MACS: Multi-Agent Reinforcement Learning for
Optimization of Crystal Structures

Elena Zamaraeva' Christopher M. Collins™! George R. Darling™?> Matthew S. Dyer™!?
Bei Peng™® Rahul Savani®™*° Dmytro Antypov! Vladimir V. Gusev* Judith Clymo*

Paul G. Spirakis™* Matthew J. Rosseinsky'?

'Leverhulme Research Centre for Functional Materials Design, University of Liverpool, UK
2Department of Chemistry, University of Liverpool, UK
3School of Computer Science, University of Sheffield, UK
4Department of Computer Science, University of Liverpool, UK
5The Alan Turing Institute, London, UK

Abstract

Geometry optimization of atomic structures is a common and crucial task in
computational chemistry and materials design. Following the learning to opti-
mize paradigm, we propose a new multi-agent reinforcement learning method
called Multi-Agent Crystal Structure optimization (MACS) to address periodic
crystal structure optimization. MACS treats geometry optimization as a partially
observable Markov game in which atoms are agents that adjust their positions
to collectively discover a stable configuration. We train MACS across various
compositions of reported crystalline materials to obtain a policy that successfully
optimizes structures from the training compositions as well as structures of larger
sizes and unseen compositions, confirming its excellent scalability and zero-shot
transferability. We benchmark our approach against a broad range of state-of-the-
art optimization methods and demonstrate that MACS optimizes periodic crystal
structures significantly faster, with fewer energy calculations, and the lowest failure
rate. Code is available at https://github.com/lrcfmd/macs.

1 Introduction

In computational chemistry, geometry optimization of an atomic structure is the process of finding a
stable arrangement of atoms, following a sequence of displacements in a 3-dimensional space until a
local energy minimum is reached [39]]. Within geometry optimization, our focus in this paper is on
crystal structures, which are characterized by their periodicity. The arrangement of atoms within a
crystal directly determines its physical and chemical properties; hence the optimization of the crystal
structure is crucial to the discovery of new crystalline materials and finds applications in electronics,
energy applications, information storage, and other domains.

In fact, an entire field within materials design, known as crystal structure prediction (CSP), focuses
on the computational prediction of stable crystal structures with desirable properties for subsequent
synthesis in the laboratory [53}154]]. Significant effort in a CSP workflow is focused on exploring the
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potential energy surface (PES) and performing geometry optimizations on candidate structures to
minimize the energy and local atomic forces. In this context, the key requirement for an optimization
method is the ability to quickly produce a locally optimized equilibrium structure.

Existing approaches for geometry optimization of crystal structures include classical first- and second-
order optimization methods such as the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm [4,
14,116 140]] and the Conjugate Gradient [41] method, as well as methods tailored to atomic structures
such as the Fast Inertial Relaxation Engine (FIRE) [3]]. However, these methods often require either
a significant number of steps to optimize large structures or time-consuming calculations at each
optimization step. This makes the time for optimization a bottleneck in applications that require
thousands of local optimization runs, such as CSP.

In this work, we utilize the learning to optimize (L20) paradigm [27, I8 45] to improve the geometry
optimization of crystal structures using multi-agent reinforcement learning (MARL). We observe that
overall structural stability depends on the forces acting on individual atoms. The forces are partial
derivatives (or gradients) of the energy with respect to atomic positions, and all forces are zero at
equilibrium where the structure achieves a local energy minimum. Both the energy and the forces
are mostly determined by each atom’s chemical properties and its surrounding local environment.
Moreover, atoms of a given element, as well as those of chemically related elements, tend to adopt
similar chemical local environments, resulting in multiple similar local environments in an optimized
crystal structure. Hence, it is natural to consider individual atoms as agents, moving independently
but simultaneously to collectively discover an overall structure that is stable, i.e., a local minimum of
the energy landscape. We therefore formulate crystal structure geometry optimization as a MARL
problem, with the aim of learning decentralized policies for individual atoms to collectively discover
a locally optimized structure.

The energy (and most often forces) estimation is integrated in any optimization method, and various
methods exist for this purpose. The available methods for computing energy/forces vary in their
complexity and accuracy and, therefore, cost to compute. Lennard-Jones potentials (LJ) [26 [13]]
or the Miiller-Brown surface [37,[35] are often used to model simple systems, while more complex
methods, such as density functional theory (DFT), can estimate energies and forces for materials with
high accuracy but at a very much greater computational cost. We utilize CHGNet [12]], a machine
learning interatomic potential model trained on DFT data, as it offers fast and accurate energy and
gradient estimates for crystal structures.

In this work, we make the following contributions:

* To the best of our knowledge, we are the first to apply MARL to address periodic crystal
structure optimization. Our proposed method, Multi-Agent Crystal Structure optimization
(MACS), presents a novel formulation of periodic crystal structure optimization as a multi-
agent coordination problem.

* Our extensive experiments demonstrate that MACS optimizes the crystal structures signifi-
cantly more efficiently than a wide range of state-of-the-art methods. These experiments
cover a diverse set of crystalline materials, including compositions with different elemental
species, varying numbers of species, and distinct symmetry groups.

* MACS exhibits strong zero-shot transferability and scalability, maintaining efficiency in
the optimization of larger structures from new, unseen compositions. Our work unlocks the
potential of MARL for periodic crystal structure optimization.

2 Related Work

The L20 concept leverages machine learning to develop new optimization methods tailored to
specific problems, and its application is rapidly expanding. This paradigm has been successfully
applied to classical optimization challenges such as Bayesian swarm optimization [6], black-box
optimization [9, 28], adversarial training [55]], or partial differential equations solving [18]].

The geometry optimization of atomic structures is also a target of the L20 concept. In [2], the authors
propose a graph-based L20 approach to optimization of finite, non-periodic atomic clusters using the
LJ and Calcium silicate hydrate potentials [33]], as well as the Stillinger-Weber potentials (SW) [44].
The authors show that their method achieves lower energy in optimized clusters compared to FIRE,



Adam [25]], and Gradient Descent [43]]. Another study [34] investigates the optimization of atomic
clusters with LJ, SW, and Gupta potentials [19]], focusing on the minimization of energy in the cluster.

Molecular optimization tasks, when the main objective is to achieve stable molecule configurations
in the least number of steps, are explored in [36} (7, [1, 146]). In [36], the authors utilize MARL to train
the MolOpt optimizer and benchmark it against three baselines: BFGS, FIRE, and MDMin [23].
The findings in [36] indicate that the MolOpt optimizer surpasses MDMin, exhibits performance
comparable to FIRE, and is inferior to that of BEGS. Despite differences in the design of the Markov
Decision Process (MDP) and the application to distinct classes of chemical systems, we have added
all baselines of [36] in our study to maintain consistency. In [46], the authors follow another approach,
where using a fixed optimizer (a variation of BFGS) they train the machine-learning potentials to be
more accurate during optimization.

Reinforcement learning (RL) has also shown promise in other areas of computational chemistry,
including the design of materials with specific properties [[17,24] and the optimization of the basin-
hopping routine in CSP [S7]]. For a comprehensive overview of other applications of RL in chemistry,
we direct the reader to the review in [42].

3 Preliminaries and Problem Formulation

3.1 Periodic Crystal Structures and Their Optimization

A crystal structure is characterized by its unit cell, typically, a parallelepiped, and the configuration
of atoms within it. The unit cell repeats itself in all three dimensions, defining the infinite periodic
arrangement of atoms (see Fig. [Za for a two-dimensional example).

Geometry or local optimization takes an initial structure as input and adjusts the positions of the atoms
in the unit cell to achieve a structure where the energy is at a local minimum. An efficient procedure
to perform geometry optimization is crucial due to its extensive usage throughout computational
chemistry. Atomic configurations at a local minimum on the potential energy surface (PES) represent
physically stable structures of a material, and thus the properties of a material commonly depend on
these structures. Therefore, calculations of optoelectronic, vibrational, mechanical, and energetic
properties will begin with geometry optimization to achieve a local minimum.

In the scope of crystal structure optimization, global and local optimization are distinguished by
their targets. The global crystal structure optimization, which is the ultimate goal of CSP, aims to
identify the global minimum energy structure for a given composition, representing the most stable
configuration. However, achieving a globally optimal structure typically requires many iterations of
structure generation or perturbation followed by local optimization [5, 56 38} 49].

Geometry optimization terminates under two conditions. The first condition, termed the condition of
success, requires the nor of the maximum atomic forces within the structure to reach a specified
threshold. We use the threshold 0.05 eV/A, as it represents a typical use case in CSP applications [11]].
The second condition, termed the condition of failure, occurs when the maximum allowable number
of optimization steps is reached without satisfying the condition of success. We set the maximum
number of steps to 1000, which is generally sufficient to optimize the structures within this work using
state-of-the-art methods such as BFGS, BFGS with line search, or FIRE. Therefore, the problem of
geometry optimization in our formulation is as follows.

Problem (geometry optimization): Given an initial crystal structure and the maximum of 1000
steps, to autonomously adjust the positions of the atoms in the fixed unit cell to locally minimize
all atomic forces in the structure to below 0.05 eV/A as quickly as possible.

3.2 Geometry Optimization as a Partially Observable Markov Game

We model geometry optimization of crystal structures as a partially observable Markov game
(POMG) [32, 31]. POMG is a multi-agent extension of MDP, with partial observability intro-

"Throughout this paper, all vectors and atomic positions are expressed in Cartesian coordinates, with
distances and vector norms defined by the L2 norm.



¢ t+1 pt
store tuples (0%, u§,, 05", RE,), ...

l update & evaluate  sample batch )
-—»l Agent Sr Q,,
Oér ugr
Starting . A
structure ‘# Agent Ti : &J Replay
——— Uy
&
OTi Agent O1 Q,, Buffer
t
S Agent 02 Q,,
[
L
ol,, 0f,, ol Agent O3 : Qs S
Up3 ework
1 17 -
get rewards R%., R:,, ... Energy Calculator Q-networks

Figure 1: Our overall MACS architecture. We use the SrTiO3 example with five atoms: one atom of
Sr, one atom of Ti, and three atoms of O At each time step f, the current state s is converted into
individual observations of,, ok, of,, 0&,, o, that are passed to the agent (policy) networks. The
agent networks output individual actions, which are then scaled and used as the atoms’ displacements
to update the structure. The energy calculator (CHGNet) provides the gradients for the updated
structure to construct the next state s‘*! and compute the individual rewards. The policy training
process follows the standard SAC workflow with policy networks, Q-networks, and replay buffer.

duced for each agent. This means that each agent has a private local observation of the global state
of the environment. POMG can be represented by a tuple <A, S, O, U, T, R;>, where A is a set of
N agents; S is the state space; O = O x - - - x Oy is the joint observation space, where Q) is the
observation space of agent a;; U = U; x --- x Uy is the joint action space, where Uj is the action
space of a;; R; is the individual reward function that returns a scalar value to agent a; for a transition
from state s € S to state s’ € S after taking joint action u € U; T'(s,u) : S x U — S is the transition
function, which determines the probability of transitioning to the next state s’ € S given that agents
take joint action u € U in state s € S. The transition function is deterministic in our problem setting.

By modelling the geometry optimization of crystal structures as a POMG, we treat each atom within
a periodic unit cell of a structure as an individual agent, each with access to only local observations.
All agents act independently and simultaneously to collectively discover a local minimum energy
structure by maximizing their individual rewards. While each agent has a different reward function,
they are aligned toward a common objective as optimizing the position of one atom improves the
relative positions of the surrounding atoms. We impose partial observability intentionally to make
the learning problem more tractable through the reasonable size of local observation spaces and to
improve scalability to large numbers of atoms. The general scheme of MACS is presented in Fig. [T}

4 Methodology

In this section, we formally introduce the proposed formulation of periodic crystal structure optimiza-
tion as a POMG through defining the observation space, action space, and reward function. Then we
discuss our choice of the specific RL algorithm we use and its configuration.

Observations. Each atom in a crystal structure is surrounded by the neighboring atoms in the same
unit cell, as well as their periodic images from the neighboring unit cells. Given this, we design the
observation space so that each agent can observe its own features and the features of its k nearest
neighbors. The k nearest neighbors refer to the k£ atoms closest to the agent and enumerated in the
order of increasing distance, either within its unit cell or from their periodic images in the neighboring
unit cells. Fig. 2h shows a two-dimensional example of & nearest neighbors of a specific atom in a
structure.
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Figure 2: (a) Unit cells and nearest neighbors in two dimensions for a structure with three atoms.
One atom is shown connected to its 12 nearest neighbors that belong to different unit cells; (b,c) The
energy distribution of the local minima for the test sets of (b) SrTiO3 with 80 atoms and (c) CasTizsO7
with 96 atoms. The vertical line indicates the energy of the experimental structure.

To define the observation space, we start with defining the feature vector f;i of agent a; at time step ¢:

f;, = concat([ri, i, log(|gi])], &, d; " g; —&i ') ey
Here concat is the concatenation function; r; is the covalent radius of a;, which does not change
during optimization and serves both to distinguish between different species and to carry important
chemical information. The component ¢! is the action scaling factor that will be explained when
defining the action space. g! is the gradient vector of agent a; at time step ¢, which is provided by
CHGNet and scaled to avoid excessively large values (see Appendix ; log(|g!|) is used in the
reward function and added to the feature vector to better capture the dependence of the reward on the
observation. We call by force-related the features that use the gradient vector that directly indicates
the stability of an atom and its local environment. g! — gf_l is the change in the gradient vector
from the previous time step ¢ that reflects how successful the previous step was, and dﬁfl is the
displacement of a; at the previous time step ¢ — 1; these are history features designed to reflect the
optimization dynamics. The force-related and history features prove their significance for the policy
efficiency in Section[5.4]

Now, we are ready to present the full observation of a; at time step ¢ as follows:

t t et ¢ t ¢ t t

0,, = concat(fai,fn:_,1 b ’fnik’ [lrials- -5 Iriel]s Tiny - - - Tige)- )
Here, at time step ¢, r’,, ..., rf, are the relative (with respect to a;) positions of k nearest neighbors
of a;, and nly, ..., n!, are the agents occupying those positions. Relative positions of the agent’s

nearest neighbors and their feature vectors reflect the geometry and chemical properties of the agent’s
local environment. In this study, we use £ = 12; therefore, the observation vector has length 204.
The observation design is illustrated by an example in Appendix [A.T]

Actions. A straightforward design for the action space would be to define actions as the agent’s
displacements. To ensure efficient learning, we propose using a scaling factor ¢! that depends on the
gradient vector norm (gnorm) of a; at time step ¢ to guide the order of magnitude of the action:

Cﬁ = min(|g§|acmaz)' 3

Here ¢4 1s a tunable hyperparameter (in this study, ¢;q = 0.4) to avoid excessively large steps.
Given an action u},, € [—1,1]? at time step ¢, the displacement of a; is as follows:

d; = cjuj,. )

The displacement can move an agent across the boundaries of the unit cell, in which case its position
within the unit cell changes drastically. It is crucial that neither observation vectors nor action vectors
use the positions of atoms within the unit cell, as this approach allows smooth crossing between unit
cells and the handling of multiple neighbors corresponding to the same agent from different unit cells.

Rewards. The reward function should reflect the objective of reducing the atomic forces in a structure
to sufficiently low values. Hence, we propose using the gnorms of a; at the current timestep ¢ and the
next timestep ¢ + 1 to construct the individual reward for a; as follows:

R, = log(|gj|) — log(|lgf ™). )



The logarithmic term helps to avoid skewing the policy toward short-term gains in the early stages
of optimization, given the significant difference in gnorms’ magnitudes between non-optimized and
optimized structures. We define an episode as the complete optimization of a structure and use the
discount factor v = 0.995 to encourage the policy to achieve the low forces more quickly.

Independent SAC. To train agents to collectively discover a locally optimized structure, we use
independent Soft Actor-Critic (SAC), which extends SAC [21] from the single-agent to the multi-
agent setting by treating all other agents as part of the environment. Hence, the multi-agent problem is
decomposed into a collection of simultaneous single-agent problems that share the same environment.
SAC is chosen for its sample efficiency and its use of entropy regularization, which helps prevent early
convergence to suboptimal policies and promotes a balance between exploration and exploitation.

The MACS workflow with independent SAC is presented in Fig.[I] Given a structure, CHGNet is
used to estimate the forces acting on the atoms. First, the gradient vectors are scaled, and then the
local observation vectors are constructed and normalized. Although it may seem redundant to scale
gradient vectors before normalization in the observations, this helps to preserve the gradient directions
better and makes the training stable. The observation vectors are then passed on to the policy network.
We use a standard SAC architecture proposed in [21] and implemented in RLIib [29], and utilize the
policy network and the twin Q-networks shared between all agents for efficient training. The policy
and Q-networks are two-layered MLPs with ReLLU activation functions. The policy network outputs
three pairs (mean, std) for the action vector, which are passed through the tanh squashing to match

the action space limits. The tuples <of ,ul, ,ol"", Rl > are stored in a replay buffer with a capacity

of 10 million. The hyperparameter tuning details are provided in Appendix[A]

S Experiments

In this section, we benchmark MACS against a set of methods commonly used for geometry optimiza-
tion. We train MACS across a diverse set of chemical systems and compare its performance against
baselines using various evaluation metrics that assess the efficiency and reliability of the approach.
We demonstrate the scalability and zero-shot transferability of our approach by applying the trained
policy to optimize structures of unseen (larger) sizes within unseen compositions. Furthermore, we
conduct ablation studies to investigate the influence of our observation space, action space, and reward
function designs on the performance of MACS. Finally, we compare the results of optimization by
MACS and the baselines through analyzing the energy distribution for the optimized structures.

5.1 Training and Testing Dataset Generation

We train MACS on a set of six diverse chemical compositions: Y203 [S7], CuggSi¢ [11]], StTiO3 [10O],
CagTizO7 [[L1]], CazAlsSizOq2 [20], and KsFesFq5 [22]. These compositions vary in the number of
elements (2—4) and in the number of atoms (5-80) required to describe their experimental structures.
We generate training and testing structures using the Ab Initio Random Structure Searching pack-
age (AIRSS) [30]. During training, the initial pseudo random structures are generated on the fly with
the condition of belonging to one of the training compositions with equal probability and having
~ 40 atoms with a reasonable volume (see Appendix [B.4]for more details). For every composition
on which the policy is trained, we generate three test sets of 300 structures each, with the structures
containing K, 1.5K, and 2K atoms, where K is the size of the structures used during training.

To demonstrate the transferability of MACS, we generate test sets for three new compositions that do
not participate in the training process. Specifically, we select a composition from the training list,
SrTiOg, and three from the same set of elements: SryTiOy4, Sr3TioO7, and SryTizOq¢. For each of
these new compositions, we create two test sets: one with structures approximately the same size as
training structures and the other with structures twice the size.

5.2 Baselines and Evaluation Metrics

We benchmark MACS against six baselines: BFGS is a quasi-Newton method that approximates the
Hessian matrix based on gradient information; BFGSLS is a variation of BFGS with line search [52];
FIRE is a first-order method which is based on the molecular dynamics approach with additional
velocity adjustments and adaptive time steps; FIRE+BFGSLS is a hybrid approach where up to



250 steps of FIRE are followed by up to 750 steps of BEGSLS to fine-tune the structure [15} [11];
MDMin is a modification of the velocity-Verlet method with all masses of atoms equal to 1; CG
stands for the conjugate gradient baseline, specifically, the Polak-Ribiere algorithm. All baselines are
implemented in either the Atomic Simulation Environment package (ASE) [23] or SciPy [48]. We
allow the optimization of a structure to last up to 1000 steps or until the forces of all atoms are below
the defined threshold.

A natural way to compare geometry optimization methods is by the time and number of steps required
to optimize an initial configuration, hence our first two evaluation metrics are the mean number
of steps among successful optimizations (Ny,e,n,) and the mean optimization time (Tiean), While
the contribution of the training time is discussed separately in Appendix [B.2] We observe that for
BFGSLS and CG, the number of steps is not equal to the number of energy calculations, as each step
in both algorithms can involve more than one energy calculation. As energy calculations contribute
significantly to the optimization time, we also use the mean number of energy calculations among the
successful optimizations (Cjpean) as an evaluation metric. Finally, we take into account the failure
rate (P r) of each method to estimate their reliability.

Table 1: Performance comparison of MACS and the baselines on all test sets, covering T eans Creans
Ninean, and Pz, The metrics Nypean and Cpean are presented either as a single value (if they are
identical) or separated by a ‘;” symbol (if they differ). The lowest values of T'can, Cmean, and P g
are shown in bold. The standard errors are provided in Appendix [B.6]

\ Tmean (seC) | Ninean : Cmean
L. N . FIRE+ . FIRE+

Composition atomns ‘MACS BFGS FIRE MDMin BFGSLS BFGSLS CG ‘ MACS BFGS FIRE MDMin BFGSLS BFGSLS CG
40 18 48 42 74 28 38 64 121 313 262 442 137;185 252;267 122;543
Y203 60 32 85 92 155 70 74 118 147 340 338 553 178;281 324;357 145;642
80 48 137 130 207 97 112 184 169 395 393 625 2063307 360;403 171;754
44 29 62 47 116 54 47 81 150 293 257 543 147:;177 232;242 158:716
CuzgSie 66 51 112 88 205 60 79 147 186 355 307 633  176;201 280;291 198;881
88 74 175 120 315 110 117 275 230 414 392 745 213;239 352;365 283;1269
40 57 94 109 248 65 102 134 143 255 314 625 133;190 276;299 141;572
SrTiO3 60 90 163 202 461 138 200 250 179 316 379 719 169;255 321;406 168 ;681
80 142 242 366 672 214 332 452 208 329 446 765  199:317 355;433 205837
48 59 135 119 264 68 120 156 146 270 324 623  136;185 284:;317 151;618
CagTiaO7 72 106 199 239 479 184 252 301 183 310 408 707  168;249 335;374 186756
96 163 276 412 705 195 324 499 205 353 467 762 193;267 369;447 213;876
46 31 82 124 155 68 98 132 111 274 246 501 135;178 246:;263 134,602
KsFe5F15 69 51 146 214 276 118 181 248 128 320 293 596 163:259 299;344 160 ;720
92 96 236 377 485 154 271 371 143 359 326 642  176;236 353:;396 181;815
40 117 127 226 585 167 190 307 209 189 307 700 141;264 269:;311 147;553
CazAlSizO12 60 237 266 389 1068 276 422 572 264 230 382 755 165;296 316:;391 177 ;669
80 343 333 627 1279 400 627 958 317 246 461 894  189;327 350:;458 214;814

Compositions unseen during training
SroTiOy4 56

65 145 174 361 105 139 234 ‘ 172 335 371 700 162;218 319:;353 175;716

112 ‘ 189 358 665 759 414 440 559 245 420 554 850  242;397 427;508 2451003
Sr3TioO7 48 54 123 151 315 88 130 191 153 288 345 676 153:;210 299;323 167682
96 159 369 497 800 366 375 477 227 382 501 817  212;343 385;449 223;909
SryTizO19 34 30 77 87 174 48 76 106 126 251 282 547 124173 256;275 137557
68 113 202 238 498 149 205 307 186 310 408 729 179:;304 339;385 183:743
AVERAGE? 66 ‘ 99 175 239 444 152 207 297 ‘ 182 315 366 673 1715253  317:361 179;747

Pr? (%) 036 3 964 4619 036 082 18.22]

2 The average is taken as the average across the metric values for all tests, i.e. the mean of the column above.
3 The average P p across all compositions. P g per test set is provided in Tab.

5.3 MACS Policy Evaluation

We train MACS for ~80,000 steps in total. The analysis of the variability of the policy trained starting
from the different random seeds is provided in Appendix [B.3]and confirms its consistent performance.
After training, we optimize the structures in the test sets using MACS and the baselines on the same
hardware, allowing exactly one CPU per optimization (see Appendix [B.1]for more details).

Tab. [T] shows the optimization results of MACS and the baselines across all test sets, covering the
four evaluation metrics (T nean, Nmeans Cmean, and P ) mentioned above. We observe that MACS is
substantially faster and requires fewer energy calculations than all baselines in nearly all test sets,



with only a few exceptions. Specifically, on average, T yean and Cean of MACS are 34% and 28%
less than those of the best baseline, BEGSLS, respectively. We can also see that MACS has the lowest
failure rate (P = 0.36%) and performs comparably to BFGSLS on this metric. In terms of N pean,
BFGSLS performs slightly better than MACS, requiring 5% fewer steps on average. MACS performs
comparably to CG and outperforms all other baselines. However, CG has a much higher failure rate
(Pr = 18.22%) than MACS. Both BFGSLS and CG involve multiple energy calculations per step,
resulting in more total energy calculations and longer optimization time compared to MACS.

MACS consistently outperforms all baselines in T'yean and Chyeay across all compositions and struc-
ture sizes, except for CazAlySizO12, where MACS ranks first or second after BFGS (see also
Appendix [B.8)). This demonstrates the scalability of our method, as it maintains competitive perfor-
mance as the structure size increases. Moreover, MACS exhibits excellent zero-shot transferability,
as it outperforms all baselines in T'ean and Chean in all sets of structures of compositions on which
it was not trained.

Figs.[2b and 2k show the energy distributions for local minima obtained by different methods. We can
see that, when optimizing the same set of structures, MACS and the baselines sample from the same
distribution of local minima. Figs.[3p and [3d show the energy evolution averaged over all successful
optimizations for the test sets of the SrTiO3 and CagAl,Si3Oq2 structures containing 80 atoms. It
demonstrates that MACS decreases energy faster than the baselines or performs comparably to the
best ones among them.

The analysis of the optimized structures based on interatomic distances is presented in Appendix

5.4 Ablation Studies

We compare the MACS design proposed in Section ] (referred to as MACS) with its modifications.

Observations. We perform ablation experiments to investigate the influence of the feature represen-
tation in the observation space on our method’s performance. Specifically, we compare the MACS
atom feature vector provided in Eq. [T] with the feature vectors in Egs. [6] to [0] (referred to as feat.6,
feat.7, feat.8, or feat.9), which use reduced feature representations that exclude some force-related or
history features. For all setups, we evaluate the mean episodic reward and the mean episode length
achieved by them across all compositions during training. As shown in Figs. [3p and[3g, MACS and
feat.9 achieve the best performance, while feat.6 shows the worst performance. This demonstrates
the importance of including force-related features in the observation space. We then evaluate the
policies trained with different feature designs on optimizing the SrTiOs composition from the test sets.
Tab. 2] shows that MACS performs sub-

stantially better than feat.7 and feat.8 in

Tiean and Npean. The design feat.9 shows ! = concat([ry, ], d;?*l)’ (6)
marginally lower performance in Ne,, and . ‘ ; :

better performance in T\, compared to fo, = concat([ri, ¢;;log(|g:])], &), )
MACS. In Appendix [B.9] we further evalu- féi = concat([r;, !, log(|g!])], g, &' — f 1) (8)
ate feat.9 on all remaining test sets and see

that it takes on average 57.7% more opti- féi = concat([rs, ¢j, log(Igil)], &, d’; D). ®)
mization steps than MACS. These results

show that both force-related and history features are crucial to the competitive performance of MACS.

Rewards. To investigate the influence of the reward function on the performance of our method, we
explore two additional reward designs. For the first reward design (rew.10), we add a fixed penalty
(tuned to -0.05) at each step to the reward used in Eq.[5] to explore whether this encourages faster
optimization:

R;,, = log(|gi|) —log(|g;™"|) + penalty. (10)

The second reward design (rew.11) explores the effects of partial reward sharing by adding the average
reward across all agents to the original individual reward used in Eq.[5}

N
R, =log(|gi|) —log(|g{*!]) + Zlog Ig5]) — log(lg5™))). (11)
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Figure 3: (a, d) Energy evolution averaged over all successfully optimized structures of 80 atoms
within compositions SrTiO3 (a) and CagAl3SizO12 (d); (b,c.e,f) The ablation studies: the discounted
episodic reward (b, e) and the mean episode length (c, f) across all compositions during training for
MACS and its modifications.

Table 2: Performance comparison of MACS with varying feature representations (feat.7-9) in the
observation space and varying reward functions (rew.10,11). The best numbers are shown in bold.
The design feat.6 is excluded due to its inability to successfully optimize structures.

‘ T'mean (sec) ‘ Nmean
Composition N atoms | MACS  feat.7 feat8  feat9 rew.l0 rew.ll | MACS feat.7 feat.8 feat.9 rew.10  rew.11
40 57 146 79 46 50 54 143 416 256 145 144 169
StTiO3 60 90 242 147 82 88 83 179 504 303 184 187 202
80 142 385 236 132 154 161 208 572 373 209 220 239
AVERAGE 60 | 96 258 154 87 o7 9 | 17 498 311 180 184 204
Pr (%) | 022 811 044 044 0 033 |

Fig. Bk and [Bf show the mean episodic reward and mean episode length achieved by our method
with different reward functions. Note that the episodic reward is normalized to make performance
comparable between different reward functions. We can see that rew.10 and rew.11 perform similarly
to MACS. We then evaluate the policies trained with the three reward functions on optimizing the
SrTiO3 composition from the test sets. Tab. 2] shows that, MACS achieves superior performance than
rew.10 and rew.11 in T\ean and Nipean On the test set with the largest structures (80 atoms).

Actions. We consider a straightforward action design (act.12) in which the action vector is used
directly as atom’s displacement (without the scaling factor ¢! as defined in Eq. :

dt:ut

(3 a;*

(12)

Fig.3b shows that both action designs converge to similar episodic rewards, but act.12 is significantly
less sample-efficient and stable. Moreover, Fig. [Be shows that act.12 converges to higher average
episode length, resulting in more optimization steps. This demonstrates that the scaling factor
introduced in our action design is crucial to the competitive performance of MACS, enabling more
sample-efficient and stable learning.

6 Conclusion

In this work, we present MACS, a new MARL method for periodic crystal structure optimization.
MACS introduces a novel model of geometry optimization as a multi-agent coordination problem, an
unexplored direction that poses unique challenges in balancing expressive yet compact representations
of chemical and geometric information, modelling complex atomic interactions, and enabling efficient,
scalable policy learning. We conduct extensive experiments comparing MACS with various state-
of-the-art methods and demonstrate that it learns a policy capable of efficiently optimizing crystal



structures across a diverse set of test cases, significantly outperforming all baselines. We show that
on average across all test sets, MACS optimizes the structures 34% faster and with 28% fewer energy
calculations than the strongest baseline, BEGSLS, preserving the lowest failure rate.

MACS demonstrates scalability and zero-shot transferability, as it is superior to the baselines in
the optimization of the structures of larger sizes and compositions that it does not encounter during
training. In conclusion, MACS has the potential to evolve into a universal geometric optimizer for
periodic crystal structures.

Limitations and future work. In this study, the only feature that differentiates atomic species is
the covalent radius. Various atomic features and existing descriptor implementations [S8],47] will
be considered in the future. The analysis of the observation space in Section[5.4] confirmed that the
history plays a crucial role in the efficiency of the method. Hence, the integration of recurrent neural
networks into the method could improve MACS, and we will investigate this matter further. Another
promising direction for future work is learning to optimize the unit cell of the structure. We plan to
treat the unit cell vectors as separate agents, optimizing them in a manner similar to the way atoms
optimize their positions. Finally, alternative approaches to estimating the energy of structures can be
used in place of CHGNet. Two contrasting concepts can be considered: one involves using noisy
energy and force evaluations to mitigate inaccuracies of a machine-learning interatomic potential
method, while the other relies using DFT, a more accurate, but also a more computationally expensive
method. As CHGNet is trained on DFT, the train-with-CHGNet-run-with-DFT workflow presents a
promising concept for future study.
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Figure 4: Two-dimensional structure with three atoms, and the three nearest neighbors for one of the
atoms a .

A The MACS design and hyperparameter tuning

A.1 The nearest neighbors example

We consider a two-dimensional example of a structure with a square unit cell and three atoms
a1, a9, as, where as and ag relate to the same chemical element. We assume that the structure is
undergoing optimization, and Fig. 4] shows the atomic arrangement at time step ¢. Here, for agent a;,
the first nearest neighbor is a periodic image of atom as in a neighboring unit cell, hence n}; = as;
the second nearest neighbor is a periodic image of a3 in another neighboring unit cell, and the third
nearest neighbor is atom ag itself, hence n!y, = n', = as. Furthermore, r!,, r{,, and r’ denote the
positions of the three nearest neighbors of a1, relative to ay, i.e. vectors in Euclidean space from a;
to each of its three nearest neighbors. Therefore, the observation vector for agent a4 at time step ¢
looks as follows:

t t t t t t t t t t

arrJazr Jagr Jass [[r1l, [rial, [risl], vy, ria, vl3)- (13)
During the optimization process, the list of £ nearest neighbors is updated at each time step: existing
nearest neighbors may update their relative positions and ordering in the list, while some may leave
the list and are replaced by new ones.

t
0,, = concat(

The amd package [50}51] is used for the fast construction of the ordered list of the k nearest neighbors
for all atoms on each step.
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Figure 5: Mean episodic reward and mean episode length achieved by MACS with different numbers
of nearest neighbors considered in agent’s local observation.

A.2 The number of nearest neighbors &

We explore the number of nearest neighbors that should be considered in the local observation of
an agent. We choose 10, 12, and 15 nearest neighbors and train three policies using MACS that
differ only in this hyperparameter. Fig. [5]shows that the three policies learned by MACS achieve
comparable performance in both mean episodic reward and mean episode length during training. We
then optimize the structures of the test sets of compositions Y203, SrTiO3, and CagAl;SizOq5 with
these policies. Tab.[3]shows that the policy with & = 15 has the highest failure rate and the longest
optimization. The policies with k = 10 and k = 12 are comparable, with the latter being marginally
better and therefore chosen for this study.

Table 3: Performance comparison of MACS with different numbers of nearest neighbors considered
in agent’s local observation. The best number is in bold, the standard errors are in brackets.

‘ Tmean (sec) ‘ Nmean
Composition ‘ k=10 k=12 k=15 ‘ k=10 k=12 k=15
atoms

40 17(0) 18(1) 26(2) 123(2) 1213) 137(4)
Y503 60 34(1) 32(1) 48(3) 150(3) 147(3) 171(5)
80 51(1) 48(1) 81(4) 179(4) 169(3) 201(6)
40 48(1) 57(12) 51(2) 148(3) 143(3) 164(4)
SrTiO3 60 76(2) 90(12) 88(2) 178(4) 179(4) 196(4)
80 139(3) 142(13) 138(3) 215(5) 208(5) 232(5)
40 124(4) 117(4) 148(6) 207(5) 209(5) 238(7)
CagAlySigO12 60 | 231(7) 237(14) 245(8) 274(7) 264(7) 307(8)
80 | 380(11)  343(16)  436(13) 333(8) 317(8) 367(9)

AVERAGE 60 | 122 120 140 | 201 196 224

Pr (%) | 056 0.78 352 |
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Figure 7: Performance comparison of MACS with different values of g,,,4;-

A.3 Gradient vector scaling

Let go! be the gradient vector provided by CHGNet or any other energy/gradients calculator for agent
a; at time step t. The corresponding scaled gradient vector used for observations/actions/rewards in
our study is calculated as follows:

t : t

80, if ||g07,||oo < 9mazx;
t Imaz :

go; X Teotits otherwise.

HI

Gt =

(14)

Here g,,,q, is a tunable parameter. Our experiments showed that, while gradient vectors generally
have components in the range [—50, 50] at the beginning of optimization, occasionally there can
be vectors with components up to 500. Such gradient vectors significantly unbalance training and
eventually lead to gradient explosion (see Fig. [6). In practice, there is no difference between large and
extremely large gradient vectors, as they all indicate a very undesirable atomic environment. Scaling
the gradient vector to reasonable component values that preserve the direction helps mitigate this
problem. Fig.[7]shows the mean episodic reward and the mean episode length achieved by MACS
during training with different values of g,4,,. MACS with g4 = 20 converges to the highest
reward, which is expected due to the higher gnorms at the beginning of the optimization, and hence,
higher rewards. However, MACS with g¢,,,,, = 5 converges to the lowest mean episode length while
achieving high episodic reward, therefore, in this study, we use ¢g,,qz = 5.
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Figure 9: Performance comparison of MACS with different action space bounds and target entropy
values.

A.4 Hyperparameter tuning for actions

The scaling factor ¢! is applied for the action of agent a; at time step ¢ to guide the magnitude of
the atom’s displacement. The upper boundary for ¢! is defined by a hyperparameter ¢, . to avoid
excessively large displacements. Fig.[§]compares two variants of ¢,,,, and shows that the smaller
Cmaz allows the policy to converge to much higher mean episodic reward and lower episode length,
and thus ¢;;,4; = 0.4 was chosen for this study.

We also explore a straightforward approach for designing the action space: the action vector is
used directly as the atom’s displacement (Eq. 12), without the scaling factor cf. We consider
different bounds on the action space to investigate its effect on policy learning, namely, we consider
[—amazs amax]3 for different values of a,,,,. We notice that, in SAC, the outputs of the policy
network are tanh squashed and then scaled to fit the action space limits. It leads to different policy
outputs’ magnitudes for the same action vector, depending on the action space limits. To take this
into account, we also explore different values of the target entropy. We compare the mean episodic
reward and the mean episode length achieved by MACS with different action space bounds and target
entropy values. Fig.[9]shows that wider bounds on action space (@4, = 0.2) make training more
stable, while narrower bounds on action space (am,q» = 0.1) allow for achieving a lower average
episode length. We choose the best performing variant, namely, a@,,,q, = 0.1 with the target entropy
T_E= —12 for the ablation study.
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Table 4: Hyperparameters used to train MACS.

Hyperparameter value
~ 0.995
Training batch size 8192
Target entropy -8
Truncate episodes TRUE
Target network update frequency 1000
Number of samples before learning starts 500
Tau 0.001
Initial alpha 1
Use twin q TRUE
Actor learning rate 0.0003
Critic learning rate 0.0003
Entropy learning rate 0.0001
Replay buffer capacity 10000000
Use prioritised replay buffer FALSE
Imax 5
Cmazx 0.4
Observation component-wise normalization ~ TRUE
Number of nearest neighbors k& 12
Max steps in episode 1000
1000+ — RBC=10M
200 RBC=1M
£ 750. — RBC=5M
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G 9
(% % 500
x 1004 )
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Figure 10: Performance comparison of MACS with different values of the replay buffer capacity and
training batch size. The blue lines always indicate the values used in the paper.

A.5 Other hyperparameters

The list of hyperparameters used to train MACS is shown in Tab. @] Figs. [I0] and [IT] show the
mean episodic reward and the mean episode length achieved by MACS during training for different
variations of the hyperparameters. We can see that the training batch size (Figs. and[T0d) and the
entropy learning rate (Figs. and[TTd) play a crucial role.
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Figure 11: Performance comparison of MACS with different values of the target entropy, entropy/ac-
tor/critic learning rates, and twin Q-networks flag. The blue lines always indicate the values used in

this study.
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B Additional experimental details and results

B.1 Hardware usage for the training and testing purposes

We train MACS for ~80000 training steps in total using 40 concurrently running environments on
a Linux cluster node equipped with two 20-core Intel(R) Xeon(R) Gold 6138 CPUs (2.00 GHz)
and 384 GB of memory. All baselines are not data-driven or trained; they are based on explicit,
deterministic logic.

Optimization of the test sets using MACS and the baselines was performed on the same hardware
used to train MACS. However, only a single CPU core was used for the optimization of the test
sets, while the remaining 39 cores remained idle. This setup was chosen to ensure a fair comparison
by preventing MACS from gaining an advantage through parallelization, as the baselines are not
parallelized.

B.2 Training time contribution to the experiments

The training time of MACS is 343,800 seconds and was not included in its evaluation. We evaluate
the MACS policy based only on optimization time because including the combined training and
testing time would make the evaluation highly sensitive to the size and number of test sets. In fact,
the experiments could be extended by increasing the sizes/numbers of the test sets until the relative
contribution of training time becomes negligible, leading to the reported results.

Moreover, this setup reflects practical usage, as screening hundreds of thousands of structures is a
typical use case in computational chemistry. Furthermore, the scalability and zero-shot transferability
of MACS allow it to be trained on one set of compositions and then used to efficiently optimize larger
structures from other compositions, without additional training, i.e., with zero training time in those
cases.

It is ambiguous how to estimate the combined training and testing time, as these phases were
conducted under different conditions. Although the same hardware was used, the difference in the
number of active cores (see Appendix [B.I)) raises the question of whether to report runtime using
wall-clock time or CPU time, and which approach is fairer.

For reference, comparing the combined training and optimization time of MACS with the optimization
time of the fastest baseline (BFGSLS), MACS is 3% faster in terms of wall-clock time but 126 times
slower in terms of CPU time. Given the fact that training time can be omitted when the method is
used in practice, we compare the methods only by the optimization time, as shown in Tab. ]

B.3 Baselines

The baselines are accessed through the CHGNet package, which in turn interfaces with the opti-
mization methods provided by the ASE package. We use the BFGS, BFGSLS, FIRE, and MDMin
implemented in ASE, while CG is implemented in SciPy and accessed through the CHGNet — ASE
chain. The hyperparameters of the baselines are well-tuned and commonly used without modification;
we adopt them as-is.

B.4 Random structures generation

We generate training and testing structures in the following way. Given a composition, a number of
atoms, and a parameter v, we use the AIRSS package to generate a pseudo-random structure. AIRSS
creates a unit cell with a random volume in the range [v — 5%, v + 5%)] and places the atoms within

this unit cell so that the minimum distance between any two atoms is 1 A.

During training, at the beginning of each episode, we randomly select a composition from the list
of training compositions. We use the volume of the experimental structure for a given composition
as the parameter v in both training and testing to reflect the physics of the real material. Another
parameter is the number of atoms in a structure, which is selected to be closest to 40 atoms, given the
composition.
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Table 5: The averaged discounted reward after 80,000 training steps.

Policy ‘ Converged discounted episodic reward
Seed 1 (used in the paper) 236.0

Seed 2 237.4

Seed 3 235.6

Seed 4 234.8

Seed 5 235.2

Mean (std) 235.8 (0.9)

2001

Reward

20k 40k 60k 80k
Training steps

Figure 12: The discounted reward evolution for training MACS starting from five random seeds.

B.5 Variability of the MACS Policy

To identify the variability of the policy trained by MACS, we independently trained five policies Seed
1 — Seed 5, each starting from a different random seed while using the same hyperparameters and
the time for training. Then we compared the converged discounted episodic rewards Tab. [5|and their
evolutions in Fig.[T2] The table shows that the policy trained by MACS consistently produces similar
results across different random seeds.

B.6 Additional experimental data

Tabs. [6H8] extend the data presented in Tab.[T] Specifically, Tab.[6|and Tab. [7]compare MACS and
all baselines in terms of T'\ean and Nyean, respectively, including standard errors across all test sets,
while Tab. [§reports P 5 for all test sets and methods. Figs. [[3]and[I4]show the energy distribution
for the local minima obtained by the different methods for all test sets. Figs. [I5]and [I6]show the
energy evolution averaged by all successful optimizations of all test sets by the different methods.

B.7 The analysis of structures optimized by MACS

We calculated the atom-atom distances up to 6.00A within all 7,200 structures which were optimized
using MACS. For each composition, we tabulated the distances, rounded to 2 decimal places as
histograms, all of the histograms for individual compositions were then summed to give a total
atom-atom distance histogram for each composition. For each composition, we have then tabulated
the shortest distance observed, and the distance of the first major peak in the histogram, both provided
in Angstroms. We provide these results in Tab. [9]

The shortest interatomic distances observed are plausible distances, the major observed peaks for
each composition correspond to expected values when considering each chemistry. For example, the
first peak at 1.87A in SrTiOs, is close to that of the Ti-O distances in the experimentally observed
structure of 1.95A. These observations in addition to the distribution of energies shown in Fig. lead
us to the conclusion that the final structures produced by MACS do not contain unphysically short
interatomic distances typical for the structures produced due to the failure of the energy calculator.
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Table 6: Comparison of MACS and the baselines by T\, on all test sets. Standard errors are in
brackets.

Tmean (sec)

L. . FIRE+
Composition N atoms ‘ MACS BFGS FIRE MDMin BFGSLS BFGSLS CG
40 18(1) 48(2) 42(2) 74(2) 28(2) 38(2) 64(4)
Y203 60 32(1) 85(3) 92(3) 155(3) 70(7) 74(2) 118(6)

80 48(1)  137(4)  130(4)  207@4)  97(7) 112(4)  184(9)

44 29(1) 62(2) 47(1)  116(3)  54(12) 47(1) 81(3)
CuzsS16 66 s11)  112(3)  88(2)  205(4)  60(1) 79(2) 147(5)
88 742)  175(4)  1202)  315@4)  110)  1172)  275(7)

40 | 57(12)  94(3)  1093)  248(5)  65(5) 102(1)  134(7)
SITiOg 60 | 90(12)  163(6)  202(5  461(6)  138(10)  200(21)  250(13)
80 | 142(13)  242(8)  366(8)  672(7)  214(16)  332(17)  452(20)

48 50(12)  135(5)  1193)  264(5)  68(3) 1204)  156(7)
CagTigO7 72| 106(12)  199(6)  239(4)  479(7)  184(18)  252(5)  301(14)
96 | 163(12)  276(7)  412(14)  705(7)  195(6)  324(13)  499(21)

46 31(1) 82(3) 124(5) 155(3) 68(5) 98(6) 132(7)
K3FesF15 69 51(1) 146(4) 214(8) 276(5) 118(19) 181(16) 248(11)
92 96(12) 236(6) 377(12) 485(8) 154(9) 271(17) 371(16)

40 117(4)  127(5)  226(7) 5855  16723)  190(5)  307(17)
CagAlpSisO1o 60 | 237(14)  266(3)  389(14)  1068(7) 276(16)  422(13)  572(31)
80 | 343(16)  333(8)  627(18) 1279(6)  400(7)  627(17)  958(47)

Compositions unseen during the training

SroTiOy 56 65(2)  145(5) 1745  361(5) 105(10)  1392)  234(12)
112 | 18913) 358(10) 665(18)  759(6)  414(63)  440(8)  559(23)

Sr3TigO7 48 ‘ s41)  123(4)  1514)  315(5)  88(6) 130() 19109

96 | 159(12) 369(10) 497(10)  800(6)  366(65)  375(6)  477(20)
SryTi3010 34 30(1) 773) 873)  174(4)  48(3) 76(3) 106(6)
68 | 113(12)  202(6)  238(6)  498(7)  149(23)  205(4)  307(16)

B.8 Composition targeted training

We train MACS on the only composition (CagAl2SizO12) in which MACS was outperformed by a
baseline (BFGS). We train the policy for the same period of time as we did for the cross-composition
training. Tab. @conﬁrms that MACS trained specifically on CagAl,Si3Oq2 structures is superior to
BFGS and MACS trained across all compositions in the training set in all metrics. The composition
CagAl,SizO12 has the largest number of species, and its observation space can be more diverse
than those of other compositions in this study. We suggest that longer training or increasing the
proportions of complex compositions during training can help MACS optimize them better.

B.9 Additional ablation study

Observations. MACS and feat.9 achieve similar mean episodic reward and mean episode length
during training, as well as similar performance in optimizing SrTiO3 structures. We proceed with the
optimization of all test sets using the feat.9 design and compare the results of MACS and feat.9 in
Tab. @ We can see that the two policies are comparable in terms of T'ye,n, While MACS achieves an
Ninean that is 7.7% lower than that of feat.9, confirming the superiority of MACS.E|

*The optimization of the test set with the CuagS1g structures of 88 atoms was interrupted by the cluster
maintenance works and could not be finished due to the replacement of the hardware used for testing. Although
optimization of the remaining structures of this test set could change the aggregated numbers, we rely on the
comparison between all test sets to conclude that MACS consistently outperforms feat.9 as it consistently
requires a lower number of energy calculations than feat.9.
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Table 7: Comparison of MACS and the baselines by Nyeun and Chpeqn on all test sets. The metrics
Ninean and Cpean are presented either as a single value (if they are identical) or separated by a *;’
symbol (if they differ). Standard errors are in the brackets.

\ Nimean 3 Cmean

Composition N atoms ‘ MACS BFGS FIRE MDMin BFGSLS FIRE+ BFGSLS CG

40 121(3)  313(10)  262(4)  442(11) 1372): 185(7)  252(3);267(6)  122(2) ; 543(10)
Y503 60 147(3)  340(10)  338(5) 553(12)  178(5):281(23)  324(4);357(9)  145(3);642(12)
80 169(3)  395(10)  393(4)  625(14)  206(5):307(20)  360(5);:403(14)  171(3); 754(15)

44 1503)  293(6)  257(4)  543(11) 1473) 1 177(6)  232(3);242(3)  158(3); 716(13)
CuzgS16 66 186(4)  355(8)  307(5)  633(11) 176(3):201(4)  280(3);291(4)  198(4) ; 881(20)
88 230(5)  414(7)  392(6)  745(12)  213(4):239(4)  352(3):365(4)  283(6) : 1269(26)

40 1433)  2558)  314(5) 625(12)  133(3);190(16)  276(2);299(3)  141(3);572(13)
SITiOg 60 179(4)  316(10)  379(6)  719(14)  169(3);255(14)  321(3);406(48)  168(4); 681(16)
80 208(5)  329(8)  446(7)  765(17)  199(4):317(26)  355(3):433(24)  205(5);837(21)

48 146(3)  2709) 3245 623(13)  136(2);185(10)  284(2):317(11)  151(3);618(12)
CagTigO7 72 1834)  310(8)  408(6)  707(15)  168(3);249(27)  335(3);374(7)  186(3);756(12)
9% 2054)  353(9)  467(6)  762(18) 193(3);267(9)  369(3); 447(23)  213(4) ; 876(15)

46 111(2) 274(8) 246(3)  501(10) 135(3) ; 178(7) 246(4) ; 263(6) 134(3) ; 602(16)
K3zFesF15 69 128(2) 320(7) 293(4)  596(11) 163(4) :259(53)  299(5) ; 344(28)  160(3) ; 720(12)
92 143(2) 359(6) 326(4)  642(10) 176(4) ;236(13)  353(5);396(16)  181(4) ; 815(20)

40 209(5)  189(5)  307(6)  700(31)  141(4);264(46)  269(3);311(6)  147(4);553(15)
CagAlySiz012 60 264(7)  230(5)  382(6)  755(55)  165(3):296(16)  316(3);391(14)  177(4); 669(15)
80 317(8)  246(6)  461(7)  894(0) 189(3);327(6)  350(3);458(16)  214(6) ; 814(23)

Compositions unseen during the training

SroTiOy 56 172(4)  335(10)  371(6)  700(14) 162(3):218(7)  319(3):353(6)  175(4); 716(15)
112 | 245(5)  420(10)  554(8)  850(16)  242(5):397(35)  427(4):508(10)  245(4): 1003(19)

Sr3TigO7 48 1534)  288(8)  345(5)  676(12)  153(3);210(10)  299(2);323(3)  167(4);682(17)
9% 227(5)  382(9)  S0I(7)  817(20)  212(4):343(31)  385(3):449(7)  223(5);909(19)

SryTizgO19 34 126(3) 251(8) 282(5)  547(13) 124(3) ; 173(14) 256(3) ; 275(3) 137(4) ; 557(17)
68 186(5) 310(8) 408(6)  729(14) 179(4) ; 304(62) 339(3) ; 385(8) 183(3) ; 743(14)

Table 8: Comparison of MACS and the baselines by P (%).

.. N ) FIRE+
Composition atoms ‘ MARL  BFGS FIRE MDMin BFGSLS BEGSLS CG
40 0.33 5.67 7 17.33 0.33 133 19
Y203 60 0 4.33 16 28.67 1 0.67 26.67
80 0.67 12.67 18.33 39.33 0.33 1.33 3233
44 0.33 3.67 1 4 0.67 0 6.67
CuzgS16 66 0.33 2.67 2.67 15 0 0 11
88 0 0 0.33 56.67 0 0 3.33
40 0 233 3.33 25 0 0.33 15.67
SrTiO3 60 0.33 233 5 46.33 0.67 0.67 21
80 0.33 3 9.33 71.67 0.33 1.33 26.67
48 0 3.67 1.33 22.33 0 0 10.33
CagTipO7 72 0 0.67 1.67 54 0.33 0.33 13
96 0.33 0.67 3.33 72.33 0 0 20
46 0 1.33 17.67 4.67 0.33 4.33 14
K3Fe5F15 69 0 1.33 22.67 14 0 3 19.33
92 0 233 33.67 20.33 0.33 4 20
40 1 1.33 5 90 0 1 19
CagzAlaSizgO1a 60 3 1.33 3 97 0.33 0 24.33
80 1.33 0 4.67 99.67 0 0.33 27
Compositions unseen during the training
SraTiOy4 56 0.33 3.33 14 46.33 1.33 0 17.67
112 0 5.67 31 90 1.33 0 20.67
Sr3TioO7 48 0 2.67 4 38.33 0.33 0.33 17.67
96 0 3.67 14 81.33 1 0 20.33
SraTizgO10 34 0.33 5 4 18.67 0 0.67 14.67
68 0 233 8.33 55.67 0 0 17
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Table 9: The shortest atom-atom distance observed and the distance of the first major peak in A for
the structures optimized by MACS. The total number of counts for the distances observed in brackets.

Composition \ Min distance  First peak
CazAl>Siz3012 1.44 (4) 1.69 (5324)
Ca3Ti2O7 1.38 (2) 1.85 (3924)
Cu28816 1.97 (2) 2.22 (4708)
KsFesF15 1.78 (2) 2.00 (5392)
Y203 1.45(2) 2.22 (8218)
SrTiO3 1.40 (4) 1.87 (3898)
Sr2TiO4 1.41 (12) 1.84 (2850)
Sr3TioO7 1.41 (8) 1.86 (2506)
Sr4TizO10 1.41 (8) 1.86 (1950)

Table 10: Comparison of the MACS policy trained on the CagAl;SisOq5 composition (MACS
individual) with the MACS policy trained across all compositions in the training set (MACS) and
BFGS.

‘ T'mean (sec) ‘ Nmean
Composition N ‘ MACS . M.A,CS BFGS ‘ MACS . M,A.CS BFGS
atoms individual individual
40 117 85 127 209 153 189
CagAl2Siz012 60 237 170 266 264 205 230
80 343 237 333 317 229 246
AVERAGE 60 232 164 242 ‘ 264 196 222

Pr (%) 178 033 089 |

Table 11: Comparison of the feat.9 design with MACS by T'ean and Nyean. Standard errors are in
brackets.

‘ T'mean (sec) ‘ Nmean

Composition N atoms ‘ MACS feat.9 ‘ MACS feat.9

40 18(1) 2() | 1213) 14305

Y203 60 32(1) 39(1) | 1473) 1684
80 48(1) 61(2) | 1693)  211(6)

44 29(1) 291) | 1503)  158(4)

CuzgS16 66 51(1) 542) | 186(4)  214(6)
88 74(2) 673) | 2305  338(30)

40 5712)  44(1) | 1433)  1453)

SITiOg 60 90(12)  812) | 1794)  184(5)
80 14213)  132(3) | 208(5)  209(4)

48 5912)  56(1) | 1463)  154(3)

CagTigO7 72 106(12)  98(2) | 183(4)  183(4)
9% 163(12)  134(3) | 205(4)  214(4)

46 31(1) 38(1) | 1112)  1413)

KgFesF15 69 51(1) 642) | 1282)  167(4)
92 96(12)  112(2) | 1432) 1834

40 117¢4)  111@3) | 209G5)  189(5)

CagAlySizO1p 60 237(14)  195(5) | 264(7)  245(7)
80 343(16)  334(8) | 317(8)  292(7)

Compositions unseen during training

SroTiOy 56 65(2) 631) | 1724) 1724
112 189(13)  174(4) | 245(5)  247(5)
Sr3TigO7 48 54(1) 531) | 1534)  1554)
9% 159(12)  1594) | 227(5)  229(5)
Sr4Tiz010 34 30(1) 31 | 1263)  1313)
68 11312)  88(2) | 186(5)  190(4)

AVERAGE 6 | 100 101 | 181 195
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Figure 13: The energy distribution of the local minima obtained by all different methods. The vertical
line indicates the energy of the experimental structure.
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Figure 14: The energy distribution of the local minima obtained by all different methods. The vertical
line indicates the energy of the experimental structure.
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Figure 15: Energy evolution averaged over all successfully optimized structures for all methods on

the given test set.
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Figure 16: Energy evolution averaged over all successfully optimized structures for all methods on

the given test set.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the main abstract and introduction has accurately
reflected the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of MACS in Section[6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: the paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code used for this project is provided in the supplementary material. The
code includes a README that details the steps for reproducing our results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: This paper has provided access to the code. Due to the size of the dataset, the
testing sets are not provided. However, the instructions for the generation of a comparable
test set are given.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: the paper specifies all the training and test model details and hyperparameters
in Sectiond] Section[5] and Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All methods were tested on the same sets of 300 initial structures for consis-
tency. For each test set, every reported metric’s value is based on the optimization of all 300
structures from this test. For all tables with means provided in the main text, we report the
standard errors in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

31


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources used in this paper for training and testing are described in
Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .

Justification: This research is conducted in the paper conform, in every respect, with the
NeurIPS code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: While our method can assist in new materials discovery, and new materials
can be used in a negative way to society, we do not address this issue in the paper as there is
no direct connection.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks. The trained model is specific to the optimization
of crystal structures only.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The usage of the assets is documented including the version, the citation for
the original paper, and the name of license.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our approach is implemented as a Python package and is assisted with
documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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