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RAPIDLY ADAPTING POLICIES TO THE REAL WORLD
VIA SIMULATION-GUIDED FINE-TUNING
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Figure 1: Five dynamic, contact-rich manipulation tasks — hammering (top left), insertion
(right), and three pushing (bottom left) tasks — solved in the real world using SGFT.

ABSTRACT

Robot learning requires a considerable amount of high-quality data to realize the
promise of generalization. However, large data sets are costly to collect in the
real world. Physics simulators can cheaply generate vast data sets with broad cov-
erage over states, actions, and environments. However, physics engines are fun-
damentally misspecified approximations to reality. This makes direct zero-shot
transfer from simulation to reality challenging, especially in tasks where precise
and force-sensitive manipulation is necessary. Thus, fine-tuning these policies
with small real-world data sets is an appealing pathway for scaling robot learn-
ing. However, current reinforcement learning fine-tuning frameworks leverage
general, unstructured exploration strategies which are too inefficient to make real-
world adaptation practical. This paper introduces the Simulation-Guided Fine-
tuning (SGFT) framework, which demonstrates how to extract structural priors
from physics simulators to substantially accelerate real-world adaptation. Specifi-
cally, our approach uses a value function learned in simulation to guide real-world
exploration. We demonstrate this approach across five real-world dexterous ma-
nipulation tasks where zero-shot sim-to-real transfer fails. We further demonstrate
our framework substantially outperforms baseline fine-tuning methods, requiring
up to an order of magnitude fewer real-world samples and succeeding at difficult
tasks where prior approaches fail entirely. Last but not least, we provide theoret-
ical justification for this new paradigm which underpins how SGFT can rapidly
learn high-performance policies in the face of large sim-to-real dynamics gaps.
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1 INTRODUCTION

Robot learning offers a pathway to building robust, general-purpose robotic agents that can rapidly
adapt their behavior to new environments and tasks. This shifts the burden from designing task-
specific controllers by hand to the problem of collecting large behavioral datasets with sufficient
coverage. This raises a fundamental question: how do we cheaply obtain and leverage such datasets
at scale? Real-world data collection via teleoperation (Walke et al., [2023} {team, |2024) can gen-
erate high-quality trajectories but scales linearly with human effort. Even with community-driven
teleoperation (Mandlekar et al.| 2018}, (Collaboration [2024), current robotics datasets are orders of
magnitude smaller than those powering vision and language applications.

Massively parallelized physics simulation (Todorov et al., 2012; |Makoviychuk et al., 2021) can
cheaply generate vast synthetic robotics data sets. Indeed, generating data sets with extensive cov-
erage over environments, states, and actions can be largely automated using techniques such as
automatic scene generation (Chen et al., [2024; Deitke et al., 2022), dynamics randomization (Peng
et al.| 2018} |/Andrychowicz et al.| 2020)), and search algorithms such as reinforcement learning.

Unfortunately, simulation-generated data is not a silver bullet, as it provides cheap but ultimately
off-domain data. Namely, simulators are fundamentally misspecified approximations to reality. This
is highlighted in tasks like hammering in a nail, where the modeling of high-impact, deformable con-
tact remains an open problem (Acosta et al., 2022} Levy et al.,2024)). In these regimes, no choice of
parameters for the physics simulator accurately capture the real-world dynamics. This gap persists
despite efforts towards improving existing physics simulators with system identification (Memmel
et al.| 2024} [Huang et al.| 2023} |Levy et al.l[2024). Thus, despite impressive performance for many
tasks, methods that transfer policies from simulation to reality zero-shot (Kumar et al., 2021; |Lee
et al., [2020; |Peng et al., 2018 |Andrychowicz et al., 2020) run into failure modes when they en-
counter novel dynamics not covered by the simulator (Smith et al.|[2022b).

The question becomes: can inaccurate simulation models be useful in the face of fundamen-
tal misspecifications? A natural technique is to fine-tune policies pre-trained in a simulator using
real-world experience (Smith et al., [2022b}; Zhang et al.| 2023)). This approach can overcome mis-
specification by training directly on data from the target domain. However, existing approaches
typically employ the unstructured exploration strategies used by standard, general reinforcement
learning algorithms |Haarnoja et al.|[(2018). As a result, current RL fine-tuning frameworks remain
too sample-inefficient for real-world deployment. We argue the following: despite getting the finer
details wrong, physics simulators capture the rough structure of real-world dynamics well enough
to transfer targeted exploration and adaptation strategies from simulation to reality.

This motivates the Simulation-Guided Fine-Tuning (SGFT) framework, which uses a value func-
tion V., learned in the simulator to transfer behavioral priors from simulation to reality. Our key
insight is that the ordering defined by V;,,, captures successful behaviors — such as reaching towards
and object, picking it, and moving it to a desired position — which are invariant across simulation
and reality, even if the low-level dynamics diverge substantially in the two domains. In more detail,
SGFT departs from standard finetuning strategies by 1) using V., to synthesize dense rewards to
guide targeted real-world exploration and 2) shortening the learning horizon when adapting in the
real-world. Prior approaches [Smith et al.| (2022b); Zhang et al.| (2023) optimize the same infinite-
horizon objective in both simulation and reality, and thus only use the simulator to initialize real-
world learning. These approaches often suffer from catastrophic forgetting Wotczyk et al.| (2024),
where there is a substantial drop in policy performance early in the fine-tuning phase. Incorporating
Vsim into the reward enables the agent to retain structural information about the optimal behaviors
learned in simulation throughout the fine-tuning processes, while shorter learning horizons are well-
known to yield more trackable policy optimization problems Westenbroek et al.|(2022);/Cheng et al.
(2019). Altogether, SGFT provides a stronger learning signal which enables base policy optimiza-
tion algorithms to consistently and rapidly improve real-world performance.

Although SGFT is a very general framework for sim-to-real fine-tuning, we place a special
emphasis on implementations which use sample efficient model-based reinforcement learning algo-
rithms Janner et al.[(2019); Hansen et al.| (2024). Model-based approaches typically struggle with
long-horizon tasks due to compounding errors in model predictions Janner et al.| (2019), but our
horizon-shortening strategy conveniently side-steps this challenge, fully unlocking the performance
benefits promised by generative world models. We outline our contributions as follows:
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Figure 2: Depiction of a model-based instantiation of SGFT. While prior approaches optimize the same chal-
lenging infinite-horizon objective during simulation pretraining and real-world fine-tuning, SGFT modifies the
fine-tuning objective by a) using the value function learned in simulation Vi;y, to reshape rewards and guide
efficient real-world exploration b) shortening the search horizon to make real-world learning more tractable.
For the model-based instantiation depicted (and outlined in Section .2)), this amounts to branching short,
exploratory model-based rollouts from real-world trajectories to search for sequences of actions which will
improve policy performance. Intuitively, SGFT uses the simulator to approximately bootstrap long-horizon
rewards (via Vsim ), while small amounts of real-world data are used to search for short sequences of optimal
actions under the real-world dynamics.

1. We introduce the SGFT framework, which requires modifying only a few lines of code in
existing sim-to-real RL finetuning frameworks |Smith et al.| (2022b); [Zhang et al.| (2019)
and can be built on top of any base policy optimization algorithm.

2. We implement two model-based instantiations of SGFT and demonstrate through five
contact-rich, sim-to-real robot manipulation experiments that SGFT provides substantial
sample complexity gains over existing fine-tuning methods.

3. We demonstrate theoretically how a) SGFT can learn highly performant policies, despite
the bias introduced by the SGFT objective and b) how this enables SGFT to overcome
compounding errors which plague standard MBRL approaches.

Together, these insights underscore how SGFT effectively leverages plentiful off-domain data from
a simulator alongside small real-world data sets to substantially accelerate real-world fine-tuning.

2 RELATED WORK

Simulation-to-Reality Transfer. Two main approaches have been proposed for overcoming the
dynamics gap between simulation and reality: 1) adapting simulation parameters to real-world data
(Chebotar et al.,|2019; |[Ramos et al.,[2019; Memmel et al.| 2024) and 2) learning adaptive or robust
policies to account for uncertain real-world dynamics (Qi et al.l [2022; Kumar et al., 2021} |Yu
et al., 2017). However, these approaches still display failure modes in regimes where simulation and
reality diverge substantially Smith et al.| (2022a) — namely, where no set of simulation parameters
closely match the real-world dynamics.

Adapting Policies with Real-World Data. Many RL approaches have focused on the general
fine-tuning problem (Rajeswaran et al., [2018} |[Nair et al., 2020; Kostrikov et al., 2021} [Hu et al.,
2023 Nakamoto et al.,2024). These works initialize policies, Q-functions, and replay buffers from
offline data and continue training them with standard RL methods. A number of works have specif-
ically considered mixing simulated and real data during policy optimization — either through co-
training (Torne et al.| 2024)), simply initializing the replay-buffer with simulation data (Smith et al.,
2022aj; [Ball et al.,|2023), or adaptively sampling the simulated dataset and up-weighting transitions
that approximately match the true dynamics (Eysenbach et al.,[2020; Liu et al.,[2022; Xu et al., 2023;
Niu et al.| 2022). However, recent work [Zhou et al.| (2024) has demonstrated that there are minimal
benefits to sampling off-domain samples when adapting online in new environments, as this can
bias learned policies towards sub-optimal solutions. In contrast to these prior approaches — which
primarily use simulated experience to initialize real-world learning — we focus on distilling effective
exploration strategies from simulation, using V;,, to guide real-world learning. We demonstrate
theoretically that this approach to transfer leads to low bias in the policies learned by SGFT.
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Model-Based Reinforcement Learning. A significant body of work on model-based RL learns
a generative dynamics models to accelerate policy optimization (Sutton, [1991; [Wang & Bal [2019;
Janner et al, 2019; [Yu et al} 2020; Kidambi et al., [2020; [Ebert et al., 2018; Zhang et al., 2019).
In principle, a model enables the agent to make predictions about states and actions not contained
in the training data, enabling rapid adaptation to new situations. However, the central challenge
for model-based methods is that small inaccuracies in predictive models can quickly compound
over time, leading to large model-bias and a drop in controller performance. An effective critic
can be used to shorten search horizons (Hansen et al., 2024; Bhardwaj et al., 2020; Hafner et al.,
2019; Jadbabaie et al., 2001} Grune & Rantzer, 2008) yielding easier decision-making problems, but
learning such a critic from scratch can still require large amounts of on-task data. We demonstrate
that, for many real-world continuous control problems, critics learned entirely in simulation can be
robustly transferred to the real-world and substantially accelerate model-based learning.

Reward Design in Reinforcement Learning. A significant component of our methodology is learn-
ing dense shaped reward in simulation to guide real-world fine-tuning. Prior techniques have tried
to infer rewards from expert demos (Ziebart et al., 2008; Ho & Ermon, |[2016), success examples (Fu
et al.. 2018; Li et al.| 2021), LLMs (Ma et al., 2023} |Yu et al.,[2023)), and heuristics (Margolis et al.,
2024; Berner et al.| 2019). We rely on simulation to provide reward supervision Westenbroek et al.
(2022) using the PBRS formalism (Ng et al., |1999). This effectively encodes information about the
dynamics and optimal behaviors in the simulator, enabling us to shorten the learning horizon and
improve sample efficiency |Cheng et al.|(2021)); [Westenbroek et al.| (2022).

3 PRELIMINARIES

Let S and A be state and action spaces. Our goal is to control a real-world system defined by
an unknown Markovian dynamics s’ ~ preqi(:|s,a), where s, s’ € S are states and a € A is an
action. The usual formalism for solving tasks with RL is to define a Markov Decision Process of the
form M,. = (S, A, Dreal, p?,eal, r,~y) with initial real-world state distribution p?,eal, reward function
r, and discount factor v € [0,1). Given a policy 7, we let dI,,(s) denote the distribution over
trajectories 7 = (8o, ag, $1, a1, - - - ) generated by applying 7 starting at initial state so. Defining the

value function under 7 as V7 ,,(s) = Eq,~ar  ()[22, 7'7¢(s¢)], our objective is to find 77", «
*

sup. B, 0 [Vq(5)]. We define the optimal value function as V7., (s) := sup, V5, (s).

Unfortunately, obtaining a good approximation to 7", using only real-world data is often im-
practical. Thus, many approaches leverage an approximate simulation environment s’ ~ pg;, (s, a)
and solve an approximate MDP of the form M ;,,, := (S, A, Dsim, P> T>7Y) to train a policy Tgim
meant to approximate 7., ; . We let Vi, denote m;,,,’s value function with respect to M g;,,,. Here,
pY,,,, is the distribution over initial conditions in the simulator.

4  SIMULATION-GUIDED FINE-TUNING

We build our framework around the following intuition: even when the finer details of p,.cq; and ps;m,
differ substantially, we can often assume that 7;,, captures the rough motions needed to complete
a task in the real world (such as swinging a hammer towards a nail). Specifically, we hypothesize
that the ordering defined by V;,, captures these behaviors in a form that can be robustly transferred
from simulation to reality and used to guide efficient real-world adaptation.

4.1 SIMULATION-GUIDED FINE-TUNING

When fine-tuning 7y, to the real world we propose a) reshaping the original reward function ac-
cording to 7(s) — 7(s,s") = r(s) + YVsim(s") — Vsim(s) and b) shortening the search horizon to
a more tractable H -step objective ZtH: 61 7(st, S¢+1). The reshaped objective is an instance of the
Potential-Based Reward Shaping (PRBS) formalism (Ng et al., [1999), where V;,, is used as the
potential function. This reshaping approach is typically applied to infinite-horizon objectives, where
it can be shown that the optimal policy under (s, s’) is the same as the optimal policy under the
original reward r(s) (Ng et al.|1999). In contrast, the finite horizon search problem biases the ob-
jective towards behaviors which were successful in the simulator. Indeed, by telescoping out terms
we can rewrite our policy optimization objective as:
H—-1

Vi (s) =B |7 Vaim(sm) + Y 7'r(se) = Vaim(s0) |50 = 8,0 ~ maa(Clse) |, (D)
t=0
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Vir(s) = sup V" (s),  Qu(s,7) = Eannls) [YVE () +7(s)].

TH
Here 7y = {mH,0,7H 1, .., 7o H—1} denotes H-step time-dependent policies, where g ¢ is the
policy applied at time ¢. We emphasize that these H-step returns are optimized over the real-world
dynamics. We propose learning a policy which optimizes these H-step returns from each state:

i (+|s) <= sup Qf (s, 7).

What behavior does this objective elicit? For each H , the H-step Bellman equation dictates
that the optimal policy ;. ,; for the original MDP M,..,; can be found by solving:
H-1
7T;:eal('|s) A SupE ’YHV;"*eal(SH) + Z Pytr(st) - er‘*eal(so) S0 = $,a¢ ~ W('St)‘| .
4 t=0

Thus, (I effectively uses Vi, as a surrogate for V% ;. Namely, (I) uses the simulator to bootstrap
long-horizon returns, while real-world interaction is optimized only over short trajectory segments.
In the extreme case where H = 1, w3 will greedily attempt to increase V;,, at each timestep;
namely, the policy search problem will be reduced to a contextual bandit problem. As we take
H — oo, mf; will optimize purely real long-horizon returns and thus recover the behavior of 77, ;.

We are particularly interested in optimizing this objective with small values of H. This provides
an ideal separation between what is learned using cheap, plentiful interactions with pg;,, and what is
learned with more costly interactions with p,..,;. In simulation, we can easily generate enough data
to explore many paths through the state space and discover which motions lead to higher returns
(e.g. swinging a hammer towards a nail). This information is distilled into V;,,, during the learning
process, which defines an ordering over which states are more desirable to reach H steps in the
future. By optimizing the reshaped objective Equation (T)) for small values of H, we only need to
learn short sequences of actions which move the real-world system to states where V;,,, is higher.
Intuitively, (T) learns where to go with large amounts of simulated data and how fo get there with
small amounts of real-world data, efficiently adapting 7, to the real-world dynamcis.

Connections to the MPC Literature: Note that the —Vj;,,(s0) term in (I) does not depend on
the choice of policy, and thus does not affect the choice of optimal policy. Thus, (I)) is equivalent
to the planning objective used by model predictive control (MPC) methods (Jadbabaie et al., 2001}
Hansen et al., [2024} |Sun et al., |2018}; |Bhardwaj et al., [2020) with H-step look-ahead and a terminal
reward of Vj;,, (assuming oracle access to the real-world dynamics). Of course, we cannot calculate
the optimal MPC policy 77; directly because we do not know p,..,;, and thus seek to approximate
its behavior by learning from real-world interactions.

The Simulation-Guided Fine-
Tuning Training Loop. We pro-
%?;:;gilizn‘?g% g}’yuflf;;’gwifﬁdﬁ Algorithm 1 Simulation-Guided Fine-tuning ( SGFT)
the pseudo-code in Algorithm Require: Pretrained policy 7;,, and value function Vy;,,
SGFT fine-tunes 7y, to succeed 1t T 4= Tgim, D < 0

under the real-world dynamics by  2: for each iteration k do

iteratively 1) unrolling the current  3: for time stept =1,..., T do

policy to collect transitions from ar ~ (-|s¢)

Preal and 2) using the current dataset Observe the state s;,; and the reward ;.

D of transitions to approximately Tt < Tt + VVaim(5e11) — Vaim(5¢)

optimize m < max, Q% (s,7(s;)) D« DU{(s¢,a¢,7¢,5t41) }

R A A

at each state s; the agent has visited. end for
By optimizing (1), SGFT optimizes Approx. optimize 7 < max, Q7% (s, 7(s;))
policies towards the actions taken by using transitions in D, at all observed states s;.

75;. Note that this framework can 10: end for

be built on top of any base policy

optimization method; however, over the next two sections we will argue that this framework is
particularly beneficial when paired with model-based search strategies.

4.2 LEVERAGING SHORT MODEL ROLL-OUTS

Learning a generative model p for p,.,; with the real-world data set D enables an agent to generate
synthetic rollouts and reason about trajectories not contained in the data set. In principle, this should
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substantially accelerate the learning of effective policies. The central challenge for model-based
reinforcement learning is that small errors in p can quickly compound over multiple steps, degrading
the quality of the predictions Janner et al.| (2019). As a consequence, learning a model accurate
enough to solve long-horizon problems can often take as much data as solving the task with modern
model-free methods (Chen et al., 2021; Hiraoka et al., 2021). By bootstrapping V;,, in simulation,
where data is plentiful, the SGFT framework enables agents to act effectively over long horizons
using only short, local H-step predictions about the real-world dynamics. This side-steps the core
challenge for model-based methods, and enables extremely efficient real-world learning. We now
outline how the SGFT can be built on top of two predominant classes of MBRL algorithms.

Notation. In what follows, we will .
use ‘hat’ notation to denote H-step Algorithm 2 Dyna-SGFT

returns of the form under the Require: Pretrained policy 7;y, and value function Vi,
transitions generated by the model p 11 7 < Tgim

rather than the real dynamics p,.q;. 2: for each iteration k do

Namely, VEH is the H-step value of 3 Generate rollout { (s, a, ¢, $141) }{—o under 7.

policy 7 under p; V;I and Q;I are 4: Ty <=1+ 7Vsim(ft+1) — Viim(5¢)

: Ch A% S: D(—DU(St,at,Tt,St+1)
the optimal values. Similarly, 77; de- 6 Fit i del 5 with D
notes the optimal H-step policy un- 7: fl ggnerﬁ 1ve nzlote ﬁWI )
der the model dynamics. Note that ’ or % policy updates ¢o .
this is simply the MPC policy gen- 8: Generate synthetic branched rollouts D under 7.
erated by using p and optimizing 9: Approx. optimize 7 < max Qp (‘f ,m(s5))
with p substituted in for p,.cq;. Vs; € D using augmented dataset D U D

10: end for

Improved Sample Efficiency with 11 end for
Data Augmentation (Algorithm [2).
The generative model p can be used -
for c?am augmentation by generat- Algorithm 3 MPC-SGFT

ing a dataset of synthetic rollouts D Require: Pretrained value V;,, and initialized model p.

to supplement the real-world dataset  1: for each iteration k do

D (Janner et all 2019} [Suttonl [T990;  2: Generate rollout { (s, az, ¢, S141) }{—( using p

Gu et all, 2016). The combined and trajectory optimization to calculate 77;

dataset can then be fed to any policy — 3: Tt <= 7 +YWVeim(Se41) — Viim(5t)

optimization strategy, such as generic ~ 4: D < D U{(¢, a1, T, Se41)}-

model-free algorithms. We con- 5: Fit generative model p with D.

sider state-of-the-art Dyna-style algo- ~ 6: end for

rithms (Janner et al.,[2019)), which, in

our context, branch [ -step rollouts from states the agent has visited previously in the real-world.
As Algorithm[2]shows, after each data-collection phase, this approach updates p and then repeatedly
a) generates a dataset D of synthetic H-step rollouts under the current policy 7 starting from states
in D, and b) approximately solves m < maxz Q% (s, 7(s)) at the observed real-world states using

the augmented dataset D U D and a base model-free method such as SAC (Haarnoja et al., [2018).

Online Planning (Algorithm [3). The most straightforward way to approximate the behavior of
w5 is simply to apply the MPC controller 77; generated using the current best guess for the dynamics
p. Algorithm 3| provides general pseudocode for this approach, which iteratively 1) rolls out 7
(which is calculated using online optimization and p (Williams et al., 2017)) then 2) updates the
model on the current dataset of transitions D. This high-level approach encompasses a wide array
of methods proposed in the literature, e.g., |Ebert et al.| (2018) and [Zhang et al.| (2019). For the
experiments in Section [] we implemented this approach using the TDMPC-2 (Hansen et al., 2024)
algorithm, which additionally learns a policy prior to accelerate the trajectory optimization.

5 THEORETICAL ANALYSIS

The preceding discussions have covered how the dense rewards and horizon shortening strategy
employed by SGFT can lead to efficient real-world adaptation. However this leaves the outstanding
question: how does the bias introduced by the reward shaping and horizon shortening affect policy
performance? Longer prediction horizons decrease the bias of the objective by relying more heavily
on real returns, but lead to less sample efficient adaptation |Cheng et al.| (2021)); [Westenbroek et al.
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(2022). Given these competing challenges, can we expect SGFT to simultaneously learn high-
performing policies and adapt rapidly in the real-world?

We introduce a novel geometric analysis which demonstrates that SGFT can achieve both goals,
even when there is a large gap between pg;, and preq;. Specifically, we introduce mild technical
conditions on the structure of pgipm,, Veim and preqr which ensure that 77, is nearly optimal for
Meqi, even when short prediction horizons H are used. Our analysis builds on the following
insight: even when there is a large gap in the magnitude |psim — Dreal|oo between simulation and
reality, it is reasonable to assume that Vy;,,, still defines a reasonable ordering over desirable states
under the real-world dynamics p,.,;. Namely, we argue that Vj;,, can capture the structure of
motions that complete the desired task (such as reaching towards and object, picking it up, and
moving it to a desired location), even if the low-level sequences of actions needed to realize these
motions differs substantially between simulation and reality (due e.g. to difficult-to-model contact
dynamics). We use the following formal definition to capture this intuition, which is from [Cheng
et al. (2019) and shares strong connections to Lyapunov|Westenbroek et al.[(2022);|Grune & Rantzer
(2008) and Dissipation Brogliato et al.| theories from dynamical systems and control:

Definition 1. We say that V., is improvable with respect to M ..o if for each s € S we have:
maaXEs’Nprml(-\s,a) [’y‘/sinL(S/)] - ‘/;'i'rrL(S) Z _T(S)- (2)

To unpack why this definition is useful, note that Vg, is by definition improv-
able with respect to Mgipm,. Indeed, by the temporal difference equation we have
By opoim Cls.a), ammoim (-1s) [V Vsim (8")] = Visim(s) = —r(s). Namely, Vi, is constructed so that
polices can greedily increase V;,, under ps;,, at each step and be guaranteed to reach desirable
states in the long run, namely, states which correspond to successfully completing the task. Defini-
tion[TJensures that this condition then holds under the real-world dynamics; this requirement ensures
that the ordering defined by V;,,, encodes feasible motions that solve the task in the real-world. This
enables policy optimization algorithms to greedily follow V;,, at each step while ensuring that the
resulting behavior successfully completes the task. We use the following pedagogical example to
investigate why this is a reasonable property to assume for continuous control problems:

Pedagogical Example. Consider the following case where the real and simulated dynamics are
both deterministic, namely, s’ = preqi(s,a) and 8" = psim(s,a). Specifically, consider the case
where s = (s1,52) € S C R?, a € A = R, and the dynamics are given by:

5] s 52
Psim(s,a) = L/J = {32} + At [-‘{ sin(s1) + a}

s} s1 So
preal(sa a) - |:S/2:| = [82} + At |:gl] Sin(Sl) +a+ 6(817 82):| .

These are the equations of motion for a simple pendulum (Wang et al., |2022) under an Euler dis-
cretization with time step At, where s; is the angle of the arm, s5 is the angular velocity, a is the
torque applied by the motor, g is the gravitational constant, and [ is the length of the arm. The real-
world dynamics contains unmodeled terms e(s1, $2), which might correspond to complex frictional
or damping effects. Consider the policy for the real world given by m¢qi($) = Tsim(s) — e(s1, s2)
and observe that pg;m (S, Tsim(S)) = Preat(s; Trear(s)). Even though the difference in transition
dynamics e(s1, s2) might be quite large, the set of feasible next states is the same for the two envi-
ronments. That is, the space of feasible motions in the two MDPs are identical, even though it takes
substantially different policies to realize these motions.

Geometric Insight. More broadly, if for each s there exists some a such that ppcq(-|s,a) =
Dsim (+|8, Tsim (8)), then Vg, is improvable with respect to M .¢4;. This follows from the fact that
Vsim 1s improvable under pg;,, by definition (see above discussion) and the fact that there exists
actions which exactly match the state transitions in simulation and reality. More generally, it is
reasonable to expect that pg;,, approximately captures the geometry of what motions are feasible
under p,..q;, even if the actions required to realize the motions differ substantially in the two MDPs.
Thus it is reasonable to assume V;,,, is improvable. This intuition is highlighted by our real-world
examples in cases where we use SGFT with a prediction horizon of I = 1. In these cases the learned
policy is able to greedily follow V;,, at each state and reach the goal, even in the face of large
dynamics gaps. Relatedly, work on Lyapunov theory [Westenbroek et al.| (2022)) has demonstrated
theoretically that value functions are naturally robust to dynamics shifts under mild conditions.
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Main Theoretical Result. Before presenting our main theoretical result, we provide a useful point
of comparison from the literature Bhardwaj et al.|(2020). When translated to our setting, [1_-] (Bhard-
waj et al 2020, Theorem 3.1) assumes that V(s,a) we have a) the value gap between simulation
and reality is bounded by ||Vs;m(s) — V%, (s)|| < € and b) that a generative model p is used for
planning wherein [|5(:|s, a) — Dreat(-|s, a)||1 < . Recalling that 7}; is the controller synthesized

using the model p, (Bhardwaj et al., 2020, Theorem 3.1) bounds the suboptimality for the model-

based controller as V% _,(s) — VrZ’l(s) <0 (ﬁaH + %e . To understand the bound, first

set a = 0 so that there is no modeling error (as in the case of model-free instantiations of SGFT).

In this regime we are incentivized to increase H, as this will decrease the %e term and improve
performance. However this term scales very poorly for long-horizon problems where v ~ 1, and
we may need large values of H to obtain near optimal policies. When o« > 0, the situation becomes
even more challenging. Increasing H will increase the ﬁaH term, reflecting how longer pre-
diction horizons propagate model-based errors and increase suboptimality. Thus, without additional
structural assumptions, we cannot conclude that SGFT can learn high-performance controllers when
H is small. The following result demonstrates this is possible when Vj;,,, is improvable:

Theorem 1. Assumes that ¥(s,a) we have a) the value gap between simulation and reality is
bounded by ||Vsim(s) — V.2, (8)]l < € and b) if a generative model p is used by SGFT then
I5(-|s, @) — Dreai(:|s,a)|l1 < . Further suppose that V;,, is improvable with respect to M .cq.
Then for H sufficiently small and each s € S we have:

r*eal(s) - Vrf;;;l(s) < 0 <1 i

aH + ’yHe) , 3)

where 73y is the policy learned by SGFT.

See Appendix [A]for proof. This result demonstrates that when V;,,, is improvable with respect
to M,cq; SGFT can obtain nearly optimal policies, even when H is small. When compared to
(Bhardwaj et al., 2020, Theorem 3.1), which assumes uniform worst-case bounds on || Vs;m — Vieat ||
when Vy;,,, is improvable we gain a substantial factor of ﬁ when bounding the effects of errors
in Vg;pm,. In short, this result demonstrates that even mild structural consistency between pg;,,, and
Dreal 1s enough to ensure that SGFT provides effective guidance towards performant policies when
H is small. In the case of MBRL («a > 0), this is especially important as keeping H small combats
compounding errors in the dynamics model. Our proof technique adapts ideas from the theoretical
control literature Grune & Rantzer| (2008)); [Westenbroek et al.[(2022) to the more general setting we
consider, and can be seen as a model-based analogy to the results from (Cheng et al.| (2021)).

6 EXPERIMENTS

We answer the following: (1) Can SGFT facilitate rapid online fine-tuning for dynamic, contact-
rich manipulation tasks? (2) Does SGFT improve the sample efficiency of fine-tuning compared to
baselines? (3) Can SGFT learn successful policies where prior methods fail entirely?

6.1 METHODS EVALUATED

SGFT Instantiations. We implement concrete instantiations of the general Dyna-SGFT and
MPC-SGFT frameworks sketched in Algorithms [2] and 5] SGFT-SAC fits a model to real world
transitions to perform data augmentation and uses SAC as a base model-free policy optimization
algorithm. We use H = 1 in all our experiments. Crucially, we set the ‘done’ flag to true at the
end of each rollout — this ensures SAC does not bootstrap its own critic from the real-world data
and only uses V., to bootstrap long-horizon returns. SGFT-TDMPC-2 uses TDMPC-2 |Hansen
et al.| (2024) as a backbone. The base method learns a critic, a policy, and an approximate dynamics
model through interactions with the environment. When acting in the world, the MPC controller
solves online planning problems using the approximate model, the critic as a terminal reward, and
uses the policy prior to seed an MPPI planner |Williams et al.[(2017). To integrate this method with
SGFT, when transferring to the real world we simply freeze the critic learned in simulation and use
the reshaped objective in Equation (I)) as the online planning objective. For our experiments, we use
H = 4 and the default hyperparameters reported inHansen et al.|(2024).

"We note that [Bhardwaj et al.| (2020) focuses on general MPC problems where some approximation Vo~
V% .. is used as the terminal cost for the planning objective. However, despite the difference in settings, the
structure of the underlying H-step objective we consider is identical to much of the MPC literature.
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Figure 4: Real-world success rates during the course of online fine-tuning. We plot task success rates
over number of fine-tuning rollouts for the tasks described in Sec.[f] We see that SGFT yields significant
improvements in success and efficiency.

Baseline Fine-tuning Methods. We also fine-tune polices using the original infinite-horizon ob-
jective for M.¢q;, including SAC [Haarnoja et al. (2018), TDMPC-2 [Hansen et al.| (2024), IQL
Kostrikov et al.| (2021). PBRS fine-tunes the policy using the reshaped reward, an infinite horizon,
and SAC (Haarnoja et al.,[2018)- it does not use horizon shortening. RLPD fine-tunes a fresh policy
to solve the original MDP M,...; using RLPD 2023). These algorithm cover state-of-the
art model-based, model-free, and offline-to-online adaptation algorithms.

Baseline Sim-to-Real Methods. Our Domain Randomization baseline refers to policies trained
with extensive domain randomization in simulation and transferred directly to the real world. These
policies rely only on the previous observation. Recurrent Policy + Domain Randomization uses
policies conditioned on histories of observations, similar to methods such as [Kumar et al.| (2021).
Asymmetric Actor-Critic uses policies trained in simulation with a critic con-
ditioned on privileged information. DOREAMON (Tiboni et al., 2023b) is a recently proposed
transfer method which automatically generates curricula to enable robust transfer. ASID

2024) and DROPO (Tiboni et al.}[2023a)) identify simulation parameters with small real-world
data sets. These methods serve as a state-of-the-art baselines for sim-to-real transfer methods.

6.2 SIM-TO-REAL EVALUATIONS

We test each method on five real-world manip-
ulation tasks illustrated in Figure3]and two ad-
ditional real-world deformable object pushing
tasks illustrated in Figure [T} demonstrating that
both the SGFT-SAC and SGFT-TDMPC-2 in-
stantiations of SGFT excel at learning policies
with minimal real-world data.

Hammering is a highly dynamic task involving
force and contact dynamics that are impractical
to precisely model in simulation. In our setting,
the robot is tasked with hammering a nail in a
board. The nail has high, variable dry friction Figure 3: Sim-to-Real Setup Simulation setup for pre-
along its shaft. In order to hammer the nail into training (top) and execution of real-world fine-tuning
the board, the robot must hit the nail with high (bottom) of real-world hammering (left), insertion
force repeatedly. The dynamics are inherently —(middle), and pushing (right).

misspecified between simulation and reality here due to the infeasibility of accurately modeling the
properties of the nail and its contact interaction with the hammer and board.

Insertion involves the robot grasping a table leg and accurately inserting it into
a table hole. The contact dynamics between the leg and the table differ between simulation and
real-world conditions. In the simulation, the robot successfully completes the task by wiggling the

Simulation

Real World
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leg into the hole, but in the real world this precise motion becomes challenging due to inherent noise
in the real-world observations as well as contact discrepancies between the leg and the table hole.

Puck Pushing requires pushing a puck of unknown mass and friction forward to the edge of the
table without it falling off the edge. Here, the underlying feedback controller of the real world
robot inherently behaves differently from simulation. Additionally, retrieving and processing sensor
information from cameras incurs variable amounts of latency. As a result, the controller executes
each commanded action for variable amounts of time. These factors all contribute to the sim-to-real
dynamics shift, requiring real-world fine-tuning to reconcile.

Deformable Object Pushing is similar to puck pushing but involves pushing deformable objects
which are challenging to model in simulation. As a result, we choose to model the object as a
puck in simulation, making the simulation dynamics fundamentally misspecified compared to the
real world. This example exemplifies how value functions trained under highly different dynamics
in simulation can still provide useful behavioral priors for real-world exploration. We include two
deformable pushing tasks — a towel and a squishy toy ball.

Each task is evaluated on a physical setup using a Franka FR3 operating with either Cartesian
position control or joint position control at SHz. We compute object positions by color-thresholding
pointclouds or by Aruco marker tracking, although this approach could easily be upgraded. Further
details on reward functions, robot setups and environments can be found in Appendix

Analysis. The results of real-world fine-tuning on these five tasks are presented in Figure 4| For
all five tasks, zero-shot performance is quite poor due to the dynamics sim-to-real gap. The poor
performance of direct sim-to-real transfer methods such as Domain Randomization, Recurrent Pol-
icy + Domain Randomization (Kumar et al., 2021), Asymmetric Actor-Critic (Pinto et al., |2018)),
ASID (Memmel et al., [2024), DROPO (Tiboni et al., |2023a), and DOREAMON (Tiboni1 et al.,
2023b) highlight that these gaps are due to more than parameter misidentification or poor policy
training in simulation, but rather stem from fundamental simulator misspecification.

The second class of comparison methods includes offline pretraining with online fine-tuning
techniques like IQL (Kostrikov et al., 2021), SAC (Haarnoja et al., 2018), and RLPD (Ball et al.,
2023)). Whether model-free or model-based, the SGFT finetuning methods (ours) substantially out-
perform these techniques in terms of efficiency and asymptotic performance. Moreover, they prevent
catastrophic forgetting, wherein finetuning leads to periods of sharp degradation in the policies ef-
fectiveness. This suggests that simulation can offer more guidance during real-world policy search
than just network weight initialization and/or replay buffer data initialization for subsequent fine-
tuning. Our full system consistently leads to significant improvement from fine-tuning, achieving
100% success for hammering and pushing within an hour of fine-tuning and 70% success for insert-
ing within two hours of fine-tuning. The fact that SGFT outperforms both TD-MPC2 (Hansen et al.,
2024) and PBRS-SAC, suggests that efficient fine-tuning requires a combination of both short model
rollouts and value-driven reward shaping. Last but not least, note that SGFT offers improvements
on top of both SAC and TDMPC2, showing the generality of the proposed paradigm.

In the Appendix we also include a) a set of sim-to-sim transfer benchmarks and hyper-parameter
ablations (Appendix@) b) visualizations of transferred value functions (Appendix @])

7 LIMITATIONS AND FUTURE WORK

We present SGFT, a general framework for efficient sim-to-real fine-tuning with existing RL algo-
rithms. The key idea is to leverage value functions learned in simulation to provide guidance for
real-world exploration. In the future it will be essential to scale methods to work directly from per-
ceptual inputs. Calculating dense rewards from raw visual inputs is challenging, and represents an
important limitation of the current instantiation of SGFT. Future work will investigate which visual
modalities lead to robust sim-to-real transfer. Moreover, despite the sample complexity gains SGFT
affords existing RL algorithms, we believe new base adaptation algorithms designed specifically for
low-data regimes will be needed to make truly autonomous real world adaptation practical. For all
methods tested, we found that tuning for real-world performance was time-consuming. Thus, future
work will investigate using large simulated data sets to distill novel policy optimization algorithms
that can be transferred to the real-world with less effort.
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A PROOFS

Notation Recap. We remind the reviewer of notation we have built up throughout the paper. We
use the ‘hat’ notation to denote a generative dynamics model p, as well that the optimal values

V;}, Q’;{ obtained by optimizing the I -step objective under these dynamics. 77; is then the policy
obtained by optimizing the H-step objective under the model dynamics: 7g (|s) < max, Q% (a, 7).
We first present several Lemma’s used in the proof of Theorem (I} The first result bounds the

difference between the true H-step returns for a policy 7y and the H-step returns predicted under
the dynamics model p.

Lemma 1. (Bhardwaj et al.|[2020| Lemma A.1.) Suppose that ||p(s, a) — preai (s, a)||1 < a. Further
suppose Ar = max,r(s) — ming r(s) and AV = max, Vi(s) — ming Vi(s) are finite. Then, for
each policy ™ we may bound the H -step returns under the model and true dynamics by:

1—~"-1 Ar HAV) I
_ — | -aH.

IV57(5) - Vil < (1= 5 #9715 @

Proof. This result follows imediatly from the proof of (Bhardwaj et al.| 2020, Lemma A.1.), with
changes to notation and noting that we assume access to the true reward. In particular, the full result

of (Bhardwaj et al., 2020, Lemma A.1.) includes an extra 11_ jH « term which comes from the usage

of a model 7 which estimates the true reward. We do not consider such effects, and thus suppress
this dependence.

The next result uses this[I] to bound the difference between the optimal H-step returns and the
H-step returns generated by the policy 77; which is optimal under the dynamics model p:

Lemma 2. Suppose that [|p(s,a) — preat(s;a)lli < «. Further suppose Ar = max,r(s) —
ming r(s) and AV = max, Vi(s) — ming Vi (s) are finite. Then for each state s € S we have:

_ H-1
17Ar+7HAV> (5)
1—n

Vit - Vi) <
where 7% < max,,, V74 (s).

Proof. Let w3, < max,, V™ (s) be the optimal H-step policy under the true dynamics. By
Lemma [Tl we have both that

) . 1—~H=1 Ar AV
Vi(s) <V H(S)+7<1_72 +’YH2> ~aH. (6)
~ A% #* 1-— ,nyl AT AV
Vi (s) < Vg (s) +~ <1—72 ’YHQ) ~oH. (N
Combining these two bounds with the fact that V™7 (s) < V;;I (s) yields the desired result. O

The following result establishes an important monotonicity property on the optimal H-step value
functions which is important for the main result.:

Lemma 3. Suppose that sup, Egp. . (5,0)[VVsim (8")] = Vaim(s) > —r(s). Then we have V5 (s) >
Vii_1(s) for each s € S. Then for each s € S we have:

Vii(s) = Vi _1(s) ®

Proof. Fix an initial condition s9 € S. Let 7w be arbitrary, and fix the shorthand 7* =
{mg,...,m5_, } for the time-varying policy 7* <— max; V};_5(s¢). Then, concatenate these poli-
cies to define: @ = {7}, ..., 7} _o, 7}, which is simply the result of applying the optimal policy for
the (H — 1)-step look ahead objective Equation (1)) starting from s, followed by applying 7 for a
single step. Letting the following distributions over trajectories by generated by 7*, by the definition
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of Vii:

Vi (s0)

Y Vaim(s1) + Z_: Vr(se) — Vsim(SO)]

t=1

>E

=E [’YH‘/SWTL(SH) - ’VH_I‘/sim(SHfl) + 'YHT(SHfl)}

+E

H—2
YT Wim (sm-1) + Z vir(se) — Vsim(s())]

t=1

=K |:'YHVsim(3H) - ’YHil‘/sim(SH—l) + 'YHT(SH—l) + Vﬁ_l(so)}

The first inequality follows from the fact that the return of 7 cannot be greater than that of 7*, the
first equality follows from rearanging terms to isolate V;;_,, and the second equality follows from
the definition of V;_,. Now, since our choice of 7 used to define 7 was arbitrary, we choose 7 to
be deterministic and such that Ey/ ), . (s.0)[YVeim(5")] = Vsim(s) > —7(s) at each state s € S, as
guaranteed by the assumption made for the result. This choice of policy grantees that:

E\ v Viim(sr) — v7 " Viim (sir-1) +¥7r(sg—1)| > 0. 9)

The desired result follows immediately by combining the two preceding bounds, and noting that
our choice of initial condition was arbitrary, meaning the preceding analysis holds for all initial
conditions. O

Our final lemma bounds the sub-optimality of SGFT policies 7 in terms of a) errors in the
sim value function and b) additional suboptimalities cause by 7 being sub-optimal for the H-step
objective:

Lemma 4. Suppose that Vs, is improvable and further suppose that maxgecs |Vsim(s) —
Vi .a(s)| < e Then any policy m which satisfies Aj;(s,m) = Q% (s, m) — Vii(s) > —d will

satisfy:

* T 6
Teal(s) - ereal(s) S P)/HG + m (10)

Proof. Our goal is first to bound how Q7% (s, m) changes on expectation when applying the given
policy for a single step. We have that:

Qi (s,m) +6 > Vy(s) (11)
Vii(s) > Vi _1(s) (12)
Qy(s,m) =BV _1(s") +7(s,s")] (13)

where the first inequality follows from the ssumption of the theorem, the second inequality follows
from Lemma and, the third inequality is simpl.y the deﬁnit.ion of Q*H Letting sf ~ Dreal(s, a) with
a ~ m(-|s), we can take expectations can combine the previous relations to obtain:

E[Qy (s, m) +7(s,s)]+70 > E[YVi(s") + 7(s,8)] + > E 7V (s) +7(s,8)] = Qi (s, 7).

(14)
That is:
VE[QH (s, m)] +7(s) +76 = Q (s, 7). (15)
Alternatively:
7(s) > Qi (s, m) = 1E[Qp (s, m)] — 4. (16)

Next, we use this bound to provide a lower bound for V7, (). Because the previous analysis holds

at all states when we apply 7, the following holds over the distribution of trajectories generated by
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applying 7 starting from the initial condition s :

B (s) [Z V'7(s0) | = Vita(s) = Va(so)
t=0

> ]Ep:fcal(s) [Z ,Yt (Q*H(Stvﬂ-) - ,VQ;I(St+177r)>‘| - ,y(sz,yt
t=0 t=0
¥é
:Q* S0, M) — T/
o0 m) - 72

where we have repeatedly telescoped out sums to cancel out terms in the first equality, used in
the second equality, and canceled out terms to generate the final equality.

Thus, we have the lower-bound:

Fraa(s) 2 Qiym) + Vaim{s0) — T a7
> V(o) + Veam(s0) = 1
Next, we may bound:
H-1
Vi (80) + Vaim(80) Z E ey o0 |7 Vaim(sm) + Y 2'r(se) (18)
= H—-1
=E (o) |V Veim(sm) = v Viea(sm) + 77 Via (sm) + f}% V7 (s0)

=By [V Vaim(51) = 47 Vit (580)] + Viar(50).

*

Invoking the assumption that max |Viim (s) — V%,

ceding bound to yield:

(s)] < e, we can combined this with the pre-

Vii(s0) + Vaim(s0) > Viea(s) — e (19)

Finally, once more invoking the fact that Q%;(s, ) + d > V};(s) for each s € S and combining this
with Equation and Equation (I8)), we obtain that:

Fa(5) 2 Qip(57) + Vi s0) — T
> Vi (s0) + Vsim(s0) — % -
> Vils) = 1 =6 = e
Frals) = o e
from which the state result follows immediately. O

Proof of Theorem [t

Proof. The result follows directly from a combination of Lemma [4] and Lemma [2] by suppressing
problem-dependent constants and lower order terms in the discount factor .

B ENVIRONMENT DETAILS

Sim2Real Environment. We use a 7-DoF Franka FR3 robot with a 1-DoF parallel-jaw gripper. Two
calibrated Intel Realsense D455 cameras are mounted across from the robot to capture position of
the object by color-thresholding pointcloud readings or retrieving pose estimation from aruco tags.
Commands are sent to the controller at SHz. We restrict the end-effector workspace of the robot in a
rectangle for safety so the robot arm doesn’t collide dangerously with the table and objects outside
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the workspace. We conduct extensive domain randomization and randomize the initial gripper pose
during simulation training. The reward is computed from measured proprioception of the robot and
estimated pose of the object. Details for each task are listed below.

Hammering. For hammering, the action is 3-dimensional and sets delta joint targets for 3 joints
of the robot using joint position control. The observation space is 12-dimensional and includes end-
effector cartesian xyz, joint angles of the 3 movable joints, joint velocites of the 3 movable joints, the
z position of the nail, and the xz position of the goal. Each trajectory is 50 timesteps. In simulation,
we randomize over the position, damping, height, radius, mass, and thickness of the nail. Details
are listed in Tab. [Tl

The reward function is parameterized as () = —10 - Tnaji—goat (£) Where Tnail—goat = (Tnail)> —
(rgoal) » represents the distance in the z dimension of the nail head to the goal, which we set to be the
height of the board the nail is on.

Pushing. For pushing, the action is 2-dimensional and sets delta cartesian Xy position targets us-
ing end-effector position control. The observation space is 4-dimensional and includes end-effector
cartesian xy and the xy position of the puck object. Each trajectory is 40 timesteps. In simulation,
we randomize over the position of the puck. Details are listed listed in Tab. 3]

Let ree be the cartesian position of the end effector and r; be the cartesian position of the object.
The reward function is parameterized as 7(t) = —7ce—goal (t) — Tobj—goal (£) + Tthreshold () — Tabte ()
where 7ee—goal(t) = [|Fee(t) — Topj(t) + [3.5cm, 0.0cm, 0.0cm]|| represents the distance of the end
effector to the back of the puck, robj—goat(£) = ||(Yobj(t))z — 55cml|| represents the distance of the
puck to the goal (which is the edge of the table along the x dimension), rnreshold (£) = L[7obj—goat (£) >
2.5cm]| represents a goal reaching binary signal, and 7upie(t) = I[(70bj(t)). < 0.0] represents a
binary signal for when the object falls of the table.

Inserting. For inserting, the action is 3-dimensional and sets delta cartesian xyz position tar-
gets using end effector position control. The observation space is 9-dimensional and includes
end-effector cartesian xyz, the xyz of the leg, and the xyz of the table hole. Each trajectory is 40
timesteps. We enlarge the table by a scale of 1.08 compared in the original table in FurnitureBench
in order to make the table leg insertable without twisting. In simulation, we randomize the initial
gripper position, position of the table, and friction of both the table and the leg.

Let rpo1 (t) and rpos () represent the Cartesian positions of the leg and table hole. Let:

Zagistance (t) = €lip (|Tpost,z () — Tpos2,z(£)[,0.0,0.1)

Yaistance (£) = clip (|Tpost,z () — Tpos2,2(t)],0.0,0.1)

Zdistance (t) = Clip (|Tpost,y (t) — Tpos2,y(t)],0.0,0.1)
Let the success condition be defined as:

T'success (t) =1 [l'distance(t) < 0.0land ydistance(t) < 0.01and Zdistance (t) < 001]

The reward function is now:

T(t) = Tsuccess(t) — 100 * (xdistance(t)2 + ydistance(t)2 + Zdistance(t)2>

Sim2Sim Environment. We additionally attempt to model a sim2real dynamics gap in simu-
lation by taking the hammering environment and create a proxy for the real environment by fixing
the domain randomization parameters, fixing the initial gripper pose, and rescaling the action mag-
nitudes before rolling out in the environment.

C IMPLEMENTATION DETAILS

Algorithm Details. We use SAC as our base off-policy RL algorithm for training in simulation and
fine-tuning in the real world. For our method, we additionally add in two networks: a dynamics
model that predicts next state given current state and action, and a state-conditioned value network
which regresses towards the Q-value estimates for actions taken by the current policy. These net-
works are training jointly with the actor and critic during SAC training in simulation.

Network Architectures. The Q-network, value network, and dynamics model are all parame-
terized by a two-layer MLP of size 512. The dynamics model is implemented as a delta dynamics
model where model predictions are added to the input state to generate next states. The policy net-
work produces the mean i, and a state-dependent log standard deviation log o, which is jointly
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Table 1: Domain randomization of hammer- Table 2: Domain randomization of pushing

ing task in simulation task in simulation

Name Range Name Range

Nail x position (m) [0.3,0.4] Object x position (m) [0.0, 0.3]

Nail z position (m) [0.55, 0.65] Object y position (m) [-0.25, 0.25]

Nail damping [250.0, 2500.0]

Nail half height (m) [0.02, 0.06] Table 3: Domain randomization of inserting

Nail radius (m) [0.005, 0.015] task in simulation

Nail head radius (m) [0.03, 0.04]

Nail head thickness (m) [0.001, 0.01] N R

Hammer mass (kg) [0.015, 0.15] ame ange
Parts x/y position (m) [-0.05, 0.05]
Parts rotation (degrees) [0, 15]
Parts friction [-0.01, 0.01]

learned from the action distribution. The policy network is parameterized by a two-layer MLP of
size 512, with a mean head and log standard deviation head on top parameterized by a FC layer.

Pretraining in Simulation. For hammering and puck pushing, we collect 25,000,000 transitions
of random actions and pre-compute the mean and standard deviation of each observation across
this dataset. We train SAC in simulation on the desired task by sampling 50-50 from the random
action dataset and the replay buffer. We normalize our observations by the pre-computed mean
and standard deviation before passing them into the networks. We additionally add Gaussian noise
centered at 0 with standard deviation 0.004 to our observations with 30% probability during training.
For inserting, we train SAC in simulation with no normalization. We train SAC with autotuned
temperature set initially to 1 and a UTD of 1. We use Adam optimizer with a learning rate of
3 x 1074, batch size of 256, and discount factor v =.99.

Fine-tuning in Real World. We pre-collect 20 real-world trajectories with the policy learned in
simulation to fill the empty replay buffer. We then reset the critic with random weights and continue
training SAC with a fixed temperature of o = 0.01 and with a UTD of 2d with the pretrained actor
and dynamics model. We freeze the value network learned from simulation and use it to relabel
PBRS rewards during fine-tuning. During fine-tuning, for each state sampled from the replay buffer,
we additionally hallucinate 5 branches off and add it to the training batch. As a result, our batch
size effectively becomes 1536. The policy, Q-network, and dynamics model are all trained jointly
on the real data during SAC fine-tuning. We don’t train on any simulation data during real-world
fine-tuning because we empirically found it didn’t help fine-tuning performance in our settings.
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Visualization of Puck Pushing Trajectory

——— real rollout
hallucinated states

0.6

0.5

0.4

anjep,

End effector y position
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- 12

0.0 +
0.15 0.20 025 0.30 0.35 0.40 0.45 0.50 0.55 0.60
End effector x position

Figure 5: Visualization of real rollout, hallucinated states, and value function. The red dots indicate states
along a real rollout in simulation. The blue dots indicate hallucinated states branching off real states generated
by the learned dynamics model. The green heatmap indicates the value function estimates at different states. A
corresponding image of the state is shown for two states. Since it is hard to directly visualize states and values
due to the high-dimensionality of the state space, we only show a part of the trajectory where the puck does not
move. This allows us to visualize states and values along changes in only end effector xy.

D QUALITATIVE RESULTS

We analyze the characteristics of hallucinated states and value functions in Fig. [5| We visualize a
trajectory of executing puck pushing in simulation using the learned policy in this plot. The red
dots indicate states along a real rollout in simulation. The blue dots indicate hallucinated states
branching off real states generated by the learned dynamics model. The green heatmap indicates
the value function estimates at different states. A corresponding image of the state is shown for two
states. The trajectory shown in the figure shows the learned policy moving closer to the puck before
pushing it. The value function heatmap shows higher values when the end effector is closer to the
puck and lower values when further. Hallucinated states branching off each state show generated
states for fine-tuning the learned policy.

Note that it is hard to directly visualize states and values due to the high-dimensionality of the
state space. To get around this for puck pushing, we only show a part of the trajectory where the
puck does not move. This allows us to visualize states and values along changes in only end effector

Xy.
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E SiM-TO-SIM EXPERIMENTS

Here we additionally test each of the proposed methods on the sim-to-sim set-up from
(2021)), which is meant to mock sim-to-real gaps but for familiar RL benchmark tasks. The results
are depicted in Figure [7) for the Walker Walk, Cheetah Run, and Rope Peg-in-Hole environments.
For all tasks, we use the precise settings from Du et al.| (2021). Note that the general trend of these
results matches our real world experiments — SGFT substantially accelerates learning and overcomes
the dynamics gap between the ‘simulation’ and ‘real’ environments.

Finally, we additionally use the Walker and Peg-in-Hole environments to ablate the effects of the
hyper parameter H. Intuitively, the peg-in-hole environment requires much more precise actions,
and is thus should be more sensitive to errors in the pretraining environment. Thus, we should
expect that SGFT will benefit from larger values of H for this environment, as this will correspond
to relying more heavily on returns from the target environment. We see that this trend holds in Figure
where the Walker environments is barely affected by the choice of H but this hyper parameter has
a large impact on the performance in the Peg-in-Hole Environment.

Ablating H: Rope Peg in Hole

Ablating H: Walker Walk

°
=

°

“Real” Env Return
“Real” Env Return

°

— SGFT-SAC, H=1
SGFT-SAC, H=2
—— SGFT-SAC, H=4
— SGFT-TDMPC, H=1
— SGFT-TDMPC, H=2
—— SGFT-TDMPC, H=4

— SGFT-SAC, H=1
SGFT-SAC, H=2
02 — SGFT-SAC, H=4 02
—— SGFT-TDMPC, H=1
—— SGFT-TDMPC, H=2
—— SGFT-TDMPC, H=4

0 20 40 60 80 100 0 20 40 60 80 100
X1000 Steps x1000 Steps

Figure 6: Normalized Rewards for Sim-to-Sim Transfer. Ablating the effects of the horizon H across two
sim-to-sim expirments. The choice of H has a much larger effect on the peg-in-hole task, which requires much
more precise actions to achieve succes.

Rope Peg in Hole

Cheetah Run

“Real” Env Return
“Real" Env Return

60
x1000 Steps ] 50 100 150 200 250
X1000 Steps

Walker Walk

“Real" Env Return

0 60
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Asymmetric Actor-Critic
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Recurrent Policy + Domain Randomization
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Figure 7: Normalized Rewards for Sim-to-Sim Transfer. We plot the normalized rewards for two sim-to-
sim transfer tasks, where the rewards are normalized by the maximum reward achieved by any method.

22



	Introduction
	Related Work
	Preliminaries
	Simulation-Guided Fine-Tuning
	Simulation-Guided Fine-Tuning
	Leveraging Short Model Roll-outs

	Theoretical Analysis
	Experiments
	Methods Evaluated
	Sim-to-Real Evaluations

	Limitations and Future Work
	Acknowledgments
	Proofs
	Environment Details
	Implementation Details
	Qualitative Results
	Sim-to-Sim Experiments

