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ABSTRACT

Hyperbolic deep learning leverages the metric properties of hyperbolic spaces
to develop efficient and informative embeddings of hierarchical data. Here, we
focus on the solvable group structure of hyperbolic spaces, which follows naturally
from their construction as symmetric spaces. This dual nature of Lie groups and
Riemannian manifolds allows us to propose a new class of hyperbolic deep learning
algorithms where group homomorphisms are interleaved with metric-preserving
diffeomorphisms. The resulting algorithms, which we call Cartan networks, show
promising results on various benchmark datasets and open the way for a novel class
of hyperbolic deep learning architectures.

1 INTRODUCTION

The concept of distance is the core of machine learning and pattern recognition. While much classical
machine learning can be recast as learning distances directly from data (e.g. Bishop| (2006)), recent
developments have pointed out that common data structures, such as trees and graphs, cannot be
easily accommodated within Euclidean spaces, thus requiring a more radical rethink of the geometry
of data spaces. In this context, the n-dimensional hyperbolic space H" has received significant
attention as a suitable space in which to embed hierarchically structured data (Nickel & Kielal
2017), spurring a productive line of research combining hyperbolic geometry with various deep
learning architectures (Ganea et al., 2018 |(Chami et al., 2019; |Gulcehre et al.| 2019; Shimizu et al.,
2021} (Chen et al.| 2022; Peng et al., 2022} |Bdeir et al., 2024)). These so-called hyperbolic neural
networks have found applications in fields as diverse as neuroscience (Gao et al.,[2020), single-cell
transcriptomics (Klimovskaia et al., 2020), and recommender systems (Chamberlain et al., [2019).

Geometrically H" is a n-dimensional hyperboloid, namely the quadric locus > ; X 2-Xx2 1 =-1
in R"*1. It is also a coset manifold, namely the quotient of a Lie Group modulo a maximal Lie
subgroup, H™ ~ SO(1,n)/SO(n), and more specifically a symmetric space. The study and classi-
fication of symmetric spaces is one of the monumental achievements of the French mathematician
Elie Cartan (Cartan, |1926; Helgasonl [1962; [Magnea, [2002; [Fré, [2023). The non-compact symmetric
spaces are all metrically equivalent to a corresponding solvable Lie group S of the same dimension, a
mathematical result that was discovered and developed in the context of Supergravity Theory (Andri+
anopoli et al.| [1997bia; [Fré et al.,[2007; |Alekseevsky, |1975} [Cortés, |1996} |Alekseevsky et al.l 2004),
and amply reviewed and systematically reorganized for machine learning applications in|Bruzzo et al.
(2025).

This result, to our knowledge, is not known so far in the machine learning literature, and has significant
algorithmic consequences. The dual nature of group and Riemannian manifold of the hyperbolic
space H" enables us to construct a deep learning framework based entirely on intrinsic geometric
operations, where group homomorphisms are interleaved with metric-preserving diffeomorphisms
in creating a powerful function approximation machine. Importantly, the nonlinearities naturally
arising from group-theoretic exponential and logarithmic maps give flexibility to the framework,
which achieves promising results on benchmark datasets when compared with similar-sized standard
deep learning architectures.

The main contributions of this work are as follows:

* We highlight the metric equivalence of the hyperbolic space with a solvable Lie group to
exploit the group structure as a tool in architectural design.
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* We propose a new deep learning architecture where each layer is a solvable Lie group
S; and where the map from layer ¢ to layer 7 + 1 can be represented as a combination of
homomorphisms from the solvable Lie group S; to the next one S; ;1 and the isometries of
Si+1. The construction is general for any symmetric space, and we implement it for the
hyperbolic space H".

* We extensively benchmark these architectures on real and synthetic datasets, showing
competitive or better performance w.r.t. Euclidean and standard hyperbolic neural networks.

1.1 PREVIOUS LITERATURE

Early works in hyperbolic deep learning focused on hyperbolic embeddings for hierarchical
data. (Nickel & Kiela, 2017) introduced Poincaré embeddings, showing superior hierarchical repre-
sentation compared to Euclidean embeddings. |Ganea et al.[(2018]) and subsequent works (Shimizu
et al.| 2021} [Chen et al., 2022} Bdeir et al.| 2024} Peng et al., [2022), extended hyperbolic geometry to
deep learning by developing hyperbolic neural networks, using Mobius operations (Ungar, 2009).
Various generalizations of hyperbolic networks have been explored. Convolutional networks (Dai
et al.,[2021} [Skliar & Weiler, [2023} |Ghosh et al., [2024)), graph neural networks (Chami et al., 2019),
and attention mechanisms (Gulcehre et al., 2019) hyperbolic variants were introduced to handle
different datasets, as well as methods of dimensionality reduction (Chami et al., 2021} [Fan et al.|
2022).

Lie groups and Lie algebras are often studied in deep learning for their equivariance properties (Cohen
et al.,2019; |Chen et al.,|2020; |Otto et al.,2024). Architectures based on semisimple Lie algebras have
been introduced under the name Lie Neurons (Lin et al., 2024), focusing on making these networks
adjoint-equivariant.

The notion that H" is isometric to a Lie group was explored in the context of probability distributions
and Frechét means by Ja¢imovic| (2025)). However, the isometry between symmetric spaces and
solvable groups was not highlighted in full generality, and the knowledge was never applied to the
study of deep learning architectures.

2 THEORETICAL PRELIMINARIES
We will assume basic knowledge of Lie groups (see Appendix |Alfor a brief introduction).

Solvable groups and Cartan subalgebras.

Definition 2.1 (Subalgebra commutator). Let b, h, be two subalgebras of g. Their commutator
subalgebra is

(b1, 0,] := {[h1,ho] € g| h1 € by, ha € b2} ey
where [ -, -] denotes the Lie bracket of the algebra.
Definition 2.2 (Derived series). Let g be a Lie algebra. Its derived series is the series

0@ =g, gt =[g" g™ vneN 2

The derived series is a decreasing sequence of ideals in the algebra.

Definition 2.3 (Solvable algebras). A Lie algebra g is solvable if its derived series is eventually 0O,
that is to say, if

IneN st. g™=0
A Lie group is solvable if its Lie Algebra is solvable.

In practice, solvable groups are best understood in terms of their matrix representation. In fact,

Theorem 2.1 (Lie’s theorem (Humphreys, [1972)). Let g be a solvable subalgebra of the general
linear group gly,. Then there exists a basis of V with respect to which g is made of upper triangular
matrices.

This theorem shows we can think of solvable groups as upper-triangular matrix Lie groups.

Definition 2.4 (Cartan subalgebras). Let g C gl,,(R) be a matrix Lie algebra consisting of upper
triangular matrices. Its Cartan subalgebra is the subspace of diagonal matrices.
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Symmetric spaces. Let G be a Lie group and H a normal subgroup, g and b the corresponding
Lie algebras. A coset manifold G/H is a symmetric space if and only if there is an orthogonal
decomposition of g, as a vector space, as follows:

b.b] < b
g=hom ; b,m C m (3)
m,m] C b
One interesting class of non-compact symmetric spaces is given by
SO
M[T‘,’I‘"‘P] — (T7T+p) \ T>0,p20 (4)

~SO(r) x SO(r + p)

This family of manifolds is easily tractable thanks to the metric equivalence between these and an
appropriate solvable Lie group, studied in the context of theoretical physics in|Bruzzo et al.| (2025)),

MUIPL~ Exp [Solv[r,p]]

where we denote Solv,. ) the solvable Lie algebra of the solvable Lie subgroup S, ,; C SO(r,r +p)

with r Cartan generators. For 7 = 1 we realize the hyperbolic space H?T! ~ ML 147 (where ~
denotes a metric equivalence).

Solvable coordinates of hyperbolic space. The hyperbolic space H" (and all the other non-
compact symmetric spaces) is metrically equivalent to an appropriate solvable Lie group, whose
structure was never used in statistical learning.

SO(1, 1+ (
HT S(<)(1+q)Q) = MU = Bxp [Solvp, 144 )

As this manifold is a Lie group, we will parametrize the manifold with a set of coordinates
T = [Tlur2]T = [T17T2,17 ey T?,q]T7 (6)

called the solvable coordinates of the manifold (Bruzzo et al., 2025)), and we will use them for our
formulation of hyperbolic learning. We separate the first component Y; (which we will call the
Cartan coordinate since it corresponds to the unique generator of the Cartan subalgebra) from the
others (which we call the paint coordinates following |Bruzzo et al.| (2025). This choice of coordinate
system for the hyperbolic space is convenient for many reasons discussed throughout this work. A
convenient property of all non-compact symmetric spaces is that they can be easily parametrized by a
single chart with domain R", thus bypassing the numerical problems of the Lorentz and Poincaré
models exposed by Mishne et al.|(2023).

Group operation. The group operation is the matrix multiplication between the solvable group
elements. Given two points T, ¥ € M1 4], the group operation is

@)

_ T+ 9,
TxT= |:T2 -+ eTl‘I’2:|

Similarly, the inverse element is given by Y1 = [fTh feTsz} . The matrix representative
is expressed in Eq. 23]in Appendix [B] alongside a deeper discussion of the solvable coordinates
parametrization, and the identity element is the point T = 0. The group operations can be expressed
in terms of the non-solvable Poincaré ball coordinates (see Eq. [30/in Appendix [B]for the transition
function) or other coordinate systems. Appendix [C|discusses various Riemannian operations in this
coordinate system, including the distance between points.
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3 LEARNING IN SYMMETRIC SPACES

3.1 GENERAL PRINCIPLES OF CARTAN NETWORKS

We propose creating a network whose layers are a sequence of solvable groups {S;}V ;.

The map from layer ¢ — 1 to layer ¢ is the composition of a group homomorphism with an isometry
of the target space. Specifically, each transformation consists of a homomorphism (a map between
groups that preserves the group operation):

hi(Wi) = Si—1 — Si, (8)

from one solvable Lie group to the next, defined intrinsically by parameters W;, composed with an
isometry (a metric-preserving, and thus distance-preserving, map) acting on S;:

parametrized by 6;. In the following, we develop the architecture in the case of the hyperbolic space,
0 S; ~ ML1tail,

h; € Hom(Si_l, Sl)
v; € Iso(S;)

hi
Si—y

~

Pi
Si

~

S

Layer between solvable Lie groups

. _

v

RY 8 =8 == 818 == Sy—[0,1]

Figure 1: Structure of Cartan network (binary classification). This figure illustrates the composi-
tion of the proposed Cartan networks between symmetric spaces. By alternating homomorphisms and
isometries, our networks parametrize a larger class of maps while only using geometrically motivated
functions.

3.2 MAPS BETWEEN HYPERBOLIC SPACES

Isometries. The set of isometries of M 1+4] into itself is given by SO(1, 1 + q) (these are
parameterized in terms of the Poincare ball coordinates by [Jacimovic| (2025)); Jacimovi¢ & Crnkic
(2025)). These isometries are a composition of three distinct isometries, namely the paint rotation (an
orthogonal transformation of the paint coordinates Y'5), the group operation, and the fiber rotation,
which mixes Cartan and paint coordinates. Of these, only the paint rotation is also a homomorphism
of the group into itself. Refer to Appendix [D]for a detailed derivation.

A general isometry ¢ € Iso(M!1+4]) can be parametrized as

waso-n(Gf AR o

where @ € SO(q), 5 € MLt g e Sttl g parameter on the n-sphere, and the fiber rotation
R,, is given by
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1
—log (—2(eT1(1 +I2)1?) +e Y1) (1 +ug) +e Trug — Yo - u’)

R.(Y) = /
“ Y- 1
e (115) Tl ||'r22>—e“>> w

;3D

having defined w = [ug, u1,...,u,]T € ST, and v/ = [uy, ..., u,]T.

Solvable group homomorphisms. The set of group homomorphisms is given by the linear maps
between the corresponding solvable algebras that preserve the group structure. These are not linear in
the coordinates in general, but the equations simplify in the » = 1 case. This class of transformations
is the primary innovation of our architectures. It is important to note that, since the metric is left-
invariant but not bi-invariant, the Riemannian logarithmic map and the Lie logarithmic map are not
equivalent. If they were, our formulation would reduce to the same set of functions introduced by
Ganea et al.[(2018).

Theorem 3.1. Let h € Hom(ML1+a MILIHPY) 1 g > 1) dim(A(ML1F9)) > 1. Then there
exist a unique W € RP*? and b € RP such that

T

M) =y, + (1—eT)b|"

(12)
Conversely, for every pair (W, b) € RP*1 x RP, the map h defined by equationis a homomorphism.

The proof of the theorem is in Appendix [E} and relies on defining the homomorphisms on the algebra
generators. Notice that we can also use a non-square W to change the manifold dimension.

General linear layer. We want to define the linear layer as a composition of homomorphisms from
a solvable group to the next one and isometries from the group to itself, as discussed in Sec.[2] By
combining Eq. we find the hyperbolic linear layer as the transformation fi, : M 1+d —
ML+ given by

fin(T) = R, ([gj * [Wé1+ bD : (13)

where W e R™9, b e R", B € ML and 4 € ST, which are the parameters that are learned
during training. Notice that the orthogonal matrix @) of Eq.[I0]has been absorbed in the matrix 1.

Our formulation of hyperbolic layers is different from previous iterations (Ganea et al., 2018; [Shimizu
et al.,[2021)), which rely on Riemannian logarithmic and exponential maps. The hyperbolic linear
layers are usually defined as

y = expy, (Pops W logy(x)) , (14)

where exp;, : Ty M — M is the Riemannian exponential map in the point b € M!L1+4 Jog, -
M — Ty M is the Riemannian logarithmic map in the origin, Py_, is the parallel transport from 0 to
b,and W € R(a+1)x(qg+1)

As any ¢ € Iso(M “’HQ]) can be written (from the Cartan—Ambrose-Hicks theorem (Cheegerl, [1975)
through the Riemannian exponential map substituting W with @ € SO(1 + ¢) in Eq. we find
that existing architectures parametrize all the isometries of the space. However, since W is a generic
linear operation on the coordinates, it is a generic nonlinear operation on the algebra, and hence
breaks the symmetries between layers.

Each application of a hyperbolic linear layer (Eq. mixes the Cartan coordinate and the fiber
coordinates through the fiber rotation. The first coordinate of Eq.[T1]is then exponentiated in the
following layer, adding nonlinearities to the expression, so stacking hyperbolic layers increases
expressivity even without the addition of an activation function.
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3.3 HYPERBOLIC SOFTMAX

Hyperbolic hyperplanes. In analogy to Euclidean space, we consider the set of geodesically
complete submanifolds that separate M 1+4] into two halves. These manifolds are the same
subspaces as the Poincaré hyperplanes of|Ganea et al.|(2018); Shimizu et al.|(2021) and are introduced
as geodesically convex hulls in (Chami et al.|(2021). They are given by all possible isometric
immersions of M 4l into M1 1+,

The general equation for these hyperplanes in solvable coordinates is as follows:

Hopw={Y € Mt ¢
hapao(T) = ae™ " + (w, To) + fe (1+]Tsf?) =0} (15)
with: |w|?* —4aB >0, a, BER, we RY

where ( , ) is the Euclidean scalar product. For details on the derivation, refer to Appendix B

a) Geodesics in Mm!1:2] ) Group operation c) Fiber rotation Solvable coordinates

Y1
-2 0 2

T T ™Y,
42
0
-2

Figure 2: Hyperplanes in M2l ~ H". This figure illustrates an example of the hyperplanes that
divide the hyperbolic space. For ¢ = 1, they correspond to the set of all the geodesics. (a) In the
Poincare disk model, the geodesics consist of all arcs of Euclidean circles orthogonal to the disk
boundary, plus all the disk diameters. (b) Geodesics obtained by applying the isometry given by left
multiplication (Eq.[7) to the whole space. (c) Geodesics obtained by applying a fiber rotation (Eq.[TT)
(d). The same geodesics as b) in solvable coordinates.

Logistic regression layer. The general formula for logistic regression in hyperbolic space is

ply = 1[T) = §(T) = 0 (ha,p,w(T)). (16)

The distance of a point T from a generic separator is

1 h2 B w(T)
AT, Hy (1)) = = h{1492 —abwi’/ ) 17
(T, Hap,w(T)) o ArCCos ( + w2 = 4ap A7)
where the distance from a subspace S is defined as d(Y,S) = \rpnelré d(Y, ¥). The argument of the

sigmoid in eq. [T6]is then a nonlinear monotonic function of the distance between each point and
the hyperplane (notice the subtle difference from the Euclidean case). Similarly, when classifying
between K classes in hyperbolic space, we can define the analogous hyperbolic softmax regression as

exp (hy (1))

=k|T)=
p(y |T) Zjil exp (h;(Y))

) (18)

where h](T) = h’CE]',Bj7wj (T)
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3.4 HYPERBOLIC CARTAN NETWORKS

We construct the simplest hyperbolic neural network by stacking L hyperbolic linear layers such that

-1
¢ ¢ h
h" = R‘u,‘Z (5 * |:Wéhgll +b£:|) ) 19)
and predicting on the L-th layer representations through the logistic layer (binary classification) or

the logistic softmax (multiclass classification).

We also propose that the initial embedding of the starting data points x; € R¢ into the first hyperbolic
layer M1 144l is as follows:

h' = H . (20)

Notice that by setting u’¢ = 0, { = 0V/ this architecture becomes a stack of Euclidean linear
layers.

Universal approximation properties. A composition of Cartan layers is not a universal approxi-
mator: its expressivity is at most polynomial in the input variables, with order depending on network
depth. In contrast to Euclidean linear layers, however, stacking these hyperbolic layers creates an
increasingly more expressive function class.

Given a pointwise nonlinearity ¢ : R — R, we can apply it to our coordinates by

_| L
o(T) = [J(TQ)} . (21)
Cartan networks with such nonlinearities are universal approximators. In fact, from Eq. |19} the choice
of 1 =0,u = (1,0,...,0) removes all nonlinearities deriving from the hyperbolic nature of the

layers. For this particular choice of parameters, the hyperbolic linear layer reverts to a fully connected
Euclidean linear layer in the fiber coordinates, so the functional class of Cartan networks includes that
of Euclidean neural networks, and hence inherits all the universal approximation results applicable to
linear layers with activation functions. This application of nonlinearities is conceptually different
from iterations of hyperbolic networks that applied nonlinearities to the tangent spaces (Peng et al.,
2022} [Fan et al.| [2022).

Architectural flexibility. Cartan networks preserve the architectural flexibility of other hyperbolic
architectures, as it is possible to impose the convolutional bias at the homomorphism level, thus
achieving a function class with translation invariance that still extends the Euclidean convolutional
neural network, as detailed in Appendix |Gl Using this grading of coordinates, it is possible to
implement layers incorporating other architectural biases, such as batch normalization, dropout,
and pooling. Much like activation functions, a naive but effective approach we take in this paper
is to perform these operations by applying them only to the fiber coordinates. Better versions of
these operations, accounting for the geometry of the space, could be developed by reiterating their
design from their functional principles, in the solvable manifold (e.g., the running mean of batch
normalization realized with geodesic averages).

These architectures can then be optimized on traditional loss functions (such as MSE and categorical
cross-entropy) using Riemannian SGD or Adam (Bonnabel, 2013} [Becigneul & Ganeal, |2019). We
will discuss optimization in depth in Appendix

4 RESULTS

We compare the performance of hyperbolic Cartan networks trained on real datasets with that
of traditional neural networks and other hyperbolic neural networks (the datasets and models are
discussed in Appendices[[.T]and[[.2). Notice that the comparison is warranted given that an Euclidean
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Table 1: Accuracy on real-world datasets (mean =+ std, n =5)

Problem Cartan Euclidean Hyperbolic++  Fully Hyperbolic Poincaré
Cifarl0 52.6 £ 0.3 52.6 0.5 5241 52.44+0.8 52.5+0.3
FMNIST  89.34+0.3 89.3 +£0.1 87.9+0.5 89.2+0.2 89.44+0.2
KMNIST 90.104+0.07 90.0+0.1 89 +1 90.29 + 0.10 90.24+0.2

MNIST 98.27 £0.02 98.27 +0.02 98.0+0.1 98.14 £ 0.04 98.19 £ 0.06

fully-connected layer (W« +b) from n to m neurons has m(n+ 1) parameters, while a Lie hyperbolic
linear layer M[1™ — MIL™ has m(n + 1) — 1 parameters. Given this, we compare networks
with the same number of layers and the same size. A brief comparison of the number of operations in
Cartan layers versus Euclidean ones is provided in Appendix

To characterize the performance of the proposed architecture, we train fully-connected Cartan
networks on the real-world classification datasets, varying depth (1-4 layers) and hidden layer size
(20, 40, 100, and 200 neurons), with and without nonlinearities, comparing their test accuracy to
Euclidean and different hyperbolic networks. The best accuracies across configurations for these tasks
are shown in Tab. [I] while training parameters and computation time are discussed in Appendices [[.4]
and [L.5] We underline the model with the highest performance, and any others whose results are
statistically equivalent to it. If no model is underlined, it means that no statistically significant best
performer could be identified. Our proposed architecture achieves performance comparable to the
alternatives across a wide range of hyperparameters, matching or surpassing the Euclidean variant.

To demonstrate the capacity of our framework to generalize to convolutional architectures, we test
our architecture on a hyperbolic variant of AlexNet (Krizhevsky et al., 2012), where we replace
all layers with their Cartan counterparts. This construction mirrors the original AlexNet design in
terms of depth, filter sizes, and overall structure, ensuring that any performance differences can
be attributed to the shift from Euclidean to hyperbolic representations. We discuss the technical
details in more depth in Appendix[G] We then benchmark this Cartan AlexNet against the standard
Euclidean AlexNet on some real-world datasets, and we summarize the results in Tab. 2] The results
show that adding hyperbolic flexibility to established architectures can improve their performance on
moderately complex tasks. We additionally test ResNet and its hyperbolic variant, where the group
operation takes the place of the residual connection, on the TinyImagenet dataset.

Table 2: Test accuracy (%) for AlexNet and ResNet (mean =+ std, nyyns = 5)

Problem Alexnet H-Alexnet
CelebA 77.8+£0.5 77.4+0.7
Cifar10 88.42+0.09 88.4+0.5
Cifar100 54.4 + 0.3 59.5 £ 0.8
TinyImagenet  38.1 £0.7 44.6 £0.3
Problem ResNet18 H-ResNet18

TinyImagenet  61.4 £0.2 61.5£0.1

5 DISCUSSION

This work introduced Cartan networks, a novel hyperbolic deep learning architecture based entirely
on intrinsic group-theoretical and Riemannian operations. The long-term goal of this new theoretical
construction is to develop a framework for machine learning algorithms that is both expressive and
mathematically consistent, resulting in models that can be more easily analyzed and interpreted.

Cartan networks complement the view of hyperbolic neural networks as a sequence of exponential
and logarithmic maps (Ganea et al.,[2018)). Our architecture exploits the dual nature of hyperbolic
spaces as solvable groups and Riemannian manifolds, alternating isometries and homomorphisms in
its layers, both intrinsically defined and geometrically motivated operations.
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The experiments performed, although not exhaustive, demonstrate that the proposed architecture is
competitive with comparable Euclidean and hyperbolic architectures on a range of real and synthetic
tasks. The performance of hyperbolic convolutional architectures demonstrates the approach’s
flexibility and scalability. These results are particularly encouraging because the hyperbolic space is
the simplest representative of the family of non-compact symmetric spaces; exploring more complex
manifolds and investigating how to specialize existing layers to hyperbolic geometry are major
directions for future research.

While our results demonstrate the potential of the proposed framework, several limitations must
be acknowledged. First, due to resource constraints, our experiments were conducted on a limited
number of datasets and with a relatively narrow range of hyperparameter configurations. Secondly,
the architectural modifications introduced to incorporate group-theoretical structure lead to increased
computational overhead. While this is somewhat inevitable given the high optimization of standard
neural network software, improving the computational performance of our approach is an important
step to ensure its adoption.

6 REPRODUCIBILITY STATEMENT

The code used for the experiments in this work is based on PyTorch, an open-source deep learning
Python library (Paszke et al.,[2019). Optimization routines, particularly those involving geometry-
aware methods, utilize the Geoopt library (Kochurov et al.|[2020). The entire code to reproduce all
the results shown in this article is available at

https://github.com/CartanNetworks/CartanNetworks
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APPENDIX A LIE GROUPS

A Lie group (Helgasonl (1962} [Frél [2023; Magnea, |2002; Humphreys| |1972)) is an analytic differen-
tiable manifold G endowed with a group structure such that the group operations of multiplication
and inversion are infinitely differentiable. The group operation is a binary product operation:

x:GxG—G (zxy)=zy€q, (22)

that must satisfy the group axioms. An abstract Lie group always admits an infinite series of matrix
representations, which are determined by the abstract group structure, where the group operations are
matrix multiplication and inversion. In practice, Lie groups are both groups (having multiplication
and inverses) and smooth manifolds (having a differentiable structure). Every Lie group has a
corresponding Lie Algebra isomorphic as a vector space to its tangent space at the identity. It is
formed by its (left/right) invariant vector fields that close under commutation. On Lie groups G
and on coset manifolds G/H, one can construct G-invariant Riemannian metrics that are unique or
multiple depending on the structure of the coset.

APPENDIX B SOLVABLE COORDINATES PARAMETRIZATION

As intrstl)ﬁiuced in Bruzzo et al.|(2025), the matrix element parameterizing the hyperbolic space is as
follow

eTt V2eT Y] —eTi| Yo

L) =| 0 I, V2T, |, (23)
0 0 e~
where
T == [T17T2]T = [TlaTQ,lv sy TQ,(]]T (24)

!Compared to the original formulation of Fré et al., we performed the following change of coordinates

YTy = %T‘g’ld for ease of formulation.
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are the solvable coordinates, I, is the identity matrix of size ¢, and |.| is the Euclidean norm. Group
operation is given by matrix multiplication:

L(T*T)=1L(T)-L(T). (25)
In the upper-triangular representation, the matrices preserve the Lorentz metric

77; = 61',71*]7 ’L7] = 17 - (26)

In these coordinates, by left-transport of the metric induced on the solvable Lie algebra at the origin
by the Einstein metric of the symmetric space, we find

1+[Y2? YT
T) = 2] . 27
91,4(7) { T, I, (27)
Notice that in these coordinates, the volume element is constant:
det g1,4(Y) = 1. (28)

Transition to the Poincaré Ball coordinates. In this section, we provide the transition function
from the solvable coordinates to the Poincaré Ball coordinates, namely the projective off-diagonal
coordinates of |Gilmore| (2016) and Equation (5.2.43) of |[Fré (2012). Given a point in HYH! labeled
Poincaré ball coordinates x, the same point is identified by a set of solvable coordinates Y related to
x in the following way. First, we split the coordinates as follows:

x =[x, x2]T = [x1,221, ..., T2,q] - (29)

Then, the map from the solvable parametrization to the point in the Poincaré ball is given by

_ 14+e T
= 1 —+ COSh N(T) (30)
Lo 2

T 1+ cosh N(7T)

APPENDIX C RIEMANNIAN OPERATIONS IN SOLVABLE COORDINATES

Distance between points. Given Y € M1 174 its norm is

N(Y) = arccosh <;(€_Tl +eTi(1+ T2||2))> . (31

Then, for T, ¥ € M9, their distance is given by d(Y,¥) = N(T~! % T).
Vector transport. The group operation on M 1+4) naturally induces a notion of transport. Specif-

ically, the left group action Ly,y-1 defines a diffeomorphism dLyy-1 : Ty M — Ty M that acts
on a tangent vector v € Ty M as

U1

dLy.x-1(v) = vy — v (Wy — X)) |

(32)

Riemannian logarithmic map. In general, the Riemannian logarithmic map can be retrieved from
the geodesic distance equation from the following formula (do Carmo, |1992):

Verw(d®(X,®)) = —2logg T, (33)

where Vi f = g~ldf denotes the Riemannian gradient.
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In solvable coordinates, then,

N(T) cosh N(T) —e™ 11

1 YT)= ———F— 34
o8 (T) = FEN T T, (34)
At a general point ¥ € M, we can also use the left-invariance to compute the logarithmic map. That
is, we first translate to ¥ the origin, apply log,, and then use the inverse parallel transport to bring

the result back to the tangent space at W:

logy (T) = dLgx, (logo(T~' xT)). (35)

Geodesics. The geodesic can be computed with the general method described in [Bruzzo et al.

(2025). Given a tangent vector v = {v1,v2} € Ty M and its norm ||v|| := /), vZ, the formula for
the geodesics from the origin is

v .
—log (cosh(||v|| t) — m sinh(||v|| t))
’YO('UJ) = ) ) (36)
—= sinh(||v]| t)
vl

with ¢ € [0, 1.

Then the geodesic between points T, ¥ € M1 1+4] jg obtained by applying the logarithmic map
log, to T * U1, tracing the geodesic ~yo, and translating back using the group action:

Yoot (t) = Uk o (t, logg(P™" + 1)) 37)

Exponential Riemannian map. From Eq. we find that the exponential map from the origin is

v .
~tog (cost(Jo]) ~ 112 sinh(o]) )
eXpO(U) = FYO(’th = 1) = Vo (38)
7 sinh([|v]])
[[v]l
for v € Ty.M. The generic exponential map is then
expy(v) = T x expy(dLoy-1(v)). 39)
APPENDIX D ISOMETRIES
D.1 RELEVANT ISOMETRIES FROM GROUP THEORY
O(l,¢g+1)

The coset manifold M9+ is defined as a quotient and metrically equivalent to a

SO(¢g+1)
group Exp(Solvy ¢41). Its isometries are all the transformations of the group SO(1, ¢ + 1), which
we will classify into two groups.

1. The multiplication by a solvable group element.
2. The adjoint action of the full group on the solvable group.

As per Bruzzo et al. (2025), we can split the algebra H!9*+ in two different components:

HIbeH) = GlLett] g il (40)

paint

We refer to the exponential of the first component as the paint group, while the second component
corresponds to the fiber rotation. Together with the solvable element multiplication, these form the
three categories in which we split the full algebra.
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D.2 EXPLICIT DERIVATION OF ISOMETRIES IN THE PGTS COORDINATES

The set of isometries (distance-preserving maps) of M1+ into itself is given by SO(1, 1 + ¢q)
(these have been parameterized in terms of the Poincare ball coordinates by Jacimovic (2025)). These
isometries are a composition of three distinct isometries (for a detailed derivation, refer to Bruzzo
et al.| (2025)).

Paint rotation. The group of outer automorphisms (within the full isometry group SO(1,1 + q))
of the solvable Lie group S metrically equivalent to our symmetric space corresponds to the notion of
Paint Group originally introduced in [Fré et al.[(20006) and fully discussed in Bruzzo et al.|(2025). It is
named Gpaine. For = 1, Gpaine ~ SO(q), and each () € SO(g¢) maps a point with solvable coordinates
T by rotating Y's:

paint __
hLoh (41)
Tz = QT2

Group translation. Each element b € M 179 defines an isometry of the symmetric space into
itself through the group action. From the geometric point of view, this represents a rigid translation of
the origin O into point b. This operation will take the role of the bias of classical logistic regression.

Fiber rotation. The full group of outer automorphisms of G/H is given by the exponential of
H = Gpaint ® Hp. (see|Bruzzo et al.|(2025) for the theory of the non-compact symmetric space
Grassmannian foliation to which the Lie subalgebra Gg C so(1,1 + ¢) is tightly connected). By
means of the exponential map the subalgebra Gr C s0(1,1 4 ¢) generates a g-dimensional group of
isometries. Each of these isometries modifies the Cartan coordinate T'; and coordinate T ;.

To derive an analytic expression, however, we use the fact that isometries of Riemannian manifolds
can be parametrized in terms of the exponential map. In particular, as paint rotations are given by
matrices Q) € SO(q), the remaining isometries are parametrized by the generators of the full group
SO(q + 1) without the paint generators SO(g), and can be computed accordingly.

Given a vector w = [ug, U1, ..., u,)T € ST (ju| = 1), and defining ' = [u1, ..., u,]T, the total
fiber rotation by w is given by

1
—log (2@“(1 +Ilf?) +e7 ) (14 o) + e Trup — Yo - “)

Ry (Y) = ,
“ TQ-’U, 1
Yo — —(eT (14 || X2]?) —e 1) ) o
2 x(HuO+2<e (1+2f?) —e >)u

(42)

A general isometry f : ML 1+ad — A1 1+4] can be parametrized as

= (3] Y5

where Q € SO(q), b € M1+ and u € ST+1,

APPENDIX E HOMOMORPHISMS

In this section, we prove Th.

Proof. Let h be an homomorphism between M4+ and MUI-P+1] Since they are both simply
connected, Th. 5.6 from Hall| (2015)) applies, hence there exists a unique Lie Algebra morphism
b : Lie(M[Lat1]) — Lie(MITPI+1) such that h = dh. To find all such morphisms, it is enough to
parametrize all algebra homomorphisms b.
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Since these homomorphisms are vector space morphisms, it is enough to define them on algebra
generators. The generators are given in|Bruzzo et al.|(2025) and satisfy the following relationships:

H,T;)=T;, [T;,T;]=0.

Let H?, T/ be the generators of M4 and HP, T? be the generators of M!!1+7] It is enough to
find linear maps that satisfy the commutator relations, that is

[¢(HT), p(T7)] = o(T7),
as all other relations will not give additional constraints. By setting
$(H) := aHP + B'TF,  §(T¥) == a; H? + WIT?,
one can check the commutators for all generators, thus obtaining
[0(H), (T})] = [aHP+B'T}, a; HP+ Wi TP = oW T} B0, T = ¢(T}) = a; HP+ W T},

from which a; = 0. As the dimension of the image is greater than 1 by assumption, at least one Tf
must have a nontrivial image, hence o = 1. Hence, the homomorphism matrix in the basis of these

generators is given by
= |1 0
W=l -

All that remains is to express these morphisms in terms of solvable coordinates. The relationship
between solvable coordinates and algebra coordinates is given by the map x:

X 2| )] = 1 .
t —7
1—e 2
Then, our group element with coordinates ' = x/(t) is written as

L(x(t)) = Exp(t'H + 'T;),

and the homomorphism in coordinates is the map
h= X © W © X_17
which after trivial manipulation gives Eq.[12] O

Remark. Although the abstract exponential map from a Lie algebra to the component connected to the
Identity of a corresponding Lie group is unique, its explicit realization in terms of group parameters
namely, coordinates on the group manifold depend on the definition of the atlas of open charts and
can then take many different forms. Since the solvable group S and hence its metric equivalent
non-compact symmetric space U/H are diffeomorphic to R™, we have just one open chart that covers
the entire non-compact manifold. However, this open chart, namely the utilized solvable coordinates,
can be chosen in several different ways, depending on the way the exponential map ¥ : Solv — S
is done matrix-wise. As explained in|Bruzzo et al.| (2025)), for the normed solvable Lie Algebras
uniquely associated to each n.c. G/H, the generators that are in one-to-one relations with the TS
projection of the G root system have a natural grading in terms of root heights, and this introduces
a canonical definition of the ¥ exponential map that is the one adopted in the present paper. The
relation between the canonical solvable coordinates Y'; of the i-th solvable group S; and those Y'; 1
of its homomorphic image S, generated by the linear homomorphism of the corresponding solvable
Lie algebras can be obtained by solving the first-order differential system provided by the linear
relation between Maurer Cartan 1-forms. Such a system is always iteratively solvable by quadratures
precisely because the Lie algebras are solvable.

APPENDIX F DERIVATION OF HYPERBOLIC HYPERPLANES

In the hyperbolic space M 1+4], the set of submanifolds of codimension 1 is given by all possible
immersions of M1 4] (Kobayashi & Nomizul [1963).

These hyperplanes can be found by defining one such immersion, for example
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Ho'™? = {* e ML1Hd |7y =0} = MIb9, (44)

and finding the set of isometries that do not leave Hg invariant. Given the complete isometry
group Gg41 of the manifold MILat1] - embedding M9 < MILa+1] also gives an injective
homomorphism G, — Gg1, so the set of isometries we look for is the quotient G441/G,. The
isometry categories, given in Appendix all have easily recognizable realizations in the quotient.
For the paint rotation, we consider the rotations of the ¢-th paint coordinate onto the others, that is, the
g-sphere SO(q)/SO(q—1). For the fiber rotation, we consider the one-parameter subgroup generated
by rotating the ¢-th coordinate. Since the points ¥ ¢ Hg'™? map the fundamental separator into a
different separator, the remaining isometries can be thought without loss of generality as the group
action of the points ¥ € M!% 1+4] with solvable coordinates

U=10,0,...,0, Uy ]". (45)

We obtain Eq. by combining these three isometries. In M1 1+4]  totally geodesic hyperplanes can
also be characterized as sets of points {Y € ML 144 5.2 (w,logy (T)) = 0}, where logy, is the
logarithmic map at a fixed base point ¥ € M 144 and w € Ty M 144 is a fixed vector. Indeed,
we can also obtain Eq.[I5|from Eq.[35]and this definition of hyperplanes.

The distance between a point and the submanifold H(I)Jrq only depends on its ¢g-th coordinate and is
easily obtained by minimization and given by

1
d(YT,m) = §arccosh (1+272,,). (46)

Since every regression separator is the image of the subspace H(1)+q through an isometry ®, hq g, (Y)

in Eq.is proportional to the g-th coordinate of ®(Y). The proportionality factor is (||w||?—4a3) 71,
and from this we obtain Eq. [T6]

APPENDIX G CONVOLUTIONAL ARCHITECTURES

To implement a hyperbolic version of the convolution operation, we make the following considera-
tions:

* We treat each image as a point in @ Nehannels X Vpixels + 1 dimensional hyperbolic Space.
* The linear convolutional operation replaces the linear operation of the hyperbolic layer.

* Following traditional CNN implementation, bias and rotation parameters related to each
channel are forced to be equal during training.

* Much like the fully connected version, the convolutional version reverts to the Euclidean
variant for a trivial choice of bias and rotation parameter.

The hyperbolic version of other layers (dropout, maxpooling, local norm response) was implemented
by restricting the layer action to the fiber coordinates, similarly to Eq.[21] To test the performance
of our proposal on more complex tasks, we compared it against the Euclidean AlexNet architec-
ture Krizhevsky et al.|(2012). Our architecture mimicked the overall structure of AlexNet, replacing
each layer with its hyperbolic counterpart. As remarked in Sec.[3.4] this is a naive way to implement
these more complex architectural components in our framework, and could be later expanded to
better take into account the specific geometry of the hyperbolic space.

APPENDIX H OPTIMIZATION

In contrast to Euclidean optimization, where gradients are computed in a flat vector space, Riemannian
optimization takes into account the geometry of the manifold. Riemannian gradient methods compute
gradients in this tangent space and use the retraction of the exponential maps to update parameters
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back onto the manifold. In Riemannian Stochastic Gradient Descent (RSGD) (Bonnabel, 2013},
Becigneul & Ganeal, 2019), at each iteration ¢, the update is

041 = Ro, (—n:VRL(0:)), 47)

where VR L(0;) = g~*(6;) dL(0;) is the Riemannian gradient, 7; is the learning rate, and R is a
retraction that maps the tangent space back to the manifold. Since the exact exponential map is
computationally expensive, we use a first-order approximation:

Ro(v) =0+ v, (48)

where v € Ty M. In our implementation, the Riemannian versions of SGD and Adam were provided
by Geoopt (Kochurov et al., 2020). Occasionally, certain initializations lead to particularly poor
training behavior, causing the loss to diverge within the first few batches. When reporting results over
Niuns, we typically exclude these divergent runs, and we still do not really understand the causes of
this behavior.

APPENDIX I NUMERICAL EXPERIMENTS

1.1 DATASETS

Real-world datasets. We utilize four real-world benchmark datasets in our experiments; for these
datasets, we use the standard train/test split provided by the torchvision library (Paszke et al., 2019).

* MNIST (LeCun et al.,|1998), consisting of 70,000 grayscale images of handwritten digits
(0-9) at 28x28 resolution.

* Fashion MNIST (Xiao et al.,[2017), which contains 70,000 grayscale images (28x28 pixels)
of Zalando clothing items such as shirts, trousers, and shoes.

* K-MNIST (Clanuwat et al.,[2018), a dataset of 70,000 grayscale images (28x28 pixels) of
Japanese characters from the Kuzushiji script.

* CIFAR-10 (Krizhevsky & Hintonl 2009), composed of 60,000 color images (32x32 pixels)
across ten categories, including animals (e.g., dogs, cats) and vehicles (e.g., cars, trucks).

* CIFAR-100 (Krizhevsky & Hinton, 2009)), composed of 60,000 color images (32x32 pixels)
across 100 fine-grained classes grouped. The dataset provides 500 training and 100 test
images per fine class.

e CelebA (Liu et al., 2015), a large-scale face dataset with 202,599 color images
(aligned/cropped to 178x218 pixels) of 10,177 identities. Each image is annotated with 40
binary facial attributes (e.g., Smiling, Wearing Glasses) and 5 landmark locations. We built
8 categorical variables with the combination of the Male, Young, and Smiling attributes.

* Tiny Imagenet (Le & Yang,2015)), a scaled-down version of ImageNet that contains 100000
images of 200 classes (500 for each class) downsized to 64x64 colored images. Each class
has 500 training images, 50 validation images, and 50 test images.

1.2 OTHER HYPERBOLIC NEURAL NETWORKS

In this section, we describe the different hyperbolic neural networks we compared in Sec. ] and
we refer to the original articles for a detailed description of these architectures. Notice that some of
these architectures have a strong focus on transformers, which are not considered in our work, so we
adapted their implementation to our tasks. All the comparisons should be taken as exploratory, as an
in-depth review of the performance of existing hyperbolic architectures was beyond the scope of our
work.
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Poincaré coordinates. We implemented hyperbolic neural networks based on |Ganea et al.|(2018)
using the manifold parametrization provided by Geoopt (Kochurov et al.,[2020) and the HypTorch
python package (Roberts|, 2025). A hyperbolic layer is given by

Poiw,y(x) = exp,(FPo—sW logy(z)), (49)

where b is a point on the Poincaré ball, W is the weight vector, and exp and log are the Riemannian
exponential and logarithmic maps.

A neural network is obtained by alternating these layers and nonlinearities, with an initial embedding
layer and a hyperbolic multinomial logistic regression (MLR) in the Poincaré ball as the final layer.

Fully Hyperbolic (Lorentz). We implemented fully hyperbolic neural networks in the Lorentz
model following (Chen et al.| (2022)), and using the code provided by [Bdeir et al.|(2024). Fully
hyperbolic neural networks use the Lorentz model and adapt the Lorentz transformations to implement
network layers. Neural networks are constructed by stacking these layers with Lorentz-compatible
nonlinearities, preceded by a Lorentz embedding layer, namely the projection on the Lorentz manifold,
and terminated with a Lorentz MLR.

Hyperbolic++. Hyperbolic networks++ extend hyperbolic architectures of |Ganea et al.|(2018) by
reformulating the MLR head and redefining the FC layers (Shimizu et al., [2021)). In their original
presentation, Hyperbolic networks++ omitted any activation because of the inherent non-linearity of
the hyperbolic space. To ensure a fair comparison, we added ReLU activations between layers, as
well as an initial embedding into the Poincaré manifold through the exponential map.

1.3 NUMBER OF OPERATIONS

A single linear Cartan layer transforming a batch of B input points of dimension D into an output of
dimension M has an (rough) estimated floating-point operation (FLOP) count of

FLOPs ~ B(2(D —1))(M — 1)+ B(M —1)+2BM +19B+2B(3M — 4) + 53B
—_— Y/
matrix mult. bias group op. rotation
=2BDM —2BD +7BM + 658,
where we counted ~ 20 FLOPs for each logarithm/ exponential operation. In comparison, a normal
linear Euclidean layer has ~ 2B DM + BM FLOPs. While this is a very crude approximation of the

number of operations involved in our model, it gives an initial estimate of the difference between
hyperbolic and Euclidean layers.

1.4 EXPERIMENTAL HYPERPARAMETERS
Experimental hyperparameters for the numerical simulations are detailed in Tables For the

AlexNet experiment, the fiber rotation parameter is high-dimensional and thus very sensitive during
gradient descent; hence, we divided its individual learning rate by a factor of 100.

Table S1: Experimental hyperparameters

Problem Optimizer Loss Activation Scheduler Ir
Fully Connected SGD Cross-entropy ReLU no

AlexNet SGD Cross-entropy ReLLU Plateau
ResNet SGD Cross-entropy ReLLU Plateau

Due to the computationally intensive nature of the problem, classification datasets were optimized
using early stopping with a buffer of 15 on the test loss for up to 1000 epochs, while the regression
tasks were optimized for 5000 epochs.
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Table S2: Experimental hyperparameters (continued)

Problem Learning rate Weight decay
Fully Connected 1.00 x 1072 1.00 x 10~°
AlexNet 1.00 x 10=2 5.00 x 107
ResNet 1.00 x 1072 5.00 x 1075

1.5 COMPUTATION TIME

Simulations reported in Table [T] were conducted with an NVIDIA Tesla T4 GPU, operating on a
PCI-E Gen3 x16 slot. Total computation time for all runs of each model is reported below.

Table S3: Total computation time for fully connected networks

Model Total computation time

Euclidean 9h 26m 28s
Hyperbolic++ 18h 1m 31s
Cartan 19h 58m 22s
Lorentz 21h 14m 55s
Poincaré 23h 25m 54s

Table S4: Total computation time for experiments on convolutional networks

Model Total computation time

Alexnet 43h 21m O1s
H-Alexnet 69h 24m 27s

ResNetl8  52h 24m 55s
H-ResNet18 101h 55m 02s
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