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Abstract
Stochastic weight averaging (SWA) method has
empirically proven its advantages compared to
stochastic gradient descent (SGD). Despite it is
widespread used, theoretical investigations have
been limited, particularly in scenarios beyond
the ideal setting of convex and sampling with
replacement. However, non-convex cases and
sampling without replacement are very practical
in real-world applications. The main challenges
under the above settings are two-folds: (i) All
the historical gradient information introduced by
SWA is considered, while the analysis of SGD
using the tool of uniform stability requires only
to bound the current gradient. (ii) The (1 + αβ)-
expansion property causes the boundary of each
gradient step dependent on the previous step, mak-
ing the boundary of each historical gradient in
SWA nested and the theoretical analysis even
harder. To address the theoretical challenges, we
adopt mathematical induction to find a recursive
representation that bounds the gradient at each
step. Based on this, we establish stability bounds
supporting sampling with and without replace-
ment in the non-convex setting. Furthermore, the
derived generalization bounds of SWA are sharper
than SGD. At last, experimental results on several
benchmarks verify our theoretical results.

1. Introduction
The generalization ability of deep neural networks is a pri-
mary concern, particularly given their capacity to memorize
large datasets and potential for overfitting. A prevalent
method to improve this ability is Stochastic Weight Averag-
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ing (SWA) (Izmailov et al., 2018), which involves averaging
the model parameters obtained through Stochastic Gradient
Descent (SGD). SWA has empirically demonstrated signifi-
cant benefits in enhancing generalization across various ap-
plications, including large-scale network training (Izmailov
et al., 2018; Lu et al., 2022), adversarial learning (Xiao
et al., 2022), etc. Indeed, SWA and related model averaging
techniques have become standard practices in training deep
neural network models. Consequently, a theoretical analysis
of SWA’s generalization capabilities is vital to further its
adoption in the deep learning community.

Due to the great complexity of neural networks, it is typi-
cally challenging to theoretically study the generalization
properties of deep learning optimizers. To address the issue,
one powerful tool is the sensitivity analysis (Bousquet &
Elisseeff, 2002), which builds connections between gen-
eralization and stability. In specific, one can bound the
generalization gap by analyzing stabilities of the algorithm.
Based on this, Hardt et al. (2016) study the generalization
property of SGD for both convex and non-convex functions.
Since then, there are many theoretical works based on sta-
bility to study SGD and its variants. Hardt et al. (2016) also
give generalization bounds of model averaging similar to
SWA, but constrain to the convex case and sampling with
replacement. Kuzborskij & Lampert (2018) study the gen-
eralization ability of SGD in the case of sampling without
replacement. Yang et al. (2021) extend the analysis of SGD
to online learning setting, where the data points are sampled
without replacement. Xiao et al. (2022) study the general-
ization bounds of SWA in adversarial training, but still limit
to the convex case. However, all these works do not study
the generalization of SWA under the more practical non-
convex settings. Moreover, the analysis of sampling without
replacement of SWA is also missing. In this paper, we aim
to give a thorough investigation of SWA under non-convex
setting, while considering different sampling mechanisms.

To conduct these theoretical studies, there are three main
challenges. ➀ The first challenge comes from the parameter
averaging in SWA. For SGD, building the boundary for the
step T only requires to consider the gradient generated by
the T -th sample. However, since each step of the SWA is
averaged, all the historical information before the T -th step
should be counted. To bound each step of the SWA, each
step must take into account the above-mentioned operations,
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Table 1. Comparison of SWA with SGD on different settings. Here T represents iterations, n denotes the size of datasets. β and γ are
Lipschitz constants, where γ depends on the data-generating distribution and initialization point of SGD. c is a small constant. We can
derive that SWA has sharper bounds compared to SGD in the different settings, particularly in convex optimization with sampling without
replacement, where there is a significant improvement from O(T ) to O(lnT ).

SETTINGS ALGORITHM GENERALIZATION BOUND

CONVEX & SAMPLING WITH REPLACEMENT
SGD O(2T/n) (HARDT ET AL., 2016)

SWA O(T/n) THEOREM 4.1 (HARDT ET AL., 2016; XIAO ET AL., 2022)

CONVEX & SAMPLING WITHOUT REPLACEMENT
SGD O(T/n) (KUZBORSKIJ & LAMPERT, 2018)

SWA O(lnT/n) THEOREM 4.2

NON-CONVEX & SAMPLING WITH REPLACEMENT
SGD O(T

cβ
1+cβ /n) (HARDT ET AL., 2016)

SWA O(T
cβ

2+cβ /n) THEOREM 5.1

NON-CONVEX & SAMPLING WITHOUT REPLACEMENT
SGD O(T

cγ
1+cγ /n) (KUZBORSKIJ & LAMPERT, 2018)

SWA O(T
cβ

2+cβ /n) THEOREM 5.2

which brings great analytical difficulty. ➁ Secondly, for non-
convex functions, the (1 + αβ)-expansion property causes
the boundary of each gradient step dependent on the previ-
ous step, making the boundary of each historical gradient
in SWA nested and the theoretical analysis even harder. In
specific, due to the use of the (1 + αβ)-expansion property
in our analysis, we cannot establish the T -th gradient at
once. We must also consider the effect of the (T − 1)-th
gradient and recursively compute the bound for the T -th
step. ➂ Finally, the sampling without replacement method
also contains dependencies between events, which requires
us to rethink the boundaries in this situation.

To mitigate these theoretical deficiencies, we find the re-
cursive representation that bounds the gradient at each step
using mathematical induction. Transform the problem of
bounding each step into a problem of bounding a finite sum,
which solves the difficulties in non-convex settings. What’s
more, we cast the case of sampling without replacement as
a classic combinatorial probability problem in probability
studies. We conduct a deep analysis of the impact on his-
torical information at each step of sample selection based
on this framework and establish stability bounds. Based on
this, we present a thorough generalization analysis of SWA
in various settings and establish stability bounds. Compared
with existing generalization analysis of SGD methods (see
Table 1), our results suggest that SWA can improve the
generalization bound in various settings.

1.1. Our Contributions

This paper mainly focuses on theoretical exploration, and
some experimental results are intended to verify its correct-
ness. In specific, we establish a number of generalization
bounds for the SWA to illustrate its good properties com-
pared with SGD. The main theoretical results are summa-
rized in Table 1. Our contributions are listed as follows.

• We focus on the theoretical exploration of the general-

ization ability of SWA and derive stability bounds for
SWA using the notion of uniform stability. Based on
this, we provide a theoretical perspective on why SWA
improves generalization better than the SGD.

• We derive stability-based generalization bounds for
SWA in the various settings – convex or non-convex,
sampling with or without replacement – each of which
is sharper than the bound of SGD (see Table 1).

• We construct a recursive representation that bounds the
gradient at each step using mathematical induction, to
establish stability bounds of SWA in the non-convex
setting without replacement sampling based on combi-
natorial probability.

• We provide two experiments for SWA with or without
replacement sampling cases to verify our results based
on the metric parameter distance and generalization
error on the MNIST, CIFAR10, and Adult datasets,
respectively. The experimental results also coincide
with our theoretical findings.

2. Related Work
SWA algorithm. Model averaging techniques were fristly
used in convex optimization (Ruppert, 1988; Polyak & Judit-
sky, 1992), which showed advantages in generalization and
convergence speed. Then, this idea was extended to deep
neural networks (Neklyudov et al., 2018; Garipov et al.,
2018). To bypass the overhead of training multiple models,
Izmailov et al. (2018) proposed the stochastic weight aver-
aging (SWA), which averages parameters on the learning
trajectory of SGD. Cha et al. (2021) modify SWA and empir-
ically show flatter minima can be found by the modification.
More recently, trainable weight averaging (TWA) (Li et al.,
2022) employs trainable averaging coefficients to further
improve the efficiency of SWA. Despite the widespread use
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of SWA, a thorough generalization analysis for non-convex
functions and general sampling schemes is still missing.

Generalization analysis. Many theoretical tools have been
established to study the generalization ability of algorithms,
such as the VC-dimension (Blumer et al., 1989; Vapnik,
2006), the Rademacher complexity (Bartlett & Mendelson,
2002; Koltchinskii & Panchenko, 2000; Koltchinskii, 2001),
and the PAC-Bayesian theory (McAllester, 1999a;b). Stabil-
ity analysis tries to build the connection between general-
ization ability and algorithm stability (Devroye & Wagner,
1979; Kearns, 1989; Bousquet & Elisseeff, 2002; Mukherjee
et al., 2006; Shalev-Shwartz et al., 2010). In specific, Bous-
quet & Elisseeff (2002) propose the algorithm stability from
the perspective of statistical learning theory. Hardt et al.
(2016) pioneer the use of algorithm stability to study the
generalization bounds of SGD, and subsequent improved
methods include (Charles & Papailiopoulos, 2018; Zhou
et al., 2018b; Yuan et al., 2019; Lei & Ying, 2020b). This
tool is then applied in various of applications including on-
line learning (Yang et al., 2021), adversarial training (Xiao
et al., 2022), decentralized learning (Zhu et al., 2023), and
federated learning (Sun et al., 2023b;a). In particular, Hardt
et al. (2016); Xiao et al. (2022) establish generalization
and stability analysis of SWA, but constrained to convex
functions and sampling with replacement.

SGD without replacement sampling. Traditional analysis
of SGD usually assumes sampling with replacement with
uniform probabilities (Bottou, 2009). Shamir (2016) gave
convergence guarantees of SGD without replacement sam-
pling. Extensions include Rajput et al. (2020); Nguyen et al.
(2021); Das et al. (2022); Sherman et al. (2021); Nagaraj
et al. (2019); Zhou et al. (2018a). In this work, we focus on
generalization ability, while we also provide optimization
bound. Notably, Kuzborskij & Lampert (2018) derive gen-
eralization bounds for the SGD algorithm based on stability,
under the setting of without replacement sampling, while
we focus on the analysis of SWA.

The most related work to ours is (Hardt et al., 2016). How-
ever, Hardt et al. (2016) merely provide a stability bound
for SWA in the assumption of convex and sampling with
replacement and they do not consider the results of SWA in
other settings. In contrast, we focus on the generalization
analysis for SWA and establish stability bounds in all cases,
convexity and non-convexity, samples with and without re-
placement, respectively. In summary, we present a thorough
analysis of SWA’s generalization bounds and rigorously
demonstrate the superiority of SWA over vanilla SGD.

3. Preliminary
The necessary notations, assumptions, definitions of stability
and generalization are given in this section.

3.1. Problem Setup

Let g(w, z) be a loss function that measures the loss of the
predicted value of the parameter w at a given sample z.
There is an unknown distribution D over examples from
some space Z , and a sample dataset S = (z1, z2, ..., zn) of
n examples i.i.d. drawn from D. Then the population risk
and empirical risk are defined as

Population Risk: min
w

{RD[w] = Ez∼Dg(w; z)} (1)

Empirical Risk: min
w

{RS [w] =
1

n

n∑
i=1

g(w; zi)}. (2)

The generalization error of a model w is the difference
ϵgen = RD[w]−RS [w]. Moreover, we assume function g
satisfies the following Lipschitz and smoothness assumption.

Definition 3.1 (L-Lipschitz). For a fixed parameter z ∈ Z,
a function g(u, z) : u ∈ Ω ⊂ Rn → R is L-Lipschitz if for
all u, v ∈ Ω and ∃L ≥ 0 such that

|g(u; z)− g(v; z)| ≤ L∥u− v∥, (3)

where the constant L is uniform for the parameter z and ∥ ·∥
be Euclidean norm. And it implies that ∥▽ g(u, z)∥ ≤ L if
g ∈ C1(Ω).

Definition 3.2 (β-smooth). For a fixed parameter z ∈ Z, a
function g(u, z) : u ∈ Ω ⊂ Rn → R is β-smooth if for all
u, v ∈ Ω and ∃β ≥ 0 such that

∥ ▽ g(u, z)−▽g(v, z)∥ ≤ β∥u− v∥, (4)

where the constant β is uniform for the parameter z and ∥ · ∥
be Euclidean norm.

Definition 3.3 (convex function). A function g : Ω → R is
convex if for all u, v ∈ Ω, then we have

g(u; z) ≤ g(v; z) + ⟨▽g(v), u− v⟩. (5)

3.2. SGD and SWA Algorithm

SGD. For the given training set S = (z1, z2, ..., zn) and the
target function g, the general update rule of the stochastic
gradient descent (SGD) algorithm is formulated as

wt+1 = wt − α∇wg(wt, zit), (6)

where α is the fixed step size, zit is the sample chosen in
iteration t. We consider two ways to choose samples from
dataset S. Choosing zit with replacement is a standard
way to train the model (Bottou, 2009). In addition, we
also consider the setting of sampling without replacement
(Bertsekas, 2011; Bottou, 2012; Gürbüzbalaban et al., 2019).

We consider two popular schemes that are commonly
used for choosing the samples. One is to pick it ∼
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Uniform {1, · · · , n} at each step. The other is to choose a
random permutation over {1, · · · , n} and cycle through the
examples repeatedly in the order determined by the permu-
tation. This setting is commonly explored in analyzing the
stability (Hardt et al., 2016; Xiao et al., 2022). On the other
hand, sampling from S without replacement, which requires
the number of iterates of an algorithm is less than to the
size of S (Kuzborskij & Lampert, 2018). Our developed
analysis framework is general and holds for both sampling
with and without replacement.

SWA. According to the gradient update rule, recursively wt

is represented as wt = w0 − α
∑t

i=1 ▽g(wi−1, zi), where
w0 is the initial point. SWA is formulated as

w̄T = w0 −
α

T

T∑
t=1

t∑
i=1

▽g(wi−1, zi), (7)

where T is the maximum number of iterates. It is not diffi-
cult to find the relationship between w̄T and wT , i.e.,

w̄T =
1

T

(
T−1∑
t=1

wt + wT

)
=

T − 1

T
w̄T−1 +

1

T
wT . (8)

Furthermore, we have

w̄T = w̄T−1 −
α

T (T − 1)

T−1∑
i=1

i · ∇g(wi, zi+1), (9)

and there is w̄1 = w1 = w0 − α∇g(w0, z1) when T = 1,
which is often used in the proof section of this chapter and
the proof of Eq. (9) is placed in the Appendix A.1.

3.3. Stability and Generalization Definition

Establishing a generalization error bound for certain algo-
rithm and using it to find variable dependencies is a primary
means of studying generalization ability. Hardt et al. (2016)
link the uniform stability of the learning algorithm to the
expected generalization error bound and derive the gener-
alization error bound for SGD algorithm. The expected
generalization error of a model w = AS trained by certain
randomized algorithm A defined as

ES,A [RS [AS ]−RD [AS ]] . (10)

Next, we employ the following notion of uniform stability.
Definition 3.4 (ϵ-Uniformly Stable). A randomized algo-
rithm A is ϵ-uniformly stable if for all data sets S, S′ ∈ Zn

such that S and S′ differ in at most one example, we have

sup
z∈Z

{EA [g(AS ; z)− g(AS′ ; z)]} ≤ ϵ. (11)

We recall the important theorem that uniform stability im-
plies generalization in expectation (Hardt et al., 2016). The
proof is based on Bousquet & Elisseeff (2002, Lemma 7)
and very similar to Shalev-Shwartz et al. (2010, Lemma 11).

Theorem 3.5. (Generalization in Expectation, Hardt et al.
(2016, Theorem 2.2)) Let A be ϵ-uniformly stable. Then,

|ES,A [RS [AS ]−RD [AS ]] | ≤ ϵ. (12)

Here, the expectation is taken only over the internal ran-
domness of A. This theorem clearly states that if an algo-
rithm is uniform stability, then its generalization error is
small. Therefore, we can characterize the generalization er-
ror bound of an algorithm by controlling its uniform stability
according to this theorem.

Property of SGD iterate. Since stability is to investigate
the impact of input perturbations on the output, we need
to characterize the state of the sequence updates in two
different scenarios. Let wT and w′

T be the outputs of SGD
after running T steps on S and S′, which are two datasets
with only one sample difference. Next, we consider the
expansion properties of ∥wT −w′

T ∥ after updating one step.

Lemma 3.6 (Lemma 3.6, Hardt et al. (2016)). Assume
that the function g is β-smooth. Then, (1). ((1 + αβ)-
expansive) ∥wT+1 − w′

T+1∥ ≤ (1 + αβ)∥wT − w′
T ∥; (2).

(non-expansive) Assume that g is convex. Then for any
α ≤ 2

β , we have ∥wT+1 − w′
T+1∥ ≤ ∥wT − w′

T ∥.

Lemma 3.6 tells us, in general, smoothness will imply that
the gradient updates cannot be overly expansive. In addition,
when the function is convex and the step size is sufficiently
small, the gradient update becomes non-expansive. The
proof of Lemma 3.6 is deferred to Appendix A.2. and the
more results can be found in several literature (Hardt et al.,
2016; Xiao et al., 2022). Notable references are Polyak
(1987) and Nesterov (2004).

Then, the stability bounds will be constructed if we can
control ∥w̄−w̄′∥ in different scenarios, indicating that SWA
is stable. We will provide how to control it recursively using
the properties of gradient updates in the next section.

4. Generalization Bound under Convexity
Now we start with a stability bound that target function g is
convex. Note that the analysis of SWA is more challenging
than that of SGD. To see this, recall that the bound of wT+1

is obtained from wT , bounding only ∥∇g(wT , zT+1) −
∇g(w′

T , zT+1)∥. However, in the analysis of SWA, the
term

α

T (T + 1)

T∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ (13)

should be carefully bounded. This is because w̄T+1’s ex-
pression after a step is not only related to w̄T but also the
accumulation of gradients from previous steps, the problem
we need to deal with is more complex.
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Another obstacle arises in the scenario of sampling without
replacement. Unlike sampling with replacement that follows
a discrete uniform distribution, sampling without replace-
ment involves a more complicated combinatorial problem
that requires further case-by-case discussion. Due to limited
space, we merely provide the Proof Sketch in the main file.
The detailed proof is placed in the Appendix B.

4.1. Sampling with Replacement

By using the L-Lipschitz property of the target function, we
have

E|g(w̄T ; z)− g(w̄′
T ; z)| ≤ LEδ̄T (14)

for all w̄T and w̄′
T , where δ̄T = ∥w̄T − w̄′

T ∥. This implies
that if the algorithm is stable, its generalization bound is
immediately obtained because δ̄T is bounded. Below, we
provide our first theoretical result, considering the stability
bound in the case of sampling with replacement.

Theorem 4.1. Assume that the loss function g(w; z) is con-
vex, L-Lipschitz and β-smooth for all given z ∈ Z with
sizes n. Suppose we run SWA with step sizes α ≤ 2

β for T
steps, where each step samples zi from Z uniformly with
replacement. Then, SWA has uniform stability of

ϵgen = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

αL2T

n
. (15)

Proof sketch. To complete the proof, we need to recur-
sively bound δ̄T+1 and its expectation E[δ̄T+1] according
to Eq. (14).

First, to bound δ̄T+1, we need to solve the challenge in
Eq. (13) and divide it into two parts

δ̄T+1≤ δ̄T +
α

T+1
∥∇g(wT , zT+1)−∇g′(w′

T , zT+1)∥

+
α

T (T+1)

T−1∑
i=1

i∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥.

(16)

Next, we try to estimate the last two terms separately. For
ease of notation, we define the event A as the selection of
distinguished sample pairs (z, z′) from the datasets S and
S′. When sampling with replacement, we have p(A) = 1

n .

(1) Bounding ∥∇g(wT , zT+1)−∇g′(w′
T , zT+1)∥. On one

hand, when event A occurs at step T + 1 with probability
1
n , we only need to use L-Lipschitz to bound ∇g(wT ) and
∇g′(w′

T ) respectively. On the other hand, with probability
1− 1

n that A does not occur, we can use the non-expansive
update rule from Lemma 3.6, based on the fact that the
objective function is convex and α ≤ 2

β . In summary,
∥∇g(wT , zT+1)−∇g′(w′

T , zT+1)∥ ≤ 2L
n .

(2) Bounding the third term on the historical gradient.

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

=
α

T (T + 1)

T−1∑
i=1

2Li

n
=

(T − 1)αL

n(T + 1)
.

(17)

Since each step i ∈ [1, · · · , T − 1] executes sampling with
replacement, we can bound them in the way above.

Second, by merging the above two results, we derive

E
[
δ̄T+1

]
≤ (1− 1

n
)δ̄T +

1

n

(
δ̄T +

2αL

T + 1

)
+
(T − 1)αL

n(T + 1)

≤ E
[
δ̄T
]
+

αL

n
.

Taking summation over T steps, we get E
[
δ̄T
]
≤ αLT

n .
Finally, substituting it to Eq. (14) yields the desired result.
We leave the details of this proof to Appendix B.1.

4.2. Sampling without Replacement

Next, we provide the generalization error bound of SWA
under sampling without replacement.

Theorem 4.2. Assume that the loss function g(w; z) is con-
vex, L-Lipschitz and β-smooth for all given z ∈ Z with
sizes n. Suppose we run SWA with step sizes α ≤ 2

β for
T (T ≤ n) steps, where each step samples zi from Z without
replacement. Then, SWA has uniform stability of

ϵgen = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

4αL2 lnT

n
. (18)

Proof sketch. When applying SWA via sampling without
replacement, event A may occur only once during the train-
ing procedure, but at any step. Note that the probability of
A occurring varies across different training stages and can
be determined by computing combinatorial probability. We
split the event into three cases and discuss them in detail.

(1) If A occurs in step T + 1 with a probability of 1
n , we

will bound the Eq. (13) with 2L. Since the same sample
will be selected for the first T steps of updates, we bound all
the historical information using the non-expansive property.
Then we obtain δ̄T+1 ≤ δ̄T + 2αL

T+1 .

(2) If the event A occurs after step T + 1 with a probability
of n−T−1

n , we bound all the first T + 1 steps using the
non-expansive property. And we have δ̄T+1 ≤ δ̄T .

(3) If the event A occurs in the previous T steps with a prob-
ability of T

n , we select step i from 1 to T with a probability
of 1

T and bound the Eq. (13) using 2L. The non-expansive
property is then applied to obtain δ̄T+1 ≤ δ̄T + 2αL

T (T+1) .

5



Generalization Analysis of Stochastic Weight Averaging with General Sampling

Then, we obtain the expectation

E
[
δ̄T+1

]
≤ T

n

(
δ̄T +

2αL

T (T + 1)

)
+

n− T − 1

n
δ̄T

+
1

n

(
δ̄T +

2αL

T + 1

)
≤ E

[
δ̄T
]
+

2αL

n
· 2

T + 1

and the bound

E
[
δ̄T
]
≤ 2αL

n
·

T∑
t=1

2

t
≤ 2αL

n
· 2 lnT. (19)

Then, substituting it to Eq. (14) yields the desired result. We
leave the details of this proof to Appendix B.2.

Remark 4.3. The stability bound of SWA under the convex
assumption has already been explored in previous work. For
instance, Hardt et al. (2016) present a result similar to ours
in their online draft, while Xiao et al. (2022) investigate
the stability of SGD in the context of adversarial training.
However, their results are limited to considering sampling
with replacement only. We extent existing results in two
ways: by providing a sharper bound, which is only half of
SGD under the same setting, and by addressing the gap of
sampling without replacement with a new bound.
Remark 4.4. A theoretical study for SGD (Kuzborskij &
Lampert, 2018), which gives the data-dependent stability
bound O(T ) in the convex. This bound depends on the
choice of initial points and requires that the variance of the
random gradient should not too large. If then, there will be
no improvement over the case of sampling with replacement.
In comparison, our results suggest there is a sharper bound
O(lnT ), which is a significant improvement for SWA.
Remark 4.5. Note that in Eq. (6) of (Hoffer et al., 2017)
and Eq. (2) of (Ziyin et al., 2021), the covariance of the
noise of SGD is proven to be the same for sampling with
or without replacement, while the number of data is much
larger than the size of mini-batch. However, in our Theo-
rems 4.1 and 4.2, sampling without replacement has much
a sharper bound. The main reason for the sharper general-
ization error rates comes from our analytical process under
the assumption of T ≤ n rather than from the different
sampling methods. The reason for this setting is twofold:
1) To allow us to make a direct comparison with the bound
of SGD (Kuzborskij & Lampert, 2018) in the same setting
(T ≤ n). 2) To simplify our theoretical analysis. Also,
it should be noted that our main purpose is not to com-
pare these two sampling strategies, but to show that SWA
has better generalization bounds under these two sampling
strategies.

5. Generalization Bound under Non-Convexity
In this part, we consider the case where target function g is
non-convex and assume that g is L-Lipschitz and β-smooth

as defined previously. Moreover, differing in the ideas of the
convex case, the research scheme of the non-convex case is
motivated by the arguments in (Hardt et al., 2016), which
divides the objective into two parts whether to converge or
not, and then bounding each of these separately, i.e.,

E|g(w̄; z)− g(w̄′; z)| ≤ t0
n

+ LE[δ̄T |δ̄t0 = 0], (20)

where δ̄t0 =0 denotes coverage after t0, t0 ∈ {0, 1, · · · , n}.
The detailed proof is placed in Appendix C.1.

Below, we first provide stability bounds using (1 + αβ)-
expansive property where a key technical challenge is solved.
The dependence relationship between δ̄T+1 and δ̄T intro-
duced by the (1 + αβ)-expansive property makes calcula-
tions more difficult, especially for historical gradients,

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥. (21)

For this, we first recursively bound ∥∇g(wi, zi+1) −
∇g(w′

i, zi+1)∥. We find the recursive representation that
bounds the gradient at each step by using mathematical in-
duction. Then, we transform the problem of bounding each
step into bounding a finite-sum problem, which solves the
difficulties in non-convex settings.

5.1. Sampling with Replacement

Theorem 5.1. Assume that the loss function g(w; z) ∈ [0, 1]
is L-Lipschitz and β-smooth for all given z ∈ Z with sizes n.
Suppose we run SWA with non-increasing step sizes α ≤ c

t
for T steps, where each step samples zi from Z uniformly
with replacement. To simplify, omitting constant factors that
depend on β, c and L, SWA has uniform stability as

ϵgen = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤ O

(
T

βc
βc+2

n

)
. (22)

Proof sketch. First, we find the recursive relationship as
follows ∥wi − w′

i∥ ≤ (1 + αβ)∥wi−1 − w′
i−1∥ + 2αL

n .
Based on this, we can get the equivalent form of Eq. (21)

αβ

T (T + 1)
(∥w1 − w′

1∥+ · · ·+ (T − 1)∥wT−1 − w′
T−1∥)

≤ αβ

T (T + 1)

2αL

n
· T (T − 1)

2
·
T−2∑
i=1

(1 + αβ)i

+
αβ

T (T + 1)

2αL

n
· T (T − 1)

2
≤ αL

n
(1 + αβ)T−1 (23)

Second, let α = c
t and we obtain the expectation

E
[
δ̄T+1

]
≤exp

(
(1− 1

n
)

cβ

t(t+1)

)
δ̄t+

2cL

n
· 1+ecβ

t

6
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where the limitation lim
t→∞

(1 + cβ
t )

t = ecβ is used. It’s

worth mentioning that we use the key inequality T−t
tT ≤

1
2 log(

T
t ), 1 ≤ t ≤ T , which helps us complete and improve

the stability bound. Therefore,

Eδ̄t ≤
T∑

t=t0+1

exp

(
(1−1

n
)cβ

T∑
k=t+1

1

k(k − 1)

)
cL

n
·M

≤
T∑

t=t0+1

exp

(
(1− 1

n
)cβ · T − t

tT

)
cL

n
·M

≤
T∑

t=t0+1

exp

(
log(

T

t
) ·

(1− 1
n )cβ

2

)
cL

n
·M

≤ 4L(1 + ecβ)

(n− 1)β
·
(
T

t0

) cβ
2

, where M =
1 + ecβ

t
.

Last, plugging this final term back into Eq. (20) and mini-
mizing the t0, we obtain the bound and finish the proof.

5.2. Sampling without Replacement

Finally, we consider the case where the function g is non-
convex and the setting of sampling without replacement.

Theorem 5.2. Assume that loss function g(w; z) ∈ [0, 1] is
L-Lipschitz and β-smooth for all given z ∈ Z with sizes n.
Suppose we run SWA with non-increasing step sizes α ≤ c

t
for T (T ≤ n) steps, where each step samples zi from Z
without replacement. To simplify, omitting constant factors
that depend on β, c and L, SWA has uniform stability of to
simplify, omitting constant factors that depend on β, c and
L, we get

ϵgen = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤ O

(
T

βc
βc+2

n

)
. (24)

In this part, a major difficulty is to obtain the bound for the
event A occurs in the previous step T + 1 with probability
n−T−1

n based on the (1 + αβ)-expansive property.

Proof sketch. There are two extreme situations, where A
occurs in step 1 or step T with probability 1

T , respectively.
First, we consider that A occurs in step 1. We bound step
1 with 2L and other steps with the (1 + αβ)-expansive
property. Then, we have

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

≤ 2αL

T (T + 1)

(
T−1∑
k=1

(T − k)(T + k − 1)

2
(αβ)k

)

≤ αL

2

T−1∑
k=1

(αβ)k.

(25)

Let α = c
t , we get

∑T−1
k=1

(
cβ
t

)k
≤ cβ

t−cβ based on the fact
t ≫ cβ. Then, we obtain the expectation

E
[
δ̄t+1

]
≤n− T − 1

n

(
1+

αβ

T + 1

)
δ̄T +

1

n

(
δ̄T +

2αL

T + 1

)
+
T

n

((
1+

αβ

T+1

)
δ̄T +

1

T

(
αL

2

T−1∑
k=1

(αβ)k(1+αβ)

))

≤ exp

(
(1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

cL

n
· 4 + cβ + c2β2

t− cβ
.

Combining the above with the key inequality T−t
tT ≤

1
2 log(

T
t ), 1 ≤ t ≤ T , the expectation will be obtained.

Second, we discuss that A occurs in step T . It’s bounded
by 2L at step T and (1 + αβ)-expansive at step T + 1,
respectively. We can eliminate others because w0 = w′

0 and
the same samples are selected for each step. Then, we get

E
[
δ̄t+1

]
≤
(
1+

αβ

T+1

)
δ̄T +

2α2βL(T−1)

T (T+1)
+
2αL(T−1)

T (T + 1)
.

Next, a standard calculation process for obtaining expecta-
tion is executed. Finally, by choosing the maximum expecta-
tion of these two cases and minimizing it w.r.t. t0, we obtain
the desired results. And this completes the proof.

Remark 5.3. The assumption that g(w; z) ∈ [0, 1] in Theo-
rem 5.1 and Theorem 5.2 is made for ease of presentation.
Removing this condition will not alter the final results, but
merely scales them by a constant. Further details can be
found in Appendix C.2 and C.3.

Remark 5.4. The generalization bound O(T
cβ

cβ+2 ) estab-
lished for SWA in Theorem 5.1 represent a slight improve-
ment compared to existing work O(T

cβ
cβ+1 ) according to

(Hardt et al., 2016). However, this subtle enhancement sug-
gests that SWA can transform the (1 + αβ)-expansive of
SGD into (1 + αβ

T )-expansive, where T is the number of
training steps. Thus, this improvement is fundamental.
Remark 5.5. In the same setting as theorem 5.2, Kuzborskij
& Lampert (2018) provide a bound O(T

cγ
1+cγ ) for SGD,

where γ is the Lipschitz parameter of the gradient. As dis-
cussed in the previous remark, our bound O(T

cβ
cβ+2 ) again

demonstrates the benefit of SWA. Moreover, the parameter
γ in Kuzborskij & Lampert (2018) is not merely a Lipschitz
constant, as β in our Theorem 5.2, but rather depends on
the potential data distribution and the initial point used in
SGD. Considering this, we provide a better result with fewer
theoretical restrictions.

6. Experimental Evaluation
The purpose of the experiment is to verify that SWA can im-
prove the generalization ability. The stable boundary heavily

7
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(a) Parameter difference (b) Generalization error

Figure 1. Stability results of SGD and SWA with replacement sam-
pling on the MNIST dataset.

(a) Parameter difference (b) Generalization error

Figure 2. Stability results of SGD and SWA with replacement sam-
pling on the CIFAR10 dataset.

depends on the training time, measured by the number of
iterates, so we compare the generalization ability of SWA
and SGD under the same iterates. We train deep neural
networks on different datasets to verify the theory.

6.1. Training with Replacement Sampling

We first investigate the stability of SGD and SWA under
the standard training setting, i.e., selecting samples with
replacement for multiple epochs. Following the setting of
Hardt et al. (2016), we train a LeNet (LeCun et al., 1998)
with two convolutional layers on the MNIST dataset (Deng,
2012), and a VGG16 (Simonyan & Zisserman, 2014) on the
CIFAR10 dataset (Krizhevsky et al., 2009). To construct
two different datasets, we randomly remove one sample
from the training set to construct dataset S. Then, another
dataset S′ is constructed by replacing one random data point
in S with the deleted one. We train the model on these
two datasets with the same initialization and settings. The
batch size is set as 128. Although our theoretical results
are established for SWA with batch size 1, we believe that
the use of mini-batches in our experiments applies equally
well to our theoretical results. When the batch size is set
greater than 1, we just need to adjust the number of steps
to be averaged in the SWA expression accordingly. The
learning rate is chosen from {0.1, 0.05, 0.03}. Similar as
Hardt et al. (2016), to validate the theoretical results, neither
data augmentation nor learning rate scheduling is adopted.

To evaluate the stability of the two algorithms, we com-
pare the parameter distance and generalization error. Con-

cretely, the parameter difference is defined as the Eu-
clidean distance between parameters of the two model, e.g.,√

∥w − w′∥2/(∥w∥2 + ∥w′∥2), where w and w′ denote all
the parameters of models trained on S and S′ respectively.
The generalization error is defined as the absolute value of
the difference between the training error and test error.

The results are shown in Figures 1 and 2 for MNIST and
CIFAR10, respectively. In specific, Figures 1(a) and 2(a)
show that SWA always achieves smaller parameter differ-
ences, which validates our analysis. Meanwhile, SWA also
tends to have smaller generalization error than vanilla SGD,
as shown in Figures 1(b) and 2(b). These results validate
our theoretical results in Theorem 5.1.

6.2. Training without Replacement Sampling

Below, we validate the theory of training deep neural net-
works with SGD and SWA by sampling without replacement.
Specifically, we train LeNet on the MNIST dataset and a
multi-layer perceptron (MLP) on the Adult dataset in the
UCI repository (Becker & Kohavi, 1996). The Adult dataset
is normalized using l1 norm. The MLP consists of three
layers with 50 hidden units each and the Tanh activation
function. The datasets are constructed in the same manner
as Section 6.1. For all the experiments in this subsection,
we set the mini-batch size as 1 and learning rate as 0.03
for MNIST dataset and 0.01 for Adult dataset, respectively.
As in Section 6.1, we report the parameter differences and
generalization errors for both SGD and SWA.

Results are shown in Figures 3 and 4. As we can see in
Figures 3(a) and 4(a), SWA still yields lower parameter
differences in general. Moreover, when training without re-
placement sampling, the parameter differences are smaller,
which satisfies our theoretical results in Theorem 5.2. These
observations are similar in the generalization error, shown
in Figures 3(b) and 4(b). In summary, the experiments coin-
cide with our theoretical analysis, i.e., SWA achieves better
generalization than vanilla SGD optimizer. Moreover, com-
pared to SGD, SWA is better at finding flat landscape in
real-world tasks, and flat minima tend to have better test
results (Izmailov et al., 2018). Therefore, SWA works better
than SGD in terms of the test accuracy. From our theoretical
analysis, the average coefficient 1/T of the SWA with er-
godic averaging plays an important role. It can directly lead
to the reduction of the generalization error in both convex
and non-convex cases. We show results of test error in Ap-
pendix D. SWA generally leads to more stable curves and
better test error. These results coincide with our theoretical
analysis in Theorems 5.1 and 5.2.

8
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(a) Parameter difference (b) Generalization error

Figure 3. Stability results of SGD and SWA without replacement
sampling on the MNIST dataset.

(a) Parameter difference (b) Generalization error

Figure 4. Stability results of SGD and SWA without replacement
sampling on the Adult dataset.

7. Conclusion
We have established generalization bounds for SWA based
on stability in different cases. Based on this analysis frame-
work, by comparing the SGD algorithm and further analysis,
we theoretically explain the natural reason why SWA can
improve the generalization ability. From the perspective of
expansion properties, our research process not only gener-
ates sharper boundaries, but also directly reflects the reason
that the expansion caused by SWA becomes the original 1

T .
Our theoretical results show that the generalization bound
depends directly on the training time and requires finding
the solution as fast as possible. Combining the geometric
features of the loss surface to accelerate the training process
is also something we need to explore further. Our analysis
requires a rigorous discussion under the assumptions of con-
vexity and non-convexity. How to build a model that can
avoid these theoretical assumptions in practical applications
will be our next research direction.

Limitations: The theoretical analysis of algorithms are
carried out under some classical assumptions such as L-
Lipschitz and β-smooth, which seem to be standard assump-
tions in the analysis of stability and generalization. However,
they may be restricted in practive. Many recent studies try to
remove these assumptions, in both algorithmic convergence
(Nguyen et al., 2019; Li et al., 2024) and stability analysis
(Lei & Ying, 2020a). It would be an interesting direction to
further enhance our work in the future.
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Supplementary Material for
“Generalization Analysis of Stochastic Weight Averaging with General Sampling”

A. Proof of Some Basic Properties
A.1. Proof of Eq. (9)

Using the definition of w̄T gives

w̄T =
1

T

(
T−1∑
t=1

wt + wT

)
=

T − 1

T
w̄T−1 +

1

T
wT , (26)

combining the update rule of gradient

wT = w̄T−1 −
α

T − 1

T−1∑
i=1

i · ∇g(wi, zi+1), (27)

we then have

w̄T = w̄T−1 −
α

T (T − 1)

T−1∑
i=1

i · ∇g(wi, zi+1). (28)

A.2. Proof of Lemma 3.6

(1 + αβ)-expansive. According to triangle inequality and β-smoothness,

∥wT+1 − w′
T+1∥ ≤ ∥wT − w′

T ∥+ α∥∇g(wT )−∇g(w′
T )∥

≤ ∥wT − w′
T ∥+ αβ∥wT − w′

T ∥
= (1 + αβ)∥wT − w′

T ∥.
(29)

Non-expansive. Function is convexity and β-smoothness that implies

⟨∇g(w)−∇g(v), w − v⟩ ≥ 1

β
∥∇g(w)−∇g(v)∥2. (30)

We conclude that

∥wT+1 − w′
T+1∥ =

√
∥wT − α∇g(wT )− w′

T + α∇g(w′
T )∥2

=
√

∥wT − w′
T ∥2 − 2α⟨∇g(wT )−∇g(w′

T ), wT − w′
T ⟩+ α2∥∇g(wT )−∇g(w′

T )∥2

≤

√
∥wT − w′

T ∥2 −
(
2α

β
− α2

)
∥∇g(wT )−∇g(w′

T )∥2

≤ ∥wT − w′
T ∥.

(31)
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B. Generalization Bound under Convexity
B.1. Proof of Theorem 4.1

First, we consider that the different sample are selected to update with probability 1
n at the step T + 1.

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ ∥ T

T + 1
(w̄T − w̄′

T ) +
1

T + 1

(
w̄T − w̄′

T +
α

T

T∑
i=1

i · (∇g(wi, zi+1)−∇g(w′
i, zi+1))

)
∥

≤ δ̄T +
α

T + 1

(
∥∇g(wT , zT+1)−∇g′(w′

T , z
′
T+1)∥+

1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
2αL

T + 1
+

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥,

(32)

where the proof follows from the Eq. (9), triangle inequality, ∥α∇g(wT , zT+1)∥ ≤ αL for step T + 1 step. And
α

T (T+1)

∑T−1
i=1 i · ∥∇g(wi, zi+1)−∇g(w′

i, zi+1)∥ will be controlled in the late.

Second, another situation need be considered in case of the same sample are selected to update with probability 1− 1
n at the

step T + 1.

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ δ̄T +
α

T + 1

(
∥∇g(wT , zT+1)−∇g(w′

T , zT+1)∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥,

(33)

where ∥∇g(wT , zT+1) − ∇g(w′
T , zT+1)∥ = 0 in the second inequality because the non-expansive property of convex

function.

For each ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ in the sense of expectation, We consider two situations using αL bound and the

non-expansive property. Then

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ =

α

T (T + 1)

T−1∑
i=1

2Li

n
=

(T − 1)αL

n(T + 1)
(34)

Then we obtain the expectation based on the above analysis

E
[
δ̄T+1

]
≤ (1− 1

n
)δ̄T +

1

n

(
δ̄T +

2αL

T + 1

)
+

(T − 1)αL

n(T + 1)

≤ E
[
δ̄T
]
+

αL

n

(35)

recursively, we can get

E
[
δ̄T
]
≤ αLT

n
. (36)

Plugging this back into Eq. (14), we obtain

ϵgen = ϵstab = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

αL2T

n
. (37)

And we finish the proof.
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B.2. Proof of Theorem 4.2

First, we consider that the different sample are selected to update with probability 1
n at the step T + 1.

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ ∥ T

T + 1
(w̄T − w̄′

T ) +
1

T + 1

(
w̄T − w̄′

T +
α

T

T∑
i=1

i · (∇g(wi, zi+1)−∇g(w′
i, zi+1))

)
∥

≤ T

T + 1
∥w̄T − w̄′

T ∥+
1

T + 1
(∥w̄T − w̄′

T ∥+ α∥∇g(wT , zT+1)−∇g′(w′
T , zT+1)∥)

≤ δ̄T +
2αL

T + 1
,

(38)

where the proof follows from the Eq. (9), triangle inequality, ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ = 0 for the previous T step

and the Lipschitz assumption.

Second, There are two situations that need be further considered in case of the same sample are selected to update at the step
T + 1 with probability 1− 1

n . Assuming that the same sample is selected for the first T steps of updates with probability
n−T−1

n , we get

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ T

T + 1
∥w̄T − w̄′

T ∥+
1

T + 1
(∥w̄T − w̄′

T ∥+ α∥∇g(wT , zT+1)−∇g(w′
T , zT+1)∥)

≤ δ̄T ,

(39)

where ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ = 0 in the first inequality because the non-expensive properties of convex function.

Besides, the case that the different samples have already occurred in the first T steps with probability T
n , then the different

samples are selected at step i with probability 1
T

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
w′

T+1∥

≤ δ̄T +
α

T + 1

(
∥∇g(wT , zT+1)−∇g(w′

T , zT+1)∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
α

T (T + 1)
· i

T
· ∥∇g(wi, zi+1)−∇g′(w′

i, z
′
i+1)∥, i ∈ [1, · · ·T ]

≤ δ̄T +
2αL

T (T + 1)

(40)

where the triangle inequality, the non-expansion properties of convex function and the Lipschitz assumption are used in
inequalities form 1 to 3, respectively.

Then we obtain the expectation consider the above analysis

E
[
δ̄T+1

]
≤ n− T − 1

n
δ̄T +

T

n

(
δ̄T +

2αL

T (T + 1)

)
+

1

n

(
δ̄T +

2αL

T + 1

)
≤ E

[
δ̄T
]
+

2αL

n
· 2

T + 1

(41)

recursively, we can get

E
[
δ̄T
]
≤ 2αL

n
·

T∑
t=1

2

t
≤ 2αL

n
· 2 lnT. (42)
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Plugging this back into Eq. (14), we obtain

ϵgen = ϵstab = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

2αL2

n
· 2 lnT. (43)

And we finish the proof.

C. Generalization Bound under Non-Convexity
C.1. Proof of Eq. (20)

We consider that S and S′ be two sample of size n differing in only a single example. Let ξ denote the event δ̄t0 = 0. Let z
be an arbitrary example and consider the random variable I assuming the index of the first time step using the different
sample. then we have

E|g(w̄T ; z)− g(w̄′
T ; z)| = P {ξ}E[|g(w̄T ; z)− g(w̄′

T ; z)||ξ] + P {ξc}E[|g(w̄T ; z)− g(w̄′
T ; z)||ξc]

≤ P {I ≥ t0} · E[|g(w̄T ; z)− g(w̄′
T ; z)||ξ] + P {I ≤ t0} · sup

w,x
g(w;x), (44)

where ξc denotes the complement of ξ.

Note that Note that when I ≥ t0, then we must have that δ̄t0 = 0, since the execution on S and S′ is identical until step t0.
We can get LE[∥w̄T − w̄′

T ∥|ξ] combined the Lipschitz continuity of g. Furthermore, we know P {ξc} = P
{
δ̄t0 = 0

}
≤

P {I ≤ t0}, for the random selection rule, we have

P {I ≤ t0} ≤
t0∑
t=1

P {I = t0} =
t0
n
. (45)

We can combine the above two parts and g ∈ [0, 1] to derive the stated bound LE[∥w̄T − w̄′
T ∥|ξ] +

t0
n , which completes the

proof.

C.2. Proof of Theorem 5.1

First, we consider that the different sample are selected to update with probability 1
n at the step T + 1.

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ ∥ T

T + 1
(w̄T − w̄′

T ) +
1

T + 1

(
w̄T − w̄′

T +
α

T

T∑
i=1

i · (∇g(wi, zi+1)−∇g(w′
i, zi+1))

)
∥

≤ δ̄T +
α

T + 1

(
∥∇g(wT , zT+1)−∇g′(w′

T , z
′
T+1)∥+

1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
2αL

T + 1
+

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥,

(46)

where the proof follows from the Eq. (9), triangle inequality, ∥α∇g(wT , zT+1)∥ ≤ αL for step T + 1 step. And
α

T (T+1)

∑T−1
i=1 i · ∥∇g(wi, zi+1)−∇g(w′

i, zi+1)∥ will be controlled in the late.

Second, another situation need be considered in case of the same sample are selected to update with probability 1− 1
n at the
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step T + 1.

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ δ̄T +
α

T + 1

(
∥∇g(wT , zT+1)−∇g(w′

T , zT+1)∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
α

T + 1

(
β∥wT − w′

T ∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
αβ

T + 1

(
∥w̄T − w̄′

T ∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

+
α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

≤
(
1 +

αβ

T + 1

)
δ̄T +

(1 + αβ)α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥,

(47)

where ∥∇g(wT+1) − ∇g(w′
T+1)∥ is controlled by (1 + αβ)-expansive property of non-convex function in the second

inequality.

Now we build the bound of α
T (T+1)

∑T−1
i=1 i · ∥∇g(wi, zi+1)−∇g(w′

i, zi+1)∥.

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

=
α

T (T + 1)
(∥∇g(w1, z2)−∇g(w′

1, z2)∥+ 2∥∇g(w2, z3)−∇g(w′
2, z3)∥

+ · · ·+ (T − 1)∥∇g(wT−1, zT )−∇g(w′
T−1, zT )∥)

(48)

For each ∥∇g(wi, zi+1) − ∇g(w′
i, zi+1)∥ in the sense of expectation, We consider two situations using αL bound with

probability 1
n and the (1 + αβ)-expansive property with probability 1− 1

n . Then

1

T (T + 1)
(
2αL

n
+ (1− 1

n
)αβ∥w1 − w′

1∥+ 2

(
2αL

n
+ (1− 1

n
)αβ∥w2 − w′

2∥
)

+ · · ·+ (T − 1)

(
2αL

n
+ (1− 1

n
)αβ∥wT−1 − w′

T−1∥
)
)

≤ αL

n
+

αβ

T (T + 1)
(∥w1 − w′

1∥+ 2∥w2 − w′
2∥+ · · ·+ (T − 1)∥wT−1 − w′

T−1∥)

(49)

Next, we establish the bounds for each ∥wi−w′
i∥ based on gradient update rules using αL bound and the (1+αβ)-expansive

property. And we have recursively

∥wi − w′
i∥ ≤ (1− 1

n
)(1 + αβ)∥wi−1 − w′

i−1∥+
1

n
(2αL+ ∥wi−1 − w′

i−1∥)

≤ (1 + αβ)∥wi−1 − w′
i−1∥+

2αL

n
.

(50)
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Then, combined with the above recursive relationship

αβ

T (T + 1)
(∥w1 − w′

1∥+ 2∥w2 − w′
2∥+ · · ·+ (T − 1)∥wT−1 − w′

T−1∥)

≤ αβ

T (T + 1)
(
2αL

n
· T (T − 1)

2
+

2αL

n
· T (T − 1)

2
·
T−2∑
i=1

(1 + αβ)i)

≤ α2βL

n
(1− (1 + αβ)− (1 + αβ)T−1

αβ
)

≤ αL

n
((1 + αβ)T−1 − 1)

(51)

finally, we finished the task

α

T (T + 1)

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ ≤ αL

n
(1 + αβ)T−1. (52)

Then we obtain the expectation consider the above analysis

E
[
δ̄T+1

]
≤ (1− 1

n
)

((
1 +

αβ

T + 1

)
δ̄T +

αL

n
(1 + αβ)T

)
+

1

n

(
δ̄T +

2αL

T + 1
+

αL

n
(1 + αβ)T−1

)
≤
(
1

n
+ (1− 1

n
)

(
1 +

αβ

T + 1

))
δ̄T +

2αL

n(T + 1)
+

2αL

n
(1 + αβ)T

(53)

let α = c
t , then

=

(
1 + (1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

nt(t+ 1)
+

2cL

tn
(1 +

cβ

t
)t

≤ exp

(
(1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

n
· 1 + ecβ

t
.

(54)

Here we used that lim
x→∞

(1 + 1
x )

x = e.

Using the fact that δ̄0 = 0, we can unwind this recurrence relation from T down to t0 + 1.

Eδ̄t ≤
T∑

t=t0+1

(
T∏

k=t+1

exp

(
(1− 1

n
)

cβ

k(k − 1)

))
2cL

n
· 1 + ecβ

t

=

T∑
t=t0+1

exp

(
(1− 1

n
)cβ

T∑
k=t+1

1

k(k − 1)

)
2cL

n
· 1 + ecβ

t

≤
T∑

t=t0+1

exp

(
(1− 1

n
)cβ

T − t

tT

)
2cL

n
· 1 + ecβ

t

≤
T∑

t=t0+1

exp

(
log(

T

t
) ·

(1− 1
n )cβ

2

)
2cL

n
· 1 + ecβ

t

≤ T
(1− 1

n
)cβ

2 ·
T∑

t=t0+1

(
1

t− 1

) (1− 1
n

)cβ

2 +1

· 2cL(1 + ecβ)

n

≤ 2

(1− 1
n )cβ

· 2cL(1 + ecβ)

n
·
(
T

t0

) (1− 1
n

)cβ

2

≤ 4L(1 + ecβ)

(n− 1)β
·
(
T

t0

) cβ
2

(55)
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Plugging this back into Eq. (20), we obtain

E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

t0
n

+
4L2(1 + ecβ)

(n− 1)β
·
(
T

t0

) cβ
2

. (56)

By taking the extremum, we obtain the minimum

t0 =
(
2cL2(1 + ecβ)

) 2
cβ+2 · T

cβ
cβ+2 (57)

finally, this setting get

ϵgen = ϵstab = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

1 + 2
cβ

n− 1

(
2cL2(1 + ecβ)

) 2
cβ+2 · T

cβ
cβ+2 . (58)

to simplify, omitting constant factors that depend on β, c and L, we get

ϵstab ⪅
T

βc
βc+2

n
. (59)

And we finish the proof.

C.3. Proof of Theorem 5.2

In the case of non-convexity, we consider that the different sample are selected to update with probability 1
n at the step

T + 1,

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥ ≤ δ̄T +

2αL

T + 1
. (60)

Next, we consider the case that the same sample are selected to update with probability 1− 1
n at the step T + 1. Assuming

that the same sample is selected for the first T steps of updates and using (1 + αβ)-expansive, we get

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
wT+1∥

≤ T

T + 1
δ̄T +

1

T + 1

(
∥w̄T − w̄′

T ∥+
α

T

T∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)
≤ δ̄T +

α

T + 1
∥∇g(wT , zT+1)−∇g(w′

T , zT+1)∥

≤ δ̄T +
αβ

T + 1
∥wT − w′

T ∥

≤ δ̄T +
αβ

T + 1

(
∥w̄T − w̄′

T ∥+
1

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤
(
1 +

αβ

T + 1

)
δ̄T .

(61)

There are different bounds because the locations of different samples occurred. We have shown two extreme cases
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respectively. Assuming the different samples are selected at step T ,

δ̄T+1 = ∥ T

T + 1
w̄T +

1

T + 1
wT+1 −

T

T + 1
w̄′

T − 1

T + 1
w′

T+1∥

≤ δ̄T +
1

T + 1

T − 1

T
α∥∇g(wT−1, zT )−∇g′(w′

T−1, z
′
T )∥

+
α

T + 1
∥∇g(wT , zT+1)−∇g(w′

T , zT+1)∥

≤ δ̄T +
2αL(T − 1)

T (T + 1)
+

αβ

T + 1

(
∥w̄T − w̄′

T ∥+
α

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤
(
1 +

αβ

T + 1

)
δ̄T +

αβ

T + 1

(
(T − 1)α

T
∥∇g(wT−1, zT )−∇g′(w′

T−1, z
′
T )∥
)
+

2αL(T − 1)

T (T + 1)

≤
(
1 +

αβ

T + 1

)
δ̄T +

2α2βL(T − 1)

T (T + 1)
+

2αL(T − 1)

T (T + 1)

(62)

The expectation will be obtained,

E
[
δ̄T+1

]
≤ n− T − 1

n

(
1 +

αβ

T + 1

)
δ̄T +

1

n

(
δ̄T +

2αL

T + 1

)
+

T

n

((
1 +

αβ

T + 1

)
δ̄T +

1

T

(
2α2βL(T − 1)

T (T + 1)
+

2αL(T − 1)

T (T + 1)

))
≤
(
1

n
+ (1− 1

n
)

(
1 +

αβ

T + 1

))
δ̄T +

2αL

n

(
2 + αβ

T + 1

) (63)

let α = c
t , then

=

(
1 + (1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

n
· 2t+ cβ

t(t+ 1)

≤ exp

(
(1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

n
· 2t+ cβ

t(t+ 1)
.

(64)

Using the fact that δ̄0 = 0, we can unwind this recurrence relation from T down to t0 + 1.

Eδ̄t ≤
T∑

t=t0+1

(
T∏

k=t+1

exp

(
(1− 1

n
)

cβ

k(k − 1)

))
2cL

n
· 2 + cβ

t− 1

=

T∑
t=t0+1

exp

(
(1− 1

n
)cβ

T∑
k=t+1

1

k(k − 1)

)
2cL

n
· 2 + cβ

t− 1

≤
T∑

t=t0+1

exp

(
(1− 1

n
)cβ

T − t

tT

)
2cL

n
· 2 + cβ

t− 1

≤
T∑

t=t0+1

exp

(
log(

T

t
) ·

(1− 1
n )cβ

2

)
2cL

n
· 2 + cβ

t− 1

≤ T
(1− 1

n
)cβ

2 ·
T∑

t=t0+1

(
1

t− 1

) (1− 1
n

)cβ

2 +1

· 2cL(2 + cβ)

n

≤ 2

(1− 1
n )cβ

· 2cL(1 + cβ)

n
·
(
T

t0

) (1− 1
n

)cβ

2

≤ 4L(2 + cβ)

(n− 1)β
·
(
T

t0

) cβ
2

(65)
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Plugging this back into Eq. (20), we obtain

E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

t0
n

+
4L(2 + cβ)

(n− 1)β
·
(
T

t0

) cβ
2

. (66)

By taking the extremum, we obtain the minimum

t0 =
(
2cL2(2 + cβ)

) 2
cβ+2 · T

cβ
cβ+2 (67)

finally, this setting get

ϵgen = ϵstab = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

1 + 2
cβ

n− 1

(
2cL2(2 + cβ)

) 2
cβ+2 · T

cβ
cβ+2 . (68)

to simplify, omitting constant factors that depend on β, c and L, we get

ϵstab ⪅
T

βc
βc+2

n
. (69)

On the other side, assuming the different samples are selected at step 1,

δ̄T+1 ≤ δ̄T +
1

T + 1

(
αβ∥wT − w′

T ∥+
α

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤ δ̄T +
α

T (T + 1)

(
T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

+
αβ

T + 1

(
∥w̄T − w̄′

T ∥+
α

T

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)

≤
(
1 +

αβ

T + 1

)
δ̄T +

1 + αβ

T (T + 1)

(
α

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥

)
(70)

we use the αL bounding the ∥∇g(w0, z1) − ∇g′(w′
0, z

′
1)∥ at step 1 and (1 + αβ)-expansive property for another

∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥.

α

T−1∑
i=1

i · ∥∇g(wi, zi+1)−∇g(w′
i, zi+1)∥ ≤ 2αL

(
T−1∑
k=1

(T − k)(T + k − 1)

2
(αβ)k

)

= 2αL

(
T−1∑
k=1

T (T − 1)− k(k − 1)

2
(αβ)k

)

≤ 2αL
T (T − 1)

4

T−1∑
k=1

(αβ)k

(71)

then, return to inequality Eq. (70), we get

δ̄T+1 ≤
(
1 +

αβ

T + 1

)
δ̄T +

αL

2

T−1∑
k=1

(αβ)k(1 + αβ). (72)

The expectation will be obtained,

E
[
δ̄T+1

]
≤ n− T − 1

n

(
1 +

αβ

T + 1

)
δ̄T +

1

n

(
δ̄T +

2αL

T + 1

)
+

T

n

((
1 +

αβ

T + 1

)
δ̄T +

1

T

(
αL

2

T−1∑
k=1

(αβ)k(1 + αβ)

))

≤
(
1

n
+ (1− 1

n
)

(
1 +

αβ

T + 1

))
δ̄T +

2αL

n

(
1

T + 1
+

1

4

T−1∑
k=1

(αβ)k(1 + αβ)

) (73)
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let α = c
t , then

Eδ̄t+1 =

(
1 + (1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

n

(
1

t(t+ 1)
+

1

4

(
T−1∑
k=1

(
cβ

t

)k

+

T−1∑
k=1

(
cβ

t

)k+1
))

≤ exp

(
(1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

2cL

n

 1

t(t+ 1)
+

1

4

cβ

(
1−

(
cβ
t

)T−1
)

t(t− cβ)
+

c2β2

(
1−

(
cβ
t

)T−1
)

t2(t− cβ)




≤ exp

(
(1− 1

n
)

cβ

t(t+ 1)

)
δ̄t +

cL

n
· 4 + cβ + c2β2

t− cβ
(74)

Using the fact that δ̄0 = 0, we can unwind this recurrence relation from T down to t0 + 1.

Eδ̄t ≤
T∑

t=t0+1

(
T∏

k=t+1

exp

(
(1− 1

n
)

cβ

k(k − 1)

))
cL

n
· 4 + cβ + c2β2

t− cβ

=

T∑
t=t0+1

exp

(
(1− 1

n
)cβ

T∑
k=t+1

1

k(k − 1)

)
cL

n
· 4 + cβ + c2β2

t− cβ

≤
T∑

t=t0+1

exp

(
(1− 1

n
)cβ

T − t

tT

)
cL

n
· 4 + cβ + c2β2

t− cβ

≤
T∑

t=t0+1

exp

(
log(

T

t
) ·

(1− 1
n )cβ

2

)
cL

n
· 4 + cβ + c2β2

t− cβ

≤ T
(1− 1

n
)cβ

2 ·
T∑

t=t0+1

(
1

t− cβ − 1

) (1− 1
n

)cβ

2 +1

· cL(4 + cβ + c2β2)

n

≤ 2

(1− 1
n )cβ

· cL(4 + cβ + c2β2)

n
·
(

T

t0 − cβ

) (1− 1
n

)cβ

2

≤ 2L(4 + cβ + c2β2)

(n− 1)β
·
(

T

t0 − cβ

) cβ
2

(75)

Plugging this back into Eq. (20), we obtain

E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

t0
n

+
2L2(4 + cβ + c2β2)

(n− 1)β
·
(
T

t0

) cβ
2

. (76)

By taking the extremum, we obtain the minimum

t0 = cβ +
(
cL2(4 + cβ + c2β2)

) 2
cβ+2 · T

cβ
cβ+2 (77)

finally, this setting get

ϵgen = ϵstab = E|g(w̄T ; z)− g(w̄′
T ; z)| ≤

1

n− 1

(
cβ +

(
1 + cβ

cβ

)
cL2(4 + cβ + c2β2)

2
cβ+2 · T

cβ
cβ+2

)
. (78)

to simplify, omitting constant factors that depend on β, c and L, we get

ϵgen ⪅
T

βc
βc+2

n
. (79)

And we finish the proof.

ϵgen ≤
cβ + 2

(
cL2(4 + cβ + c2β2)

) 2
cβ+2 · T

cβ
cβ+2

n− 1
(80)
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(a) LR = 0.1 (b) LR = 0.05 (c) LR = 0.03

Figure 5. Train and test accuracy on the MNIST dataset, sample with replacement.

(a) LR = 0.1 (b) LR = 0.05 (c) LR = 0.03

Figure 6. Train and test accuracy on the CIFAR10 dataset, sample with replacement.

D. Experiments
For experiments in Section 6.1, the results of train and test accuracy are shown in Figures 5 and 6.

For experiments in Section 6.2, the results of train and test accuracy are shown in Figures 7 and 8.

(a) With Replacement (b) Without Replacement

Figure 7. Train and test accuracy on the MNIST dataset.
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(a) With Replacement (b) Without Replacement

Figure 8. Train and test accuracy on the Adult dataset.
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