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Abstract

Hand-crafted schemas describing how to col-
lect and annotate dialog corpora are a prerequi-
site towards building task-oriented dialog sys-
tems. In practical applications, manually de-
signing schemas can be error-prone, labori-
ous, iterative, and slow, especially when the
schema is complicated. To automate this pro-
cess, we propose a self-supervised approach
for schema induction from unlabeled dialog
corpora. Our approach utilizes representa-
tions provided by in-domain language mod-
els constrained on unsupervised structures,
followed by multi-step coarse-to-fine cluster-
ing. We compare our method against several
strong supervised baselines, and show signifi-
cant performance improvement in schema in-
duction on MultiWoz and SGD datasets. We
also demonstrate the effectiveness of induced
schemas on downstream tasks including dialog
state tracking and response generation.

1 Introduction

Defining task-specific schema, including intents
and arguments, is the first step of building a task-
oriented dialog (TOD) system. Typically task de-
signers educate annotators to collect conversations
from instructions with highlighted arguments in a
Wizard-of-Oz setup (Budzianowski et al., 2018),
or from sampled dialog states at each turn (Ras-
togi et al., 2020). Both settings expect a predefined
schema which determines intents and slots with cor-
responding values as constraints before the conver-
sation collection and dialog state annotation starts.
This process is prone to annotation errors due to
data bias (Eric et al., 2020; Zang et al., 2020). Ac-
cording to the specified full schema, data-intensive
TOD systems (Zhang et al., 2020a; Hosseini-Asl
et al., 2020; Lee et al., 2021) train models from
detailed annotation to understand user utterances.
In real-word applications such as call centers,
we may have abundant conversation logs from
real users and system assistants without annotation.
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Figure 1: Overview of schema induction from raw
conversation examples. We use a representation level
distance function derived from pre-trained LMs (com-
bined with PCFG structure) to extract informative can-
didate phrases such as “after 16:15” and “expensive”.
The spans are subsequently clustered through multiple
stages to form coarse to fine categories. The ground
truth mapping is shown on the right (such as “train
leaveat™).

Real user utterances are not based on underlying
structures or bounded by predefined schema. To
build an effective system, experts need to study
thousands of conversations, find relevant phrases,
manually group phrases into concepts, and itera-
tively build the schema to cover use cases. The
schema is then used to annotate belief states and
train models. This process is labor-intensive, error-
prone, expensive, and slow (Min et al., 2020; Yu
and Yu, 2021). As a prerequisite, it hinders quick
deployment for new domains and tasks. We there-
fore are interested in developing automatic schema
induction methods in this work to create the ontol-
ogy! from conversations for TOD tasks.

Most existing approaches for schema induction
rely on syntactic or semantic models trained with la-
beled data (Chen et al., 2013; Hudecek et al., 2021;
Min et al., 2020). Our proposed method, on the
other hand, is completely self-supervised and hence
portable to new tasks and domains seamlessly, pro-
viding a key advantage for developing TOD sys-
tems in practice. Analogous to human experts, our

"'We use “schema” and “ontology” interchangeably in this
paper. Following previous work in literature, we focus on
schema induction for slots, which is more challenging than
domains and intents.



procedure is divided into two general steps: rele-
vant span extraction and clustering. Fig. 1 provides
an overview of our approach. The span extrac-
tion leverages a distance function computed with
a pre-trained language model (LM) along with an
unsupervised probabilistic context-free grammar
(PCFG) parser. We also introduce a multi-step
auto-tuned clustering method to group the extracted
spans into fine-grained slot types.

We demonstrate that our self-supervised induced
schema is well-aligned with expert-designed refer-
ence schema on MultiWoZ (Budzianowski et al.,
2018) and SGD (Rastogi et al., 2020) datasets. We
also evaluate the induced schema on dialog state
tracking and response generation to indicate use-
fulness and demonstrate performance gains over
strong weakly-supervised baselines.

2 Related Work

Schema induction Similar to grammar induc-
tion and unsupervised parsing, schema induction
can help to eliminate the time-consuming manual
process and serves as the first step to build a large
corpus (Klein and Manning, 2002; Klasinas et al.,
2014). Related tasks include event type induction
(Huang et al., 2016, 2018), semantic frame induc-
tion (Yamada et al., 2021), and semantic role induc-
tion (Lang and Lapata, 2010; Michael and Zettle-
moyer, 2021). Relationship in these tasks such as
predicate and head or patient and agent are rela-
tively evident compared to that in conversational
dialog. In addition, most of previous research re-
quires either strong statistical assumptions based
on pre-defined parsers, or existing ontologies and
annotations for some seen types, and formulate
the problem similar to word sense disambiguation
on predicate-object pairs (Shen et al., 2021). In
contrast, our method does not require any formal
syntactic or semantic supervision.

Schema induction for dialog Motivated by the
practical advantages of unsupervised schema induc-
tion such as reducing annotation cost and avoiding
human bias, Klasinas et al. (2014); Athanasopoulou
et al. (2014) propose to induce spoken dialog gram-
mar based on n-grams to generate fragments. Dif-
ferent from studying semantic grammars, Chen
et al. (2013, 2014, 2015b,a); Hudecek et al. (2021)
propose to utilize annotated FrameNet (Baker et al.,
1998) to label semantic frames for raw utterances
(Das et al., 2010). The frames are designed on
generic semantic context, which contains frames

that are related to the target domain (such as "ex-
pensiveness") and irrelevant (such as "capability"),
while other relevant slots such as “internet” cannot
be extracted because they do not have correspond-
ing frames defined. This line of work focuses on
ranking extracted frame clusters and then manu-
ally maps the top-ranked induced slots to reference
slots. Instead of FrameNet, Shi et al. (2018) extract
features such as noun phrases (NPs) using part-of-
speech (POS) tags and frequent words and aggre-
gate them via a hierarchical clustering method, but
only about 70% slots can be mapped after manually
assigning names. In addition to the unsatisfactory
induction results due to candidate slot extraction,
most of the previous works are only applicable to
a single domain such as restaurant booking with a
small amount of data, and require manual tuning to
generate results.

The most comparable work to ours is probably
Min et al. (2020), which is not bounded by an ex-
isting set of candidate values so that potentially all
slots can be captured. They propose to mix POS
tags, named entities, and coreferences with a set
of rules to find slot candidates while filtering irrel-
evant spans using manually updated filtering lists.
In comparison, our method does not require any
supervised tool and can be easily adapted to new
domains and tasks with self-supervised learning. In
addition to flexibility, despite our simple and more
stable clustering process compared to their varia-
tional embedding generative approach (Jiang et al.,
2017), our method achieves better performance on
schema induction and our induced schema is more
useful for downstream tasks.

Span extraction Previous works in span extrac-
tion consider all combination of tokens up to a
certain length as candidates (Yu et al., 2021) . Al-
ternatively, keyphrase extraction research (Campos
et al., 2018; Bennani-Smires et al., 2018) mostly
depends on corpus statistics (such as frequency),
similarity between phrase and document embed-
dings, or POS tags (Wan and Xiao, 2008; Liu et al.,
2009), and formulates the task as a ranking prob-
lem. Although these methods can find meaningful
phrases, they may result in a low recall for TOD
settings. For instance, the contextual semantics
of a span (such as time) in an utterance may not
represent the utterance-level semantics compared
to other generic phrases. Other methods for span
extraction include syntactic chunking, but mostly
require supervised data (Li et al., 2021) and heuris-



tics (such as considering “noun phrases” or “verb
phrases”), and thus are not flexible and robust com-
pared to our method.

Finally, target spans can be found in syntactic
structures which can be potentially induced from
supervised parsers or unsupervised grammar induc-
tion (Klein and Manning, 2002, 2004; Shen et al.,
2018; Drozdov et al., 2019; Zhang et al., 2021).
Unlike the task of predicting relationship between
words in a sentence where phrases at each level of
a hierarchical structure are valid, detecting clear
boundaries is critical to span extraction but chal-
lenging with various phrase lengths. Even though
more flexible compared to semantic parsers that are
limited by pre-defined roles, there is no straightfor-
ward way to apply these methods to candidate span
extraction.

3 Self-supervised Schema Induction

Our proposed method for schema induction con-
sists of a fully self-supervised span extraction stage
followed by clustering with semantic similarity.

3.1 Task definition

Given user utterances from raw conversations, our
goal is to induce the schema of slot types S and
their corresponding slot values. The span extrac-
tion stage extracts spans (e.g., “with wifi”’) in an
utterance x. The candidate spans from all user ut-
terances are then clustered into a set of groups S
where each group s; corresponds to a slot type such
as “internet” with values “with wifi”, “no wifi”,
and “doesn’t matter”. The induced schema can be
later used for downstream tasks such as dialog state
tracking and response generation.

3.2 Candidate span extraction

Previous research in BERTology (Rogers et al.,
2020) observes that attention distributions are simi-
lar between tokens within a span, and vary largely
across different spans. Accordingly, we can hypoth-
esize that if tokens share similar attention distribu-
tions, they are more likely to be from the same span.
Taking advantage of this representational property,
we define a distance metric on the attention dis-
tribution over tokens to identify candidate spans
(Shen et al., 2018; Kim et al., 2020). We further
constrain spans hypothesized by an unsupervised
PCFG for better structure representation. The full
algorithm is outlined in Algorithm 1.

Algorithm 1: Span Extraction

Require: x = x1,22,...,%y,: auser utterance x

I: t + PCFG(x) {A Chomsky normal form (binary)
tree structure from self-supervised PCFG}
a < LM (x) {Attention distribution from a LM}
d < [f(as,ait1) fori =1,2,...,n — 1] {Distance
between consecutive tokens using a distance function f}
4: 7 < median(d)
5: foralld; ind do
6: if d; < 7 and using PCFG then
7.
8

if node; and node; 41 are siblings in PCFG then

node; 11 < {node;, node; 1} {merge
nodes}

9: end if

10: else if d; < 7 then

11: wWit1 + {w;, wiy1} {merge two tokens}

12: end if

13: end for

Attention-based extraction with LMs We de-
fine the distance function between attention distri-
butions as a symmetric Jensen-Shannon divergence.
The distributions are computed from self-attention
in a pre-trained LM. Equipped with this distance
measure, we merge adjacent tokens when the dis-
tance between them is small in an iterative bottom-
up fashion compared to a top-down approach used
for hierarchical structure induction (Shen et al.,
2018; Kim et al., 2020). To determine whether two
tokens should be merged, we use the median of all
pairwise distances in an utterance as a threshold?.
For the remaining tokens in the utterance, we dis-
card the stop words and retain the rest as unigrams.
Fig. 2 illustrates the distances between tokens from
a pre-trained LM for an example sentence where
adjacent tokens such as “global” and “cuisine” are
merged but not “serves” and “modern”.

This approach enables us to extract phrases be-
yond certain n-grams (where n needs to be speci-
fied in previous work), or certain types of phrases
in a specific hierarchical layer. Instead, the dis-
tance function from the pre-trained LM can indi-
cate what tokens should be grouped into candidate
phrases based on the training corpus. More impor-
tantly, span extraction from attention distribution
also makes it convenient to adapt to new domains,
where a LM can be further trained to encode struc-
ture representations without any annotated data.

To encourage efficient span extraction above
token-level representation, we further pre-train a
SpanBERT model (Joshi et al., 2020) on TOD data
following Wu et al. (2020b) by predicting masked
spans together with a span boundary objective (de-

2We also experimented with other thresholds such as mean
but did not observe significant difference.
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Figure 2: Illustration of span extraction where LM-
derived distance function (distances between tokens are
shown below the text) is constrained by a structure pre-
dicted by PCFG (tree structure shown in the figure).
Numbers in red are above the median threshold (0.375)
while numbers in green are below, indicating that the
tokens share similar semantics and are from the same
span. We can then extract candidate phrases “a restau-
rant” and “modern global cuisine”, together with uni-
grams “I”, “want”, “which”, and “serves”.

noted as TOD-Span). In addition to masking ran-
dom contiguous spans with a geometric distribu-
tion, we also mask spans based on recent findings
such as segmented PMI (Levine et al., 2021) among
other methods (See Appendix A.3 for details). This
process can be thought of as incorporating corpus
statistics such as phrase frequency into the model
implicitly (Henderson and Vulié, 2021).

Self-supervised PCFG as constraints Al-
though LMs can be used to induce grammar,
their training objectives are not optimized for
sentence structure prediction, thus falling behind
unsupervised PCFG (Kim et al., 2020) on syntactic
modeling. What is more, the distance measure
induced from LM representations can be fuzzy
and noisy in many cases. We therefore employ
unsupervised PCFG proposed by Kim et al. (2019)
as a mechanism to regularize and constrain span
extraction. The unsupervised PCFG is trained to
maximize the marginal likelihood of in-domain
utterances with the inside-outside algorithm on
the same TOD dataset (Wu et al., 2020a). Similar
to LMs, this process is also flexible and robust.
At inference time, the trained model predicts a
Chomsky normal form from Viterbi decoding
(Forney, 1973).

PCFG provides an extra constraint that two
nodes covering span candidates should share the
same parent. An example illustrating the necessity
of span constraint is given in Fig. 2. Even though
the distance between “restaurant” and “which”
(0.33) is small, we disregard this span since they

are not part of the same constituent in the PCFG
structure.

Advantages Our method alleviates two problems
in existing schema induction work that relies on su-
pervised parsers. Firstly, we do not require defining
target constituents (e.g,. noun phrases or preposi-
tional phrases), nor do we need additional rules
to decide the depth of a hierarchical structure if a
constituent is compositional (Herzig and Berant,
2021). Secondly, we reduce the risk of domain mis-
match, a common problem with supervised parsers
(Davidson et al., 2019; Gururangan et al., 2020).

3.3 Clustering candidate spans

After extracting candidate spans as potential slot
values, we apply contextualized clustering on them
to form latent concepts each slot value belongs
to. We face two major challenges. Firstly, for
any clustering method, hyperparameters such as
the number of clusters are critical to the clustering
quality, while they are not known for a new do-
main. Secondly, because of the trivial differences
in slot types (for example, a location can be a train
departure place, or a taxi arrival place), clustering
requires considering different dimensions of seman-
tics and pragmatics. Moreover, meaningless spans
extracted together with meaningful ones from the
previous stage may add noises in the process. To
address these problems, we propose an auto-tuned,
coarse-to-fine multi-step clustering method. The
pseudo code of the clustering algorithm can be
found in Appendix A.2.

Auto-tuned hyperparameters To avoid hyper-
parameter tuning, we utilize density-based HDB-
SCAN (Mclnnes et al., 2017), which considers
varying density with a proposed auto-tuned thresh-
old. Compared to other methods such as K-Means
or hierarchical clustering which require pre-defined
but elusive hyperparameters such as a merging
threshold, HDBSCAN is parameterized by the min-
imum number of samples per cluster. The resulting
clusters are known to be less sensitive to this pa-
rameter. We set this parameter automatically by
maximizing the averaged Silhouette coefficient

b—a

o maz(a,b)

across all clusters where a represents the dis-
tance between samples in a cluster, and b mea-
sures the distance between samples across clusters
(Rousseeuw, 1987).
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Figure 3: Multi-step clustering procedure. Each coarse
cluster further refined by next-step clustering. The first
step uses contextualized span representations to cap-
ture salient groups (such as a cluster about time), and
the second step uses the utterance-level representations
of each span to capture domain and intent information.
The third step utilizes span-level representation for fine-
grained slot types. Clusters in shade are discarded since
there is only one slot value (‘“need”).

Multi-step clustering The input to our first-step
clustering is the contextualized span-level represen-
tation from the extracted spans. Following Yamada
etal. (2021), to prevent the dominant representation
of surface-level word embeddings, we replace can-
didate spans with masked tokens and use the con-
textual representation of the masked spans. After
the first step of clustering, we have coarse groups
illustrated in Appendix A.5. Michael et al. (2020)
suggest that we may only identify salient clusters
(e.g., cardinal numbers), but cannot separate for
example, different types of cardinals (e.g., number
of people or number of stays).

In the second step, we cluster examples within
each cluster from the first step leveraging utterance
level representation of spans (i.e. the CLS token of
the utterance where the span is from). This enables
us to distinguish between domains and intents as
they characterize utterance-level semantics. For
example, we may find a cluster of time information
(e.g., “11 AM”) in the first step, and the second step
clustering is to differentiate between train and taxi
booking time. Lastly, we cluster groups developed
from the second step into more fine-grained types.
After this multi-step clustering, we can potentially
separate for instance, departure time and arrival
time in train booking. This process is illustrated in
Fig. 3. Each cluster represents a slot type, and the
data points in the clusters represent slot values of
the slot type.

To filter out noisy clusters, we examine clusters
and their corresponding sub-clusters from the first
two steps based on the assumption that valid slot
types include more than one slot value. Since the
goal of schema induction is to build a complete on-
tology with high recall, the remaining noisy groups
are acceptable.

4 Experiments

To examine the quality of our induced schema, we
perform intrinsic and extrinsic evaluations. Our
intrinsic evaluation compares the predicted schema
with the ground truth schema by measuring their
overlap in slot types and slot values. This indi-
cates how well our induced schema aligns with
the expert annotation. The extrinsic evaluation es-
timates the usefulness of the induced schema for
downstream tasks, for which we consider dialog
state tracking and response generation tasks. Ex-
periments are conducted on MultiWOZ (Eric et al.,
2020) and SGD (Rastogi et al., 2020) datasets. See
Appendix A.1 for implementation details.

Baselines We compare our proposed approach
with different setups against DSI (Min et al., 2020),
which utilizes supervised methods as the baseline.
We evaluate different span extraction methods in-
cluding using parsers only, leveraging distance
functions from LMs, and combining LMs with un-
supervised PCFG. Specifically, NP uses Spacy’
to extract all noun phrases, DSI cand. uses the
same candidates phrases as DSI, and PCFG and
CoreNLP (Manning et al., 2014) extract phrases
from an unsupervised and supervised structure
respectively by taking the smallest constituents
above the leaf level. These baselines solely rely on
parsers. For LM based methods, we compare spans
extracted using attention distance from BERT (De-
vlin et al., 2019), SpanBERT (Joshi et al., 2020),
TOD-BERT (Wu et al., 2020a), and our span-based
TOD pre-training from masking random spans
(TOD-Span, Section 3.2). Lastly, we combine the
LMs with unsupervised PCFG structures.

Due to space constraints, we show results on
MultiWOZ in this section. Observations on SGD
are similar and can be found in the Appendix.

4.1 Schema induction

To evaluate the induced schema against ground
truth, we need to match clusters to ground truth

*https://spacy.io/
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labels*. Previous work on dialog schema induction
either requires manual mapping from a cluster to
the ground truth (Hudecek et al., 2021) or compares
predicted slot values to its state annotation at each
turn (Min et al., 2020). These can create noises
and biases, hence not practical when no annotation
is available. Instead, we simulate the process of
an expert annotator mapping clusters to slot names
by considering the general contextual semantics of
spans in a cluster.

Setup We consider semantic representations of
ground truth clusters as labels. Specifically, we
calculate the contextual representation of spans
averaged across all spans in an induced cluster
as cluster representations, and compare that with
ground truth slot type representations computed in
the same way. For fair comparison among different
methods, we use BERT to obtain span represen-
tations. We assign the name of the most similar
slot type representation to a predicted cluster mea-
sured by cosine similarity. If the score is lower
than 0.8 (Min et al., 2020), the generated cluster is
considered as noise without mapping, which sim-
ulates when a human cannot label the cluster. We
report precision, recall, and F1 on the induced slot
types. When the number of clusters is larger than
the ground truth, multiple predicted clusters can be
mapped to one slot type. This evaluation process is
identical to human annotation, but may be biased
towards more clusters. Thus we report the number
of induced clusters for reference. Similarly, within
each slot type, we compute the overlapping of clus-
ter values to all ground truth slot values and report
precision, recall, and F1 by fuzzy-matching scores
(Min et al., 2020).

Results Table 1 shows the results of schema in-
duction on slot types and slot values. All methods
lead to a similar number of clusters, indicating
that the results are not biased and are compara-
ble. When the candidate span input to our pro-
posed multi-step clustering is the same as the base-
line DSI using POS tagging and coreference (DSI
cand.), we achieve similar performance on slot type
induction (91.53 vs. 87.72 F1 score) and better re-
sults on slot values (53.62). This illustrates the
effectiveness of our proposed clustering method
since the only difference from the DSI baseline is

*Predicting labels for each cluster is out of the scope of this
paper. Since there are many ways to assign labels with equal
semantics to a cluster (e.g., “food” vs. “restaurant type”), we
leave this to future work.

method # clusters  slot type slot value
Baseline
DSI 522 87.72 37.18
Parser only
NP 88 69.39 47.46
DSI cand. 113 85.19 49.71
PCFG 339 91.53 53.62
CoreNLP 292 87.72 54.43
Language model only
BERT 340 85.71 55.80
SpanBERT 343 89.66 45.21
TOD-BERT 219 89.66 50.89
TOD-Span 374 85.71 55.29
Language model contrained on unsupervised PCFG
BERT 350 87.72 52.32
SpanBERT 203 89.66 44.51
TOD-BERT 245 91.53 48.13
TOD-Span 290 96.67 58.71
Table 1: Schema induction results on MultiWOZ.

TOD-Span (span-based LM further pre-trained on in-
domain data) constrained on PCFG (an unsupervised
parsed structure) achieves the best performance on slot
type induction and slot value induction evaluated by F1
scores.

clustering. Compared to previous methods lever-
aging noun phrases (NP), or supervised parsers
(CoreNLP), using an unsupervised PCFG trained
on in-domain TOD data can achieve comparable or
superior results.

If we extract spans using LMs only, different
models perform similarly on both slot type and slot
value. However, when constrained by an unsuper-
vised PCFG, we observe a large performance boost
especially with TOD-Span. This indicates that the
unsupervised PCFG can provide complementary
information to LMs. In addition, results show that
further pre-training a LM at span level is more ef-
ficient. The better representation from span-level
in-domain self-learning can also be justified by a
standard dialog state tracking task with few-shot
or full data shown in Appendix A.3. Detailed com-
parison among different LM pre-training methods
with precision, recall, and F1 scores can be seen in
Appendix A.8.

4.2 Dialog state tracking (DST)

Now that we have mapped induced clusters to
ground truth names, we can immediately evalu-
ate DST performance by identifying slot values
and types at each turn as described above. This can



training testing
method turn  joint turn joint
Baseline
DSI 18.29 2522 1596 22.64
Parser only
PCFG 2543 3239 31.82 44.07
Language model only
BERT 2435 30.18 2548 36.41
SpanBERT  20.24 26.07 27.19 39.56
TOD-BERT 25.05 3494 28.71 41.07
TOD-Span 29.72 38.89 31.26 43.69
Language model contrained on unsupervised PCFG
BERT 2327 30.09 29.26 41.55
SpanBERT  20.96 27.25 30.82 42.11
TOD-BERT 27.11 3192 33.68 44.86
TOD-Span  39.59 46.69 36.58 48.98
Table 2: DST results on MultiWOZ. We show F1

scores of turn and joint level on both the training por-
tion and testing data. Similar to schema induction,
TOD-Span constrained on PCFG achieves the best per-
formance.

be considered as a zero-shot setting.

Setup Following Min et al. (2020), we calculate
the overlapping of the predicted slots and values
with their corresponding ground truth at both the
turn level and the joint level. At each turn, a fuzzy
matching score is applied on predicted values (Ras-
togi et al., 2020) whose corresponding slot types
are in the ground truth. On the other hand, even if
a slot value is predicted correctly but its slot type
does not match the ground truth, no reward is ac-
credited. On the joint level, we calculate the score
for accumulative predictions up to the current turn.

This procedure works directly for training data
from which our schema is induced. For experi-
ments on the test set, we adopt the following proce-
dure. We extract all candidate phrases in the same
way, but instead of clustering, we map the extracted
phrases to clustered groups. Specifically, similar
to mapping induced latent clusters to ground truth
groups in schema induction, we find the most simi-
lar latent cluster to the candidate in the contextual-
ized embedding space, and assign the cluster name
to the phrase as its slot type.

Results Table 2 summarizes the results for DST.
Similar to the trend in schema induction, constrain-
ing an in-domain fine-tuned LM (TOD-Span) on
an unsupervised structure representation (PCFG)

belief state BLEU
None 15.6
DSI 13.9
TOD-Span + PCFG 16.4
Ground truth 17.9

Table 3: Response generation results on MultiWOZ.
Our method introduces positive inductive bias.

achieves the best performance (39.95 on turn level),
significantly outperforming a strong baseline DSI
(18.29). In addition, even though the schema is
not induced on the testing data, the performance
on both turn and joint level maintains (36.58 and
48.98). We also note that because all accumulated
predictions are evaluated for partial rewards instead
of the hard requirement of exact matching on all
slot types in standard DST evaluation, the joint
level scores are higher than the turn level.

4.3 Response generation

The above settings map latent slot clusters to
ground truth analogous to expert designs so that
we can evaluate the alignment with human annota-
tions. In this experiment, we investigate whether
the induced latent schema is still useful without

mapping.

Setup We modify the model of Lei et al. (2018);
Zhang et al. (2020b) by appending the predicted
labels (i.e., cluster index such as “10-24” indicating
a specific slot type) and values to the context. Since
we do not have the mapped names of the slots,
we only report the BLEU score rather than other
metrics used in response generation that require
entity-level matching (e.g., inform rate). This is
a more practical setting directly evaluating on the
induced schema compared to previous work (Min
et al., 2020), where dialog act is modeled with
delexicalized input utterances (Chen et al., 2019,
not feasible because ontology is required from a
pre-defined schema for delexicalization).

Results Table 3 compares the performance of
using no belief state (None), belief state induced by
DSI, our introduced method (TOD-Span + PCFG),
and ground truth. Results show that our induced
schema introduces a positive inductive bias (16.4)
compared to the baseline (15.6) and close to the
ground truth schema with actual slot type names.
We conjecture that the lower performance of DSI
is due to the larger number of latent types (522)
which can create noises in training the model.



schema DST

method #clusters type value turn  joint

Different number of clustering steps

one-step 31 60.87 39.74 23.58 30.68
two-step 99 83.64 46.66 3521 41.94
Original representation instead of masked

unmasked rep. 284 85.71 5330 2793 3640
Three-step masked clustering

Three-step masked 290 96.67 5871 39.59 46.69

Table 4: Ablation results with TOD-Span constrained
on PCFG. Using masked presentation for multi-step
clustering improves the performance on schema induc-
tion and DST by a large margin.

5 Analysis

Comparison among different methods Our re-
sults show that in general, span-based pre-training
methods outperform token-based, and continued
pre-training on in-domain data is important. When
regularized by unsupervised parsing structures, we
observe a large performance boost on TOD-BERT
and TOD-Span, however the PCFG structure does
not help BERT and SpanBERT when the LM is
trained on general domain data only. We speculate
that the LM representation trained on general text
is not compatible with the in-domain structure in-
duced via self-supervision. In addition, we believe
that the performance gap between our proposed
method and previous research using rules from su-
pervised parsers (such as NPs and coreference) is
larger when the data is less biased (for example, if
NP is not dominant as slot values, Du et al., 2021).

Meanwhile, we acknowledge that since we ex-
tract phrases as candidates of slot values, our DST
cannot deal with other linguistic features such as
coreferences and ellipses annotated in MultiwOZ
and SGD. This partially explains the relatively low
performance on the full zero-shot DST task. How-
ever, these features are not important for schema
induction since the majority of the slot values can
be found as phrases in the raw conversation, which
can further be categorized into slot types. Obtain-
ing better performance on DST is out of the scope
of this paper.

Ablation studies Table 4 illustrates the perfor-
mance comparisons with different numbers of clus-
tering steps, as well as input representations. Re-
sults demonstrate that compared to one-step (using
masked span representation) and two-step (adding
utterance representation), our three-step clustering
method induced a more fine-grained schema, which
is more effective for downstream tasks. The num-

ber of steps can be customized to real use cases
depending on target granularity’. In addition, if
we use the original input rather than the masked
phrase representation, the performance drops by a
large margin (85.71 on slot type). This suggests
that the surrounding context information is more
critical than the surface embeddings for schema in-
duction, especially when the same phrase can serve
different functions even in the same domain (such
as locations).

Error analysis Suggested by the relatively high
span extraction accuracy (68.13 F1 score) from Ta-
ble 7 in Appendix A.4, we find that the majority of
the problems in DST come from cluster mapping.
This is caused by either excessive surrounding in-
formation or by the lack of context from previous
turns. For instance, in the utterance “Can I book
it for 3 people", the “3 people” can be mapped to
either “restaurant-book people” or “hotel-book peo-
ple”, since we extract the contextual information
from the current turn only. If more context is con-
sidered, the mapping performance including results
on downstream tasks is expected to improve. An-
other issue is with span boundary. Even though we
apply fuzzy matching, the evaluation still penalizes
correct predictions (such as “indian food”) from
its ground truth (“indian”), since we do not have
training signals to identify the target boundaries.

6 Conclusion

In this paper, we propose a fully self-supervised
method for schema induction. Compared to previ-
ous research, our method can be easily adapted to
unseen domains and tasks to extract target phrases
before clustering into fine-grained groups without
domain constraint. We conduct extensive exper-
iments and show that our proposed approach is
flexible and effective in generating accurate and
useful schemas without task-specific rules. We be-
lieve that our method could also be applied to other
languages (since no supervised parser is required)
and tasks such as question answering where the
answering phrase is not explicitly annotated (Min
et al., 2019). In the future, we plan to extend our
method to problems with more complex structures
and data where slots are less trivial to identify.

SMore steps (> 3) were also conducted but we observed
lower Silhouette coefficient and lower quality in preliminary
studies



7 Ethical Considerations

Our intended use case is to induce the schema of
raw conversations between a real user and system,
where the conversation is not structured or con-
strained. Our experiments are done on English data,
but our approach can be used for any language, es-
pecially because our method does not require any
language-specific tools such as parsers which gen-
erally require a lot of labeled data. We hope that
our work can reduce design and annotation cost in
building dialog systems for new domains, and can
inspire future research on this practical bottleneck
in applications.
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A Appendices

A.1 Implementation details

For language model further pre-training, we imple-
ment our code based on Wu et al. (2020a) where
the training data and hyperparameters are kept the
same. Their evaluation script is used to show re-
sults on the standard supervised dialog state track-
ing with the full-data and few-shot learning setting.
We run all experiments on three random seeds and
report the average score. The TOD-BERT base-
line is the “TOD-BERT-JNT-V1” provided by Wolf
et al. (2020). For span-based pre-training methods,
we use the provided “spanbert-base-cased” model
from Joshi et al. (2020) as the initial checkpoint
and add a span boundary object. For random mask-
ing, we use a 15% masking budget and sample a
span length by geometric distribution with p = 0.2
and clip the max length to 10. For other mask-
ing methods, we follow Levine et al. (2021) by
considering n-grams of lengths 2 to 5 which ap-
pear more than 10 times in the corpus. We choose
the top 10 - 20% of n-grams by each criterion so
about half of the tokens can be identified as part
of correlated n-grams. We also experimented with
different number of n-grams to mask and evaluate
on both pre-training loss and DST results, but did
not observe significant difference. We further pre-
train using the same data as TOD-BERT with early
stopping by prediction loss. For the attention dis-
tribution used to define our distance function, we
use the eighth layer of the model suggested by Kim
et al. (2020). We modify Jin and Schuler (2020)
to train our unsupervised PCFG model using their
suggested hyperparameters on the data cleaned by
Wau et al. (2020a). All our experiments run on eight
V-100 GPUs. The training time varies from three
hours to 14 hours.

For the baseline DS T, we run their provided pub-
lic codebase on the same MultiWOZ 2.1 data and
SGD dataset respectively (since each corpus has
different schemas in the output space, we cannot
pre-train on more task-oriented dialog data), fol-
lowing their suggested hyperparameters on the best
model DSI-GM.

For our auto-tuned multi-step clustering, we set
the minimum number of samples per cluster by
dividing the total number of samples by 5, 10, 15,
20, 25 and choose the best one auto-tuned by the
Silhouette coefficient. A more rigorous grid search
can potentially generate better performance on our
tasks. All other parameters are kept as default in
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HDBSCAN.

A.2 Algorithm

Algorithm 1 shows the algorithm for span extrac-
tion. For simplicity, we compare the distance from
left to right for both the settings with and without
PCEFG stricture. For using language model only,
we merge tokens into phrases if their distance if
small. If PCFG structure is constrained, we com-
pare the distance between tokens and check if their
corresponding nodes belong to the same parent. In
practice, we implement the PCFG span extraction
from bottom to top where we merge tokens into
nodes from the lower level and represent the tokens
with merged nodes. At each level, we compare the
distance between consecutive nodes. To illustrate
this process, for example in Figure 2, we com-
pare the distance between the node “modern” and
“global cuisine”, and the distance between “a restau-
rant” and “which” to check if they are siblings in
the same level. Since “which” is not merged in a
lower level, itself serves as the node whereas “a
restaurant” serves as the node for “restaurant”. All
merged phrases, with left-out unigrams, are consid-
ered as candidate extracted spans.

Algorithm 2 shows the algorithm for auto-tuned
multi-step clustering. For each step, the input to
the clustering algorithm (HDBSCAN) is the embed-
dings of spans (or uttereances in the second step)
grouped from the previous step. In other words,
for each sub-groups clustered by the previous step,
we further cluster the embeddings into fine-grained
groups. Figure 3 illustrates this process. The clus-
tering algorithms returns groups of embeddings
and corresponding labels (0, 1, . ..) and we choose
the minimum number of samples per cluster based
on Silhouette score. We filter clusters where the
frequent spans of each sub-cluster are the same, in-
dicating that there is only one value for this cluster.
We consider the rest clusters as the input to the next
step, or return as our final clusters.

A.3 Supervised DST results

Wu and Xiong (2020) suggest that further pre-
training on TOD data (Wu et al., 2020a) helps gen-
erating better utterance-level representation, but
less so for other features such as slots. To encour-
age better span-level representation, we further pre-
trained a SpanBERT model on TOD data by mask-
ing spans based on frequency, Pointwise Mutual
Information (PMI), symmetric conditional proba-
bility (SCP, Downey et al., 2007), and segmented



Algorithm 2: Auto-tuned Multi-step Clustering

span span span

Require: Rep RepP*™, Reps
extracted spans with [MASK] token)
Require: Rep"t* = Rept'!, Rep4!, ..

span,

, ..., Rep;Pe™:

utt,

., Repy":

masked span representation (hidden states of LM by replacing

utterance-level representation (hidden states of LM on [CLS] token)

Require: min_nums: a list of candidate values to set for minimum samples for cluster. This is not sensitive to the clustering

results.
1: input_embeddings <+ Rep®P"
2: clusters < input_embeddings
3: for step; in multi-steps do
4: for input_embeddings; in clusters do
5: clusters; + max_i{silhouette_score(HDBSC AN (input_embeddings;, min_num;))} {Clustered group
of embeddings}
6: if step_i = 1 then
7: if all sub-clusters share the same frequent span then
8: ignore input_embeddings;, continue the for loop {filter clusters with only one value}
9: end if
10: clusters; < corresponding Rep"** for each item in clusters; {Use utterance-level representation for the second
step clustering}
11: end if
12: end for
13: clusters < {clusters; for all i in the current step}
14: end for
Model Joint Acc.  Slot Acc. data  Model Joint Acc.  Slot Acc.
BERT 45.6 96.6 o L ERT o o
SpanBERT 1.5 81.1 1% >pan ' '
ToD-BERT 46 6.6 TOD-BERT 7.9 84.9
oD- 0 96. TOD-Span 9.9 86.0
Span-based model trained on TOD data BERT 19.6 92.0
SpanBERT 5.6 83.9
TOD-Span 49.0 96.9 >%  TOD-BERT 209 91.0
freq 49.7 97.0 TOD-Span 28.2 93.9
freq w/o stop 47.3 96.8 BERT 329 047
PMI 48.7 96.9 ' ’
PMI se 49 4 97.0 10% SpanBERT 11.8 85.6
_S¢€g : . TOD-BERT 30.2 93.5
SCP 48.3 96.8 TOD-Span 38.6 95.5
Table 5:  Supervised DST results with the full-data  Table 6: Supervised DST results with few-shot train-

setting. Results show that span-based methods outper-
form token-based pre-training methods, and this im-
provement is not from the initial checkpoint. Different
masking methods achieve similar performance.

PMI (Levine et al., 2021) following recent research,
together with randomly masking contiguous ran-
dom spans. Implementation details can be found
in Appendix A.1. Here we evaluate different pre-
trained methods on the standard DST benchmark.

Table 5 and Table 6 shows the performance of
supervised DST performance evaluated on joint
accuracy and slot accuracy with the full data and
few-shot data (1 - 10%), respectively. Note that
this was not used to choose the best model to per-
form schema induction and related tasks. These
results compare different pre-training methods to
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ing data. Similar to the full-data setting, span-based
methods achieve significantly better performance than
token-based further pre-training methods.

illustrate the quality of the initial checkpoints on a
more standard benchmark. As shown similarly in
recent work, TOD-BERT can only show marginal
improvement over BERT averaged over different
random seeds. Meanwhile, SpanBERT when used
as an initial checkpoint is not stable at downstream
DST tasks even if multiple random seeds were
tested. However, after further pre-training on task-
oriented dialog dataset, TOD-Span achieve signif-
icantly better performance in both the few-shot and
full-data setting. When comparing different span
masking methods, random masking (TOD-Span)
is quite effective. Although freq and PMI_seg



Model R (LMonly) R (+supervised) R (+ unsupervised)
NP 62.13

BERT 62.30 62.05 64.30
SpanBERT 58.43 64.60 62.52
TOD-BERT 54.15 60.88 65.05
TOD-Span 64.21 67.22 68.13
Ground Truth 78.83

Table 7: Span extraction results on manually labeled
utterances. Results show that constrained on unsu-
pervised PCFG structure, our span-based further pre-
training method TOD-Span achieves the best recall
(68.13), close to the ground truth performance (78.83)

achieves better performance (over the naive PMI),
the improvement is not large. We conjecture that
this might be due to that compared to general do-
mains and tasks with more diverse prediction space
such as question answering, the number of task-
relevant phrases in task-oriented dialog is limited.

A.4 Span Extraction Results

Table 7 shows the recall for span extraction re-
sults. We manually annotate 200 user utterances
so that acceptable span boundaries would not be
penalized. For instance, given the utterance “I need
to book a hotel in the east that has 4 stars”, in-
stead of the DST annotation “hotel-starts: 4” and
“hotel-area: east” together with coreference and
annotation errors that cannot be detected from the
context, we manually annotate the candidate spans
as [“in the east”, ’the east”, east”] and ["4 stars”,
“has 4 stars”, ’4”’] which relaxes the rigid require-
ment of strict matching of slot values. Compared
to fuzzy matching, this evaluation is cleaner. Be-
cause of the annotation errors and coreference that
a value does not appear in the current utterance,
the ground truth score is 78.83. Similar to our
schema induction and DST evaluation results, we
observe that constraining on predicted structures
can increase model performance. In particular, us-
ing an in-domain self-supervised PCFG structure
and achieve similar or even better performance than
using a supervised parser. We only evaluate recall
here because there are non-meaningful spans ex-
tracted, and is not important to downstream tasks
since they are potentially filtered by our clustering
method.

A.5 Clustering

Figure 4 shows the clustering results after the first
step. This shows that we can get some coarse clus-
ters with non-meaningful groups (such as “thank
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you”). Some slot types (such as day of the week as
“wednesday”) are not distinguished by their domain
and intent. Further clustering can generate more
fine-grained schema.

A.6 Schema induction on training portion

schema DST
method  #clusters type  value  turn joint
DSI 4981 95.08 4323 21.10 28.14
Ours 374 93.33 4732 37.64 44.74

Table 8: Results for schema induction and DST when
the schema is induced on the training portion of Multi-
WOZ data. Our method significantly outperforms the
strong DSI baseline.

Since our goal is to induce the schema of a cor-
pus without using any labeled data, there is no ma-
jor difference in whether the schema is induced on
the training set of MultiWwOZ or the development
set. The main difference is the number of utter-
ance where the training data is ten times larger than
the development data. Here we show the results
for reference. Table 8 demonstrates that despite
our much smaller number of clusters, our method
achieves significantly better performance than the
DST baseline on both schema induction and DST.

A.7 SGD results

schema DST
method #clusters type value turn  joint
DSI 11992 9221 46.19 27.23 26.24
Ours 806 77.04 4750 26.01 26.50

Table 9: Schema induction and DST results on SGD
dataset. Results suggests that our method achieves
comparable or better performance than the strong DSI
baseline even though our number of clusters is a mag-
nitude smaller. See text for analysis.

Table 9 shows the results for schema induction
and DST on the SGD dataset. We conjecture that
the similar performance results with the strong DS T
baseline is due to large difference in cluster num-
bers. Intuitively, with a larger number of clusters,
each group with fewer examples can be mapped
to the ground truth embeddings correctly. On the
other hand, if different slot types are mixed into one
cluster, all slot values are assigned an inaccurate
name. Another potential reason is that compared to
MultiwOZ, SGD dataset requires more contextual
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Figure 4: Clustering after first step. Grey labels are outliers detected by HDBSCAN. The numbers in each group
represent a latent cluster label, and the texts represent the most frequent phrase in cluster.

information (SGD has less average tokens per turn
and more turns per dialogue). Thus the mapping
from relatively noisy clusters to ground truth cre-
ates errors for downstream tasks, especially that
the evaluation metric require exact match of slot

types.

A.8 Schema results

Table 10 shows detailed results comparison on
different proposed methods on schema induction.
All methods result in a similar number of clusters,
while span-based further pre-training methods con-
strained on unsupervised PCFG structures achieve
the best performance overall.
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slot type slot value
method # clusters  precision recall f1 precision  recall fl
Baseline
DSI 522 96.15 80.65 87.72 41.53 57.40 37.18
Parser only
NP 88 94.44 54.84 69.39 42.26 67.80 47.46
DSI cand. 113 100.00 74.19 85.19 56.46 60.80 49.71
PCFG 339 96.43 87.10 91.53 62.14 58.01 53.62
CoreNLP 292 96.15 80.65 87.72 57.80 63.18 54.43
Language model only
BERT 340 96.00 77.42 85.71 62.11 58.60 55.80
SpanBERT 343 96.30 83.87 89.66 56.34 5195 45.21
TOD-BERT 219 96.30 83.87 89.66 63.58 57.64 50.89
TOD-Span 374 96.00 77.42 85.71 54.88 69.13  55.29
freq 100 93.33 45.16 60.87 47.31 63.32 4597
freq w/o stop 337 95.65 70.97 81.48 48.63 63.66 48.27
PMI 369 100.00 80.65 89.29 53.97 73.60 56.38
PMI_seg 551 96.55 90.32 93.33 60.37 66.68 58.33
SCP 374 96.00 77.42 85.71 55.06 61.23 51.78
Language model contrained on unsupervised PCFG
BERT 350 96.15 80.66 87.72 58.85 5749 5232
SpanBERT 203 96.30 83.87 89.66 60.54 48.23 44.51
TOD-BERT 245 96.43 87.10 91.53 55.40 5726 48.13
TOD-Span 290 100.00 93.55 96.67 61.34 67.26 58.71
freq 379 100.00 83.87 91.23 56.67 68.19 57.19
freq w/o stop 315 96.55 90.32 93.33 56.40 66.43 53.74
PMI 335 96.55 90.32 93.33 57.90 67.50 5691
PMI_seg 275 96.55 90.32 93.33 55.19 65.04 5454
SCP 290 100.00 90.32 94.92 53.62 65.31 53.00

Table 10: Schema induction results for different proposed methods.
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