
Proceedings of Machine Learning Research 1:1–13, 2024 AAAI AI4Edu 24

Automated Assessment of Students’ Code Comprehension using LLMs

Priti Oli POLI@MEMPHIS.EDU

Rabin Banjade RBNJADE1@MEMPHIS.EDU

Jeevan Chapagain JCHPGAIN@MEMPHIS.EDU

Vasile Rus VRUS@MEMPHIS.EDU

University of Memphis, Memphis TN 38152,USA

Abstract
Assessing students’ answers and in particular natural language answers is a crucial challenge

in the field of education. Advances in transformer-based models such as Large Language Mod-
els(LLMs), have led to significant progress in various natural language tasks. Nevertheless, amidst
the growing trend of evaluating LLMs across diverse tasks, evaluating LLMs in the realm of au-
tomated answer assessment has not received much attention. To address this gap, we explore the
potential of using LLMs for automated assessment of student’s short and open-ended answers in
program comprehension tasks. Particularly, we use LLMs to compare students’ explanations with
expert explanations in the context of line-by-line explanations of computer programs. For compar-
ison purposes, we assess both decoder-only Large Language Models (LLMs) and encoder-based
Semantic Textual Similarity (STS) models in the context of assessing the correctness of students’
explanation of computer code. Our findings indicate that decoder-only LLMs, when prompted in
few-shot and chain-of-thought setting perform comparable to fine-tuned encoder-based models in
evaluating students’ short answers in the programming domain.
Keywords: Automated Assessment, Large Language Model, Code Comprehension, Self-Explanation

1. Introduction

Large Language Models (LLMs), such as ChatGPT, have garnered significant attention for their
remarkable ability to generate responses to user prompts. These models have been explored for
their potential (and risks) for education, particularly in the realm of computer science (CS) educa-
tion (Oli et al., 2023a), which is our focus. For CS education, use of LLMs in creating programming
exercises (Sarsa et al., 2022), generating code explanations (McNeil et al., 2023), and even pro-
viding assistance in debugging coding problems (Liffiton et al., 2023), among other educational
applicationshave been studied. While numerous studies have highlighted ChatGPT’s generative
capabilities of educational resources and assistance, there is a notable gap in exploring ChatGPT’s
assessment capabilities within educational contexts. In this work, we evaluate the effectiveness of
LLMs to automatically assess students’ self-explanations of code. Such explanations are generated,
for instance, while students engage in code comprehension activities with a computer tutor, which
needs to automatically assess the correctness of students’ explanations of code to provide feedback. It
should be noted that self-explanation, i.e., explaining learning material to oneself through speaking or
writing (McNamara and Magliano, 2009), has been shown to improve comprehension and learning
of programming concepts in introductory computer science courses (Tamang et al., 2021; Oli et al.,
2023b). Additionally, prior studies have shown that the scaffolding of students’ self-explanation
is more effective than free self-explanation at improving novices’ code comprehension (Oli et al.,
2023b).
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Scaffolding students’ self-explanation relies on accurate assessment of students’ explanations
in terms of correctness and completeness. Manually assessing students’ self-explanations and,
consequently, their comprehension of the code is a challenging task for instructors, especially when
dealing with large student cohorts. A simple and scalable approach to assessing student explanations
is semantic similarity, i.e. measuring the similarity of such natural language explanations to an
appropriate reference/correct answer, e.g., provided by an expert, through an automated short answer
grading system (Mohler and Mihalcea, 2009). If the student’s self-explanation is semantically similar
to the reference answer the student’s self-explanation is deemed to be correct.

Semantic similarity measures the degree to which two fragments of text have similar meanings
by producing a similarity score, ranging from 0 to 1 (normalized score), 0 meaning no similarity
at all, whereas 1 meaning semantically equivalent (Cer et al., 2017). Although there have been
numerous studies (Cer et al., 2017) measuring semantic similarity between texts, limited research
has been conducted in the area of computer programming and source code comprehension. In our
study, we employ decoder-only Large Language Models (LLM) to automatically evaluate students’
line-by-line explanations of code and compare them with encoder-based models. We evaluate the
proposed LLM-based approach using a set of student self-explanations produced in the context of an
online learning environment that asks students to freely explain Java code examples line-by-line.

This work is part of a larger project whose primary objective is to create an educational technology
that can scaffold students’ understanding of code by providing tailored feedback to students while
prompting students to explain their understanding of the code line-by-line as they read it. A key
component of this system is assessing students’ self-explanation of lines of code which we propose
to do by computing the semantic similarity between each line of code and the corresponding student
explanation.

2. Related Work

Automated Short Answer Grading (ASAG). Prior work on ASAG has been based on determin-
ing the semantic similarity between learner answers and reference answers in various domains such
as Physics, Biology, Geometry etc. (Leacock and Chodorow, 2003; Mohler and Mihalcea, 2009).
Early methods for measuring semantic similarity for ASAG relied on using hand-crafted features,
such as syntactic feature (Leacock and Chodorow, 2003), lexical similarity (Dzikovska et al., 2012),
n-gram features (Heilman and Madnani, 2013), vector-based similarity features (Sultan et al., 2016)
and graph alignment feature (Mohler et al., 2011) to automatically assess student’s short answer. The
advances in neural networks led to the introduction of numerous deep learning-based Automated
Short Answer Grading systems (Dasgupta et al., 2018; Pontes et al., 2018) .

Previous studies investigating pre-trained transformers in Natural Language Processing(NLP)
tasks have observed significant performance improvements in automated short answer grading
(Camus and Filighera, 2020) through fine-tuning on datasets such as MNLI (Williams et al., 2017)
and SemEval-2013 (Segura-Bedmar et al., 2013). Lun et al. (2020) used fine-tuned BERT model along
with multiple data augmentation technique for automatic short answer scoring. Khayi et al. (2021)
proposed fine-tuning pre-trained transformers for the automated evaluation of freely generated student
responses in Physics, implemented within a dialogue-based Intelligent Tutoring System. (Sung et al.,
2019) fine-tuned BERT on domain specific data such as textbooks and reported that fine-tuning a pre-
trained model for task-specific purpose demonstrates superior performance in short answer grading.
Along those lines, in our study, we fine-tune pre-trained models for assessing short answer in program
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comprehension, an area which has not been previously investigated. Furthermore, we propose a novel
method of employing LLM towards short answer assessment and compare it’s performance with
the encoder-based transformer model. It should be noted that in the programming-comprehension
domain, Fowler et al. (2021) trained a bag-of-word and bigram model to automatically assess
students’ explanation of code, i.e., their method does not rely on latest, most promising, deep learning
methods for short natural language student answers.

Evaluating LLMs on Semantic Similarity Task. In their study, Zhong et al. (2023) report
that ChatGPT surpasses all BERT models with a substantial margin in an inference task and attains
comparable performance to BERT in sentiment analysis and question-answering tasks. However, their
study indicates that ChatGPT has limited ability in paraphrase and semantic similarity tasks. However,
Gatto et al. (2023) demonstrate that the Semantic Textual Similarity (STS) task can be effectively
framed as a text generation problem, achieving robust performance with LLM outperforming encoder-
based STS models across various STS benchmarks.

Given that LLMs benefit significantly from training on code and its corresponding summaries,
in this study we investigate the applicability of LLMs to automatically assess students’ line-by-line
explanations of code.

3. Dataset

Code Snippet Expert Explanation Student Explanation Similarity
lst[i] += 1; Increment the current ele-

ment in the array by 1.
This statement incre-
ments the element at
the index i of the array
by 1.

5

int minutes = seconds / 60; To obtain the minutes in
seconds, we divide the
minutes by 60 because
there are 60 seconds in a
minute

Create the variable
minutes

2

Table 1: An example of the code, student’s explanation, expert’s explanation and Similarity Score

In our work, we use the SelfCode (Chapagain et al., 2023) for our analysis. SelfCode was
developed to understand how learners explain code. It consists of pairs of code snippets accompanied
by expert explanations and explanations given by students/non-experts for ten different code examples.
To collect the student’s explanations, Amazon Mechanical Turk (MTurk) was used. The MTurk
HIT (Human Intelligence Task) to collect learners’ self-explanations was available only to workers
from the United States and Canada who had to qualify for the task by correctly answering 2 out
of 3 multiple choice basic program construction tasks that involved selecting the correct missing
line. The qualification test was needed to make sure participants had some minimal programming
background. Expert explanations were acquired from a curated collection of annotated examples
within a comprehensive repository of interactive learning content (Hicks et al., 2020). These expert
explanations serve as reference explanations when assessing learners’ self-explanations.

In addition to expert explanations, human judgments of the semantic similarity between the
expert and students’ code explanations were obtained. Six graduate students in Computer Science
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annotated on a scale of 1-5 about 1,770 pairs of expert and student’s explanations which are used in
our study presented here. Before beginning the annotations, the graduate students received training
on the annotation guidelines. The annotation process aimed to achieve two objectives: firstly, to
distinguish between goal-oriented explanations that explains how the goal of the code is achieved
and behavior-oriented explanations, and secondly, to assess the semantic similarity between crowd-
sourced explanations and expert explanations. In this work, we only focus on the assessment of
semantic similarity between the expert and crowd-sourced explanation. During the annotation,
three out of the six graduate students annotated the first half of the data, while the remaining three
annotated the second half. The annotation occurred in multiple stages: the first 100 data instances
were used to establish a consistent understanding of the annotation process. In the subsequent steps
annotators involved a disagreement mitigation step aiming to minimize score differences to within 1
point among annotators and the inter-annotator agreement (Fleiss, 1971) was computed to be 0.99
indicating high agreement among annotators.

In the data set, 18% of the sentence pairs scored 4 or 5 (high semantic similarity), while 59%
were labeled incorrect (score 1) or exhibited low concept coverage (score 2). About 23% of the
sentence pairs received a score of 3. The semantic similarity label distribution is shown in Table 3
and Table 1 provides example instances from the corpus. Given the opaque nature of ChatGPT’s
training data, we validate our findings against memorization by exclusively working with publicly
released datasets after May 2023.

4. Methodology

As already noted, we employ semantic similarity to evaluate students’ natural language responses,
with the primary focus on assessing decoder-only LLMs’ capability in measuring semantic similarity;
however, for comparison purposes, we offer results with several other approaches, as described next.

4.1. Assessment Using Encoder Models

First, we calculate the similarity based on BERTScore (Zhang et al., 2019) and Universal Sentence
Encoder (USE; (Cer et al., 2018)). Second, we employ Sentence transformer models models
(Reimers and Gurevych, 2019b), which we fine-tune on our dataset. The three pretrained sentence
transformer models that we further finetune with our dataset include: i) SRoBERTa fine-tuned on NLI,
ii) CodeBERT, and iii) all-mpnet-base-v21. We experimented with CodeBERT (Feng et al., 2020) as
an encoder to assess whether it offers advantages in capturing the similarity of sentences related to
code segments. Additionally, Sentence transformer models demonstrate improved performance in
tasks related to Natural Language Inference(NLI) when fine-tuned on models previously trained with
NLI data (Reimers and Gurevych, 2019a). Hence, we fine-tuned models that were initially trained in
NLI using our dataset for enhanced performance.

For each of the mentioned encoders, we compute the similarity between expert and student
explanations by calculating the cosine similarity between their embeddings. There is an exception to
this similarity computation when calculating BERTScore. In this case, the similarity of two sentences
is computed as the sum of cosine similarities between their tokens’ embeddings.

We split our data-set into 80% training data and 20% test data and finetuned SBERT with
contrastive loss objective function for one epoch in our training dataset. We used a batch size of

1. https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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16, Adam optimizer with a learning rate 2e−4 and a linear learning rate warm-up over 10% of the
training data. Our pooling strategy is MEAN. This comprehensive assessment framework allows
us to thoroughly evaluate the effectiveness of different language models and baselines in capturing
semantic similarity in the context of answer assessment.

4.2. Assessment by Prompting LLMs:

We explore various prompting strategies for four different large language models: OpenAI’s ChatGPT-
3.5-turbo-0613 and ChatGPT-4-0613 (OpenAI, 2023), gpt-4-1106-preview(GPT-4 Turbo) (OpenAI,
2023) and Meta’s open source model LLMa2-chat2 (Touvron et al., 2023)).

First, for predictive prompting of semantic similarity, we used simple prompts to instruct the
LLM to predict the similarity score on a scale of 1-5, similar to human judgments (with 1 indicating
no semantic similarity and 5 indicating semantically equivalence between the pair of sentences).
Based on the findings by Gatto et al. (2023), who suggest framing STS tasks to predict a similar-
ity percentage (leveraging large language models’ strong textual reasoning and their exposure to
percentage-related language during pre-training), we further used the same prompt to generate the
semantic similarity in the scale of 0-1. In addition, we also explore advanced prompting strategies.
These include the conventional few-shot prompting, also known as in-context learning, where the
LLM is tasked to infer from the provided examples or task descriptions (Brown et al., 2020), as well
as few-shot chain-of-thought (CoT) prompting (Wei et al., 2022) where the LLM is guided to think
step by step. In the case of few-shot learning, we employed a stratified sampling approach to select
six expert explanations along with corresponding student explanations and benchmark similarity
scores. These were provided as examples to the Large Language Models (LLMs), with the caveat
that the examples were excluded from the dataset used for subsequent analysis.

For few-shot Chain-of-Thought prompting, we manually crafted a step-by-step breakdown of
the reasoning behind assigning semantic similarity scores when evaluating two texts, selecting
three examples with varying benchmark similarity scores. The prompts utilized in our analysis are
detailed in Appendix B. In the CoT Prompting approach, which elicited textual responses along with
reasoning, we extracted numerical values within specified delimiters to obtain the semantic similarity
score. In our experimental setup, we opted for deterministic results by setting the temperature
parameter to 0. We set a maximum token length of 1200 to limit the scope of generated sequences.

5. Results and Discussion

5.1. Assessment using Encoder-based Models

As we can see from results in Table 2, for encoder based models, models such as BERTScore
and Universal Sentence Encoder show below par results based on Pearson and Spearman rank
correlation. The results indicate that fine-tuned sentence transformer models capture the assessment
score better. The encoder models pre-trained on code such as CodeBERT do not show better
performance compared to RoBERTa. The best performing model for student answer explanation is
all-mpnet. One of the reasons for this might be the large amount of data it is fine tuned on. Also,
there is no remarkable difference between RoBERTa and all-mpnet indicating sentence transformer
models can be used effectively for student answer assessment by comparing expert explanations with
student explanations.

2. https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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Model Pearson Spearman
BERTScore 0.573 0.553

USE 0.61 0.61

Sentence Transformer RoBERTa-base† 0.800 0.78
CodeBERT-base† 0.797 0.761

all-mpnet† 0.81 0.811

GPT-3.5 baseline-prompt[1-5] 0.58 0.59
baseline-prompt[0-1] 0.60 0.61
fewshot-prompt[0-1] 0.64 0.64

CoT-prompt[0-1] 0.69 0.70

GPT-4 baseline-prompt[1-5] 0.69 0.70
baseline-prompt[0-1] 0.72 0.737
fewshot-prompt[0-1] 0.78 0.79

CoT-prompt[0-1] 0.81 0.82

GPT-4-turbo baseline-prompt[1-5] 0.70 0.70
baseline-prompt[0-1] 0.72 0.75
fewshot-prompt[0-1] 0.67 0.71

CoT-prompt[0-1] 0.79 0.80

LLAMA-2 baseline-prompt[1-5] 0.29 0.31
baseline-prompt[0-1] 0.38 0.39
few-shot-prompt[0-1] 0.42 0.44

CoT-prompt[0-1] 0.26 0.27

Table 2: Pearson and Spearman correlations by comparing human-annotated semantic similarity
scores with automated similarity scores for student and expert explanations across different
model classes. † indicate finetuned model

5.2. Assessment by Prompting Decoder-only LLMs

In Table 2, we present results of prompting decoder-only Large Language Models (LLM) to assess
semantic similarity. The outcomes for various versions of ChatGPT indicate a notable trend: prompt-
ing the LLMs to predict semantic similarity on a scale of 0-1 yields superior performance compared
to prompting it to predict similarity on other arbitrary scales(1-5).

The advance strategies consistently boost ChatGPT’s performance, with manual chain-of-thought
(CoT) providing the most significant benefits. Notably, the standard few-shot CoT enhances Chat-
GPT’s overall performance (on average 15% better than baseline prompting for ChatGPT-based
model) with GPT-4 providing the best performance for our task. Table 2 shows that GPT4 performs
similarly to fine-tuned encoder-based models when using chain-of-thought prompting. The results
also indicate that GPT-4 consistently outperforms GPT-3.5 across various prompting techniques
and scales. Our experimentation with GPT-4 Turbo yielded results comparable to those of other
LLMs, offering no discernible advantage except processing speed. ChatGPT-4 demonstrates superior
reasoning in CoT-prompting and also closely aligns with human-annotated benchmark similarity (see
Appendix C.1 for examples). In the case of LLama-2, the semantic similarity scores were skewed
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towards higher values, particularly with scores of 0.8-1.0 in the scale of 0-1. Moreover, we observed
that LLama-2 generates verbose results, including reasoning about the semantic similarity score
often deviating from instruction prompt provided.

5.3. Error Analysis

When prompting LLMs, we found in-context learning to be sensitive to the provided examples, which
is consistent with the findings from previous studies (Agrawal et al., 2022; Zhong et al., 2023). This
sensitivity may arise from limited generalization or overfitting to few-shot examples used, suggesting
a potential correlation between provided examples and test data. To address this potential bias in the
few-shot setting, we conducted the analysis three times with different instances of example provided
each time and present the results as the average of these runs.

One of the cases where the LLMs fail is for instances involving numerical reasoning. LLMs
assign a high semantic equivalence score to such instances, which although they are linguistically
highly similar, often involve different numerical values. For example, the LLMs scored the student’s
explanation of “creates variable integer entitled ‘num’ with initial value 5" with a similarity of 0.8
compared to the reference “In this program, we initialize the variable num to 15." (for more detail
see Appendix C.2). In such situations where there is a numerical disparity between a student’s
explanation and an expert’s explanation, current Large Language Models do not account for this
difference when automatically evaluating the similarity between the two texts.

6. Conclusion

This work investigated the ability of LLMs to automatically assess students’ code comprehension.
Our results indicate that Large Language Models (LLMs) perform comparably well, in particular
GPT models, to fine-tuned encoder-based models but there is room for improvement which we plan
to explore in the future.
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Appendix A. Dataset Distribution

Similarity Score(1-5) No. of Sentence Pair
1 529 (29.88%)
2 507 (28.62%)
3 419 (23.65%)
4 253 (14.45%)
5 62 (3.50%)

Table 3: Distribution of Data

Appendix B. Prompts

Baseline Prompt [1-5]: Analyze if the two sentences are similar and provide a score between
1 to 5, with 1 indicating minimal similarity and 5 representing maximal similarity. Provide
semantic similarity score for <user explanation> and <expert explanation> between 1 to 5.
Only provide the score without any other text.

Baseline Prompt[0-1]: Assess the similarity of the two sentences and assign a similarity score
on a scale from 0 to 1, with 0 indicating minimal similarity and 1 representing maximal simi-
larity. Provide semantic similarity score for <user explanation> and <expert explanation>
between 0 to 1. Only provide the score without any other text.

Few Shot Prompt [0-1]: Assess the similarity of the two sentences and assign a similarity
score on a scale from 0 to 1, with 0 indicating minimal similarity and 1 representing maximal
similarity. Provide a semantic similarity score for ‘Declares the array we want to use for our
assignment’ and ‘We initialize the array of type int to hold the specified numbers.’ between 0
and 1. Only provide the score without any other text. Similarity Score: 0.87

Assess the similarity of the two sentences and assign a similarity score on a scale from 0 to 1,
with 0 indicating minimal similarity and 1 representing maximal similarity. Provide semantic
similarity score for ‘run a while-loop as long as the remainder of num/divisor is not equal to
0’ and ‘We could check whether the divisor is not a factor of the number by computing the
remainder of the division of the number by the divisor.’ between 0 and 1. Only provide the
score without any other text. Similarity Score: 0.75
............
Assess the similarity of the two sentences and assign a similarity score on a scale from 0
to 1, with 0 indicating minimal similarity and 1 representing maximal similarity. Provide
semantic similarity score for <user explanation> and <expert explanation> between 0 to 1.
Only provide the score without any other text. Similarity Score:

11
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Chain-of-Thought (CoT) Prompt [0-1]: Discuss how these two texts are similar and
different, then assign a semantic similarity score between [0.0-1.0] which describes their
semantic similarity: ‘Declares the array we want to use for our assignment, and ‘We initialize
the array of type int to hold the specified numbers. Similarity: Lets think step by step. Both
the text is about declaration or initialization of array. The slight difference between the two
texts is the second text provides additional information about the type of the declared array.
Thus, these sentences have a [semantic similarity = 0.87]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity: ‘We could check whether the
divisor is not a factor of the number by computing the remainder of the division of the number
by the divisor.’ and ‘run a while-loop as long as the remainder of num/divisor is not equal to
0’ Similarity: Lets think step by step. Both the text is about computing the checking whether
divisor is a factor of number or not. However, the first text is more specific about using a
while-loop and the condition for the loop to continue, while the second text is more focused
on the purpose of the operation, which is to check if the divisor is a factor of the number.
Thus, these sentences have a [semantic similarity = 0.75]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity: ‘Loop start’ and ‘We need to
increment the divisor repeatedly as long as the divisor is not a factor of the number.Similarity:
Lets think step by step. Both texts are discussing loop. The first text is simply stating the start
of a loop, while the second text is explaining a specific condition within a loop. Thus, these
sentences have a [semantic similarity = 0.2]

Discuss how these two texts are similar and different, then assign a semantic similarity score
between [0.0-1.0] which describes their semantic similarity:<user explanation> and <expert
explanation> Similarity: Lets think step by step

Appendix C. Chain-of-Though-Prompting Example

C.1. LLM response with semantic similarity and reasoning for C0T Prompting

Code statement: System.out.println("The integer is positive.");
Expert explanation: Print that the integer is positive if it is greater than 0..
Student explanation: This statement prints that the integer is positive.
Benchmark Similarity: 1
LLM: GPT-4
Both texts are discussing the same action of printing a statement that an integer is positive.
The first text, however, provides a condition for this action (if the integer is greater than 0),
while the second text does not specify any condition. Thus, these sentences have a [semantic
similarity = 0.8] have a [semantic similarity = 0.8]
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Code statement: int divisor = 2;
Expert explanation: We define variable divisor to store the smallest divisor of the number.
Student explanation: we initialize another variable named divisor with the value 2.
Benchmark Similarity: 0.33
LLM: GPT-4
Both texts discuss initializing a variable named ’divisor’, but they differ in the context and
purpose of this variable. The first text simply states that the variable is initialized with the
value 2, while the second text explains that the variable is used to store the smallest divisor of
a number. Thus, these sentences have a [semantic similarity = 0.6]

C.2. Fail case: LLM fails in numerical reasoning

Code statement: int num = 15;
Expert explanation: In this program, we initialize variable num to 15.
Student explanation: creates variable integer entitled "num" with initial value 5
Benchmark Similarity: 0.466666667
LLM: GPT-4
LLM response to Chain-of-thought Prompting: Both texts are discussing the initialization
of a variable named "num", but the initial values they assign to "num" are different. The first
text assigns a value of 5, while the second assigns a value of 15. Thus, these sentences have a
[semantic similarity = 0.8]
Comment: LLM assigns high semantic equivalence score to the two text, which although
linguistically similar involve different numerical value. In such situations where there is
a numerical disparity between a student’s explanation and an expert’s explanation, current
Language Models (LLMs) do not account for this difference when automatically evaluating
the similarity between the two texts.
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