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ABSTRACT

We propose an algorithm for learning a conditional generative model of a molecule
given a target. Specifically, given a receptor molecule that one wishes to bind to,
the conditional model generates candidate ligand molecules that may bind to it.
The distribution should be invariant to rigid body transformations that act jointly
on the ligand and the receptor; it should also be invariant to permutations of either
the ligand or receptor atoms. Our learning algorithm is based on a continuous
normalizing flow. We establish semi-equivariance conditions on the flow which
guarantee the aforementioned invariance conditions on the conditional distribu-
tion. We propose a graph neural network architecture which implements this flow,
and which is designed to learn effectively despite the vast differences in size be-
tween the ligand and receptor. We evaluate our method on the CrossDocked2020
dataset, attaining a 52.7% relative improvement over the current state of the art.

1 INTRODUCTION

The design of new molecules is an important topic, with applications in medicine, biochemistry, and
materials science. Recently there have been quite a number of promising directions for applying
machine learning techniques to this problem; most relevant to the current work are those which
produce a generative model of molecules. However, to date most of the approaches have focused
on the unconditional setting, in which the goal is simply to produce molecules without regard for a
more specific purpose. Such techniques can, for example, effectively produce “drug-like” molecules.
However, given two different targets that one wishes to bind to, the models will produce precisely
the same distribution of candidates in both cases.

In this paper, we focus on learning generative models for molecules in the conditional setting.
Specifically, we assume that we are given a target receptor molecule; the aim is then to generate
ligand molecules that may successfully bind to this receptor. This kind of conditional generative
model is very useful in the context of drug design, in which one often has a target (receptor) in
mind, and the goal is then to find drugs (ligands) which will bind to the target.

It is important that our generative model be probabilistic, so that we can generate multiple potential
candidates; diversity is useful in this context, as not all candidates will be equally suitable experi-
mentally, due to considerations such as toxicity. We choose to describe both the receptor and ligand
as 3D graphs, so our goal is to learn a conditional probabilistic model of one 3D graph given another.

We implement the central part of this conditional probabilistic model as a continuous normalizing
flow. The work of Satorras et al. (2021a) pioneered this approach in the unconditional setting. In the
conditional setting, a number of important changes must be made, and the conditioning variable (the
receptor) must enter the flow in a very particular way. Specifically, we know that the probabilistic
model must capture natural invariances, to rigid motions and permutations of the atoms. Note that
the invariance to rigid motions is a kind of “conditional invariance”, which is expressed jointly in
terms of the ligand and the receptor. Due to the fact that the receptor is a conditioning variable,
this leads to a novel form of semi-equivariance of the flow, which we prove. An additional issue
which arises is the vastly different sizes of the two molecules: the receptor is typically 1-2 orders
of magnitude larger than the ligand. We introduce an architecture for implementing the flow which
takes this into account, and enables effective learning despite the size disparity. We train our method
on the CrossDocked2020 dataset (Francoeur et al., 2020) and attain high quality performance, with
a relative improvement of 52.7% over the current state of the art in the key ∆Binding metric.
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Our principal contributions are as follows:

• The derivation of conditions on a continuous normalizing flow which allows for joint in-
variance of the ligand and receptor to both rigid motions and permutations.

• The design of an architecture which implements the conditional distribution of ligand given
receptor, enabling effective learning despite the size disparity between the molecules.

• A demonstration of the effectiveness of the method on the CrossDocked2020 dataset, at-
taining a 52.7% relative improvement over the state of the art in terms of ∆Binding.

2 RELATED WORK

Continuous normalizing flows Normalizing flows transform an initial density distribution into
a desired density distribution by applying a sequence of invertible transformations. They are easy
to sample from and can be trained by maximum likelihood using the change of variables formula
(Rippel & Adams, 2013; Dinh et al., 2014; Rezende & Mohamed, 2015; Dinh et al., 2016; Kingma
& Dhariwal, 2018). Chen et al. (2018a) introduced a continuous flow based on ODEs, which was
then extended in (Grathwohl et al., 2018). Further works aimed to improve the accuracy of the
model (Zhuang et al., 2021; Zhang & Zhao, 2022); improve stability and deal with ODE stiffness
issues through regularization (Finlay et al., 2020; Kelly et al., 2020; Ghosh et al., 2020); and deal
with discrete data (Ho et al., 2019; Hoogeboom et al., 2021).

GNNs for drug design and discovery Graph Neural Networks (GNNs) are well-suited to problems
in molecular modelling, with atoms and bonds represented as vertices and edges, respectively. GNN
methods were shown to be useful for detecting receptor’s binding site (pocket) and predicting the
receptor pocket-ligand or protein-protein interactions (Gainza et al., 2020; Sverrisson et al., 2021;
2022); as well as the drug binding structure or the rigid body protein-protein docking structure
(Ganea et al., 2021; Stärk et al., 2022). Several generative methods to produce molecules were
previously demonstrated, for the unconditional setting (Gebauer et al., 2019; Satorras et al., 2021a;
Hoogeboom et al., 2022; Trippe et al., 2022). Satorras et al. (2021a) constructed an E(n) equivariant
normalizing flows, by incorporating equivariant graph neural networks (Satorras et al., 2021b) into
an ODE framework to obtain an invertible equivariant function. The model to jointly generates
molecular features and 3D positions.

3D molecular design conditioned on a receptor binding site This line of research is newer
than the general (unconditioned) GNN-based methods described above, with fewer results. LiGAN
(Ragoza et al., 2022) is a pioneering work in this area, which uses a condition VAE on an image-like
discretized 3D atomic density grid; a post-sampling step converts this grid structure into molecules
using an atom fitting algorithm. A more recent class of works (Luo et al., 2021; Liu et al., 2022)
use an auto-regressive approach. Luo et al. (2021) derive a model which captures the probability
that a point 3D space is occupied by an atom of a particular chemical element. Liu et al. (2022)
propose the GraphBP framework, which eliminates the need to discretize space; to place a new atom,
they generate its atom type and relative location while preserving the equivariance property. Other
works include fragment-based ligand generation, in which new molecular fragments are sequentially
attached to the growing molecule (Powers et al., 2022); abstraction of the geometric interaction
features of the receptor–ligand complex to a latent space, for generative models such as Bayesian
sampling (Wang et al., 2022b) and RNNs (Zhang & Chen, 2022); and use of experimental electron
densities as training data for the conditional generative model (Wang et al., 2022a).

Data Datasets with a large number of receptor-ligand complexes are critical to our endeavour.
Many models have relied on the high quality PDBbind dataset which curates the Protein Data Bank
(PDB) (Liu et al., 2017); however, for the training of generative models, this dataset is relatively
small. CrossDocked2020 (Francoeur et al., 2020) is the first large-scale standardized dataset for
training ML models with ligand poses cross-docked against non-cognate receptor structure, greatly
expanding the number of poses available for training. The dataset is organized by clustering of simi-
lar binding pockets across the PDB; each cluster contains ligands cross-docked against all receptors
in the pocket. Each receptor-ligand structure also contains information indicating the nature of the
docked pair, such as root mean squared deviation (RMSD) to the reference crystal pose and Vina
cross-docking score (Trott & Olson, 2010) as implemented in Smina (Koes et al., 2013). The dataset
contains 22.5 million poses of ligands docked into multiple similar binding pockets across the PDB.
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3 INVARIANT CONDITIONAL MODEL OF LIGANDS GIVEN A RECEPTOR

Objective Our overall goal can be stated as follows: wish to learn a conditional distribution over
ligand molecules given a particular receptor molecule. As both ligand and receptor are described by
3D graphs, this will be a distribution of the form p(G|Ĝ). To be physically plausible, this distribution
must be invariant to certain groups of transformations: rigid motions applied jointly the entire ligand-
receptor complex, as well as permutations applied to each of the ligand and receptor separately.

Organization This section proposes a method for learning such a conditional distribution p(G|Ĝ).
Section 3.1 introduces notation. Section 3.2 decomposes the distribution into 4 subdistributions us-
ing a Markov decomposition, and shows how the invariance properties apply to each subdistribution.
Section 3.3 is an intermezzo, describing two types of Equivariant Graph Neural Networks (EGNNs);
these EGNNs are then used in Sections 3.4 - 3.6 to propose forms for each of the subdistributions
with the appropriate invariance properties. The main result appears in Section 3.5, which shows that
the vertex subdistribution can be implemented as a particular type of continuous normalizing flow.

3.1 NOTATION AND GOAL

Notation We use the following notation. A molecular graph is given by
G = (N,V,E,A) (1)

where N is the number of atoms in the molecule; V is the list of vertices, which are the atoms; E is
the list of edges, which are the bonds; and A is the set of global molecular properties, i.e. properties
which apply to the entire molecule. The vertex list1 is V = (vi)

N
i=1 where each vertex is specified

by a vector vi = (xi,hi); in which xi ∈ R3 is the position of the atom, and hi ∈ Rdh contains
the properties of the atom, such as the atom type. More generally, this may include continuous
properties, discrete ordinal properties, and discrete categorical properties (using the one-hot repre-
sentation); hi may be thought of a concatenation of all such properties. The edges in the graph G
are undirected, and the edge list E is specified by a neighbourhood relationship. Specifically, if ηi
is the set of vertex i’s neighbours, then we write E = (eij)i<j:j∈ηi . The vector eij ∈ Rde contains
the properties of the bond connecting atom i and atom j, such as the bond type; more generally,
eij may contain a concatenation of various properties in a manner analogous to the atom proper-
ties hi as described above. Finally, the graph properties are given by K individual properties, i.e.
A = (a1, . . . ,aK). A given property ak can be either continuous, categorical or ordinal.

Rigid Transformations The action2 of a rigid transformation T ∈ E(3) on a graph G is given by
TG = (TN, TV, TE, TA) where

TV = (Tvi)
N
i=1 with Tvi = (Txi,hi) (2)

and the other variables are unaffected by T ; that is TN = N , TE = E, and TA = A.

Permutations The action of a permutation π ∈ SN on a graph G with N(G) = N is given by
πG = (πN, πV, πE, πA) where

πV = (vπi)
N
i=1 and πE =

(
eπiπj

)
i<j:j∈ηi

(3)

and the other variables are unaffected by π; that is, πN = N and πA = A.

Goal We assume that we have both a receptor and a ligand, each of which is specified by a molecular
graph. We denote

G = (N,V,E,A) = ligand graph and Ĝ = (N̂ , V̂ , Ê, Â) = receptor graph (4)
(Note: if there molecular properties of the entire ligand-receptor complex, these are subsumed into
the ligand molecular properties, A.) Our goal is to learn a conditional generative model: given the
receptor, we would like to generate possible ligands. Formally, we want to learn

p(G|Ĝ) (5)
1We use lists, rather than sets, so as to make the action of permutations clear.
2Note to the reader: other papers such as Satorras et al. (2021a) use the notation E(n) rather than E(3), as

the transformation is applied to multiple atoms. Here, we opt to use the notation E(3), and O(3) in the case
of rotations, as there is a single transformation being applied to all of the atoms. Our notation is made sensible
and precise given the definitions in Equation (2) and the surrounding text.
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We want our generative model to observe two types of symmetries. First, if we transform both the
ligand and the receptor with the same rigid transformation, the probability should not change:

p(TG|T Ĝ) = p(G|Ĝ) for all T ∈ E(3) (6)

Second, permuting the order of either the ligand or the receptor should not affect the probability:

p(πG|π̂Ĝ) = p(G|Ĝ) for all π ∈ SN , π̂ ∈ SN̂ (7)

3.2 DECOMPOSITION OF THE CONDITIONAL DISTRIBUTION AND INVARIANCE PROPERTIES

Decomposition We may breakdown the conditional generative model as follows:

p(G|Ĝ) = p(N,V,E,A|Ĝ) = p(N |Ĝ) · p(V |N, Ĝ) · p(E|N,V, Ĝ) · p(A|N,V,E, Ĝ) (8)

We refer the four terms on the right-hand side of the equation as the Number Distribution, the Vertex
Distribution, the Edge Distribution, and the Property Distribution, respectively. We will specify
a model for each of these distributions in turn. First, however, we examine how the invariance
properties affect the distributions.

Invariance Properties Using the relations for rigid body transformations in (2), we have that

p(TG|T Ĝ) = p(N |T Ĝ) · p(TV |N,T Ĝ) · p(E|N,TV, T Ĝ) · p(A|N,TV,E, T Ĝ) (9)

Similarly, using the relations for permutations in (3), we have that

p(πG|π̂Ĝ) = p(N |π̂Ĝ) · p(πV |N, π̂Ĝ) · p(πE|N, πV, π̂Ĝ) · p(A|N, πV, πE, π̂Ĝ) (10)

Comparing Equation (8) with (9) and (10), the following conditions are sufficient for conditional
rigid body invariance (6) and conditional permutation invariance (7):

p(N |T Ĝ) = p(N |Ĝ) p(N |π̂Ĝ) = p(N |Ĝ) (11)

p(TV |N,T Ĝ) = p(V |N, Ĝ) p(πV |N, π̂Ĝ) = p(V |N, Ĝ) (12)

p(E|N,TV, T Ĝ) = p(E|N,V, Ĝ) p(πE|N, πV, π̂Ĝ) = p(E|N,V, Ĝ) (13)

p(A|N,TV,E, T Ĝ) = p(A|N,V,E, Ĝ) p(A|N, πV, πE, π̂Ĝ) = p(A|N,V,E, Ĝ) (14)

3.3 INTERMEZZO: TWO FLAVOURS OF EGNNS

In order to incorporate the relevant invariance properties, it will be helpful to use Equivariant Graph
Neural Networks, also known as EGNNs (Satorras et al., 2021b). We now introduce two separate
flavours of EGNNs, one which applies to the receptor alone, and a second which applies to the
combination of the receptor and the ligand.

Receptor EGNN This is the standard EGNN which is described in (Satorras et al., 2021b), applied
to the receptor. As we are dealing with the receptor we use hatted variables:

m̂`
ij = φ̂e(ĥ

`
i , ĥ

`
j , ‖x̂`i − x̂`j‖2, ‖x̂0

i − x̂0
j‖2, êij , {âk}) b̂`ij = σ(φ̂b(m̂

`
ij)) m̂`

i =
∑
j∈η̂i

b̂`ijm̂
`
ij

x̂`+1
i = x̂`i +

∑
j 6=i

(x̂`i − x̂`j)

‖x̂`i − x̂`j‖+ 1

 φ̂x(m̂`
ij) ĥ`+1

i = ĥ`i + φ̂h(ĥ`i , m̂
`
i) (15)

The particular Receptor EGNN is thus specified by the functions φ̂e, φ̂b, φ̂x, φ̂h. In practice, prior
to applying the EGNN one may apply: (i) an ActNorm layer to the atom positions and features, as
well as the edge features and graph features; (ii) a linear transformation to the atom properties.

Receptor-Conditional Ligand EGNN It is possible to design a joint EGNN on the receptor and
the ligand, by constructing a single graph to capture both. The main problem with this approach is
that the receptor is much larger (1-2 orders of magnitude) than the ligand. As a result, this naive
approach will lead to a situation in which the ligand is “drowned out” by the receptor, making it
difficult to learn about the ligand.
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We therefore take a different approach: we compute summary signatures of the receptor based on
the Receptor EGNN, and use these as input to a ligand EGNN. Our signatures will be based on the
feature variables ĥ`j from each layer ` = 1, . . . , L̂. These variables are invariant to rigid body trans-
formations by construction; furthermore, we can introduce permutation invariance by averaging,
that is ĥ`av = 1

N̂

∑N̂
j=1 ĥ`j . In Section 3.5, we will see that the vertex distribution is described by a

continuous normalizing flow. In anticipation of this, we wish to introduce a dependence (crucial in
practice) on the time variable t of the ODE corresponding to this flow. Thus, the receptor at layer `
of the ligand’s EGNN is summarized by the signature ĝ` which depends on both {ĥ`av} and t:

ĝ0 = φ0
g

(
ĥ1
av, . . . , ĥ

L̂
av, t

)
and ĝ` = φ`g

(
ĝ`−1

)
` = 1, . . . , L (16)

These invariant receptor signatures {ĝ`}L`=1 are then naturally incorporated into the Receptor-
Conditional Ligand EGNN as follows:

m`
ij = φe

(
h`i ,h

`
j , ‖x`i − x`j‖2, ‖x0

i − x0
j‖2, ĝ`

)
b`ij = σ(φa(m`

ij , ĝ
`)) m`

i =

N∑
j=1

b`ijm
`
ij

x`+1
i = x`i +

∑
j 6=i

(x`i − x`j)

‖x`i − x`j‖+ 1

φx(m`
ij , ĝ

`) h`+1
i = h`i + φh(h`i ,m

`
i , ĝ

`) (17)

The particular Receptor-Conditional Ligand EGNN is thus specified by the functions
{φ`g}L`=0, φe, φb, φx, φh.

3.4 THE NUMBER DISTRIBUTION: p(N |Ĝ)

Construction Given the invariance conditions for the number distribution p(N |Ĝ) described in
Equation (11), we propose the following distribution. Let ζN indicate a one-hot vector, where the
index corresponding to N is filled in with a 1. Based on the output of the receptor EGNN, compute

p(N |Ĝ) = ζTNMLP
′

 1

N̂

N̂∑
i=1

MLP
(
ĥLi

) (18)

where the outer MLP’s last layer is a softmax of size equal to the maximum number of atoms allowed.

Due to the fact that we use the ĥLi vectors (and not the x̂Li vectors), we have the first invariance
condition, as T ĥLi = ĥLi . Due to the fact that we use an average, we have the second invariance
condition. Note that we can choose to make the inner MLP the identity, if we so desire.

Loss Function The loss function is straightforward here – it is simply the negative log-likelihood
of the number distribution, i.e. L(θ) = EG,Ĝ

[
− log p(N |Ĝ; θ)

]
.

3.5 THE VERTEX DISTRIBUTION: p(V |N, Ĝ) VIA CONTINUOUS NORMALIZING FLOWS

General Notation Given the invariance conditions for the vertex distribution p(V |N, Ĝ) described
in Equation (12), we now outline a procedure for constructing such a distribution. We begin with
some notation. Let us define a vectorization operation on the vertex list V , which produces a vector
v; we refer to this as a vertex vector. Recall that V = (vi)

N
i=1 where vi = (xi,hi). Let

x = concat(x1, . . . ,xN ) h = concat(h1, . . . ,hN ) v = concat(x,h) (19)

The vertex vector v ∈ RdNv where dNv = (dh + 3)N . We denote the mapping from the vertex list V
to the vertex vector v as the vectorization operation vec(·):

v = vec(V ) and V = vec−1(v) (20)

We have already described the action of rigid body transformation T and permutations π on the
vertex list V in Equations (2) and (3). It is easy to extend this to vertex vectors v using the vec
operation; we have Tv = vec(Tvec−1(v)) and πv = vec(πvec−1(v)).
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Given the above, it is sufficient for us to describe the distribution pvec(v|Ĝ) from which the vertex
distribution p(V |N, Ĝ) follows directly, p(V |N, Ĝ) = pvec(vec(V )|Ĝ). Note that we have sup-
pressed N in the condition in pvec(·), as v is a vector of dimension dNv , so the N dependence is
already implicitly encoded.

Complex-to-Ligand Mapping and Semi-Equivariance Let γ be a function which takes as input
the ligand graph G and receptor graph Ĝ, and outputs a new vertex list V ′ for the ligand graph G:

γ : G × Ĝ → V V ′ = γ(G, Ĝ) (21)

We refer to γ as a Complex-to-Ligand Mapping. A rigid body transformation T ∈ E(3) consists
of a rotation and translation; let the rotation be denoted as Trot. Then we say that γ is rotation
semi-equivariant if

γ(TrotG, T Ĝ) = Trotγ(G, Ĝ) for all T ∈ E(3) (22)
where, as before, the action of T on a graph is given by Equation (2). γ is said to be permutation
semi-equivariant if

γ(πG, π̂Ĝ) = πγ(G, Ĝ) for all π ∈ SN and π̂ ∈ SN̂ (23)

where, as before, the action of the permutation on a graph is given by Equation (3). Note in the
definitions of both types of semi-equivariance, the differing roles played by the ligand and receptor;
as the equivariant behaviour only applies to the ligand, we have used the term semi-equivariance.

Receptor-Conditioned Ligand Flow Let γ : G × Ĝ → V be a Complex-to-Ligand Mapping. If v
is a vertex vector, define Gv to be the graph G with the vertex set replaced by vec−1(v). Then the
following ordinary differential equation is referred to as a Receptor-Conditioned Ligand Flow:

du

dt
= vec

(
γ(Gu, Ĝ)

)
, with u(0) = z (24)

where the initial condition z ∼ N (0, I) is a Gaussian random vector of dimension dNv , and the ODE
is run until t = 1. u(1) is thus the output of the Receptor-Conditioned Ligand Flow.

Vertex Distributions with Appropriate Invariance We now have all of the necessary ingredients
in order to construct a distribution pvec(v|Ĝ) which yields a vertex distribution p(V |N, Ĝ) that
satisfies the invariance conditions that we require. The following is our main result:
Theorem. Let u(1) be the output of a Receptor-Conditioned Ligand Flow specified by the Complex-

to-Ligand Mapping γ. Let the mean position of the receptor be given by x̂av = 1
N̂

∑N̂
i=1 x̂i, and

define the following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
(25)

where ⊗ indicates the Kronecker product. Finally, let

v = Ω−1

Ĝ

(
u(1)− ωĜ

)
(26)

Suppose that γ is both rotation semi-equivariant and permutation semi-equivariant. Then the result-
ing distribution on v, that is pvec(v|Ĝ), yields a vertex distribution p(V |N, Ĝ) = pvec(vec(V )|Ĝ)
that satisfies the invariance conditions in Equation (12).

Proof: See Appendix A.1.

Designing the Complex-to-Ligand Mapping Examining the theorem, we see that the one degree
of freedom that we have is the Complex-to-Ligand Mapping γ. For this, we choose to use the
Receptor-Conditional Ligand EGNN, where the output of the Complex-to-Ligand Mapping V ′ =

γ(G, Ĝ) is simply the final layer, i.e. the ith vertex of V ′ is given by v′i = (xLi ,h
L
i ).

The rotation semi-equivariance of γ follows straightforwardly from the rotation semi-equivariance
of EGNNs and the rotation invariance of the receptor signatures {ĝ`}L`=1. Similarly, the permutation
semi-equivariance follows from the permutation semi-equivariance of EGNNs and the permutation
invariance of the receptor signatures.
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Loss Function The vertex distribution is described by a continuous normalizing flow. The loss
function and its optimization are implemented using standard techniques from this field (Chen et al.,
2018b; Grathwohl et al., 2018; Chen et al., 2018a). As the feature vectors can contain discrete
variables such as the atom type, then techniques based on variational dequantization (Ho et al.,
2019) and argmax flows Hoogeboom et al. (2021) can be used, for ordinal and categorical features
respectively. This is parallel to the treatment in (Satorras et al., 2021a).

3.6 EXTENSIONS: THE EDGE AND PROPERTIES DISTRIBUTIONS

We now outline methods for computing the Edge and Properties Distributions. In practice, we
do not implement these methods, but rather use a standard simple technique based on inferring
edge properties directly from vertices, see Section 4. Nevertheless, we describe these methods for
completeness.

The Edge Distribution Given the invariance conditions for the edge distribution p(E|N,V, Ĝ)
described in Equation (13), we propose a distribution which displays conditional independence:
p (E = (eij)i<j:j∈ηi |N,V, Ĝ) =

∏
i<j:j∈ηi p(eij |N,V, Ĝ). We opt for conditional independence

for two reasons: (1) The usual Markov decomposition of the probability distribution with terms
of the form p(eij |e<ij , N, V, Ĝ) implies a particular ordering of the edges, and is therefore not
permutation-invariant. (2) V is a deterministic and invertible function of the flow’s noise vector z;
thus, conditioning on V is the same as conditioning on z. If E is a deterministic (but not necessarily
invertible) function of z, then conditional independence is correct.

To compute p(eij |N,V, Ĝ), we use a second Receptor-Conditional Ligand EGNN. The key distinc-
tion between between this network and the Receptor-Conditional Ligand EGNN used in computing
the vertex distribution is the initial conditions. In the case of the vertex distribution, the initial con-
ditions are x1

i = 0 and h1
i = 0. In the current case of the edge distribution, we are given V (we are

conditioning on it); thus, we take the initial conditions to be x̃1
i = xi(V ) and h̃1

i = hi(V ). In other
words, the initial values are given the vertex list V itself.

Given this second Receptor-Conditional Ligand EGNN, we can compute the edge distribution as

p
(
eij |N,V, Ĝ

)
= eTij MLP

(
m̃L
ij

)
(27)

in the case of categorical properties (where MLP’s output is a softmax with de entries); analogous
expressions exist for ordinal or continuous properties. It is straightforward to see that this distribu-
tion satisfies the invariance properties in Equation (13). The corresponding loss function is a simple
cross-entropy loss (or regression loss for non-categorical properties).

The Property Distribution Given the invariance conditions for the property distribution
p(A|N,V,E, Ĝ) described in Equation (14), we propose the following distribution. We use a stan-
dard Markov decomposition: p(A|N,V,E, Ĝ) =

∏K
k=1 p

(
ak|a1:(k−1), N, V,E, Ĝ

)
. Let

ξh =
1

N

N∑
i=1

MLP
(
h̃Li

)
ξe =

1

|E|
∑

i<j:j∈ηi

MLP (eij) ξa,k = MLP

k−1∑
j=1

Wjaj

 (28)

where the matrices W1, . . .WK all have the same number of rows. Then we set

p
(
ak

∣∣∣a1:(k−1), N, V,E, Ĝ
)

= aTk MLP (concat (ξh, ξe, ξa,k)) (29)

in the case of categorical properties; analogous expressions exist for ordinal or continuous properties.
Note that the only item which changes for the different properties k is the vector ξa,k. It is easy to
see that this distribution satisfies the invariance properties in Equation (14). The corresponding loss
function is a simple cross-entropy loss (or regression loss for non-categorical properties).

4 EXPERIMENTS

Data We use the CrossDocked2020 dataset (Francoeur et al., 2020) which contains poses of ligands
docked into multiple similar binding pockets across the Protein Data Bank. We use the authors’

7
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Validity
Ours GraphBP

99.86% 99.75%

Bond Length Distribution
Ref. Mols. Ours GraphBP

std 0.08 0.10 0.95
mean 1.42 1.45 1.65

(a) Ligand validity and bond length distribution

∆Binding
Ours GraphBP

34.75% 22.76%

Predicted Affinity Distribution
Ref. Mols. Ours GraphBP

std 5.1 4.52 3.64
mean 1.16 1.01 1.09

(b) ∆Binding and predicted affinity distribution

Table 1: Comparison of molecule validity and ∆Binding between proposed method and GraphBP.
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Figure 1: Normalized histogram of relative distances between atoms

suggested split into training and validation sets. The dataset contains docked receptor-ligand pairs
whose binding pose RMSD is lower than 2 Å. We keep only those data points whose ligand has 30
atoms or fewer with atom types in {C, N, O, F}; which do not contain duplicate vertices; and whose
predicted Vina scores (Trott & Olson, 2010) are within distribution. The refined datasets consist
of 132,863 training data points and 63,929 validation data points. A full description of the data is
summarized in Appendix A.2.

Features The ligand features that we wish to predict include the atom type ∈ {C, N, O, F} (categor-
ical); the stereo parity ∈ {not stereo, odd, even} (categorical); and charge ∈ {−1, 0,+1} (ordinal).
The receptor features that are used are computed with the Graphein library (Jamasb et al., 2022).
The vertex features include: the atom type ∈ {C, N, O, S, “other”} where “other” is a catch-all for
less common atom types3 (categorical); the Meiler Embeddings (Meiler et al., 2001) (continuous
∈ R7). The bond (edge) properties include: the bond order ∈ {Single, Double, Triple} (categori-
cal); covalent bond length (continuous ∈ R). The receptor overall graph properties (Â) contain the
weight of all chains contained within a polypeptide structure, see (Jamasb et al., 2022).

Training Training the model takes approximately 14 days using a single NVIDIA A100 GPU for 30
epochs. We train with the Adam optimizer, weight decay of 10−12, batch size of 128, and learning
rate of 2 × 10−4. We also train the baseline (state of the art) technique, GraphBP (Liu et al., 2022)
on our filtered dataset. We train it for 100 epochs, using the hyperparameters given in the paper, with
one exception: we set the atom number range of the autoregressive generative process according to
the atom distribution of the filtered dataset.

Evaluation For both the proposed method as well as GraphBP, we perform inference using the
method suggested in Liu et al. (2022). Given a receptor, we sample from the learned distribution,
which generates the ligands’ vertices; we then then apply OpenBabel (Hummell et al., 2021) to
construct bonds. Evaluation follows the standard procedure (Francoeur et al., 2020; Liu et al., 2022).
First, the receptor target is computed by taking all the atoms in the receptor that are less than 15 Å
from the center of mass of the reference ligand; if the target has fewer than 200 atoms, the threshold
of 15 Å until the 200 atom minimum is reached. We then generate 100 ligands for each reference
binding site in the evaluation set, and compute statistics (i.e. validity and ∆Binding, see below) on
this set of samples. As in (Francoeur et al., 2020; Liu et al., 2022), 10 target receptors for evaluation;
each target receptor has multiple associated ligands, leading to 90 (receptor, reference-ligand) pairs.

3Specifically: Na, Mg, P, Cl, K, Ca, Co, Cu, Zn, Se, Cd, I, Hg.

8
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Figure 2: Comparison between generated 3D molecules for target binding-site and reference
molecules. Receptor IDs, left to right: lzyu, 2qu9, 2hw1. Top: generated ligand (colour) + receptor.
Middle: generated ligand chemical structure. Bottom: reference ligand chemical structure.

Validity The validity is defined as the percentage of molecules that are chemically valid among
all generated molecules. A molecule is valid if it can be sanitized by RDKit; for an explanation
of the sanitization procedure, see (Landrum, 2016). As shown in Table 1(a), our model produces
ligands with a validity 0f 99.86%, surpassing the previous state of the art. We also compute the
distribution of bond distances of the two methods, and compare this to distribution of the reference
ligands; see Figure 1. Our method’s distribution is considerably closer to the reference distribution
than GraphBP; some non-trivial fraction of the time, GraphBP produces unusual, very high bond
distances. (In fact, we have discarded values higher than 10 Å on the GraphBP plot so as to display
the distributions on similar scales.) This impression is reinforced in Table 1(a) which compares the
mean and standard deviation of these distributions.

Binding Affinity A more interesting measure than validity is ∆Binding, which measures the mea-
sures the percentage of generated molecules that have higher predicted binding affinity to the target
binding site than the corresponding reference molecule. To compute binding affinities, we follow the
procedure used by GraphBP. Briefly, we refine the generated 3D molecules by Universal Force Field
minimization (Rappé et al., 1992); then, Vina minimization and CNN scoring are applied to both
generated and reference molecules by using gnina, a molecular docking program (McNutt et al.,
2021). As can be seen in Table 1(b), our result improves significantly on the state of the art. Raw
GraphBP attains ∆Binding = 13.45%. By playing with the minimum and the maximum atom num-
ber of the baseline autoregressive model, we were able to improve this to 22.76%; however, note
that this results in a reduction in validity from 99.76% to 99.54%. Our method attains ∆Binding =
34.75%, which is a relative improvement of 52.7% over the better of the two GraphBP scores.

Qualitative Results We show examples of generated ligands in Figure 2, along with their chemical
structures. Note that the structures of the generated molecules differ substantially from the reference
molecules, indicating that the model has indeed learn to generalize to interesting novel structures.

5 CONCLUSIONS

We have presented a method for learning a conditional distribution of ligands given a receptor. The
method, which is based on a continuous normalizing flow, has provable invariance properties based
on semi-equivariance conditions on the flow. Empirically, our method improves upon the state
of the art by a considerable margin in ∆Binding, promising the potential to generate previously
undiscovered molecules with high binding affinity.

9
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6 REPRODUCIBILITY STATEMENT

In this research we establish semi-equivariance conditions on the continuous graph normalizing flow
which guarantee the invariant to rigid body transformations conditions on the conditional distribu-
tion. The theory is described in Section 3.5, and the proof in Appendix A.1 shows formally that
the semi-equivariance conditions yield the desired invariant distribution. For empirical testing of the
method, we use the CrossDocked2020 dataset (Francoeur et al., 2020), with a data-split into a train-
ing set (see here) and validation set (see here); with additional filtering, as described in Section
4. The evaluation set is given here, and further changes are described in Appendix A.2. In order to
add bonds to the resulting molecules, we rely on the LiGAN implementation, see here.

7 ETHICS STATEMENT

The work presents theory and experiments without discrimination/bias/fairness concerns, and with-
out any legal compliance issues. No experiments on humans or animals were performed. The data
used for experiments is publicly available and based on Protein Data Bank (PDB) (Berman et al.,
2003; Zardecki et al., 2016). PDB is a data resource of 3D biomolecular structure information that
exemplifies the FAIR (findability, accessibility, interoperability, and reusability) principles (Wilkin-
son et al., 2016; Burley et al., 2018). Within the PBD, the personal identifying information (PII)
maintained on contributors is limited to the minimal contact information required to conduct the
operations of the archive.
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A APPENDIX

A.1 PROOF OF THEOREM

Lemma 1. Let the mean position of the receptor be given by x̂av = 1
N̂

∑N̂
i=1 x̂i, and define the

following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
where ⊗ indicates the Kronecker product. Given the following mapping:

v = Ω−1

Ĝ

(
u− ωĜ

)
(30)

Let the inverse mapping be denoted by Γ1
Ĝ , i.e. u = Γ1

Ĝ(v). For any rigid transformation T ∈ E(3),
which consists of both a rotation and a translation, denote the transformation consisting only of the
rotation of T as Trot ∈ O(3). Then

Γ1
T Ĝ(Tv) = TrotΓ

1
Ĝ(v).

Furthermore, for any permutations π ∈ SN and π̂ ∈ SN̂ , then

Γ1
π̂Ĝ(πv) = πΓ1

Ĝ(v).

Proof: The mapping u = Γ1
Ĝ(v) is given by

u = ΩĜv + ωĜ (31)

Let us denote the parts of u corresponding to the coordinates and the features as xu and hu, respec-
tively; and use similar notation for v. Then we have that

hu = hv (32)

and
xu =

(
I3N −

α

N
1N×N ⊗ I3

)
xu − (1− α)1N×1 ⊗ x̂av (33)

Breaking down this last equation by atom gives

xu
i = xv

i −
α

N

N∑
j=1

xv
j − (1− α)x̂av

= xv
i − (αxv

av + (1− α)x̂av)

= xv
i − x̄v (34)

where xv
av is the average coordinate position of xv, and x̄v indicates the average of all atoms in the

entire complex, i.e. taking both the ligand and the receptor together.

Now, let us examine what happens when we apply the rigid transformation T to both v and the
receptor graph Ĝ; that is, let us examine

ũ = Γ1
T Ĝ(Tv) (35)

In the case of the features h, they are invariant by design; thus

hũ = hTv

= hv

= hu (36)

13



Under review as a conference paper at ICLR 2023

where the last line follows from Equation (32). In the case of the coordinates, the transformation is
as follows:

xTv
i = Rxv

i + t (37)

where R ∈ O(3) is the rotation matrix, and t ∈ R3 the translation vector, corresponding to rigid
motion T . As we apply T to the receptor graph Ĝ, this has the effect of applying this transformation
to each of the receptor atoms, and hence to their mean and the mean of the entire complex:

x̂T Ĝav = Rx̂Ĝav + t ⇒ x̄Tv = Rx̄v + t (38)

Thus, following Equation (34), and substituting Tv and T Ĝ in place of v and Ĝ, we get

xũ
i = xTv

i − x̄Tv

= Rxv
i + t− (Rx̄v + t)

= R (xv
i − x̄v)

= Rxu
i (39)

Combining Equations (36) and (39), we have that

ũ = Trotu (40)

Since u = Γ1
Ĝ(v) and ũ = Γ1

T Ĝ(Tv), we have shown that Γ1
T Ĝ(Tv) = TrotΓ

1
Ĝ(v), as desired.

In the case of the permutations, let us now set

ũ = Γ1
π̂Ĝ(πv) (41)

It is easy to see that π̂ has no effect; the only place the receptor enters is through the quantities N̂
and x̂av , both of which are permutation-invariant. For the features, we now have

hũ = hπv

= πhv

= πhu (42)

That is, the features are simply reordered according to π. With regard to the coordinates, we have
that

xũ
i = xπvi − x̄πv

= xv
π(i) − x̄v

= xu
π(i) (43)

The coordinates are also therefore simply reordered according to π. Summarizing, we have that

ũ = πu (44)

This is exactly equal to
Γ1
π̂Ĝ(πv) = πΓ1

Ĝ(v)

which concludes the proof.

Lemma 2. Let u(1) be the output of a Receptor-Conditioned Ligand Flow specified by the Complex-
to-Ligand Mapping γ which is rotation semi-equivariant and permutation semi-equivariant. This
Receptor-Conditioned Ligand Flow maps the initial condition z to u(1); let the inverse mapping be
denoted by Γ2

Ĝ , i.e. z = Γ2
Ĝ(u(1)). Then

Γ2
T Ĝ(Trotu) = TrotΓ

2
Ĝ(u)

Furthermore, for any permutations π ∈ SN and π̂ ∈ SN̂ , then

Γ2
π̂Ĝ(πu) = πΓ2

Ĝ(u)
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Proof: Our first goal is to show that Γ2
T Ĝ(Trotu) = TrotΓ

2
Ĝ(u). Let us define FĜ to be the inverse

of Γ2
Ĝ , and let u = FĜ(z). Then

Γ2
T Ĝ(Trotu) = TrotΓ

2
Ĝ(u) ⇔ F−1

T Ĝ
(TrotFĜ(z)) = TrotF

−1

Ĝ
(FĜ(z))

⇔ F−1

T Ĝ
(TrotFĜ(z)) = Trotz

⇔ FT Ĝ(Trotz) = TrotFĜ(z) (45)

Thus, it is sufficient to shows that FT Ĝ(Trotz) = TrotFĜ(z). For convenience, we shall set

u(1) = FĜ(z) and ũ(1) = FT Ĝ(Trotz) (46)

In this case, u(1) is defined by the ODE

du

dt
= vec

(
γ(Gu, Ĝ)

)
with u(0) = z (47)

whereas ũ(1) is defined by the ODE

dũ

dt
= vec

(
γ(Gũ, T Ĝ)

)
with ũ(0) = Trotz (48)

Now, let us define ŭ(t) = T−1
rot ũ(t), so that ũ(t) = Trotŭ(t). In this case, we have that:

1. ŭ(0) = T−1
rot ũ(0) = T−1

rotTrotz = z.

2. dũ
dt = Trot

dŭ
dt .

3. vec
(
γ(Gũ, T Ĝ)

)
= vec

(
γ(GTrotŭ, T Ĝ)

)
= Trotvec

(
γ(Gŭ, Ĝ)

)
, where the last

equality is from the definition of rotation semi-equivariance of γ.

Plugging the above three results into the flow for ũ in Equation (48) yields

Trot
dŭ

dt
= Trotvec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z

⇒ dŭ

dt
= vec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z (49)

But this is precisely identical to the flow described in Equation (47); thus, we have that

ŭ(t) = u(t) for all t (50)

But ũ(t) = Trotŭ(t) so that ũ(t) = Trotu(t), and in particular ũ(1) = Trotu(1). Comparing with
Equation (46) completes rigid motion part of the proof.

Let us now turn to permutations; the proof is similar, but we repeat it in full for completeness.
Our goal is to show that Γ2

π̂Ĝ(πu) = πΓ2
Ĝ(u). Let us define FĜ to be the inverse of Γ2

Ĝ , and let
u = FĜ(z). Then

Γ2
π̂Ĝ(πu) = πΓ2

Ĝ(u) ⇔ F−1

π̂Ĝ
(πFĜ(z)) = πF−1

Ĝ
(FĜ(z))

⇔ F−1

π̂Ĝ
(πFĜ(z)) = πz

⇔ Fπ̂Ĝ(πz) = πFĜ(z) (51)

Thus, it is sufficient to shows that Fπ̂Ĝ(πz) = πFĜ(z). For convenience, we shall set

u(1) = FĜ(z) and ũ(1) = Fπ̂Ĝ(πz) (52)

In this case, u(1) is defined by the ODE

du

dt
= vec

(
γ(Gu, Ĝ)

)
with u(0) = z (53)

whereas ũ(1) is defined by the ODE

dũ

dt
= vec

(
γ(Gũ, π̂Ĝ)

)
with ũ(0) = πz (54)

Now, let us define ŭ(t) = π−1ũ(t), so that ũ(t) = πŭ(t). In this case, we have that:
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1. ŭ(0) = π−1ũ(0) = π−1πz = z.

2. dũ
dt = π dŭdt .

3. vec
(
γ(Gũ, π̂Ĝ)

)
= vec

(
γ(Gπŭ, π̂Ĝ)

)
= πvec

(
γ(Gŭ, Ĝ)

)
, where the last equality is

from the definition of permutation semi-equivariance of γ.

Plugging the above three results into the flow for ũ in Equation (54) yields

π
dŭ

dt
= πvec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z

⇒ dŭ

dt
= vec

(
γ(Gŭ, Ĝ)

)
with ŭ(0) = z (55)

But this is precisely identical to the flow described in Equation (53); thus, we have that

ŭ(t) = u(t) for all t (56)

But ũ(t) = πŭ(t) so that ũ(t) = πu(t), and in particular ũ(1) = πu(1). Comparing with Equation
(52) completes the proof.
Theorem. Let u(1) be the output of a Receptor-Conditioned Ligand Flow specified by the Complex-

to-Ligand Mapping γ. Let the mean position of the receptor be given by x̂av = 1
N̂

∑N̂
i=1 x̂i, and

define the following quantities

α =
N

N + N̂
ΩĜ =

[
I3N − α

N 1N×N ⊗ I3 0
0 IdhN

]
ωĜ =

[
−(1− α)1N×1 ⊗ x̂av

0

]
(57)

where ⊗ indicates the Kronecker product. Finally, let

v = Ω−1

Ĝ

(
u(1)− ωĜ

)
(58)

Suppose that γ is both rotation semi-equivariant and permutation semi-equivariant. Then the result-
ing distribution on v, that is pvec(v|Ĝ), yields a vertex distribution p(V |N, Ĝ) = pvec(vec(V )|Ĝ)
that satisfies the invariance conditions in Equation (12).

Proof: The Receptor-Conditioned Ligand Flow maps from the Gaussian random variable z to the
variable u(1). As this flow is a normalizing flow, it is invertible, so let us denote the inverse mapping
by Γ2:

z = Γ2
Ĝ(u(1)) (59)

Note that the dependence on the receptor graph Ĝ is denoted using a subscript, as the invertibility
does not apply to the receptor, but only to the ligand. Equation (58) maps from the variable u(1) to
the variable v; let us denote its inverse mapping by Γ1:

u(1) = Γ1
Ĝ(v) (60)

In this case, we have that
z = Γ2

Ĝ(Γ1
Ĝ(v)) ≡ ΓĜ(v) (61)

Now, our goal is to show that the following condition holds:

p(TV |N,T Ĝ) = p(V |N, Ĝ) for T ∈ E(3) (62)

Using the pvec notation, this translates to

pvec(Tv|T Ĝ) = pvec(v|Ĝ) (63)

Now, from Equation (61), the fact that Γ is invertible, and the change of variables formula, we have
that

pvec(v|Ĝ) = pz(ΓĜ(v))|det JΓĜ
(v)| (64)

where pz(·) is the Gaussian distribution from z is sampled; and JΓĜ
(·) is the Jacobian of ΓĜ(·).

Since ΓĜ = Γ2
Ĝ ◦ Γ1

Ĝ , this can be expanded as

pvec(v|Ĝ) = pz(Γ2
Ĝ(Γ1
Ĝ(v)))|det JΓ2

Ĝ
(Γ1
Ĝ(v))||det JΓ1

Ĝ
(v)| (65)
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using the chain rule, and the fact that determinant of a product is the product of determinants.
Plugging this into Equation (63), we must show that

pz(Γ2
T Ĝ(Γ1

T Ĝ(Tv)))|det JΓ2
T Ĝ

(Γ1
T Ĝ(Tv))|| det JΓ1

T Ĝ
(Tv)|

= pz(Γ2
Ĝ(Γ1
Ĝ(v)))|det JΓ2

Ĝ
(Γ1
Ĝ(v))||det JΓ1

Ĝ
(v)| for T ∈ E(3) (66)

A rigid transformation T ∈ E(3) consists of both a rotation and a translation. For brevity, denote
the transformation consisting only of the rotation of T as Trot ∈ O(3). Now, from Lemma 1, we
have that

Γ1
T Ĝ(Tv) = TrotΓ

1
Ĝ(v) (67)

From Lemma 2, we have that
Γ2
T Ĝ(Trotu) = TrotΓ

2
Ĝ(u) (68)

Combining Equations (67) and (68) gives that

pz(Γ2
T Ĝ(Γ1

T Ĝ(Tv))) = pz(Γ2
T Ĝ(TrotΓ

1
Ĝ(v)))

= pz(TrotΓ
2
Ĝ(Γ1
Ĝ(v)))

= pz(Γ2
Ĝ(Γ1
Ĝ(v))) (69)

where the last line follows from the rotation invariance of the Gaussian distribution.

Note that

JΓ1
T Ĝ

(Tv) =
∂

∂v

(
Γ1
T Ĝ(Tv)

)
=

∂

∂v

(
TrotΓ

1
Ĝ(v)

)
= Trot

∂

∂v

(
Γ1
Ĝ(v)

)
= TrotJΓ1

Ĝ
(v) (70)

Now, Trot can be represented by the dNv × dNv block diagonal matrix given by

Trot =

[
1N×1 ⊗R 0

0 IdhN

]
(71)

where R ∈ O(3), the top-left block corresponds to the coordinates x and the bottom-right block
corresponds to the feature h. Thus,

det
(
JΓ1

T Ĝ
(Tv)

)
= det

(
TrotJΓ1

Ĝ
(v)
)

= det(Trot) det
(
JΓ1

Ĝ
(v)
)

= det(R)
N

det(IdhN ) det
(
JΓ1

Ĝ
(v)
)

= ±det
(
JΓ1

Ĝ
(v)
)

(72)

where the second line follows from the fact that the determinant of a product is the product of
determinants; the third line from the fact that the determinant of a block diagonal matrix is the
product of the determinants of the blocks; and the fourth line from the fact that the determinant of a
rotation matrix is ±1.

To simplify JΓ2
T Ĝ

(Γ1
T Ĝ(Tv)), note that

Γ2
T Ĝ(u) = Γ2

T Ĝ(TrotT
−1
rotu)

= TrotΓ
2
Ĝ(T−1

rotu) (73)
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where we have used Equation (68). Thus,

JΓ2
T Ĝ

(u) =
∂

∂u

(
Γ2
T Ĝ(u)

)
=

∂

∂u

(
TrotΓ

2
Ĝ(T−1

rotu)
)

= TrotJΓ2
T Ĝ

(T−1
rotu)T−1

rot (74)

We wish to plug in u = Γ1
T Ĝ(Tv). Note that from Equation (67), Γ1

T Ĝ(Tv) = TrotΓ
1
Ĝ(v). Thus,

JΓ2
T Ĝ

(Γ1
T Ĝ(Tv)) = JΓ2

T Ĝ
(TrotΓ

1
Ĝ(v))

= TrotJΓ2
T Ĝ

(T−1
rotTrotΓ

1
Ĝ(v))T−1

rot

= TrotJΓ2
T Ĝ

(Γ1
Ĝ(v))T−1

rot (75)

where in the second line we substituted Equation (74). Taking determinants gives

det
(
JΓ2

T Ĝ
(Γ1
T Ĝ(Tv))

)
= det

(
TrotJΓ2

T Ĝ
(Γ1
Ĝ(v))T−1

rot

)
= det

(
T−1
rotTrotJΓ2

T Ĝ
(Γ1
Ĝ(v))

)
= det

(
JΓ2

T Ĝ
(Γ1
Ĝ(v))

)
(76)

where in the second line, we used the fact that permuting the order of a matrix multiplication does
not affect the determinant.

Combining Equations (69), (72), and (76), we finally arrive at:

pz(Γ2
T Ĝ(Γ1

T Ĝ(Tv)))|det JΓ2
T Ĝ

(Γ1
T Ĝ(Tv))||det JΓ1

T Ĝ
(Tv)|

= pz(Γ2
Ĝ(Γ1
Ĝ(v)))|det JΓ2

Ĝ
(Γ1
Ĝ(v))|| det JΓ1

Ĝ
(v)| (77)

which is exactly Equation (66). Thus, we have shown that p(TV |N,T Ĝ) = p(V |N, Ĝ), as desired.

Let us turn now to the permutation case, which is quite similar. Similar to Equation (66), we need
to show

pz(Γ2
π̂Ĝ(Γ1

π̂Ĝ(πv)))|det JΓ2
π̂Ĝ

(Γ1
π̂Ĝ(πv))||det JΓ1

π̂Ĝ
(πv)|

= pz(Γ2
Ĝ(Γ1
Ĝ(v)))|det JΓ2

Ĝ
(Γ1
Ĝ(v))||det JΓ1

Ĝ
(v)| for π ∈ Sn and π̂ ∈ SN̂ (78)

From Lemmata 1 and 2, we have that

Γ1
π̂Ĝ(πv) = πΓ1

Ĝ(v) and Γ2
π̂Ĝ(πu) = πΓ2

Ĝ(u) (79)

Thus

pz(Γ2
π̂Ĝ(Γ1

π̂Ĝ(πv))) = pz(Γ2
π̂Ĝ(πΓ1

Ĝ(v)))

= pz(πΓ2
Ĝ(Γ1
Ĝ(v)))

= pz(Γ2
Ĝ(Γ1
Ĝ(v))) (80)

where the last line follows from the permutation-invariance of the Gaussian distribution pz(·).

In a manner parallel to the derivation of Equation (70), we can show that

JΓ1
π̂Ĝ

(πv) = πJΓ1
Ĝ
(v) (81)

where π now indicates the permutation matrix associated with the permutation π. Thus, we have
that

det
(
JΓ1

π̂Ĝ
(πv)

)
= det(π) det

(
JΓ1

Ĝ
(v)
)

= ± det
(
JΓ1

Ĝ
(v)
)

(82)

where we have used the fact that a permutation matrix has determinant of±1. Similarly, in a manner
parallel to the derivation of Equation (75), we can show that

JΓ2
π̂Ĝ

(Γ1
π̂Ĝ(πv)) = πJΓ2

Ĝ
(Γ1
Ĝ(v))π−1 (83)
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so that

det
(
JΓ2

π̂Ĝ
(Γ1
π̂Ĝ(πv))

)
= det

(
πJΓ2

Ĝ
(Γ1
Ĝ(v))π−1

)
= det

(
π−1πJΓ2

Ĝ
(Γ1
Ĝ(v))

)
= det

(
JΓ2

Ĝ
(Γ1
Ĝ(v))

)
(84)

Combining Equations (80), (82), and (84) yields Equation (78); completing the proof.

A.2 DATA

We use the same approach to evaluate the generative model as done in previous works (Ragoza
et al., 2022; Liu et al., 2022). The reference evaluation set consists of 10 target receptors with
each having multiple associated ligands, leading to 90 receptor-ligand pairs. After the previously
described filtering procedure (Sec. 4), 5 receptors remain corresponding to 27 receptor-ligand pairs.
We complete the evaluation set, to yield 10 receptors corresponding to 90 pairs, by selecting data
points from the validation set. These data points are chosen so that the ligands, receptors and pockets
do not appear in the training set, and are not repeated in the evaluation set.
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