. Brunton. A Unified Framework to
 600 Enforce, Discover, and Promote Symmetry in Machine Learning. *arXiv preprint arXiv:2311.00212
 601 [cs.LG]*, 2024.

594 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 595 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 596 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 597 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
 598 Deep Learning Library. In *Advances in Neural Information Processing Systems*, volume 32. Curran
 599 Associates, Inc., 2019.

600 Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
 601 Deep Neural Networks: A Survey. *IEEE Transactions on Pattern Analysis and Machine Intelli-*
 602 *gence*, 44(12):10023–10044, 2022.
 603

604 Ian Roberts. Hyptorch: Suite of hyperbolic neural networks in pytorch, 2025. URL <https://pypi.org/project/hyptorch/>.
 605

606 Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In *Inter-607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 20*

648 are the solvable coordinates, \mathbb{I}_q is the identity matrix of size q , and $|\cdot|$ is the Euclidean norm. Group
649 operation is given by matrix multiplication:
650

$$651 \quad \mathbb{L}(\Psi * \Upsilon) = \mathbb{L}(\Psi) \cdot \mathbb{L}(\Upsilon). \quad (25)$$

653 In the upper-triangular representation, the matrices preserve the Lorentz metric
654

$$655 \quad \eta_j^i = \delta_{i,n-j}, \quad i, j = 1, \dots, n. \quad (26)$$

656 In these coordinates, by left-transport of the metric induced on the solvable Lie algebra at the origin
657 by the Einstein metric of the symmetric space, we find
658

$$659 \quad g_{1,q}(\Upsilon) = \begin{bmatrix} 1 + |\Upsilon_2|^2 & \Upsilon_2^\top \\ \Upsilon_2 & \mathbb{I}_q \end{bmatrix}. \quad (27)$$

661 Notice that in these coordinates, the volume element is constant:
662

$$663 \quad \sqrt{\det g_{1,q}(\Upsilon)} = 1. \quad (28)$$

665 **Transition to the Poincaré Ball coordinates.** In this section, we provide the transition function
666 from the solvable coordinates to the Poincaré Ball coordinates, namely the projective off-diagonal
667 coordinates of Gilmore (2016) and Equation (5.2.43) of Fré (2012). Given a point in \mathbb{H}^{q+1} labeled
668 Poincaré ball coordinates \mathbf{x} , the same point is identified by a set of solvable coordinates Υ related to
669 \mathbf{x} in the following way. First, we split the coordinates as follows:
670

$$671 \quad \mathbf{x} = [x_1, \mathbf{x}_2]^\top = [x_1, x_{2,1}, \dots, x_{2,q}]^\top. \quad (29)$$

673 Then, the map from the solvable parametrization to the point in the Poincaré ball is given by
674

$$675 \quad \begin{cases} x_1 = 1 - \frac{1 + e^{-\Upsilon_1}}{1 + \cosh N(\Upsilon)} \\ \mathbf{x}_2 = \frac{\Upsilon_2}{1 + \cosh N(\Upsilon)} \end{cases} \quad (30)$$

680 APPENDIX C RIEMANNIAN OPERATIONS IN SOLVABLE COORDINATES

682 **Distance between points.** Given $\Upsilon \in \mathcal{M}^{[1, 1+q]}$, its norm is
683

$$684 \quad N(\Upsilon) = \text{arccosh} \left(\frac{1}{2} (e^{-\Upsilon_1} + e^{\Upsilon_1} (1 + \|\Upsilon_2\|^2)) \right). \quad (31)$$

687 Then, for $\Upsilon, \Psi \in \mathcal{M}^{[1, q]}$, their distance is given by $d(\Upsilon, \Psi) = N(\Psi^{-1} * \Upsilon)$.
688

689 **Vector transport.** The group operation on $\mathcal{M}^{[1, 1+q]}$ naturally induces a notion of transport. Specif-
690 ically, the left group action $L_{\Psi * \Upsilon^{-1}}$ defines a diffeomorphism $dL_{\Psi * \Upsilon^{-1}} : T_\Upsilon \mathcal{M} \rightarrow T_\Psi \mathcal{M}$ that acts
691 on a tangent vector $\mathbf{v} \in T_\Upsilon \mathcal{M}$ as
692

$$693 \quad dL_{\Psi * \Upsilon^{-1}}(\mathbf{v}) = \begin{bmatrix} v_1 \\ \mathbf{v}_2 - v_1(\Psi_2 - \Upsilon_2) \end{bmatrix}. \quad (32)$$

696 **Riemannian logarithmic map.** In general, the Riemannian logarithmic map can be retrieved from
697 the geodesic distance equation from the following formula (do Carmo, 1992):
698

$$700 \quad \nabla_{R, \Psi}(d^2(\Upsilon, \Psi)) = -2 \log_\Psi \Upsilon, \quad (33)$$

701 where $\nabla_R f = g^{-1} df$ denotes the Riemannian gradient.

702 In solvable coordinates, then,
 703

$$704 \quad 705 \quad \log_0(\Upsilon) = \frac{N(\Upsilon)}{\sinh N(\Upsilon)} \begin{bmatrix} \cosh N(\Upsilon) - e^{-\Upsilon_1} \\ \Upsilon_2 \end{bmatrix}. \quad 706 \quad (34)$$

707 At a general point $\Psi \in \mathcal{M}$, we can also use the left-invariance to compute the logarithmic map. That
 708 is, we first translate to Ψ the origin, apply \log_0 , and then use the inverse parallel transport to bring
 709 the result back to the tangent space at Ψ :

$$711 \quad \log_\Psi(\Upsilon) = dL_{\Psi*0}^{-1}(\log_0(\Psi^{-1} * \Upsilon)). \quad 712 \quad (35)$$

713 **Geodesics.** The geodesic can be computed with the general method described in Bruzzo et al.
 714 (2025). Given a tangent vector $\mathbf{v} = \{v_1, v_2\} \in T_0 \mathcal{M}$ and its norm $\|\mathbf{v}\| := \sqrt{\sum_i v_i^2}$, the formula for
 715 the geodesics from the origin is

$$717 \quad 718 \quad \gamma_0(\mathbf{v}, t) = \begin{bmatrix} -\log \left(\cosh(\|\mathbf{v}\| t) - \frac{v_1}{\|\mathbf{v}\|} \sinh(\|\mathbf{v}\| t) \right) \\ \frac{v_2}{\|\mathbf{v}\|} \sinh(\|\mathbf{v}\| t) \end{bmatrix}, \quad 719 \quad 720 \quad 721 \quad (36)$$

722 with $t \in [0, 1]$.

723 Then the geodesic between points $\Upsilon, \Psi \in \mathcal{M}^{[1, 1+q]}$ is obtained by applying the logarithmic map
 724 \log_0 to $\Upsilon * \Psi^{-1}$, tracing the geodesic γ_0 , and translating back using the group action:

$$726 \quad \gamma_{\Psi \rightarrow \Upsilon}(t) = \Psi * \gamma_0(t, \log_0(\Psi^{-1} * \Upsilon)). \quad 727 \quad (37)$$

728 **Exponential Riemannian map.** From Eq. 36, we find that the exponential map from the origin is

$$731 \quad 732 \quad \exp_0(\mathbf{v}) = \gamma_0(\mathbf{v}, t=1) = \begin{bmatrix} -\log \left(\cosh(\|\mathbf{v}\|) - \frac{v_1}{\|\mathbf{v}\|} \sinh(\|\mathbf{v}\|) \right) \\ \frac{v_2}{\|\mathbf{v}\|} \sinh(\|\mathbf{v}\|) \end{bmatrix}, \quad 733 \quad 734 \quad (38)$$

735 for $\mathbf{v} \in T_0 \mathcal{M}$. The generic exponential map is then

$$737 \quad \exp_\Upsilon(\mathbf{v}) = \Upsilon * \exp_0(dL_{0\Upsilon^{-1}}(\mathbf{v})). \quad 738 \quad (39)$$

739 APPENDIX D ISOMETRIES

741 D.1 RELEVANT ISOMETRIES FROM GROUP THEORY

743 The coset manifold $\mathcal{M}^{[1, q+1]}$ is defined as a quotient $\frac{\text{SO}(1, q+1)}{\text{SO}(q+1)}$ and metrically equivalent to a
 744 group $\text{Exp}(\text{Solv}_{1, q+1})$. Its isometries are all the transformations of the group $\text{SO}(1, q+1)$, which
 745 we will classify into two groups.

- 747 1. The multiplication by a solvable group element.
- 748 2. The adjoint action of the full group on the solvable group.

750 As per Bruzzo et al. (2025), we can split the algebra $\mathbb{H}^{[1, q+1]}$ in two different components:

$$752 \quad \mathbb{H}^{[1, q+1]} = \mathbb{G}_{\text{paint}}^{[1, q+1]} \oplus \mathbb{H}_F^{[1, q+1]}. \quad 753 \quad (40)$$

754 We refer to the exponential of the first component as the paint group, while the second component
 755 corresponds to the fiber rotation. Together with the solvable element multiplication, these form the
 three categories in which we split the full algebra.

756 D.2 EXPLICIT DERIVATION OF ISOMETRIES IN THE PGTS COORDINATES
757

758 The set of isometries (distance-preserving maps) of $\mathcal{M}^{[1,1+q]}$ into itself is given by $\text{SO}(1, 1+q)$
759 (these have been parameterized in terms of the Poincarè ball coordinates by Jaćimović (2025)). These
760 isometries are a composition of three distinct isometries (for a detailed derivation, refer to Bruzzo
761 et al. (2025)).

762 **Paint rotation.** The group of outer automorphisms (within the full isometry group $\text{SO}(1, 1+q)$)
763 of the solvable Lie group \mathcal{S} metrically equivalent to our symmetric space corresponds to the notion of
764 *Paint Group* originally introduced in Fré et al. (2006) and fully discussed in Bruzzo et al. (2025). It is
765 named $\mathcal{G}_{\text{paint}}$. For $r = 1$, $\mathcal{G}_{\text{paint}} \sim \text{SO}(q)$, and each $Q \in \text{SO}(q)$ maps a point with solvable coordinates
766 Υ by rotating Υ_2 :

$$\begin{cases} \Upsilon_1^{\text{paint}} = \Upsilon_1 \\ \Upsilon_2^{\text{paint}} = Q\Upsilon_2 \end{cases} \quad (41)$$

772 **Group translation.** Each element $b \in \mathcal{M}^{[1,1+q]}$ defines an isometry of the symmetric space into
773 itself through the group action. From the geometric point of view, this represents a rigid translation of
774 the origin 0 into point b . This operation will take the role of the *bias* of classical logistic regression.
775

776 **Fiber rotation.** The full group of outer automorphisms of \mathcal{G}/\mathcal{H} is given by the exponential of
777 $\mathbb{H} = \mathbb{G}_{\text{paint}} \oplus \mathbb{H}_F$. (see Bruzzo et al. (2025) for the theory of the non-compact symmetric space
778 Grassmannian foliation to which the Lie subalgebra $\mathbb{G}_F \subset \mathfrak{so}(1, 1+q)$ is tightly connected). By
779 means of the exponential map the subalgebra $\mathbb{G}_F \subset \mathfrak{so}(1, 1+q)$ generates a q -dimensional group of
780 isometries. Each of these isometries modifies the Cartan coordinate Υ_1 and coordinate $\Upsilon_{2,j}$.

781 To derive an analytic expression, however, we use the fact that isometries of Riemannian manifolds
782 can be parametrized in terms of the exponential map. In particular, as paint rotations are given by
783 matrices $Q \in \text{SO}(q)$, the remaining isometries are parametrized by the generators of the full group
784 $\text{SO}(q+1)$ without the paint generators $\text{SO}(q)$, and can be computed accordingly.

785 Given a vector $\mathbf{u} = [u_0, u_1, \dots, u_q]^\top \in \mathbb{S}^{q+1}$ ($|\mathbf{u}| = 1$), and defining $\mathbf{u}' = [u_1, \dots, u_q]^\top$, the total
786 fiber rotation by \mathbf{u} is given by

$$R_u(\Upsilon) = \begin{bmatrix} -\log\left(-\frac{1}{2}(e^{\Upsilon_1}(1 + \|\Upsilon_2\|^2) + e^{-\Upsilon_1})(1 + u_0) + e^{-\Upsilon_1}u_0 - \Upsilon_2 \cdot \mathbf{u}'\right) \\ \Upsilon_2 - x\left(\frac{\Upsilon_2 \cdot \mathbf{u}'}{1 + u_0} + \frac{1}{2}(e^{\Upsilon_1}(1 + \|\Upsilon_2\|^2) - e^{-\Upsilon_1})\right)\mathbf{u}' \end{bmatrix}. \quad (42)$$

794 A general isometry $f : \mathcal{M}^{[1,1+q]} \rightarrow \mathcal{M}^{[1,1+q]}$ can be parametrized as
795

$$f(\Upsilon) = R_{\mathbf{u}} \left(\begin{bmatrix} b_1 \\ \mathbf{b}_2 \end{bmatrix} * \begin{bmatrix} 1 & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} \Upsilon_1 \\ \Upsilon_2 \end{bmatrix} \right), \quad (43)$$

800 where $Q \in \text{SO}(q)$, $b \in \mathcal{M}^{[1,1+q]}$ and $\mathbf{u} \in \mathbb{S}^{q+1}$.

802 APPENDIX E HOMOMORPHISMS
803

804 In this section, we prove Th. 3.1.

806 *Proof.* Let h be an homomorphism between $\mathcal{M}^{[1,q+1]}$ and $\mathcal{M}^{[1,p+1]}$. Since they are both simply
807 connected, Th. 5.6 from Hall (2015) applies, hence there exists a unique Lie Algebra morphism
808 $\mathfrak{h} : \text{Lie}(\mathcal{M}^{[1,q+1]}) \rightarrow \text{Lie}(\mathcal{M}^{[1,p+1]})$ such that $\mathfrak{h} = dh$. To find all such morphisms, it is enough to
809 parametrize all algebra homomorphisms \mathfrak{h} .

810 Since these homomorphisms are vector space morphisms, it is enough to define them on algebra
 811 generators. The generators are given in Bruzzo et al. (2025) and satisfy the following relationships:
 812

$$813 \quad [H, T_i] = T_i, \quad [T_i, T_j] = 0.$$

814 Let H^q, T_i^q be the generators of $\mathcal{M}^{[1, q]}$ and H^p, T_i^p be the generators of $\mathcal{M}^{[1, 1+p]}$. It is enough to
 815 find linear maps that satisfy the commutator relations, that is
 816

$$817 \quad [\phi(H^q), \phi(T_i^q)] = \phi(T_i^q),$$

818 as all other relations will not give additional constraints. By setting
 819

$$820 \quad \phi(H^q) := \alpha H^p + \beta^i T_i^p, \quad \phi(T_i^q) := \alpha_j H^p + W_j^i T_i^p,$$

821 one can check the commutators for all generators, thus obtaining
 822

$$823 \quad [\phi(H^q), \phi(T_j^q)] = [\alpha H^p + \beta^i T_i^p, \alpha_j H^p + W_j^l T_l]^p = \alpha W_j^l T_l^p - \beta^i \alpha_j T_i^p = \phi(T_j^q) = \alpha_j H^p + W_j^m T_m^p.$$

824 from which $\alpha_j = 0$. As the dimension of the image is greater than 1 by assumption, at least one T_j^q
 825 must have a nontrivial image, hence $\alpha = 1$. Hence, the homomorphism matrix in the basis of these
 826 generators is given by

$$827 \quad \tilde{W} = \begin{bmatrix} 1 & 0 \\ \beta & W \end{bmatrix}.$$

830 All that remains is to express these morphisms in terms of solvable coordinates. The relationship
 831 between solvable coordinates and algebra coordinates is given by the map χ :

$$832 \quad \chi \left(\begin{bmatrix} t^1 \\ t^2 \end{bmatrix} \right) = \begin{bmatrix} \Upsilon_1 \\ \frac{\Upsilon_1}{1 - e^{-\Upsilon_1}} \Upsilon_2 \end{bmatrix}.$$

833 Then, our group element with coordinates $\Upsilon = \chi(t)$ is written as
 834

$$835 \quad \mathbb{L}(\chi(t)) = \text{Exp}(t^1 H + t^2 T_i),$$

836 and the homomorphism in coordinates is the map
 837

$$838 \quad \mathfrak{h} = \chi \circ \tilde{W} \circ \chi^{-1},$$

839 which after trivial manipulation gives Eq. 12. □
 840

841 *Remark.* Although the abstract exponential map from a Lie algebra to the component connected to the
 842 Identity of a corresponding Lie group is unique, its explicit realization in terms of *group parameters*
 843 namely, coordinates on the group manifold depend on the definition of the atlas of open charts and
 844 can then take many different forms. Since the solvable group S and hence its metric equivalent
 845 non-compact symmetric space U/H are diffeomorphic to \mathbb{R}^n , we have just one open chart that covers
 846 the entire non-compact manifold. However, this open chart, namely the utilized solvable coordinates,
 847 can be chosen in several different ways, depending on the way the exponential map $\Sigma : \text{Solv} \rightarrow S$
 848 is done matrix-wise. As explained in Bruzzo et al. (2025), for the *normed solvable Lie Algebras*
 849 uniquely associated to each n.c. G/H , the generators that are in one-to-one relations with the TS
 850 projection of the G root system have a natural grading in terms of root heights, and this introduces
 851 a canonical definition of the Σ exponential map that is the one adopted in the present paper. The
 852 relation between the canonical solvable coordinates Υ_i of the i -th solvable group S_i and those Υ_{i+1}
 853 of its homomorphic image S_{i+1} generated by the linear homomorphism of the corresponding solvable
 854 Lie algebras can be obtained by solving the first-order differential system provided by the linear
 855 relation between Maurer Cartan 1-forms. Such a system is always iteratively solvable by quadratures
 856 precisely because the Lie algebras are solvable.
 857

APPENDIX F DERIVATION OF HYPERBOLIC HYPERPLANES

859 In the hyperbolic space $\mathcal{M}^{[1, 1+q]}$, the set of submanifolds of codimension 1 is given by all possible
 860 immersions of $\mathcal{M}^{[1, q]}$ (Kobayashi & Nomizu, 1963).
 861

862 These hyperplanes can be found by defining one such immersion, for example
 863

864
865
866

$$H_0^{1+q} = \{\Upsilon \in \mathcal{M}^{[1, 1+q]} \mid \Upsilon_{2,q} = 0\} \simeq \mathcal{M}^{[1, q]}, \quad (44)$$

and finding the set of isometries that do not leave H_0 invariant. Given the complete isometry group G_{q+1} of the manifold $\mathcal{M}^{[1, q+1]}$, embedding $\mathcal{M}^{[1, q]} \hookrightarrow \mathcal{M}^{[1, q+1]}$ also gives an injective homomorphism $G_q \hookrightarrow G_{q+1}$, so the set of isometries we look for is the quotient G_{q+1}/G_q . The isometry categories, given in Appendix D.2, all have easily recognizable realizations in the quotient. For the paint rotation, we consider the rotations of the q -th paint coordinate onto the others, that is, the q -sphere $\text{SO}(q)/\text{SO}(q-1)$. For the fiber rotation, we consider the one-parameter subgroup generated by rotating the q -th coordinate. Since the points $\Psi \notin H_0^{1+q}$ map the fundamental separator into a different separator, the remaining isometries can be thought without loss of generality as the group action of the points $\Psi \in \mathcal{M}^{[1, 1+q]}$ with solvable coordinates

876
877
878

$$\Psi = [0, 0, \dots, 0, \Psi_{2,q}]^\top. \quad (45)$$

We obtain Eq. 15 by combining these three isometries. In $\mathcal{M}^{[1, 1+q]}$, totally geodesic hyperplanes can also be characterized as sets of points $\{\Upsilon \in \mathcal{M}^{[1, 1+q]} \text{ s.t. } \langle w, \log_\Psi(\Upsilon) \rangle = 0\}$, where \log_Ψ is the logarithmic map at a fixed base point $\Psi \in \mathcal{M}^{[1, 1+q]}$, and $w \in T_\Psi \mathcal{M}^{[1, 1+q]}$ is a fixed vector. Indeed, we can also obtain Eq. 15 from Eq. 35 and this definition of hyperplanes.

The distance between a point and the submanifold H_0^{1+q} only depends on its q -th coordinate and is easily obtained by minimization and given by

886
887
888

$$d(\Upsilon, \pi_0) = \frac{1}{2} \text{arccosh} (1 + 2 \Upsilon_{q+1}^2). \quad (46)$$

Since every regression separator is the image of the subspace H_0^{1+q} through an isometry Φ , $h_{\alpha, \beta, w}(\Upsilon)$ in Eq. 15 is proportional to the q -th coordinate of $\Phi(\Upsilon)$. The proportionality factor is $(\|w\|^2 - 4\alpha\beta)^{-1}$, and from this we obtain Eq. 16.

APPENDIX G CONVOLUTIONAL ARCHITECTURES

To implement a hyperbolic version of the convolution operation, we make the following considerations:

893
894
895
896
897
898
899
900
901
902
903
904
905

- We treat each image as a point in a $N_{\text{channels}} \times N_{\text{pixels}} + 1$ dimensional hyperbolic Space.
- The linear convolutional operation replaces the linear operation of the hyperbolic layer.
- Following traditional CNN implementation, bias and rotation parameters related to each channel are forced to be equal during training.
- Much like the fully connected version, the convolutional version reverts to the Euclidean variant for a trivial choice of bias and rotation parameter.

The hyperbolic version of other layers (dropout, maxpooling, local norm response) was implemented by restricting the layer action to the fiber coordinates, similarly to Eq. 21. To test the performance of our proposal on more complex tasks, we compared it against the Euclidean AlexNet architecture Krizhevsky et al. (2012). Our architecture mimicked the overall structure of AlexNet, replacing each layer with its hyperbolic counterpart. As remarked in Sec. 3.4, this is a naive way to implement these more complex architectural components in our framework, and could be later expanded to better take into account the specific geometry of the hyperbolic space.

APPENDIX H OPTIMIZATION

913
914
915
916
917

In contrast to Euclidean optimization, where gradients are computed in a flat vector space, Riemannian optimization takes into account the geometry of the manifold. Riemannian gradient methods compute gradients in this tangent space and use the retraction of the exponential maps to update parameters

918 back onto the manifold. In Riemannian Stochastic Gradient Descent (RSGD) (Bonnabel, 2013;
 919 Béguin & Ganea, 2019), at each iteration t , the update is
 920

$$\theta_{t+1} = \mathcal{R}_{\theta_t}(-\eta_t \nabla_R L(\theta_t)), \quad (47)$$

924 where $\nabla_R L(\theta_t) = g^{-1}(\theta_t) dL(\theta_t)$ is the Riemannian gradient, η_t is the learning rate, and \mathcal{R} is a
 925 retraction that maps the tangent space back to the manifold. Since the exact exponential map is
 926 computationally expensive, we use a first-order approximation:
 927

$$\mathcal{R}_\theta(v) = \theta + v, \quad (48)$$

930 where $v \in T_\theta \mathcal{M}$. In our implementation, the Riemannian versions of SGD and Adam were provided
 931 by Geoopt (Kochurov et al., 2020). Occasionally, certain initializations lead to particularly poor
 932 training behavior, causing the loss to diverge within the first few batches. When reporting results over
 933 N_{runs} , we typically exclude these divergent runs, and we still do not really understand the causes of
 934 this behavior.
 935

937 APPENDIX I NUMERICAL EXPERIMENTS

938 I.1 DATASETS

941 **Real-world datasets.** We utilize four real-world benchmark datasets in our experiments; for these
 942 datasets, we use the standard train/test split provided by the torchvision library (Paszke et al., 2019).
 943

- 944 • **MNIST** (LeCun et al., 1998), consisting of 70,000 grayscale images of handwritten digits
 945 (0-9) at 28x28 resolution.
- 946 • **Fashion MNIST** (Xiao et al., 2017), which contains 70,000 grayscale images (28x28 pixels)
 947 of Zalando clothing items such as shirts, trousers, and shoes.
- 948 • **K-MNIST** (Clanuwat et al., 2018), a dataset of 70,000 grayscale images (28x28 pixels) of
 949 Japanese characters from the Kuzushiji script.
- 950 • **CIFAR-10** (Krizhevsky & Hinton, 2009), composed of 60,000 color images (32x32 pixels)
 951 across ten categories, including animals (e.g., dogs, cats) and vehicles (e.g., cars, trucks).
- 952 • **CIFAR-100** (Krizhevsky & Hinton, 2009), composed of 60,000 color images (32x32 pixels)
 953 across 100 fine-grained classes grouped. The dataset provides 500 training and 100 test
 954 images per fine class.
- 955 • **CelebA** (Liu et al., 2015), a large-scale face dataset with 202,599 color images
 956 (aligned/cropped to 178x218 pixels) of 10,177 identities. Each image is annotated with 40
 957 binary facial attributes (e.g., *Smiling*, *Wearing Glasses*) and 5 landmark locations. We built
 958 8 categorical variables with the combination of the *Male*, *Young*, and *Smiling* attributes.
- 959 • **Tiny Imagenet** (Le & Yang, 2015), a scaled-down version of ImageNet that contains 100000
 960 images of 200 classes (500 for each class) downsized to 64x64 colored images. Each class
 961 has 500 training images, 50 validation images, and 50 test images.

962 I.2 OTHER HYPERBOLIC NEURAL NETWORKS

967 In this section, we describe the different hyperbolic neural networks we compared in Sec. 4, and
 968 we refer to the original articles for a detailed description of these architectures. Notice that some of
 969 these architectures have a strong focus on transformers, which are not considered in our work, so we
 970 adapted their implementation to our tasks. All the comparisons should be taken as exploratory, as an
 971 in-depth review of the performance of existing hyperbolic architectures was beyond the scope of our
 972 work.

972 **Poincaré coordinates.** We implemented hyperbolic neural networks based on Ganea et al. (2018)
 973 using the manifold parametrization provided by *Geoopt* (Kochurov et al., 2020) and the *HypTorch*
 974 python package (Roberts, 2025). A hyperbolic layer is given by
 975

$$976 \quad \text{Poi}_{W,b}(x) := \exp_b(P_{0 \rightarrow b} W \log_0(x)), \quad (49)$$

977 where b is a point on the Poincaré ball, W is the weight vector, and \exp and \log are the Riemannian
 978 exponential and logarithmic maps.
 979

980 A neural network is obtained by alternating these layers and nonlinearities, with an initial embedding
 981 layer and a hyperbolic multinomial logistic regression (MLR) in the Poincaré ball as the final layer.
 982

983 **Fully Hyperbolic (Lorentz).** We implemented fully hyperbolic neural networks in the Lorentz
 984 model following Chen et al. (2022), and using the code provided by Bdeir et al. (2024). Fully
 985 hyperbolic neural networks use the Lorentz model and adapt the Lorentz transformations to implement
 986 network layers. Neural networks are constructed by stacking these layers with Lorentz-compatible
 987 nonlinearities, preceded by a Lorentz embedding layer, namely the projection on the Lorentz manifold,
 988 and terminated with a Lorentz MLR.
 989

990 **Hyperbolic++.** Hyperbolic networks++ extend hyperbolic architectures of Ganea et al. (2018) by
 991 reformulating the MLR head and redefining the FC layers (Shimizu et al., 2021). In their original
 992 presentation, Hyperbolic networks++ omitted any activation because of the inherent non-linearity of
 993 the hyperbolic space. To ensure a fair comparison, we added ReLU activations between layers, as
 994 well as an initial embedding into the Poincaré manifold through the exponential map.
 995

996 I.3 NUMBER OF OPERATIONS

997 A single linear Cartan layer transforming a batch of B input points of dimension D into an output of
 998 dimension M has an (rough) estimated floating-point operation (FLOP) count of
 999

$$1000 \quad \text{FLOPs} \approx \underbrace{B(2(D-1))(M-1)}_{\text{matrix mult.}} + \underbrace{B(M-1)}_{\text{bias}} + \underbrace{2BM + 19B}_{\text{group op.}} + \underbrace{2B(3M-4) + 53B}_{\text{rotation}} \\ 1001 \\ 1002 \\ 1003 \\ 1004 \quad = 2BDM - 2BD + 7BM + 65B,$$

1005 where we counted ≈ 20 FLOPs for each logarithm/ exponential operation. In comparison, a normal
 1006 linear Euclidean layer has $\approx 2BDM + BM$ FLOPs. While this is a very crude approximation of the
 1007 number of operations involved in our model, it gives an initial estimate of the difference between
 1008 hyperbolic and Euclidean layers.
 1009

1010 I.4 EXPERIMENTAL HYPERPARAMETERS

1011 Experimental hyperparameters for the numerical simulations are detailed in Tables S1-S2. For the
 1012 AlexNet experiment, the fiber rotation parameter is high-dimensional and thus very sensitive during
 1013 gradient descent; hence, we divided its individual learning rate by a factor of 100.
 1014

1015 Table S1: Experimental hyperparameters

1016 Problem	Optimizer	Loss	Activation	Scheduler	lr
1017 Fully Connected	SGD	Cross-entropy	ReLU	no	
1018 AlexNet	SGD	Cross-entropy	ReLU	Plateau	
1019 ResNet	SGD	Cross-entropy	ReLU	Plateau	

1020 Due to the computationally intensive nature of the problem, classification datasets were optimized
 1021 using early stopping with a buffer of 15 on the test loss for up to 1000 epochs, while the regression
 1022 tasks were optimized for 5000 epochs.
 1023

1026

Table S2: Experimental hyperparameters (continued)

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

I.5 COMPUTATION TIME

Simulations reported in Table 1 were conducted with an NVIDIA Tesla T4 GPU, operating on a PCI-E Gen3 x16 slot. Total computation time for all runs of each model is reported below.

Problem	Learning rate	Weight decay
Fully Connected	1.00×10^{-2}	1.00×10^{-5}
AlexNet	1.00×10^{-2}	5.00×10^{-5}
ResNet	1.00×10^{-2}	5.00×10^{-5}

1039

Table S3: Total computation time for fully connected networks

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Model	Total computation time
Euclidean	9h 26m 28s
Hyperbolic++	18h 1m 31s
Cartan	19h 58m 22s
Lorentz	21h 14m 55s
Poincaré	23h 25m 54s

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table S4: Total computation time for experiments on convolutional networks

Model	Total computation time
Alexnet	43h 21m 01s
H-Alexnet	69h 24m 27s
ResNet18	52h 24m 55s
H-ResNet18	101h 55m 02s