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Abstract

Hand-crafted schemas describing how to col-001
lect and annotate dialog corpora are a prerequi-002
site towards building task-oriented dialog sys-003
tems. In practical applications, manually de-004
signing schemas can be error-prone, labori-005
ous, iterative, and slow, especially when the006
schema is complicated. To automate this pro-007
cess, we propose a self-supervised approach008
for schema induction from unlabeled dialog009
corpora. Our approach utilizes representa-010
tions provided by in-domain language mod-011
els constrained on unsupervised structures,012
followed by multi-step coarse-to-fine cluster-013
ing. We compare our method against several014
strong supervised baselines, and show signifi-015
cant performance improvement in schema in-016
duction on MultiWoz and SGD datasets. We017
also demonstrate the effectiveness of induced018
schemas on downstream tasks including dialog019
state tracking and response generation.020

1 Introduction021

Defining task-specific schema, including intents022

and arguments, is the first step of building a task-023

oriented dialog (TOD) system. Typically task de-024

signers educate annotators to collect conversations025

from instructions with highlighted arguments in a026

Wizard-of-Oz setup (Budzianowski et al., 2018),027

or from sampled dialog states at each turn (Ras-028

togi et al., 2020). Both settings expect a predefined029

schema which determines intents and slots with cor-030

responding values as constraints before the conver-031

sation collection and dialog state annotation starts.032

This process is prone to annotation errors due to033

data bias (Eric et al., 2020; Zang et al., 2020). Ac-034

cording to the specified full schema, data-intensive035

TOD systems (Zhang et al., 2020a; Hosseini-Asl036

et al., 2020; Lee et al., 2021) train models from037

detailed annotation to understand user utterances.038

In real-word applications such as call centers,039

we may have abundant conversation logs from040

real users and system assistants without annotation.041

Can I have more information for the 
train you’re needing?

I am leaving from Cambridge and 
going to Norwich.

I also need a train. The train should 
leave after 16:15 and leave on sunday.

…

…

I want to book an expensive Italian 
restaurant at 12 pm.

after 16:15 
before 9:30

12:30
…

cheap
expensive
moderate

…

12 pm
7:20

9
…

Span extraction

Multi-step clustering

train 
leaveat

hotel
pricerange

restaurant 
booktime

Figure 1: Overview of schema induction from raw
conversation examples. We use a representation level
distance function derived from pre-trained LMs (com-
bined with PCFG structure) to extract informative can-
didate phrases such as “after 16:15” and “expensive”.
The spans are subsequently clustered through multiple
stages to form coarse to fine categories. The ground
truth mapping is shown on the right (such as “train
leaveat”).

Real user utterances are not based on underlying 042

structures or bounded by predefined schema. To 043

build an effective system, experts need to study 044

thousands of conversations, find relevant phrases, 045

manually group phrases into concepts, and itera- 046

tively build the schema to cover use cases. The 047

schema is then used to annotate belief states and 048

train models. This process is labor-intensive, error- 049

prone, expensive, and slow (Min et al., 2020; Yu 050

and Yu, 2021). As a prerequisite, it hinders quick 051

deployment for new domains and tasks. We there- 052

fore are interested in developing automatic schema 053

induction methods in this work to create the ontol- 054

ogy1 from conversations for TOD tasks. 055

Most existing approaches for schema induction 056

rely on syntactic or semantic models trained with la- 057

beled data (Chen et al., 2013; Hudeček et al., 2021; 058

Min et al., 2020). Our proposed method, on the 059

other hand, is completely self-supervised and hence 060

portable to new tasks and domains seamlessly, pro- 061

viding a key advantage for developing TOD sys- 062

tems in practice. Analogous to human experts, our 063

1We use “schema” and “ontology” interchangeably in this
paper. Following previous work in literature, we focus on
schema induction for slots, which is more challenging than
domains and intents.
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procedure is divided into two general steps: rele-064

vant span extraction and clustering. Fig. 1 provides065

an overview of our approach. The span extrac-066

tion leverages a distance function computed with067

a pre-trained language model (LM) along with an068

unsupervised probabilistic context-free grammar069

(PCFG) parser. We also introduce a multi-step070

auto-tuned clustering method to group the extracted071

spans into fine-grained slot types.072

We demonstrate that our self-supervised induced073

schema is well-aligned with expert-designed refer-074

ence schema on MultiWoZ (Budzianowski et al.,075

2018) and SGD (Rastogi et al., 2020) datasets. We076

also evaluate the induced schema on dialog state077

tracking and response generation to indicate use-078

fulness and demonstrate performance gains over079

strong weakly-supervised baselines.080

2 Related Work081

Schema induction Similar to grammar induc-082

tion and unsupervised parsing, schema induction083

can help to eliminate the time-consuming manual084

process and serves as the first step to build a large085

corpus (Klein and Manning, 2002; Klasinas et al.,086

2014). Related tasks include event type induction087

(Huang et al., 2016, 2018), semantic frame induc-088

tion (Yamada et al., 2021), and semantic role induc-089

tion (Lang and Lapata, 2010; Michael and Zettle-090

moyer, 2021). Relationship in these tasks such as091

predicate and head or patient and agent are rela-092

tively evident compared to that in conversational093

dialog. In addition, most of previous research re-094

quires either strong statistical assumptions based095

on pre-defined parsers, or existing ontologies and096

annotations for some seen types, and formulate097

the problem similar to word sense disambiguation098

on predicate-object pairs (Shen et al., 2021). In099

contrast, our method does not require any formal100

syntactic or semantic supervision.101

Schema induction for dialog Motivated by the102

practical advantages of unsupervised schema induc-103

tion such as reducing annotation cost and avoiding104

human bias, Klasinas et al. (2014); Athanasopoulou105

et al. (2014) propose to induce spoken dialog gram-106

mar based on n-grams to generate fragments. Dif-107

ferent from studying semantic grammars, Chen108

et al. (2013, 2014, 2015b,a); Hudeček et al. (2021)109

propose to utilize annotated FrameNet (Baker et al.,110

1998) to label semantic frames for raw utterances111

(Das et al., 2010). The frames are designed on112

generic semantic context, which contains frames113

that are related to the target domain (such as "ex- 114

pensiveness") and irrelevant (such as "capability"), 115

while other relevant slots such as “internet” cannot 116

be extracted because they do not have correspond- 117

ing frames defined. This line of work focuses on 118

ranking extracted frame clusters and then manu- 119

ally maps the top-ranked induced slots to reference 120

slots. Instead of FrameNet, Shi et al. (2018) extract 121

features such as noun phrases (NPs) using part-of- 122

speech (POS) tags and frequent words and aggre- 123

gate them via a hierarchical clustering method, but 124

only about 70% slots can be mapped after manually 125

assigning names. In addition to the unsatisfactory 126

induction results due to candidate slot extraction, 127

most of the previous works are only applicable to 128

a single domain such as restaurant booking with a 129

small amount of data, and require manual tuning to 130

generate results. 131

The most comparable work to ours is probably 132

Min et al. (2020), which is not bounded by an ex- 133

isting set of candidate values so that potentially all 134

slots can be captured. They propose to mix POS 135

tags, named entities, and coreferences with a set 136

of rules to find slot candidates while filtering irrel- 137

evant spans using manually updated filtering lists. 138

In comparison, our method does not require any 139

supervised tool and can be easily adapted to new 140

domains and tasks with self-supervised learning. In 141

addition to flexibility, despite our simple and more 142

stable clustering process compared to their varia- 143

tional embedding generative approach (Jiang et al., 144

2017), our method achieves better performance on 145

schema induction and our induced schema is more 146

useful for downstream tasks. 147

Span extraction Previous works in span extrac- 148

tion consider all combination of tokens up to a 149

certain length as candidates (Yu et al., 2021) . Al- 150

ternatively, keyphrase extraction research (Campos 151

et al., 2018; Bennani-Smires et al., 2018) mostly 152

depends on corpus statistics (such as frequency), 153

similarity between phrase and document embed- 154

dings, or POS tags (Wan and Xiao, 2008; Liu et al., 155

2009), and formulates the task as a ranking prob- 156

lem. Although these methods can find meaningful 157

phrases, they may result in a low recall for TOD 158

settings. For instance, the contextual semantics 159

of a span (such as time) in an utterance may not 160

represent the utterance-level semantics compared 161

to other generic phrases. Other methods for span 162

extraction include syntactic chunking, but mostly 163

require supervised data (Li et al., 2021) and heuris- 164
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tics (such as considering “noun phrases” or “verb165

phrases”), and thus are not flexible and robust com-166

pared to our method.167

Finally, target spans can be found in syntactic168

structures which can be potentially induced from169

supervised parsers or unsupervised grammar induc-170

tion (Klein and Manning, 2002, 2004; Shen et al.,171

2018; Drozdov et al., 2019; Zhang et al., 2021).172

Unlike the task of predicting relationship between173

words in a sentence where phrases at each level of174

a hierarchical structure are valid, detecting clear175

boundaries is critical to span extraction but chal-176

lenging with various phrase lengths. Even though177

more flexible compared to semantic parsers that are178

limited by pre-defined roles, there is no straightfor-179

ward way to apply these methods to candidate span180

extraction.181

3 Self-supervised Schema Induction182

Our proposed method for schema induction con-183

sists of a fully self-supervised span extraction stage184

followed by clustering with semantic similarity.185

3.1 Task definition186

Given user utterances from raw conversations, our187

goal is to induce the schema of slot types S and188

their corresponding slot values. The span extrac-189

tion stage extracts spans (e.g., “with wifi”) in an190

utterance x. The candidate spans from all user ut-191

terances are then clustered into a set of groups S192

where each group si corresponds to a slot type such193

as “internet” with values “with wifi”, “no wifi”,194

and “doesn’t matter”. The induced schema can be195

later used for downstream tasks such as dialog state196

tracking and response generation.197

3.2 Candidate span extraction198

Previous research in BERTology (Rogers et al.,199

2020) observes that attention distributions are simi-200

lar between tokens within a span, and vary largely201

across different spans. Accordingly, we can hypoth-202

esize that if tokens share similar attention distribu-203

tions, they are more likely to be from the same span.204

Taking advantage of this representational property,205

we define a distance metric on the attention dis-206

tribution over tokens to identify candidate spans207

(Shen et al., 2018; Kim et al., 2020). We further208

constrain spans hypothesized by an unsupervised209

PCFG for better structure representation. The full210

algorithm is outlined in Algorithm 1.211

Algorithm 1: Span Extraction
Require: x = x1, x2, . . . , xn: a user utterance x

1: t← PCFG(x) {A Chomsky normal form (binary)
tree structure from self-supervised PCFG}

2: a← LM(x) {Attention distribution from a LM}
3: d← [f(ai, ai+1) for i = 1, 2, . . . , n− 1] {Distance

between consecutive tokens using a distance function f}
4: τ ← median(d)
5: for all di in d do
6: if di < τ and using PCFG then
7: if nodei and nodei+1 are siblings in PCFG then
8: nodei+1 ← {nodei, nodei+1} {merge

nodes}
9: end if

10: else if di < τ then
11: wi+1 ← {wi, wi+1} {merge two tokens}
12: end if
13: end for

Attention-based extraction with LMs We de- 212

fine the distance function between attention distri- 213

butions as a symmetric Jensen-Shannon divergence. 214

The distributions are computed from self-attention 215

in a pre-trained LM. Equipped with this distance 216

measure, we merge adjacent tokens when the dis- 217

tance between them is small in an iterative bottom- 218

up fashion compared to a top-down approach used 219

for hierarchical structure induction (Shen et al., 220

2018; Kim et al., 2020). To determine whether two 221

tokens should be merged, we use the median of all 222

pairwise distances in an utterance as a threshold2. 223

For the remaining tokens in the utterance, we dis- 224

card the stop words and retain the rest as unigrams. 225

Fig. 2 illustrates the distances between tokens from 226

a pre-trained LM for an example sentence where 227

adjacent tokens such as “global” and “cuisine” are 228

merged but not “serves” and “modern”. 229

This approach enables us to extract phrases be- 230

yond certain n-grams (where n needs to be speci- 231

fied in previous work), or certain types of phrases 232

in a specific hierarchical layer. Instead, the dis- 233

tance function from the pre-trained LM can indi- 234

cate what tokens should be grouped into candidate 235

phrases based on the training corpus. More impor- 236

tantly, span extraction from attention distribution 237

also makes it convenient to adapt to new domains, 238

where a LM can be further trained to encode struc- 239

ture representations without any annotated data. 240

To encourage efficient span extraction above 241

token-level representation, we further pre-train a 242

SpanBERT model (Joshi et al., 2020) on TOD data 243

following Wu et al. (2020b) by predicting masked 244

spans together with a span boundary objective (de- 245

2We also experimented with other thresholds such as mean
but did not observe significant difference.
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0.67 0.55 0.12 0.33 0.45 0.42 0.22 0.14

Figure 2: Illustration of span extraction where LM-
derived distance function (distances between tokens are
shown below the text) is constrained by a structure pre-
dicted by PCFG (tree structure shown in the figure).
Numbers in red are above the median threshold (0.375)
while numbers in green are below, indicating that the
tokens share similar semantics and are from the same
span. We can then extract candidate phrases “a restau-
rant” and “modern global cuisine”, together with uni-
grams “I”, “want”, “which”, and “serves”.

noted as TOD-Span). In addition to masking ran-246

dom contiguous spans with a geometric distribu-247

tion, we also mask spans based on recent findings248

such as segmented PMI (Levine et al., 2021) among249

other methods (See Appendix A.3 for details). This250

process can be thought of as incorporating corpus251

statistics such as phrase frequency into the model252

implicitly (Henderson and Vulić, 2021).253

Self-supervised PCFG as constraints Al-254

though LMs can be used to induce grammar,255

their training objectives are not optimized for256

sentence structure prediction, thus falling behind257

unsupervised PCFG (Kim et al., 2020) on syntactic258

modeling. What is more, the distance measure259

induced from LM representations can be fuzzy260

and noisy in many cases. We therefore employ261

unsupervised PCFG proposed by Kim et al. (2019)262

as a mechanism to regularize and constrain span263

extraction. The unsupervised PCFG is trained to264

maximize the marginal likelihood of in-domain265

utterances with the inside-outside algorithm on266

the same TOD dataset (Wu et al., 2020a). Similar267

to LMs, this process is also flexible and robust.268

At inference time, the trained model predicts a269

Chomsky normal form from Viterbi decoding270

(Forney, 1973).271

PCFG provides an extra constraint that two272

nodes covering span candidates should share the273

same parent. An example illustrating the necessity274

of span constraint is given in Fig. 2. Even though275

the distance between “restaurant” and “which”276

(0.33) is small, we disregard this span since they277

are not part of the same constituent in the PCFG 278

structure. 279

Advantages Our method alleviates two problems 280

in existing schema induction work that relies on su- 281

pervised parsers. Firstly, we do not require defining 282

target constituents (e.g,. noun phrases or preposi- 283

tional phrases), nor do we need additional rules 284

to decide the depth of a hierarchical structure if a 285

constituent is compositional (Herzig and Berant, 286

2021). Secondly, we reduce the risk of domain mis- 287

match, a common problem with supervised parsers 288

(Davidson et al., 2019; Gururangan et al., 2020). 289

3.3 Clustering candidate spans 290

After extracting candidate spans as potential slot 291

values, we apply contextualized clustering on them 292

to form latent concepts each slot value belongs 293

to. We face two major challenges. Firstly, for 294

any clustering method, hyperparameters such as 295

the number of clusters are critical to the clustering 296

quality, while they are not known for a new do- 297

main. Secondly, because of the trivial differences 298

in slot types (for example, a location can be a train 299

departure place, or a taxi arrival place), clustering 300

requires considering different dimensions of seman- 301

tics and pragmatics. Moreover, meaningless spans 302

extracted together with meaningful ones from the 303

previous stage may add noises in the process. To 304

address these problems, we propose an auto-tuned, 305

coarse-to-fine multi-step clustering method. The 306

pseudo code of the clustering algorithm can be 307

found in Appendix A.2. 308

Auto-tuned hyperparameters To avoid hyper- 309

parameter tuning, we utilize density-based HDB- 310

SCAN (McInnes et al., 2017), which considers 311

varying density with a proposed auto-tuned thresh- 312

old. Compared to other methods such as K-Means 313

or hierarchical clustering which require pre-defined 314

but elusive hyperparameters such as a merging 315

threshold, HDBSCAN is parameterized by the min- 316

imum number of samples per cluster. The resulting 317

clusters are known to be less sensitive to this pa- 318

rameter. We set this parameter automatically by 319

maximizing the averaged Silhouette coefficient 320

s =
b− a

max(a, b)
321

across all clusters where a represents the dis- 322

tance between samples in a cluster, and b mea- 323

sures the distance between samples across clusters 324

(Rousseeuw, 1987). 325
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Extracted Spans
after 16:15

Sunday
Cambridge

Norwich
east

4 star
doesn’t matter

before 11
guesthouses

need
free parking

12 
expensive

12:30
before 9:30
moderate

need
7:15
…

time
16:45
7:28

before 3

need
I need
need

price
cheap

moderate
expensive

taxi time
16:45
17:26

before 3

train time
after 4:15
before 11

7:28

need
need
need

departure 
time

after 4:15
5:11

before 7:28

arrival time
7:15

before 11
21:36

need
need
need

First step Second step Third step

Figure 3: Multi-step clustering procedure. Each coarse
cluster further refined by next-step clustering. The first
step uses contextualized span representations to cap-
ture salient groups (such as a cluster about time), and
the second step uses the utterance-level representations
of each span to capture domain and intent information.
The third step utilizes span-level representation for fine-
grained slot types. Clusters in shade are discarded since
there is only one slot value (“need”).

Multi-step clustering The input to our first-step326

clustering is the contextualized span-level represen-327

tation from the extracted spans. Following Yamada328

et al. (2021), to prevent the dominant representation329

of surface-level word embeddings, we replace can-330

didate spans with masked tokens and use the con-331

textual representation of the masked spans. After332

the first step of clustering, we have coarse groups333

illustrated in Appendix A.5. Michael et al. (2020)334

suggest that we may only identify salient clusters335

(e.g., cardinal numbers), but cannot separate for336

example, different types of cardinals (e.g., number337

of people or number of stays).338

In the second step, we cluster examples within339

each cluster from the first step leveraging utterance340

level representation of spans (i.e. the CLS token of341

the utterance where the span is from). This enables342

us to distinguish between domains and intents as343

they characterize utterance-level semantics. For344

example, we may find a cluster of time information345

(e.g., “11 AM”) in the first step, and the second step346

clustering is to differentiate between train and taxi347

booking time. Lastly, we cluster groups developed348

from the second step into more fine-grained types.349

After this multi-step clustering, we can potentially350

separate for instance, departure time and arrival351

time in train booking. This process is illustrated in352

Fig. 3. Each cluster represents a slot type, and the353

data points in the clusters represent slot values of354

the slot type.355

To filter out noisy clusters, we examine clusters 356

and their corresponding sub-clusters from the first 357

two steps based on the assumption that valid slot 358

types include more than one slot value. Since the 359

goal of schema induction is to build a complete on- 360

tology with high recall, the remaining noisy groups 361

are acceptable. 362

4 Experiments 363

To examine the quality of our induced schema, we 364

perform intrinsic and extrinsic evaluations. Our 365

intrinsic evaluation compares the predicted schema 366

with the ground truth schema by measuring their 367

overlap in slot types and slot values. This indi- 368

cates how well our induced schema aligns with 369

the expert annotation. The extrinsic evaluation es- 370

timates the usefulness of the induced schema for 371

downstream tasks, for which we consider dialog 372

state tracking and response generation tasks. Ex- 373

periments are conducted on MultiWOZ (Eric et al., 374

2020) and SGD (Rastogi et al., 2020) datasets. See 375

Appendix A.1 for implementation details. 376

Baselines We compare our proposed approach 377

with different setups against DSI (Min et al., 2020), 378

which utilizes supervised methods as the baseline. 379

We evaluate different span extraction methods in- 380

cluding using parsers only, leveraging distance 381

functions from LMs, and combining LMs with un- 382

supervised PCFG. Specifically, NP uses Spacy3 383

to extract all noun phrases, DSI cand. uses the 384

same candidates phrases as DSI, and PCFG and 385

CoreNLP (Manning et al., 2014) extract phrases 386

from an unsupervised and supervised structure 387

respectively by taking the smallest constituents 388

above the leaf level. These baselines solely rely on 389

parsers. For LM based methods, we compare spans 390

extracted using attention distance from BERT (De- 391

vlin et al., 2019), SpanBERT (Joshi et al., 2020), 392

TOD-BERT (Wu et al., 2020a), and our span-based 393

TOD pre-training from masking random spans 394

(TOD-Span, Section 3.2). Lastly, we combine the 395

LMs with unsupervised PCFG structures. 396

Due to space constraints, we show results on 397

MultiWOZ in this section. Observations on SGD 398

are similar and can be found in the Appendix. 399

4.1 Schema induction 400

To evaluate the induced schema against ground 401

truth, we need to match clusters to ground truth 402

3https://spacy.io/
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labels4. Previous work on dialog schema induction403

either requires manual mapping from a cluster to404

the ground truth (Hudeček et al., 2021) or compares405

predicted slot values to its state annotation at each406

turn (Min et al., 2020). These can create noises407

and biases, hence not practical when no annotation408

is available. Instead, we simulate the process of409

an expert annotator mapping clusters to slot names410

by considering the general contextual semantics of411

spans in a cluster.412

Setup We consider semantic representations of413

ground truth clusters as labels. Specifically, we414

calculate the contextual representation of spans415

averaged across all spans in an induced cluster416

as cluster representations, and compare that with417

ground truth slot type representations computed in418

the same way. For fair comparison among different419

methods, we use BERT to obtain span represen-420

tations. We assign the name of the most similar421

slot type representation to a predicted cluster mea-422

sured by cosine similarity. If the score is lower423

than 0.8 (Min et al., 2020), the generated cluster is424

considered as noise without mapping, which sim-425

ulates when a human cannot label the cluster. We426

report precision, recall, and F1 on the induced slot427

types. When the number of clusters is larger than428

the ground truth, multiple predicted clusters can be429

mapped to one slot type. This evaluation process is430

identical to human annotation, but may be biased431

towards more clusters. Thus we report the number432

of induced clusters for reference. Similarly, within433

each slot type, we compute the overlapping of clus-434

ter values to all ground truth slot values and report435

precision, recall, and F1 by fuzzy-matching scores436

(Min et al., 2020).437

Results Table 1 shows the results of schema in-438

duction on slot types and slot values. All methods439

lead to a similar number of clusters, indicating440

that the results are not biased and are compara-441

ble. When the candidate span input to our pro-442

posed multi-step clustering is the same as the base-443

line DSI using POS tagging and coreference (DSI444

cand.), we achieve similar performance on slot type445

induction (91.53 vs. 87.72 F1 score) and better re-446

sults on slot values (53.62). This illustrates the447

effectiveness of our proposed clustering method448

since the only difference from the DSI baseline is449

4Predicting labels for each cluster is out of the scope of this
paper. Since there are many ways to assign labels with equal
semantics to a cluster (e.g., “food” vs. “restaurant type”), we
leave this to future work.

method # clusters slot type slot value

Baseline

DSI 522 87.72 37.18

Parser only

NP 88 69.39 47.46
DSI cand. 113 85.19 49.71
PCFG 339 91.53 53.62
CoreNLP 292 87.72 54.43

Language model only

BERT 340 85.71 55.80
SpanBERT 343 89.66 45.21
TOD-BERT 219 89.66 50.89
TOD-Span 374 85.71 55.29

Language model contrained on unsupervised PCFG

BERT 350 87.72 52.32
SpanBERT 203 89.66 44.51
TOD-BERT 245 91.53 48.13
TOD-Span 290 96.67 58.71

Table 1: Schema induction results on MultiWOZ.
TOD-Span (span-based LM further pre-trained on in-
domain data) constrained on PCFG (an unsupervised
parsed structure) achieves the best performance on slot
type induction and slot value induction evaluated by F1
scores.

clustering. Compared to previous methods lever- 450

aging noun phrases (NP), or supervised parsers 451

(CoreNLP), using an unsupervised PCFG trained 452

on in-domain TOD data can achieve comparable or 453

superior results. 454

If we extract spans using LMs only, different 455

models perform similarly on both slot type and slot 456

value. However, when constrained by an unsuper- 457

vised PCFG, we observe a large performance boost 458

especially with TOD-Span. This indicates that the 459

unsupervised PCFG can provide complementary 460

information to LMs. In addition, results show that 461

further pre-training a LM at span level is more ef- 462

ficient. The better representation from span-level 463

in-domain self-learning can also be justified by a 464

standard dialog state tracking task with few-shot 465

or full data shown in Appendix A.3. Detailed com- 466

parison among different LM pre-training methods 467

with precision, recall, and F1 scores can be seen in 468

Appendix A.8. 469

4.2 Dialog state tracking (DST) 470

Now that we have mapped induced clusters to 471

ground truth names, we can immediately evalu- 472

ate DST performance by identifying slot values 473

and types at each turn as described above. This can 474
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training testing
method turn joint turn joint

Baseline

DSI 18.29 25.22 15.96 22.64

Parser only

PCFG 25.43 32.39 31.82 44.07

Language model only

BERT 24.35 30.18 25.48 36.41
SpanBERT 20.24 26.07 27.19 39.56
TOD-BERT 25.05 34.94 28.71 41.07
TOD-Span 29.72 38.89 31.26 43.69

Language model contrained on unsupervised PCFG

BERT 23.27 30.09 29.26 41.55
SpanBERT 20.96 27.25 30.82 42.11
TOD-BERT 27.11 31.92 33.68 44.86
TOD-Span 39.59 46.69 36.58 48.98

Table 2: DST results on MultiWOZ. We show F1
scores of turn and joint level on both the training por-
tion and testing data. Similar to schema induction,
TOD-Span constrained on PCFG achieves the best per-
formance.

be considered as a zero-shot setting.475

Setup Following Min et al. (2020), we calculate476

the overlapping of the predicted slots and values477

with their corresponding ground truth at both the478

turn level and the joint level. At each turn, a fuzzy479

matching score is applied on predicted values (Ras-480

togi et al., 2020) whose corresponding slot types481

are in the ground truth. On the other hand, even if482

a slot value is predicted correctly but its slot type483

does not match the ground truth, no reward is ac-484

credited. On the joint level, we calculate the score485

for accumulative predictions up to the current turn.486

This procedure works directly for training data487

from which our schema is induced. For experi-488

ments on the test set, we adopt the following proce-489

dure. We extract all candidate phrases in the same490

way, but instead of clustering, we map the extracted491

phrases to clustered groups. Specifically, similar492

to mapping induced latent clusters to ground truth493

groups in schema induction, we find the most simi-494

lar latent cluster to the candidate in the contextual-495

ized embedding space, and assign the cluster name496

to the phrase as its slot type.497

Results Table 2 summarizes the results for DST.498

Similar to the trend in schema induction, constrain-499

ing an in-domain fine-tuned LM (TOD-Span) on500

an unsupervised structure representation (PCFG)501

belief state BLEU

None 15.6
DSI 13.9
TOD-Span + PCFG 16.4
Ground truth 17.9

Table 3: Response generation results on MultiWOZ.
Our method introduces positive inductive bias.

achieves the best performance (39.95 on turn level), 502

significantly outperforming a strong baseline DSI 503

(18.29). In addition, even though the schema is 504

not induced on the testing data, the performance 505

on both turn and joint level maintains (36.58 and 506

48.98). We also note that because all accumulated 507

predictions are evaluated for partial rewards instead 508

of the hard requirement of exact matching on all 509

slot types in standard DST evaluation, the joint 510

level scores are higher than the turn level. 511

4.3 Response generation 512

The above settings map latent slot clusters to 513

ground truth analogous to expert designs so that 514

we can evaluate the alignment with human annota- 515

tions. In this experiment, we investigate whether 516

the induced latent schema is still useful without 517

mapping. 518

Setup We modify the model of Lei et al. (2018); 519

Zhang et al. (2020b) by appending the predicted 520

labels (i.e., cluster index such as “10-24” indicating 521

a specific slot type) and values to the context. Since 522

we do not have the mapped names of the slots, 523

we only report the BLEU score rather than other 524

metrics used in response generation that require 525

entity-level matching (e.g., inform rate). This is 526

a more practical setting directly evaluating on the 527

induced schema compared to previous work (Min 528

et al., 2020), where dialog act is modeled with 529

delexicalized input utterances (Chen et al., 2019, 530

not feasible because ontology is required from a 531

pre-defined schema for delexicalization). 532

Results Table 3 compares the performance of 533

using no belief state (None), belief state induced by 534

DSI, our introduced method (TOD-Span + PCFG), 535

and ground truth. Results show that our induced 536

schema introduces a positive inductive bias (16.4) 537

compared to the baseline (15.6) and close to the 538

ground truth schema with actual slot type names. 539

We conjecture that the lower performance of DSI 540

is due to the larger number of latent types (522) 541

which can create noises in training the model. 542
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schema DST
method # clusters type value turn joint

Different number of clustering steps

one-step 31 60.87 39.74 23.58 30.68
two-step 99 83.64 46.66 35.21 41.94

Original representation instead of masked

unmasked rep. 284 85.71 53.30 27.93 36.40

Three-step masked clustering

Three-step masked 290 96.67 58.71 39.59 46.69

Table 4: Ablation results with TOD-Span constrained
on PCFG. Using masked presentation for multi-step
clustering improves the performance on schema induc-
tion and DST by a large margin.

5 Analysis543

Comparison among different methods Our re-544

sults show that in general, span-based pre-training545

methods outperform token-based, and continued546

pre-training on in-domain data is important. When547

regularized by unsupervised parsing structures, we548

observe a large performance boost on TOD-BERT549

and TOD-Span, however the PCFG structure does550

not help BERT and SpanBERT when the LM is551

trained on general domain data only. We speculate552

that the LM representation trained on general text553

is not compatible with the in-domain structure in-554

duced via self-supervision. In addition, we believe555

that the performance gap between our proposed556

method and previous research using rules from su-557

pervised parsers (such as NPs and coreference) is558

larger when the data is less biased (for example, if559

NP is not dominant as slot values, Du et al., 2021).560

Meanwhile, we acknowledge that since we ex-561

tract phrases as candidates of slot values, our DST562

cannot deal with other linguistic features such as563

coreferences and ellipses annotated in MultiWOZ564

and SGD. This partially explains the relatively low565

performance on the full zero-shot DST task. How-566

ever, these features are not important for schema567

induction since the majority of the slot values can568

be found as phrases in the raw conversation, which569

can further be categorized into slot types. Obtain-570

ing better performance on DST is out of the scope571

of this paper.572

Ablation studies Table 4 illustrates the perfor-573

mance comparisons with different numbers of clus-574

tering steps, as well as input representations. Re-575

sults demonstrate that compared to one-step (using576

masked span representation) and two-step (adding577

utterance representation), our three-step clustering578

method induced a more fine-grained schema, which579

is more effective for downstream tasks. The num-580

ber of steps can be customized to real use cases 581

depending on target granularity5. In addition, if 582

we use the original input rather than the masked 583

phrase representation, the performance drops by a 584

large margin (85.71 on slot type). This suggests 585

that the surrounding context information is more 586

critical than the surface embeddings for schema in- 587

duction, especially when the same phrase can serve 588

different functions even in the same domain (such 589

as locations). 590

Error analysis Suggested by the relatively high 591

span extraction accuracy (68.13 F1 score) from Ta- 592

ble 7 in Appendix A.4, we find that the majority of 593

the problems in DST come from cluster mapping. 594

This is caused by either excessive surrounding in- 595

formation or by the lack of context from previous 596

turns. For instance, in the utterance “Can I book 597

it for 3 people", the “3 people” can be mapped to 598

either “restaurant-book people” or “hotel-book peo- 599

ple”, since we extract the contextual information 600

from the current turn only. If more context is con- 601

sidered, the mapping performance including results 602

on downstream tasks is expected to improve. An- 603

other issue is with span boundary. Even though we 604

apply fuzzy matching, the evaluation still penalizes 605

correct predictions (such as “indian food”) from 606

its ground truth (“indian”), since we do not have 607

training signals to identify the target boundaries. 608

6 Conclusion 609

In this paper, we propose a fully self-supervised 610

method for schema induction. Compared to previ- 611

ous research, our method can be easily adapted to 612

unseen domains and tasks to extract target phrases 613

before clustering into fine-grained groups without 614

domain constraint. We conduct extensive exper- 615

iments and show that our proposed approach is 616

flexible and effective in generating accurate and 617

useful schemas without task-specific rules. We be- 618

lieve that our method could also be applied to other 619

languages (since no supervised parser is required) 620

and tasks such as question answering where the 621

answering phrase is not explicitly annotated (Min 622

et al., 2019). In the future, we plan to extend our 623

method to problems with more complex structures 624

and data where slots are less trivial to identify. 625

5More steps (> 3) were also conducted but we observed
lower Silhouette coefficient and lower quality in preliminary
studies
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7 Ethical Considerations626

Our intended use case is to induce the schema of627

raw conversations between a real user and system,628

where the conversation is not structured or con-629

strained. Our experiments are done on English data,630

but our approach can be used for any language, es-631

pecially because our method does not require any632

language-specific tools such as parsers which gen-633

erally require a lot of labeled data. We hope that634

our work can reduce design and annotation cost in635

building dialog systems for new domains, and can636

inspire future research on this practical bottleneck637

in applications.638
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A Appendices1054

A.1 Implementation details1055

For language model further pre-training, we imple-1056

ment our code based on Wu et al. (2020a) where1057

the training data and hyperparameters are kept the1058

same. Their evaluation script is used to show re-1059

sults on the standard supervised dialog state track-1060

ing with the full-data and few-shot learning setting.1061

We run all experiments on three random seeds and1062

report the average score. The TOD-BERT base-1063

line is the “TOD-BERT-JNT-V1” provided by Wolf1064

et al. (2020). For span-based pre-training methods,1065

we use the provided “spanbert-base-cased” model1066

from Joshi et al. (2020) as the initial checkpoint1067

and add a span boundary object. For random mask-1068

ing, we use a 15% masking budget and sample a1069

span length by geometric distribution with p = 0.21070

and clip the max length to 10. For other mask-1071

ing methods, we follow Levine et al. (2021) by1072

considering n-grams of lengths 2 to 5 which ap-1073

pear more than 10 times in the corpus. We choose1074

the top 10 - 20% of n-grams by each criterion so1075

about half of the tokens can be identified as part1076

of correlated n-grams. We also experimented with1077

different number of n-grams to mask and evaluate1078

on both pre-training loss and DST results, but did1079

not observe significant difference. We further pre-1080

train using the same data as TOD-BERT with early1081

stopping by prediction loss. For the attention dis-1082

tribution used to define our distance function, we1083

use the eighth layer of the model suggested by Kim1084

et al. (2020). We modify Jin and Schuler (2020)1085

to train our unsupervised PCFG model using their1086

suggested hyperparameters on the data cleaned by1087

Wu et al. (2020a). All our experiments run on eight1088

V-100 GPUs. The training time varies from three1089

hours to 14 hours.1090

For the baseline DSI, we run their provided pub-1091

lic codebase on the same MultiWOZ 2.1 data and1092

SGD dataset respectively (since each corpus has1093

different schemas in the output space, we cannot1094

pre-train on more task-oriented dialog data), fol-1095

lowing their suggested hyperparameters on the best1096

model DSI-GM.1097

For our auto-tuned multi-step clustering, we set1098

the minimum number of samples per cluster by1099

dividing the total number of samples by 5, 10, 15,1100

20, 25 and choose the best one auto-tuned by the1101

Silhouette coefficient. A more rigorous grid search1102

can potentially generate better performance on our1103

tasks. All other parameters are kept as default in1104

HDBSCAN. 1105

A.2 Algorithm 1106

Algorithm 1 shows the algorithm for span extrac- 1107

tion. For simplicity, we compare the distance from 1108

left to right for both the settings with and without 1109

PCFG stricture. For using language model only, 1110

we merge tokens into phrases if their distance if 1111

small. If PCFG structure is constrained, we com- 1112

pare the distance between tokens and check if their 1113

corresponding nodes belong to the same parent. In 1114

practice, we implement the PCFG span extraction 1115

from bottom to top where we merge tokens into 1116

nodes from the lower level and represent the tokens 1117

with merged nodes. At each level, we compare the 1118

distance between consecutive nodes. To illustrate 1119

this process, for example in Figure 2, we com- 1120

pare the distance between the node “modern” and 1121

“global cuisine”, and the distance between “a restau- 1122

rant” and “which” to check if they are siblings in 1123

the same level. Since “which” is not merged in a 1124

lower level, itself serves as the node whereas “a 1125

restaurant” serves as the node for “restaurant”. All 1126

merged phrases, with left-out unigrams, are consid- 1127

ered as candidate extracted spans. 1128

Algorithm 2 shows the algorithm for auto-tuned 1129

multi-step clustering. For each step, the input to 1130

the clustering algorithm (HDBSCAN) is the embed- 1131

dings of spans (or uttereances in the second step) 1132

grouped from the previous step. In other words, 1133

for each sub-groups clustered by the previous step, 1134

we further cluster the embeddings into fine-grained 1135

groups. Figure 3 illustrates this process. The clus- 1136

tering algorithms returns groups of embeddings 1137

and corresponding labels (0, 1, . . . ) and we choose 1138

the minimum number of samples per cluster based 1139

on Silhouette score. We filter clusters where the 1140

frequent spans of each sub-cluster are the same, in- 1141

dicating that there is only one value for this cluster. 1142

We consider the rest clusters as the input to the next 1143

step, or return as our final clusters. 1144

A.3 Supervised DST results 1145

Wu and Xiong (2020) suggest that further pre- 1146

training on TOD data (Wu et al., 2020a) helps gen- 1147

erating better utterance-level representation, but 1148

less so for other features such as slots. To encour- 1149

age better span-level representation, we further pre- 1150

trained a SpanBERT model on TOD data by mask- 1151

ing spans based on frequency, Pointwise Mutual 1152

Information (PMI), symmetric conditional proba- 1153

bility (SCP, Downey et al., 2007), and segmented 1154
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Algorithm 2: Auto-tuned Multi-step Clustering
Require: Repspan = Repspan1 , Repspan2 , . . . , Repspann : masked span representation (hidden states of LM by replacing

extracted spans with [MASK] token)
Require: Reputt = Reputt1 , Reputt2 , . . . , Reputtn : utterance-level representation (hidden states of LM on [CLS] token)
Require: min_nums: a list of candidate values to set for minimum samples for cluster. This is not sensitive to the clustering

results.
1: input_embeddings← Repspan

2: clusters← input_embeddings
3: for stepi in multi-steps do
4: for input_embeddingsi in clusters do
5: clustersi ← max_i{silhouette_score(HDBSCAN(input_embeddingsi,min_numi))} {Clustered group

of embeddings}
6: if step_i = 1 then
7: if all sub-clusters share the same frequent span then
8: ignore input_embeddingsi, continue the for loop {filter clusters with only one value}
9: end if

10: clustersi ← corresponding Reputt for each item in clustersi {Use utterance-level representation for the second
step clustering}

11: end if
12: end for
13: clusters← {clustersi for all i in the current step}
14: end for

Model Joint Acc. Slot Acc.

BERT 45.6 96.6
SpanBERT 1.5 81.1
ToD-BERT 46.0 96.6

Span-based model trained on TOD data

TOD-Span 49.0 96.9
freq 49.7 97.0
freq w/o stop 47.3 96.8
PMI 48.7 96.9
PMI_seg 49.4 97.0
SCP 48.3 96.8

Table 5: Supervised DST results with the full-data
setting. Results show that span-based methods outper-
form token-based pre-training methods, and this im-
provement is not from the initial checkpoint. Different
masking methods achieve similar performance.

PMI (Levine et al., 2021) following recent research,1155

together with randomly masking contiguous ran-1156

dom spans. Implementation details can be found1157

in Appendix A.1. Here we evaluate different pre-1158

trained methods on the standard DST benchmark.1159

Table 5 and Table 6 shows the performance of1160

supervised DST performance evaluated on joint1161

accuracy and slot accuracy with the full data and1162

few-shot data (1 - 10%), respectively. Note that1163

this was not used to choose the best model to per-1164

form schema induction and related tasks. These1165

results compare different pre-training methods to1166

data Model Joint Acc. Slot Acc.

1%

BERT 6.4 84.4
SpanBERT 3.6 82.6
TOD-BERT 7.9 84.9
TOD-Span 9.9 86.0

5%

BERT 19.6 92.0
SpanBERT 5.6 83.9
TOD-BERT 20.9 91.0
TOD-Span 28.2 93.9

10%

BERT 32.9 94.7
SpanBERT 11.8 85.6
TOD-BERT 30.2 93.5
TOD-Span 38.6 95.5

Table 6: Supervised DST results with few-shot train-
ing data. Similar to the full-data setting, span-based
methods achieve significantly better performance than
token-based further pre-training methods.

illustrate the quality of the initial checkpoints on a 1167

more standard benchmark. As shown similarly in 1168

recent work, TOD-BERT can only show marginal 1169

improvement over BERT averaged over different 1170

random seeds. Meanwhile, SpanBERT when used 1171

as an initial checkpoint is not stable at downstream 1172

DST tasks even if multiple random seeds were 1173

tested. However, after further pre-training on task- 1174

oriented dialog dataset, TOD-Span achieve signif- 1175

icantly better performance in both the few-shot and 1176

full-data setting. When comparing different span 1177

masking methods, random masking (TOD-Span) 1178

is quite effective. Although freq and PMI_seg 1179
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Model R (LM only) R (+ supervised) R (+ unsupervised)

NP 62.13
BERT 62.30 62.05 64.30
SpanBERT 58.43 64.60 62.52
TOD-BERT 54.15 60.88 65.05
TOD-Span 64.21 67.22 68.13

Ground Truth 78.83

Table 7: Span extraction results on manually labeled
utterances. Results show that constrained on unsu-
pervised PCFG structure, our span-based further pre-
training method TOD-Span achieves the best recall
(68.13), close to the ground truth performance (78.83)

achieves better performance (over the naive PMI),1180

the improvement is not large. We conjecture that1181

this might be due to that compared to general do-1182

mains and tasks with more diverse prediction space1183

such as question answering, the number of task-1184

relevant phrases in task-oriented dialog is limited.1185

A.4 Span Extraction Results1186

Table 7 shows the recall for span extraction re-1187

sults. We manually annotate 200 user utterances1188

so that acceptable span boundaries would not be1189

penalized. For instance, given the utterance “I need1190

to book a hotel in the east that has 4 stars”, in-1191

stead of the DST annotation “hotel-starts: 4” and1192

“hotel-area: east” together with coreference and1193

annotation errors that cannot be detected from the1194

context, we manually annotate the candidate spans1195

as [“in the east”, ”the east”, ”east”] and [”4 stars”,1196

”has 4 stars”, ”4”] which relaxes the rigid require-1197

ment of strict matching of slot values. Compared1198

to fuzzy matching, this evaluation is cleaner. Be-1199

cause of the annotation errors and coreference that1200

a value does not appear in the current utterance,1201

the ground truth score is 78.83. Similar to our1202

schema induction and DST evaluation results, we1203

observe that constraining on predicted structures1204

can increase model performance. In particular, us-1205

ing an in-domain self-supervised PCFG structure1206

and achieve similar or even better performance than1207

using a supervised parser. We only evaluate recall1208

here because there are non-meaningful spans ex-1209

tracted, and is not important to downstream tasks1210

since they are potentially filtered by our clustering1211

method.1212

A.5 Clustering1213

Figure 4 shows the clustering results after the first1214

step. This shows that we can get some coarse clus-1215

ters with non-meaningful groups (such as “thank1216

you”). Some slot types (such as day of the week as 1217

“wednesday”) are not distinguished by their domain 1218

and intent. Further clustering can generate more 1219

fine-grained schema. 1220

A.6 Schema induction on training portion 1221

schema DST
method # clusters type value turn joint

DSI 4981 95.08 43.23 21.10 28.14
Ours 374 93.33 47.32 37.64 44.74

Table 8: Results for schema induction and DST when
the schema is induced on the training portion of Multi-
WOZ data. Our method significantly outperforms the
strong DSI baseline.

Since our goal is to induce the schema of a cor- 1222

pus without using any labeled data, there is no ma- 1223

jor difference in whether the schema is induced on 1224

the training set of MultiWOZ or the development 1225

set. The main difference is the number of utter- 1226

ance where the training data is ten times larger than 1227

the development data. Here we show the results 1228

for reference. Table 8 demonstrates that despite 1229

our much smaller number of clusters, our method 1230

achieves significantly better performance than the 1231

DSI baseline on both schema induction and DST. 1232

A.7 SGD results 1233

schema DST
method # clusters type value turn joint

DSI 11992 92.21 46.19 27.23 26.24
Ours 806 77.04 47.50 26.01 26.50

Table 9: Schema induction and DST results on SGD
dataset. Results suggests that our method achieves
comparable or better performance than the strong DSI
baseline even though our number of clusters is a mag-
nitude smaller. See text for analysis.

Table 9 shows the results for schema induction 1234

and DST on the SGD dataset. We conjecture that 1235

the similar performance results with the strong DSI 1236

baseline is due to large difference in cluster num- 1237

bers. Intuitively, with a larger number of clusters, 1238

each group with fewer examples can be mapped 1239

to the ground truth embeddings correctly. On the 1240

other hand, if different slot types are mixed into one 1241

cluster, all slot values are assigned an inaccurate 1242

name. Another potential reason is that compared to 1243

MultiWOZ, SGD dataset requires more contextual 1244
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Figure 4: Clustering after first step. Grey labels are outliers detected by HDBSCAN. The numbers in each group
represent a latent cluster label, and the texts represent the most frequent phrase in cluster.

information (SGD has less average tokens per turn1245

and more turns per dialogue). Thus the mapping1246

from relatively noisy clusters to ground truth cre-1247

ates errors for downstream tasks, especially that1248

the evaluation metric require exact match of slot1249

types.1250

A.8 Schema results1251

Table 10 shows detailed results comparison on1252

different proposed methods on schema induction.1253

All methods result in a similar number of clusters,1254

while span-based further pre-training methods con-1255

strained on unsupervised PCFG structures achieve1256

the best performance overall.1257
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slot type slot value

method # clusters precision recall f1 precision recall f1

Baseline

DSI 522 96.15 80.65 87.72 41.53 57.40 37.18

Parser only

NP 88 94.44 54.84 69.39 42.26 67.80 47.46
DSI cand. 113 100.00 74.19 85.19 56.46 60.80 49.71
PCFG 339 96.43 87.10 91.53 62.14 58.01 53.62
CoreNLP 292 96.15 80.65 87.72 57.80 63.18 54.43

Language model only

BERT 340 96.00 77.42 85.71 62.11 58.60 55.80
SpanBERT 343 96.30 83.87 89.66 56.34 51.95 45.21
TOD-BERT 219 96.30 83.87 89.66 63.58 57.64 50.89
TOD-Span 374 96.00 77.42 85.71 54.88 69.13 55.29
freq 100 93.33 45.16 60.87 47.31 63.32 45.97
freq w/o stop 337 95.65 70.97 81.48 48.63 63.66 48.27
PMI 369 100.00 80.65 89.29 53.97 73.60 56.38
PMI_seg 551 96.55 90.32 93.33 60.37 66.68 58.33
SCP 374 96.00 77.42 85.71 55.06 61.23 51.78

Language model contrained on unsupervised PCFG

BERT 350 96.15 80.66 87.72 58.85 57.49 52.32
SpanBERT 203 96.30 83.87 89.66 60.54 48.23 44.51
TOD-BERT 245 96.43 87.10 91.53 55.40 57.26 48.13
TOD-Span 290 100.00 93.55 96.67 61.34 67.26 58.71
freq 379 100.00 83.87 91.23 56.67 68.19 57.19
freq w/o stop 315 96.55 90.32 93.33 56.40 66.43 53.74
PMI 335 96.55 90.32 93.33 57.90 67.50 56.91
PMI_seg 275 96.55 90.32 93.33 55.19 65.04 54.54
SCP 290 100.00 90.32 94.92 53.62 65.31 53.00

Table 10: Schema induction results for different proposed methods.
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