Self-supervised Schema Induction for Task-oriented Dialog

Anonymous ACL submission

Abstract

Hand-crafted schemas describing how to collect and annotate dialog corpora are a prerequisite towards building task-oriented dialog systems. In practical applications, manually designing schemas can be error-prone, laborious, iterative, and slow, especially when the schema is complicated. To automate this process, we propose a self-supervised approach for schema induction from unlabeled dialog corpora. Our approach utilizes representations provided by in-domain language models constrained on unsupervised structures, followed by multi-step coarse-to-fine clustering. We compare our method against several strong supervised baselines, and show significant performance improvement in schema induction on MultiWoz and SGD datasets. We also demonstrate the effectiveness of induced schemas on downstream tasks including dialog state tracking and response generation.

1 Introduction

Defining task-specific schema, including intents and arguments, is the first step of building a task-oriented dialog (TOD) system. Typically task designers educate annotators to collect conversations from instructions with highlighted arguments in a Wizard-of-Oz setup (Budzianowski et al., 2018), or from sampled dialog states at each turn (Rastogi et al., 2020). Both settings expect a predefined schema which determines intents and slots with corresponding values as constraints before the conversation collection and dialog state annotation starts. This process is prone to annotation errors due to data bias (Eric et al., 2020; Zang et al., 2020). According to the specified full schema, data-intensive TOD systems (Zhang et al., 2020a; Hosseini-Asl et al., 2020; Lee et al., 2021) train models from detailed annotation to understand user utterances.

In real-world applications such as call centers, we may have abundant conversation logs from real users and system assistants without annotation. Real user utterances are not based on underlying structures or bounded by predefined schema. To build an effective system, experts need to study thousands of conversations, find relevant phrases, manually group phrases into concepts, and iteratively build the schema to cover use cases. The schema is then used to annotate belief states and train models. This process is labor-intensive, error-prone, expensive, and slow (Min et al., 2020; Yu and Yu, 2021). As a prerequisite, it hinders quick deployment for new domains and tasks. We therefore are interested in developing automatic schema induction methods in this work to create the ontology from conversations for TOD tasks.

Most existing approaches for schema induction rely on syntactic or semantic models trained with labeled data (Chen et al., 2013; Hudeček et al., 2021; Min et al., 2020). Our proposed method, on the other hand, is completely self-supervised and hence portable to new tasks and domains seamlessly, providing a key advantage for developing TOD systems in practice. Analogous to human experts, our

1We use “schema” and “ontology” interchangeably in this paper. Following previous work in literature, we focus on schema induction for slots, which is more challenging than domains and intents.
procedure is divided into two general steps: relevant span extraction and clustering. Fig. 1 provides an overview of our approach. The span extraction leverages a distance function computed with a pre-trained language model (LM) along with an unsupervised probabilistic context-free grammar (PCFG) parser. We also introduce a multi-step auto-tuned clustering method to group the extracted spans into fine-grained slot types.

We demonstrate that our self-supervised induced schema is well-aligned with expert-designed reference schema on MultiWoZ (Budzianowski et al., 2018) and SGD (Rastogi et al., 2020) datasets. We also evaluate the induced schema on dialog state tracking and response generation to indicate usefulness and demonstrate performance gains over strong weakly-supervised baselines.

2 Related Work

Schema induction Similar to grammar induction and unsupervised parsing, schema induction can help to eliminate the time-consuming manual process and serves as the first step to build a large corpus (Klein and Manning, 2002; Klasinas et al., 2014). Related tasks include event type induction (Huang et al., 2016, 2018), semantic frame induction (Yamada et al., 2021), and semantic role induction (Lang and Lapata, 2010; Michael and Zettlemoyer, 2021). Relationship in these tasks such as predicate and head or patient and agent are relatively evident compared to that in conversational dialog. In addition, most of previous research requires either strong statistical assumptions based on pre-defined parsers, or existing ontologies and annotations for some seen types, and formulate the problem similar to word sense disambiguation on predicate-object pairs (Shen et al., 2021). In contrast, our method does not require any formal syntactic or semantic supervision.

Schema induction for dialog Motivated by the practical advantages of unsupervised schema induction such as reducing annotation cost and avoiding human bias, Klasinas et al. (2014); Athanasopoulou et al. (2014) propose to induce spoken dialog grammar based on n-grams to generate fragments. Different from studying semantic grammars, Chen et al. (2013, 2014, 2015b,a); Hudeček et al. (2021) propose to utilize annotated FrameNet (Baker et al., 1998) to label semantic frames for raw utterances (Das et al., 2010). The frames are designed on generic semantic context, which contains frames that are related to the target domain (such as "expensiveness") and irrelevant (such as "capability"), while other relevant slots such as "internet" cannot be extracted because they do not have corresponding frames defined. This line of work focuses on ranking extracted frame clusters and then manually maps the top-ranked induced slots to reference slots. Instead of FrameNet, Shi et al. (2018) extract features such as noun phrases (NPs) using part-of-speech (POS) tags and frequent words and aggregate them via a hierarchical clustering method, but only about 70% slots can be mapped after manually assigning names. In addition to the unsatisfactory induction results due to candidate slot extraction, most of the previous works are only applicable to a single domain such as restaurant booking with a small amount of data, and require manual tuning to generate results.

The most comparable work to ours is probably Min et al. (2020), which is not bounded by an existing set of candidate values so that potentially all slots can be captured. They propose to mix POS tags, named entities, and coreferences with a set of rules to find slot candidates while filtering irrelevant spans using manually updated filtering lists. In comparison, our method does not require any supervised tool and can be easily adapted to new domains and tasks with self-supervised learning. In addition to flexibility, despite our simple and more stable clustering process compared to their variational embedding generative approach (Jiang et al., 2017), our method achieves better performance on schema induction and our induced schema is more useful for downstream tasks.

Span extraction Previous works in span extraction consider all combination of tokens up to a certain length as candidates (Yu et al., 2021). Alternatively, keyphrase extraction research (Campos et al., 2018; Bennani-Smires et al., 2018) mostly depends on corpus statistics (such as frequency), similarity between phrase and document embeddings, or POS tags (Wan and Xiao, 2008; Liu et al., 2009), and formulates the task as a ranking problem. Although these methods can find meaningful phrases, they may result in a low recall for TOD settings. For instance, the contextual semantics of a span (such as time) in an utterance may not represent the utterance-level semantics compared to other generic phrases. Other methods for span extraction include syntactic chunking, but mostly require supervised data (Li et al., 2021) and heuris-
tics (such as considering “noun phrases” or “verb phrases”), and thus are not flexible and robust compared to our method.

Finally, target spans can be found in syntactic structures which can be potentially induced from supervised parsers or unsupervised grammar induction (Klein and Manning, 2002, 2004; Shen et al., 2018; Drozdov et al., 2019; Zhang et al., 2021).

Unlike the task of predicting relationship between words in a sentence where phrases at each level of a hierarchical structure are valid, detecting clear boundaries is critical to span extraction but challenging with various phrase lengths. Even though more flexible compared to semantic parsers that are limited by pre-defined roles, there is no straightforward way to apply these methods to candidate span extraction.

3 Self-supervised Schema Induction

Our proposed method for schema induction consists of a fully self-supervised span extraction stage followed by clustering with semantic similarity.

3.1 Task definition

Given user utterances from raw conversations, our goal is to induce the schema of slot types S and their corresponding slot values. The span extraction stage extracts spans (e.g., “with wifi”) in an utterance x. The candidate spans from all user utterances are then clustered into a set of groups S where each group s_i corresponds to a slot type such as “internet” with values “with wifi”, “no wifi”, and “doesn’t matter”. The induced schema can be later used for downstream tasks such as dialog state tracking and response generation.

3.2 Candidate span extraction

Previous research in BERTology (Rogers et al., 2020) observes that attention distributions are similar between tokens within a span, and vary largely across different spans. Accordingly, we can hypothesize that if tokens share similar attention distributions, they are more likely to be from the same span. Taking advantage of this representational property, we define a distance metric on the attention distribution over tokens to identify candidate spans (Shen et al., 2018; Kim et al., 2020). We further constrain spans hypothesized by an unsupervised PCFG for better structure representation. The full algorithm is outlined in Algorithm 1.

Algorithm 1: Span Extraction

Require: $x = x_1, x_2, \ldots, x_n$: a user utterance x
1: $t \leftarrow PCFG(x)$ (A Chomsky normal form (binary) tree structure from self-supervised PCFG)
2: $a \leftarrow LM(x)$ (Attention distribution from a LM)
3: $d \leftarrow [f(a_i, a_{i+1})$ for $i = 1, 2, \ldots, n - 1]$ (Distance between consecutive tokens using a distance function f)
4: $\tau \leftarrow \text{median}(d)$
5: for all d_i in d do
6: if $d_i < \tau$ and using PCFG then
7: if node$_i$ and node$_{i+1}$ are siblings in PCFG then
8: node$_{i+1} \leftarrow \{\text{merge nodes}$
9: end if
10: else if $d_i < \tau$ then
11: $w_{i+1} \leftarrow \{w_i, w_{i+1}\}$ (merge two tokens)
12: end if
13: end for

Attention-based extraction with LMs We define the distance function between attention distributions as a symmetric Jensen-Shannon divergence. The distributions are computed from self-attention in a pre-trained LM. Equipped with this distance measure, we merge adjacent tokens when the distance between them is small in an iterative bottom-up fashion compared to a top-down approach used for hierarchical structure induction (Shen et al., 2018; Kim et al., 2020). To determine whether two tokens should be merged, we use the median of all pairwise distances in an utterance as a threshold.2

For the remaining tokens in the utterance, we discard the stop words and retain the rest as unigrams. Fig. 2 illustrates the distances between tokens from a pre-trained LM for an example sentence where adjacent tokens such as “global” and “cuisine” are merged but not “serves” and “modern”.

This approach enables us to extract phrases beyond certain n-grams (where n needs to be specified in previous work), or certain types of phrases in a specific hierarchical layer. Instead, the distance function from the pre-trained LM can indicate what tokens should be grouped into candidate phrases based on the training corpus. More importantly, span extraction from attention distribution also makes it convenient to adapt to new domains, where a LM can be further trained to encode structure representations without any annotated data.

To encourage efficient span extraction above token-level representation, we further pre-train a SpanBERT model (Joshi et al., 2020) on TOD data following Wu et al. (2020b) by predicting masked spans together with a span boundary objective (de-
At inference time, the trained model predicts a sequence of spans. We can then extract candidate phrases “a restaurant” and “modern global cuisine”, together with unigrams “I”, “want”, “which”, and “serves”. Numbers in red are above the median threshold (0.375) while numbers in green are below, indicating that the tokens share similar semantics and are from the same span. We can then extract candidate phrases “a restaurant” and “modern global cuisine”, together with unigrams “I”, “want”, “which”, and “serves”.

Self-supervised PCFG as constraints Although LMs can be used to induce grammar, their training objectives are not optimized for sentence structure prediction, thus falling behind unsupervised PCFG (Kim et al., 2020) on syntactic modeling. What is more, the distance measure induced from LM representations can be fuzzy and noisy in many cases. We therefore employ unsupervised PCFG proposed by Kim et al. (2019) as a mechanism to regularize and constrain span extraction. The unsupervised PCFG is trained to maximize the marginal likelihood of in-domain utterances with the inside-outside algorithm on the same TOD dataset (Wu et al., 2020a). Similar to LMs, this process is also flexible and robust. At inference time, the trained model predicts a Chomsky normal form from Viterbi decoding (Forney, 1973).

PCFG provides an extra constraint that two nodes covering span candidates should share the same parent. An example illustrating the necessity of span constraint is given in Fig. 2. Even though the distance between “restaurant” and “which” (0.33) is small, we disregard this span since they are not part of the same constituent in the PCFG structure.

Advantages Our method alleviates two problems in existing schema induction work that relies on supervised parsers. Firstly, we do not require defining target constituents (e.g., noun phrases or prepositional phrases), nor do we need additional rules to decide the depth of a hierarchical structure if a constituent is compositional (Herzig and Berant, 2021). Secondly, we reduce the risk of domain mismatch, a common problem with supervised parsers (Davidson et al., 2019; Gururangan et al., 2020).

3.3 Clustering candidate spans

After extracting candidate spans as potential slot values, we apply contextualized clustering on them to form latent concepts each slot value belongs to. We face two major challenges. Firstly, for any clustering method, hyperparameters such as the number of clusters are critical to the clustering quality, while they are not known for a new domain. Secondly, because of the trivial differences in slot types (for example, a location can be a train departure place, or a taxi arrival place), clustering requires considering different dimensions of semantics and pragmatics. Moreover, meaningless spans extracted together with meaningful ones from the previous stage may add noises in the process. To address these problems, we propose an auto-tuned, coarse-to-fine multi-step clustering method. The pseudo code of the clustering algorithm can be found in Appendix A.2.

Auto-tuned hyperparameters To avoid hyperparameter tuning, we utilize density-based HDBSCAN (McInnes et al., 2017), which considers varying density with a proposed auto-tuned threshold. Compared to other methods such as K-Means or hierarchical clustering which require pre-defined but elusive hyperparameters such as a merging threshold, HDBSCAN is parameterized by the minimum number of samples per cluster. The resulting clusters are known to be less sensitive to this parameter. We set this parameter automatically by maximizing the averaged Silhouette coefficient

\[s = \frac{b - a}{\max(a, b)} \]

across all clusters where \(a \) represents the distance between samples in a cluster, and \(b \) measures the distance between samples across clusters (Rousseeuw, 1987).
Multi-step clustering The input to our first-step clustering is the contextualized span-level representation from the extracted spans. Following Yamada et al. (2021), to prevent the dominant representation of surface-level word embeddings, we replace candidate spans with masked tokens and use the contextual representation of the masked spans. After the first step of clustering, we have coarse groups illustrated in Appendix A.5. Michael et al. (2020) suggest that we may only identify salient clusters (e.g., cardinal numbers), but cannot separate for example, different types of cardinals (e.g., number of people or number of stays).

In the second step, we cluster examples within each cluster from the first step leveraging utterance-level representation of spans (i.e. the CLS token of the utterance where the span is from). This enables us to distinguish between domains and intents as they characterize utterance-level semantics. For example, we may find a cluster of time information (e.g., “11 AM”) in the first step, and the second step clustering is to differentiate between train and taxi booking time. Lastly, we cluster groups developed from the second step into more fine-grained types. After this multi-step clustering, we can potentially separate for instance, departure time and arrival time in train booking. This process is illustrated in Fig. 3. Each cluster represents a slot type, and the data points in the clusters represent slot values of the slot type.

To filter out noisy clusters, we examine clusters and their corresponding sub-clusters from the first two steps based on the assumption that valid slot types include more than one slot value. Since the goal of schema induction is to build a complete ontology with high recall, the remaining noisy groups are acceptable.

4 Experiments

To examine the quality of our induced schema, we perform intrinsic and extrinsic evaluations. Our intrinsic evaluation compares the predicted schema with the ground truth schema by measuring their overlap in slot types and slot values. This indicates how well our induced schema aligns with the expert annotation. The extrinsic evaluation estimates the usefulness of the induced schema for downstream tasks, for which we consider dialog state tracking and response generation tasks. Experiments are conducted on MultiWOZ (Eric et al., 2020) and SGD (Rastogi et al., 2020) datasets. See Appendix A.1 for implementation details.

Baselines We compare our proposed approach with different setups against DSI (Min et al., 2020), which utilizes supervised methods as the baseline. We evaluate different span extraction methods including using parsers only, leveraging distance functions from LMs, and combining LMs with unsupervised PCFG. Specifically, NP uses Spacy3 to extract all noun phrases, DSI cand. uses the same candidates phrases as DSI, and PCFG and CoreNLP (Manning et al., 2014) extract phrases from an unsupervised and supervised structure respectively by taking the smallest constituents above the leaf level. These baselines solely rely on parsers. For LM based methods, we compare spans extracted using attention distance from BERT (Devlin et al., 2019), SpanBERT (Joshi et al., 2020), TOD-BERT (Wu et al., 2020a), and our span-based TOD pre-training from masking random spans (TOD-Span, Section 3.2). Lastly, we combine the LMs with unsupervised PCFG structures.

Due to space constraints, we show results on MultiWOZ in this section. Observations on SGD are similar and can be found in the Appendix.

4.1 Schema induction

To evaluate the induced schema against ground truth, we need to match clusters to ground truth

3https://spacy.io/
labels4. Previous work on dialog schema induction either requires manual mapping from a cluster to the ground truth (Hudeček et al., 2021) or compares predicted slot values to its state annotation at each turn (Min et al., 2020). These can create noises and biases, hence not practical when no annotation is available. Instead, we simulate the process of an expert annotator mapping clusters to slot names by considering the general contextual semantics of spans in a cluster.

Setup We consider semantic representations of ground truth clusters as labels. Specifically, we calculate the contextual representation of spans averaged across all spans in an induced cluster as cluster representations, and compare that with ground truth slot type representations computed in the same way. For fair comparison among different methods, we use BERT to obtain span representations. We assign the name of the most similar slot type representation to a predicted cluster measured by cosine similarity. If the score is lower than 0.8 (Min et al., 2020), the generated cluster is considered as noise without mapping, which simulates when a human cannot label the cluster. We report precision, recall, and F1 on the induced slot types. When the number of clusters is larger than the ground truth, multiple predicted clusters can be mapped to one slot type. This evaluation process is identical to human annotation, but may be biased towards more clusters. Thus we report the number of induced clusters for reference. Similarly, within each slot type, we compute the overlapping of cluster values to all ground truth slot values and report precision, recall, and F1 by fuzzy-matching scores (Min et al., 2020).

Results Table 1 shows the results of schema induction on slot types and slot values. All methods lead to a similar number of clusters, indicating that the results are not biased and are comparable. When the candidate span input to our proposed multi-step clustering is the same as the baseline DSI using POS tagging and coreference (DSI cand.), we achieve similar performance on slot type induction (91.53 vs. 87.72 F1 score) and better results on slot values (53.62). This illustrates the effectiveness of our proposed clustering method since the only difference from the DSI baseline is clustering. Compared to previous methods leveraging noun phrases (NP), or supervised parsers (CoreNLP), using an unsupervised PCFG trained on in-domain TOD data can achieve comparable or superior results.

If we extract spans using LMs only, different models perform similarly on both slot type and slot value. However, when constrained by an unsupervised PCFG, we observe a large performance boost especially with TOD-Span. This indicates that the unsupervised PCFG can provide complementary information to LMs. In addition, results show that further pre-training a LM at span level is more efficient. The better representation from span-level in-domain self-learning can also be justified by a standard dialog state tracking task with few-shot or full data shown in Appendix A.3. Detailed comparison among different LM pre-training methods with precision, recall, and F1 scores can be seen in Appendix A.8.

4.2 Dialog state tracking (DST)

Now that we have mapped induced clusters to ground truth names, we can immediately evaluate DST performance by identifying slot values and types at each turn as described above. This can...

<table>
<thead>
<tr>
<th>method</th>
<th># clusters</th>
<th>slot type</th>
<th>slot value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSI</td>
<td>522</td>
<td>87.72</td>
<td>37.18</td>
</tr>
<tr>
<td>Parser only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>88</td>
<td>69.39</td>
<td>47.46</td>
</tr>
<tr>
<td>DSI cand.</td>
<td>113</td>
<td>85.19</td>
<td>49.71</td>
</tr>
<tr>
<td>PCFG</td>
<td>339</td>
<td>91.53</td>
<td>53.62</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>292</td>
<td>87.72</td>
<td>54.43</td>
</tr>
<tr>
<td>Language model only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>340</td>
<td>85.71</td>
<td>55.80</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>343</td>
<td>89.66</td>
<td>45.21</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>219</td>
<td>89.66</td>
<td>50.89</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>374</td>
<td>85.71</td>
<td>55.29</td>
</tr>
<tr>
<td>Language model contrained on unsupervised PCFG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>350</td>
<td>87.72</td>
<td>52.32</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>203</td>
<td>89.66</td>
<td>44.51</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>245</td>
<td>91.53</td>
<td>48.13</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>290</td>
<td>96.67</td>
<td>58.71</td>
</tr>
</tbody>
</table>

Table 1: Schema induction results on MultiWOZ. TOD-Span (span-based LM further pre-trained on in-domain data) constrained on PCFG (an unsupervised parsed structure) achieves the best performance on slot type induction and slot value induction evaluated by F1 scores.

4Predicting labels for each cluster is out of the scope of this paper. Since there are many ways to assign labels with equal semantics to a cluster (e.g., ”food” vs. “restaurant type”), we leave this to future work.
way, but instead of clustering, we map the extracted phrases to clustered groups. Specifically, similar to mapping induced latent clusters to ground truth groups in schema induction, we find the most similar latent cluster to the candidate in the contextualized embedding space, and assign the cluster name to the phrase as its slot type.

Results Table 2 summarizes the results for DST. Similar to the trend in schema induction, constraining an in-domain fine-tuned LM (TOD-Span) on an unsupervised structure representation (PCFG) achieves the best performance (39.95 on turn level), significantly outperforming a strong baseline DSI (18.29). In addition, even though the schema is not induced on the testing data, the performance on both turn and joint level maintains (36.58 and 48.98). We also note that because all accumulated predictions are evaluated for partial rewards instead of the hard requirement of exact matching on all slot types in standard DST evaluation, the joint level scores are higher than the turn level.

4.3 Response generation

The above settings map latent slot clusters to ground truth analogous to expert designs so that we can evaluate the alignment with human annotations. In this experiment, we investigate whether the induced latent schema is still useful without mapping.

Setup We modify the model of Lei et al. (2018); Zhang et al. (2020b) by appending the predicted labels (i.e., cluster index such as “10-24” indicating a specific slot type) and values to the context. Since we do not have the mapped names of the slots, we only report the BLEU score rather than other metrics used in response generation that require entity-level matching (e.g., inform rate). This is a more practical setting directly evaluating on the induced schema compared to previous work (Min et al., 2020), where dialog act is modeled with delexicalized input utterances (Chen et al., 2019), not feasible because ontology is required from a pre-defined schema for delexicalization).

Results Table 3 compares the performance of using no belief state (None), belief state induced by DSI, our introduced method (TOD-Span + PCFG), and ground truth. Results show that our induced schema introduces a positive inductive bias (16.4) compared to the baseline (15.6) and close to the ground truth schema with actual slot type names. We conjecture that the lower performance of DSI is due to the larger number of latent types (522) which can create noises in training the model.

<table>
<thead>
<tr>
<th>method</th>
<th>training turn</th>
<th>training joint</th>
<th>testing turn</th>
<th>testing joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSI</td>
<td>18.29</td>
<td>25.22</td>
<td>15.96</td>
<td>22.64</td>
</tr>
<tr>
<td>Parser only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCFG</td>
<td>25.43</td>
<td>32.39</td>
<td>31.82</td>
<td>44.07</td>
</tr>
<tr>
<td>Language model only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>24.35</td>
<td>30.18</td>
<td>25.48</td>
<td>36.41</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>20.24</td>
<td>26.07</td>
<td>27.19</td>
<td>39.56</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>25.05</td>
<td>34.94</td>
<td>28.71</td>
<td>41.07</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>29.72</td>
<td>38.89</td>
<td>31.26</td>
<td>43.69</td>
</tr>
<tr>
<td>Language model contrained on unsupervised PCFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>23.27</td>
<td>30.09</td>
<td>29.26</td>
<td>41.55</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>20.96</td>
<td>27.25</td>
<td>30.82</td>
<td>42.11</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>27.11</td>
<td>31.92</td>
<td>33.68</td>
<td>44.86</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>39.59</td>
<td>46.69</td>
<td>36.58</td>
<td>48.98</td>
</tr>
</tbody>
</table>

Table 2: DST results on MultiWOZ. We show F1 scores of turn and joint level on both the training portion and testing data. Similar to schema induction, TOD-Span constrained on PCFG achieves the best performance.

<table>
<thead>
<tr>
<th>belief state</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>15.6</td>
</tr>
<tr>
<td>DSI</td>
<td>13.9</td>
</tr>
<tr>
<td>TOD-Span + PCFG</td>
<td>16.4</td>
</tr>
<tr>
<td>Ground truth</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Table 3: Response generation results on MultiWOZ. Our method introduces positive inductive bias.
5 Analysis

Comparison among different methods Our results show that in general, span-based pre-training methods outperform token-based, and continued pre-training on in-domain data is important. When regularized by unsupervised parsing structures, we observe a large performance boost on TOD-BERT and TOD-Span, however the PCFG structure does not help BERT and SpanBERT when the LM is trained on general domain data only. We speculate that the LM representation trained on general text is not compatible with the in-domain structure induced via self-supervision. In addition, we believe that the performance gap between our proposed method and previous research using rules from supervised parsers (such as NPs and coreference) is larger when the data is less biased (for example, if NP is not dominant as slot values, Du et al., 2021).

Meanwhile, we acknowledge that since we extract phrases as candidates of slot values, our DST cannot deal with other linguistic features such as coreferences and ellipses annotated in MultiWOZ and SGD. This partially explains the relatively low performance on the full zero-shot DST task. However, these features are not important for schema induction since the majority of the slot values can be found as phrases in the raw conversation, which can further be categorized into slot types. Obtaining better performance on DST is out of the scope of this paper.

Ablation studies Table 4 illustrates the performance comparisons with different numbers of clustering steps, as well as input representations. Results demonstrate that compared to one-step (using masked span representation) and two-step (adding utterance representation), our three-step clustering method induced a more fine-grained schema, which is more effective for downstream tasks. The number of steps can be customized to real use cases depending on target granularity. In addition, if we use the original input rather than the masked phrase representation, the performance drops by a large margin (85.71 on slot type). This suggests that the surrounding context information is more critical than the surface embeddings for schema induction, especially when the same phrase can serve different functions even in the same domain (such as locations).

Error analysis Suggested by the relatively high span extraction accuracy (68.13 F1 score) from Table 7 in Appendix A.4, we find that the majority of the problems in DST come from cluster mapping. This is caused by either excessive surrounding information or by the lack of context from previous turns. For instance, in the utterance “Can I book it for 3 people”, the “3 people” can be mapped to either “restaurant-book people” or “hotel-book people”, since we extract the contextual information from the current turn only. If more context is considered, the mapping performance including results on downstream tasks is expected to improve. Another issue is with span boundary. Even though we apply fuzzy matching, the evaluation still penalizes correct predictions (such as “indian food”) from its ground truth (“indian”), since we do not have training signals to identify the target boundaries.

6 Conclusion

In this paper, we propose a fully self-supervised method for schema induction. Compared to previous research, our method can be easily adapted to unseen domains and tasks to extract target phrases before clustering into fine-grained groups without domain constraint. We conduct extensive experiments and show that our proposed approach is flexible and effective in generating accurate and useful schemas without task-specific rules. We believe that our method could also be applied to other languages (since no supervised parser is required) and tasks such as question answering where the answering phrase is not explicitly annotated (Min et al., 2019). In the future, we plan to extend our method to problems with more complex structures and data where slots are less trivial to identify.

5 More steps (> 3) were also conducted but we observed lower Silhouette coefficient and lower quality in preliminary studies.
7 Ethical Considerations

Our intended use case is to induce the schema of raw conversations between a real user and system, where the conversation is not structured or constrained. Our experiments are done on English data, but our approach can be used for any language, especially because our method does not require any language-specific tools such as parsers which generally require a lot of labeled data. We hope that our work can reduce design and annotation cost in building dialog systems for new domains, and can inspire future research on this practical bottleneck in applications.

References

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng Ji, Clare R. Voss, Jiawei Han, and Avirup Sil. 2016. Liberal event extraction and event schema induction. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 258–268, Berlin, Germany. Association for Computational Linguistics.

Jiaming Shen, Yunyi Zhang, Heng Ji, and Jiawei Han. 2021. Corpus-based open-domain event type induction.

A Appendices

A.1 Implementation details

For language model further pre-training, we implement our code based on Wu et al. (2020a) where the training data and hyperparameters are kept the same. Their evaluation script is used to show results on the standard supervised dialog state tracking with the full-data and few-shot learning setting. We run all experiments on three random seeds and report the average score. The TOD-BERT baseline is the “TOD-BERT-JNT-V1” provided by Wolf et al. (2020). For span-based pre-training methods, we use the provided “spanbert-base-cased” model from Joshi et al. (2020) as the initial checkpoint and add a span boundary object. For random masking, we use a 15% masking budget and sample a span length by geometric distribution with \(p = 0.2 \) and clip the max length to 10. For other masking methods, we follow Levine et al. (2021) by considering n-grams of lengths 2 to 5 which appear more than 10 times in the corpus. We choose the top 10 - 20% of n-grams by each criterion so about half of the tokens can be identified as part of correlated n-grams. We also experimented with different number of n-grams to mask and evaluate on both pre-training loss and DST results, but did not observe significant difference. We further pre-train using the same data as TOD-BERT with early stopping by prediction loss. For the attention distribution used to define our distance function, we use the eighth layer of the model suggested by Kim et al. (2020). We modify Jin and Schuler (2020) to train our unsupervised PCFG model using their suggested hyperparameters on the data cleaned by Wu et al. (2020a). All our experiments run on eight V-100 GPUs. The training time varies from three hours to 14 hours.

For the baseline DSI, we run their provided public codebase on the same MultiWOZ 2.1 data and SGD dataset respectively (since each corpus has different schemas in the output space, we cannot pre-train on more task-oriented dialog data), following their suggested hyperparameters on the best model DSI-GM.

For our auto-tuned multi-step clustering, we set the minimum number of samples per cluster by dividing the total number of samples by 5, 10, 15, 20, 25 and choose the best one auto-tuned by the Silhouette coefficient. A more rigorous grid search can potentially generate better performance on our tasks. All other parameters are kept as default in HDBSCAN.

A.2 Algorithm

Algorithm 1 shows the algorithm for span extraction. For simplicity, we compare the distance from left to right for both the settings with and without PCFG structure. For using language model only, we merge tokens into phrases if their distance if small. If PCFG structure is constrained, we compare the distance between tokens and check if their corresponding nodes belong to the same parent. In practice, we implement the PCFG span extraction from bottom to top where we merge tokens into nodes from the lower level and represent the tokens with merged nodes. At each level, we compare the distance between consecutive nodes. To illustrate this process, for example in Figure 2, we compare the distance between the node “modern” and “global cuisine”, and the distance between “a restaurant” and “which” to check if they are siblings in the same level. Since “which” is not merged in a lower level, itself serves as the node whereas “a restaurant” serves as the node for “restaurant”. All merged phrases, with left-out unigrams, are considered as candidate extracted spans.

Algorithm 2 shows the algorithm for auto-tuned multi-step clustering. For each step, the input to the clustering algorithm (HDBSCAN) is the embeddings of spans (or utterances in the second step) grouped from the previous step. In other words, for each sub-groups clustered by the previous step, we further cluster the embeddings into fine-grained groups. Figure 3 illustrates this process. The clustering algorithms returns groups of embeddings and corresponding labels (0, 1, \ldots) and we choose the minimum number of samples per cluster based on Silhouette score. We filter clusters where the frequent spans of each sub-cluster are the same, indicating that there is only one value for this cluster. We consider the rest clusters as the input to the next step, or return as our final clusters.

A.3 Supervised DST results

Wu and Xiong (2020) suggest that further pre-training on TOD data (Wu et al., 2020a) helps generating better utterance-level representation, but less so for other features such as slots. To encourage better span-level representation, we further pre-trained a SpanBERT model on TOD data by masking spans based on frequency, Pointwise Mutual Information (PMI), symmetric conditional probability (SCP, Downey et al., 2007), and segmented
Algorithm 2: Auto-tuned Multi-step Clustering

Require: $\text{Rep}_\text{span} = \text{Rep}_1^\text{span}, \text{Rep}_2^\text{span}, \ldots, \text{Rep}_n^\text{span}$: masked span representation (hidden states of LM by replacing extracted spans with [MASK] token)

Require: $\text{Rep}_\text{utt} = \text{Rep}_1^\text{utt}, \text{Rep}_2^\text{utt}, \ldots, \text{Rep}_n^\text{utt}$: utterance-level representation (hidden states of LM on [CLS] token)

Require: min_nums: a list of candidate values to set for minimum samples for cluster. This is not sensitive to the clustering results.

1: $\text{input}_\text{embeddings} \leftarrow \text{Rep}_\text{span}$
2: $\text{clusters} \leftarrow \text{input}_\text{embeddings}$
3: for step i in multi-steps do
4: for $\text{input}_\text{embeddings}_i$ in clusters do
5: $\text{clusters}_i \leftarrow \max_i$ {silhouette_score($\text{HDBSCAN}(\text{input}_\text{embeddings}_i, \text{min}_\text{num}_i)$)} \{Clustered group of embeddings\}
6: if $\text{step}_i = 1$ then
7: if all sub-clusters share the same frequent span then
8: ignore $\text{input}_\text{embeddings}_i$, continue the for loop \{filter clusters with only one value\}
9: end if
10: $\text{clusters}_i \leftarrow$ corresponding Rep_utt for each item in clusters_i \{Use utterance-level representation for the second step clustering\}
11: end if
12: end for
13: $\text{clusters} \leftarrow \{\text{clusters}_i$ for all i in the current step\}
14: end for

<table>
<thead>
<tr>
<th>Model</th>
<th>Joint Acc.</th>
<th>Slot Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT</td>
<td>45.6</td>
<td>96.6</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>1.5</td>
<td>81.1</td>
</tr>
<tr>
<td>ToD-BERT</td>
<td>46.0</td>
<td>96.6</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>49.0</td>
<td>96.9</td>
</tr>
<tr>
<td>freq</td>
<td>49.7</td>
<td>97.0</td>
</tr>
<tr>
<td>freq w/o stop</td>
<td>47.3</td>
<td>96.8</td>
</tr>
<tr>
<td>PMI</td>
<td>48.7</td>
<td>96.9</td>
</tr>
<tr>
<td>PMI_seg</td>
<td>49.4</td>
<td>97.0</td>
</tr>
<tr>
<td>SCP</td>
<td>48.3</td>
<td>96.8</td>
</tr>
</tbody>
</table>

Table 5: Supervised DST results with the full-data setting. Results show that span-based methods outperform token-based pre-training methods, and this improvement is not from the initial checkpoint. Different masking methods achieve similar performance.

PMI (Levine et al., 2021) following recent research, together with randomly masking contiguous random spans. Implementation details can be found in Appendix A.1. Here we evaluate different pre-trained methods on the standard DST benchmark.

Table 5 and Table 6 shows the performance of supervised DST performance evaluated on joint accuracy and slot accuracy with the full data and few-shot data (1 - 10%), respectively. Note that this was not used to choose the best model to perform schema induction and related tasks. These results compare different pre-training methods to illustrate the quality of the initial checkpoints on a more standard benchmark. As shown similarly in recent work, TOD-BERT can only show marginal improvement over BERT averaged over different random seeds. Meanwhile, SpanBERT when used as an initial checkpoint is not stable at downstream DST tasks even if multiple random seeds were tested. However, after further pre-training on task-oriented dialog dataset, TOD-Span achieve significantly better performance in both the few-shot and full-data setting. When comparing different span masking methods, random masking (TOD-Span) is quite effective. Although freq and PMI_seg
Table 7: Span extraction results on manually labeled utterances. Results show that constrained on unsupervised PCFG structure, our span-based further pre-training method TOD-Span achieves the best recall (68.13), close to the ground truth performance (78.83).

Table 7: Span extraction results on manually labeled utterances. Results show that constrained on unsupervised PCFG structure, our span-based further pre-training method TOD-Span achieves the best recall (68.13), close to the ground truth performance (78.83).

A.4 Span Extraction Results

Table 7 shows the recall for span extraction results. We manually annotate 200 user utterances so that acceptable span boundaries would not be penalized. For instance, given the utterance “I need to book a hotel in the east that has 4 stars”, instead of the DST annotation “hotel-starts: 4” and “hotel-area: east” together with coreference and annotation errors that cannot be detected from the context, we manually annotate the candidate spans as [“in the east”, “the east”, “east”] and [“4 stars”, “has 4 stars”, “4”] which relaxes the rigid requirement of strict matching of slot values. Compared to fuzzy matching, this evaluation is cleaner. Because of the annotation errors and coreference that a value does not appear in the current utterance, the ground truth score is 78.83. Similar to our schema induction and DST evaluation results, we observe that constraining on predicted structures can increase model performance. In particular, using an in-domain self-supervised PCFG structure and achieve similar or even better performance than using a supervised parser. We only evaluate recall here because there are non-meaningful spans extracted, and is not important to downstream tasks since they are potentially filtered by our clustering method.

A.5 Clustering

Figure 4 shows the clustering results after the first step. This shows that we can get some coarse clusters with non-meaningful groups (such as “thank you”). Some slot types (such as day of the week as “wednesday”) are not distinguished by their domain and intent. Further clustering can generate more fine-grained schema.

A.6 Schema induction on training portion

Table 8 shows the results for schema induction and DST when the schema is induced on the training portion of MultiWOZ data. Our method significantly outperforms the strong DSI baseline.

Table 8: Results for schema induction and DST when the schema is induced on the training portion of MultiWOZ data. Our method significantly outperforms the strong DSI baseline.

A.7 SGD results

Table 9 shows the schema induction and DST results on SGD dataset. Results suggests that our method achieves comparable or better performance than the strong DSI baseline even though our number of clusters is a magnitude smaller. See text for analysis.

Table 9: Schema induction and DST results on SGD dataset. Results suggests that our method achieves comparable or better performance than the strong DSI baseline even though our number of clusters is a magnitude smaller. See text for analysis.
Figure 4: Clustering after first step. Grey labels are outliers detected by HDBSCAN. The numbers in each group represent a latent cluster label, and the texts represent the most frequent phrase in cluster.

information (SGD has less average tokens per turn and more turns per dialogue). Thus the mapping from relatively noisy clusters to ground truth creates errors for downstream tasks, especially that the evaluation metric require exact match of slot types.

A.8 Schema results

Table 10 shows detailed results comparison on different proposed methods on schema induction. All methods result in a similar number of clusters, while span-based further pre-training methods constrained on unsupervised PCFG structures achieve the best performance overall.
<table>
<thead>
<tr>
<th>method</th>
<th># clusters</th>
<th>precision</th>
<th>recall</th>
<th>f1</th>
<th>precision</th>
<th>recall</th>
<th>f1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSI</td>
<td>522</td>
<td>96.15</td>
<td>80.65</td>
<td>87.72</td>
<td>41.53</td>
<td>57.40</td>
<td>37.18</td>
</tr>
<tr>
<td>Parser only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>88</td>
<td>94.44</td>
<td>54.84</td>
<td>69.39</td>
<td>42.26</td>
<td>67.80</td>
<td>47.46</td>
</tr>
<tr>
<td>DSI cand.</td>
<td>113</td>
<td>100.00</td>
<td>74.19</td>
<td>85.19</td>
<td>56.46</td>
<td>60.80</td>
<td>49.71</td>
</tr>
<tr>
<td>PCFG</td>
<td>339</td>
<td>96.43</td>
<td>87.10</td>
<td>91.53</td>
<td>62.14</td>
<td>58.01</td>
<td>53.62</td>
</tr>
<tr>
<td>CoreNLP</td>
<td>292</td>
<td>96.15</td>
<td>80.65</td>
<td>87.72</td>
<td>57.80</td>
<td>63.18</td>
<td>54.43</td>
</tr>
<tr>
<td>Language model only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>340</td>
<td>96.00</td>
<td>77.42</td>
<td>85.71</td>
<td>62.11</td>
<td>58.60</td>
<td>55.80</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>343</td>
<td>96.30</td>
<td>83.87</td>
<td>89.66</td>
<td>56.34</td>
<td>51.95</td>
<td>45.21</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>219</td>
<td>96.30</td>
<td>83.87</td>
<td>89.66</td>
<td>63.58</td>
<td>57.64</td>
<td>50.89</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>374</td>
<td>96.00</td>
<td>77.42</td>
<td>85.71</td>
<td>54.88</td>
<td>69.13</td>
<td>55.29</td>
</tr>
<tr>
<td>freq</td>
<td>100</td>
<td>93.33</td>
<td>45.16</td>
<td>60.87</td>
<td>47.31</td>
<td>63.32</td>
<td>45.97</td>
</tr>
<tr>
<td>freq w/o stop</td>
<td>337</td>
<td>95.65</td>
<td>70.97</td>
<td>81.48</td>
<td>48.63</td>
<td>63.66</td>
<td>48.27</td>
</tr>
<tr>
<td>PMI</td>
<td>369</td>
<td>100.00</td>
<td>80.65</td>
<td>89.29</td>
<td>53.97</td>
<td>73.60</td>
<td>56.38</td>
</tr>
<tr>
<td>PMI_seg</td>
<td>551</td>
<td>96.55</td>
<td>90.32</td>
<td>93.33</td>
<td>60.37</td>
<td>66.68</td>
<td>58.33</td>
</tr>
<tr>
<td>SCP</td>
<td>374</td>
<td>96.00</td>
<td>77.42</td>
<td>85.71</td>
<td>55.06</td>
<td>61.23</td>
<td>51.78</td>
</tr>
<tr>
<td>Language model contrained on unsupervised PCFG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>350</td>
<td>96.15</td>
<td>80.66</td>
<td>87.72</td>
<td>58.85</td>
<td>57.49</td>
<td>52.32</td>
</tr>
<tr>
<td>SpanBERT</td>
<td>203</td>
<td>96.30</td>
<td>83.87</td>
<td>89.66</td>
<td>60.54</td>
<td>48.23</td>
<td>44.51</td>
</tr>
<tr>
<td>TOD-BERT</td>
<td>245</td>
<td>96.43</td>
<td>87.10</td>
<td>91.53</td>
<td>55.40</td>
<td>57.26</td>
<td>48.13</td>
</tr>
<tr>
<td>TOD-Span</td>
<td>290</td>
<td>100.00</td>
<td>93.55</td>
<td>96.67</td>
<td>61.34</td>
<td>67.26</td>
<td>58.71</td>
</tr>
<tr>
<td>freq</td>
<td>379</td>
<td>100.00</td>
<td>83.87</td>
<td>91.23</td>
<td>56.67</td>
<td>68.19</td>
<td>57.19</td>
</tr>
<tr>
<td>freq w/o stop</td>
<td>315</td>
<td>96.55</td>
<td>90.32</td>
<td>93.33</td>
<td>56.40</td>
<td>66.43</td>
<td>53.74</td>
</tr>
<tr>
<td>PMI</td>
<td>335</td>
<td>96.55</td>
<td>90.32</td>
<td>93.33</td>
<td>57.90</td>
<td>67.50</td>
<td>56.91</td>
</tr>
<tr>
<td>PMI_seg</td>
<td>275</td>
<td>96.55</td>
<td>90.32</td>
<td>93.33</td>
<td>55.19</td>
<td>65.04</td>
<td>54.54</td>
</tr>
<tr>
<td>SCP</td>
<td>290</td>
<td>100.00</td>
<td>90.32</td>
<td>94.92</td>
<td>53.62</td>
<td>65.31</td>
<td>53.00</td>
</tr>
</tbody>
</table>

Table 10: Schema induction results for different proposed methods.