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ABSTRACT

Generative Al has the potential to transform personalization and accessibility of
education. However, it raises serious concerns about accuracy and helping stu-
dents become independent critical thinkers. In this study, we designed a helpful
yet fallible Al “Peer” to help students correct fundamental physics misconceptions
related to Newtonian mechanic concepts. In contrast to approaches that seek near-
perfect accuracy to create an authoritative Al tutor or teacher, we directly inform
students that this Al can answer up to 40% of questions incorrectly. In a random-
ized controlled trial with 165 students, those who engaged in targeted dialogue
with the Al Peer achieved post-test scores that were, on average, 10.5 percentage
points higher—with over 20 percentage points higher normalized gain—than a
control group that discussed physics history. Qualitative feedback indicated that
91% of the treatment group’s Al interactions were rated as helpful. Furthermore,
by comparing student performance on pre- and post-test questions about the same
concept, along with experts’ annotations of the Al interactions, we find initial
evidence suggesting the improvement in performance does not depend on the cor-
rectness of the Al. With further research, the Al Peer paradigm described here
could open new possibilities for how we learn, adapt to, and grow with Al

1 INTRODUCTION

Students have recently been exposed to the remarkable capabilities of Generative Al (Al) in educa-
tion (AIED). For example, OpenAI’s ChatGPT has been reported to successfully support teaching
preparation, assessment design and grading, and student learning (Lo, 2023)). Systems like ChatGPT
show potential to save time and enhance teaching and learning, including critical and higher-order
thinking tasks (Lo}, |2023).

However, there is limited concrete evidence whether these tools are effective at improving student
learning outcomes (Samson R}[2025). In fact, LLMs are well-reported to hallucinate information and
provide sycophantic answers (Wei et al.|[2023; |Perez et al.,|2023), suggesting that AI could actually
be detrimental to student learning if it introduces inaccuracies and biases into classroom materials.
Given that an increasing large number of students are now using Al to help them with their school
assignments (Foundation, 2024}, there is a growing concern that students must be taught ‘Al literacy’
to recognize and evaluate potential errors generated by LLMs (Wineburg & Ziv, 2024). Although
recent techniques such as Retrieval-Augmented Generation (Piktus et al., [2020) have improved the
veracity of generated content, experts disagree on whether hallucinations will be consistently pre-
ventable even in the future (Samson R} [2025) — and they are clearly not today. Thus, there is an
urgent need to determine whether AIED can be an effective tool for education despite these inherent
limitations.

This research evaluates the potential of LLMs to support student learning through text-based con-
versations in an introductory university physics class. The study explores how LLMs can be used
to facilitate learning of physics concepts, positioning the AIED as a non-expert peer rather than an
expert teacher. Students complete a modified Force Concept Inventory (FCI) as a pre-test. Our Al
Peer is prompted with the mistakes made by each student, resulting in a personalized discussion fo-
cused on the identified misconceptions. Students then completed the standard FCI as a post-test that
asesses the same concepts via a different questionnaire. Our results showed that the treatment group,
after a focused discussion with the Al, experienced significantly higher learning gain between tests



Under review as a conference paper at ICLR 2025

compared to the control group, who discussed physics history with the Al companion. Importantly,
our Al, which leverages the full abilities of GPT-40 without any artificial reduction, was not a reli-
able source of truth; it answered up to 40% of the FCI questions incorrectly. Thus, this study marks
a first step towards achieving a comprehensive individualized approach to Al-assisted education by
aligning human expectations to current limitations of generative Al.

Our key contributions include:

* An experimental framework for measuring AI's educational capabilities. In our experi-
ment, we create a new FC and focus on physics. The framework can be extended to other
domains and other Al systems.

» Showing that Al can help correct common, deep-seated physics misconceptions that per-
sisted over the first half of a semester of traditional instruction.

* A “peer” rather than “instructor” approach that we find preserves learning, while lowering
barriers in how much Al accuracy is needed. With further research, this could potentially
expand the areas in which we can benefit from Al, while empowering the development of
human critical thinking skills.

2 LITERATURE REVIEW

Educators, policymakers, EdTech companies, and students are generally optimistic about the po-
tential for Al to deliver personalized education, despite the limited evidence that these tools can
be effective at improving student learning outcomes (Samson R} 2025)). In a systematic review of
113 papers relating to AI Education tools, (Chiu et al.| (2023)) found that, while AIED can gener-
ally improve student motivation and output, methods used to evaluate AIED were often ineffective
at measuring students’ learning. The authors suggested further research is needed to “devise new
methods for evaluating the success of Al systems.” They also noted that, despite the potential of
AIED to provide equitable education through personalized feedback, Al could potentialy worsen
educational inequity if the AIED design process lacked consideration of pedagogy and learning
sciences.

Pedagogical research has identified numerous teaching strategies with the potential to significantly
accelerate student learning, as described by Hattie| (2009) in a synthesis of meta-analyses on stu-
dent achievement. Among them are discussion with another student (argumentation), and prompt
oriented or directional feedback. [Baidoo-Anu & Ansah| (2023) confirm that Al tools can enhance
teaching and learning experiences by supporting personalized and interactive learning. For instance,
students could leverage the capabilities of advanced generative Al to systematically explain com-
plex concepts. Mollick & Mollick]| (2023)) suggest several teaching strategies that could potentially
enhance student learning in the presence of Al while mitigating the associated risks of these tech-
nologies. Their research emphasizes the importance of maintaining human involvement in the edu-
cational process and positioning Al as a supportive tool rather than a substitute for human instruc-
tors. As|de Jong et al.[(2023) argue, an AIED that combines direct instruction with inquiry should
be more effective at explaining new concepts than having the Al directly answer student questions.
This is precisely the approach taken by Jurenka et al,| (2024), who tested an LLM-based support
tool with a class of 113 Arizona State University students. The tool, HallMate, could discuss course
videos, direct learners to relevant content, provide scaffolded homework help, and assist with time
management and broad learning strategies. The study tracked whether students used HallMate, how
they used it, and whether students felt it was useful. It also evaluated the pedagogical quality of the
conversations. While promising, this study focused on usability and engagement but did not attempt
to measure the impact of Al tools on students’ learning or performance.

To summarize, current studies on the role of Al in education tend to emphasize its potential for
improving teaching and learning experiences. While these studies aknowledge that Al is potentially
revolutionary in education—specifically because it can provide personalized content focused on
each student’s learning needs—they lack robust evaluation methods for assessing AIED’s impact on
student learning outcomes.

"Will be released in camera-ready.
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A common tool found in the education literature to evaluate students’ learning in a specified disci-
pline is the ‘Concept Inventory’ (Sands et al.,[2018)). This approach consists of a set of multi-choice
questions focused on testing conceptual understanding. In these evaluations, incorrect answers—
called distractors—align with common student misconceptions. Thus, because they are standard-
ized, these types of tests can measure the effectiveness of an instructional method by comparing
student scores on matched questions before and after instruction.

The first concept inventory test—the ‘Force Concept Inventory’ (FCI)—aimed to elicit students’
misconceptions about fundamental Newtonian mechanics that were generally deep-held and there-
fore difficult to correct through conventional physics instruction (Halloun & Hestenes| [1985}
Hestenes et al [1992). Given [Costello et al.| (2024)’s recent success in reducing deep-held beliefs
in conspiracy theories through dialogue with Al, we theorize that this application will transfer into
education; that is, discussion with generative Al may reduce students’ deep-held erroneous beliefs
about fundamental Newtonian mechanics. We draw inspiration from that work for some aspects of
the experimental setup, such as having students explain their reasoning in their own words. Mean-
while, the FCI is a robust tool that lets us both identify misconceptions and evaluate the effectiveness
of Al for this application.

One challenge with this approach to measure the effectiveness of general purpose Al as a teaching
tool is its propensity to produce false explanations and to hallucinate. Similarly, there is growing
concern that students lack the ‘digital literacy’ required to critically evaluate online content, in-
cluding outputs of generative Al (Wineburg & Zivl, [2024). One key element of digital literacy is
determining the credibility of the source (McGrew & Breakstonel [2023)). This suggests that students
should be instructed to be skeptical of Al explanations.

Our primary goal in this study is to evaluate the effectiveness of a fallible Al as a tool for addressing
misconceptions in an educational context, using the FCI as a robust and trusted scientific measure of
learning outcomes. We theorize that generative Al will show potential as a tool to effectively address
student misconceptions in physics education, despite its well known limits. The results of this study
can support future AIED tools to be evaluated for effectiveness at improving student learning, as
well as contribute to the growing body of literature exploring the use of general purpose Al to fight
other types of misconceptions, such as disinformation and conspiratorial beliefs

3 METHODOLOGY
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Figure 1: Study procedure showing pre-test, interaction, and post-test phases.

This study uses an online experiment approach designed to assess the effectiveness of an Al com-
panion for helping undergraduate physics students overcome common misconceptions in Newtonian
mechanics. We are measuring the learning outcomes by comparing the results of a Force Concept
Inventory test (Hestenes et al., [1992)) pre- and post-interaction with the Al companion. The pre-test
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was modified from the original FCI to reduce improvements resulting from additional thinking time,
or memorization of correct answers during interaction with the Al. The students had prior exposure
to the post-test, which they took at the beginning of the semester approximately 2 months prior to
our experiment, but they had not been provided with the answers. The misconceptions are catego-
rized in six sub-concepts: Kinematics, Newton’s First Law, Newton’s Second Law, Newton’s Third
Law, the Superposition Principle, and Kinds of Force.

The experiment was administered to 165 undergraduate students enrolled in an introductory physics
course from a North American R1 university. Students completed the experiment on a dedicated
website, created for the purpose of this study, during their in-class lab sessions with passive super-
vision from their regular teaching assistant (not part of the research team). We divided students into
two groups with equal probability. Students in the treatment group interacted with Al to discuss
their incorrect answers on the pre-test and were informed that the AI should be seen as a fallible
peer, rather than an authoritative teacher, while students in the control group interacted with an Al
to discuss their answers on a test about a historical figure in physics. We filter out students who
failed an attention check, and ones who spent less than 5 minutes on the post-test (indicating a lack
of effort). This resulted in 141 valid respondents, with 71 in the control group and 70 in treatment.
The main experiment design, with results reported later in Table [2| was pre-registeredE] Below, we
describe each condition in more details.

3.1 EXPERIMENTAL SETUP
3.1.1 CoNTROL GROUP

The first group, serving as the control group, begins by taking a modified version of the FCI test
for 35 minutes. This modified test (also referred to as the pre-test) was specially created by our
team to have 30 questions similar to and assessing the same core Newtonian mechanics concepts
as the original FCI of Hestenes et al.[(1992). After completing the pre-test, students were asked to
interact with an Al for up to 40 minutes. First, we identify all the wrong answers on the pre-test
by comparing with the answer key. The website then presents each wrong answer to the student in
a random sequence, covering all the categories of misconceptions. The sequence works as follows:
each student was presented with one question they answered incorrectly; they were then asked to
explain their reasoning for that answer; after this step, they were presented with a multiple choice
question about a specific historical figure in physics; they were then asked to interact with the Al
companion to discuss this historical figure for three rounds of conversation. These questions were
provided one at a time, and the student had to interact with the Al chatbot companion before moving
on to the next wrongly answered question in the pre-test. There were a total of 30 questions about
historical figures, so students could review up to 30 incorrect answers in the pre-test. Thus, the
students are informed which pre-test questions they got wrong, and interacting with the Al has a
1-1 correspondence with those wrong answers, but the control group students do not discuss those
questions with the Al. The students then proceed to take the original FCI test that was described in
Hestenes et al.[(1992) (also referred to as the post-test) for an additional 30 minutes.

3.1.2 TREATMENT GROUP

The treatment group mirrors the control group, except that instead of talking about physics history
questions with the Al, they talk about the questions they got wrong on the pre-test. Specifically, the
40-minute middle portion of the experiment was sequenced as follows: each student was presented
with one question they answered incorrectly; they were then asked to explain their reasoning for that
answer; after this step, the Al Peer was provided the student’s explanation and instructed to correct
the misconception, explain the correct answer and help students grasp the underlying concepts cov-
ered in the question (see Prompt[A.T.2)). Like the control group, the students interact with the Al for
three conversation turns. Finally, they rate the helpfulness of the Al on the question at hand, before
moving on to the next wrongly answered question. All other aspects of the experiment, such as the
pre-test and the post-test, are identical between both groups.

2 Anonymized; details available upon request.
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3.2 AI AS A PEER, NOT AUTHORITY

Prior to the beginning of the experiment, the students were informed that the Al should not be viewed
as an authoritative teacher, but more like a peer, who is helpful but can answer questions incorrectly.
To evaluate the performance of the Al, we prompted it to answer pre-test questions. We tested Ope-
nATl’s GPT-40-2024-08-06. Since the pre-test contains 13 accompanying images depicting various
physics problems, we had a PhD student write descriptions of each image. We fed these descrip-
tions, along with the question information, to the models to evaluate their average performance over
5 iterations. We additionally tested the multimodal GPT-40 model on the original images. We set
temperature to 0.7 for GPT-40. All other settings were default.

On average, GPT-40 got 59% of pre-test questions correct over 5 iterations when using written
image descriptions (broken down question-by-question in Figure [3). When looking at performance
per number of images descriptions in the question text, the model performed better on questions with
fewer images (see Table[I). GPT-4o0 using images rather than image descriptions performed worse,
only getting 49% of questions correct over 5 iterations. This reduction in performance is caused by
the Al getting confused about the direction and overlap of lines and dotted lines, especially when
they appear close to each other.

Table 1: Accuracy drops as the number of images in a pre-test question increases,
suggesting GPT-40’s reasoning struggles with multiple image descriptions

Number of Images Correctness (%) (%) of Total Questions

0 67.69 43.33
1 62.22 30.00
>2 26.67 26.67

3.3 MEASURING THE LEARNING EFFECT (GAIN)

We measure the learning effect using Hake’s normalized gain g, which is expressed as

_ post% — pre%
100 — pre%

where pre and post are the mean pre-treatment test and post-treatment test scores of all students
respectively (Hakel |[1998). The normalized gain g is intended to measure the gain of a class as a
fraction of the possible remaining gain on the assessment, allowing comparisons of improvements
in different classes regardless of the mean pre-test score. This measure of gain also makes sense for
individual students. For example, students with an individual normalized gain g of 0 have scored the
same on the pre-test and post-test. For positive gains of less than 1, students have improved by that
fraction of the possible improvement available to them.

(D

However, the above measure is also known to suffer from several downsides for individual students.
For instance, the individual gain g of a single student who usually performs well can become negative
with a large magnitude if the student obtains a high score on the pretest but performs less well on the
post-test. In the extreme case where the student obtains a perfect score on the pretest, the individual
gain g is negatively infinite. We cannot even compute g for a student who scores perfectly on both the
pretest and post-test. However, calculating the class gain g as described above avoids these pitfalls,
since the average class pretest scores will almost always be far from perfect. For this reason, the
class gain g is widely employed to study student outcomes with concept assessments (Hake, |1998)).
Nevertheless, it is customary to consider normalized gain as merely one more piece of data in the
study of student outcomes, rather than a one-number-tells-all result. Therefore, we also conducted
an in depth human annotation of the Al interactions, and analyzed how those annotations relate to
student performance.

3.4 RESOURCES AND DATA COLLECTION

Students used a website developed for the purpose of this research. Participation was anonymous:
students received a unique login combination from their teaching assistant to access the website. We
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tracked user behavior, such as time spent on the tests, their inputs to the Al and the resulting model
replies, and ratings of AI helpfulness after each interaction. In a short survey before the pre-test, we
collected opinions on students’ excitement/concern about Al, confidence in their work/educational-
related Al abilities, as well as their use of Al (see Figure[A.7).

4 RESULTS

Table 2: Treatment group showed significantly higher post-test scores and
normalized gain, suggesting the intervention was effective

Metric Control Treatment p-value
Pre-Test 51.5 50.7 0.769
Post-Test 62.7 73.2 0.001
Normalized Gain 27.6 47.9 0.0001

4.1 STUDENT PERFORMANCE ON THE FCI TESTS

As shown in Table[2] the treatment group’s post-test scores improved by 10.5 percentage points more
than those of the control group. This suggests that the Al Peer had a positive impact on reducing
physics misconceptions. The differences in post-test scores, improvement, and gain between the
treatment and control groups were statistically significant (p < 0.01). Meanwhile, we confirm
that their pre-test scores (50.7% treatment vs 51.5% control) did not have statistically significant
differences (p = 0.769). Across both groups, students scored worse on the pre-test. Without having
used the Al companion, the control group answered on average 62.7% of questions correctly on the
post-test, compared to a 51.5% correct rate on the pre-test; a difference of +11.2%. The treatment
group answered on average 73.2% of questions correctly on the post-test, compared to a 50.7%
correct rate on the pre-test; a difference of +22.5%. This result suggests that the treatment group
received a meaningful learning effect from the Al.

4.2 HUMAN EVALUATION OF AI OUTPUTS

4.2.1 STUDENT FEEDBACK

Table 3: Most students found the treatment Al interactions either very helpful or
fairly helpful, with only a small number rating them as unhelpful

Rating Count
Very helpful 420
Fairly helpful 327
Uncertain 37

Fairly unhelpful 18
Very unhelpful 20

Table [3] shows that 91% of interactions, rated after every 3-round dialogue in the treatment group,
were qualified as fairly or very helpful by our Physics graduate students. This result, combined
with Table [2| indicates that not only did the treatment group perform better objectively after Al-
interaction, they also found the Al interactions informative subjectively. Open-input feedback, from
the end of the experiment, also indicated that the Al was generally helpful, albeit giving lengthy
responses.

Meanwhile, a significant number of students said they found the experiment to be too long (90+ min-
utes, 60 total FCI questions), especially those completing the study in the early evening lab session.
Also, many students indicated that they had wished to see their test results. And students suggested
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removing the fixed three-round dialogue. For instance, on some occasions, students understood
their misconception after the first Al message. On others, students indicated desire to continue the
conversation after the final round was already over.

4.2.2 GRADING THE AI INTERACTIONS

To develop a deeper understanding of the interactions that took place and their impact on learning,
a team of six physics graduate students analyzed the AI system prompt and conversations. The
interactions were randomly shuffled, and graded according to 6 unique criteria (Table [).

First, we assessed whether the Al explained the key physics concept that the student needed to
understand for the respective question. In approximately 55% of interactions the Al explained it
clearly and in 25% it touched on it, but in the remainder of interactions it either did not address it
(9%) or explained it inaccurately (11%).

We then analyzed the overall number of inaccurate physics statements by the Al, regardless whether
they were about the key concept or not. Nearly 20% of interactions contain at least one definitively
incorrect statement. Furthermore, we also analyzed whether the Al made ambiguous or misleading
statements, even if they weren’t definitively wrong. There was at least 1 such statement in 36% of
interactions. For example, the Al might say “the sled goes in a straight line for a moment”, in a
context where the sled would actually continue in a straight line for an extended period of time — so
the AT’s statement is technically true, but potentially misleading.

These evaluations show that the Al is making a significant number of dubious statements. To better
understand how this affected the student, we then analyzed whether the student appeared to accept
or reject the Al explanation — and if they accepted it in a case where it was wrong and they appeared
to learn the key concept incorrectly. Here, 86% accepted the explanation, and an additional 6%
appeared to learn the concept incorrectly, while the remainder did not accept the explanation. We
caution that this analysis of what was revealed in the conversation does not necessarily indicate what
will stay with the student as they potentially reflect further beyond the moment. It provides some
suggestive evidence, though, that the students are indeed thinking critically in some interactions, ex-
plaining even key concepts inaccurately does not necessarily translate into inaccurate understanding
of the student.

We also assessed student engagement, finding that while 40% of interactions were clearly engaging
the Al, 43% had moderate or uncertain engagement with short responses, and 16% were clearly
disengaged. This could be an area for further improvement of the system.

4.2.3 GRADER QUALITATIVE FEEDBACK

A focus-group discussion among graders allowed us to distill their observations into comprehensive
feedback on the Al interactions. The graders noted that the Al often fails to identify and address
student’s specific misconceptions. Rather than focusing on the error, such as a misconception about
Newton’s laws, the Al tended to provide a lengthy general explanation of the entire problem. The
AT’s first message initializing the conversation was typically clear. However, longer interactions
revealed that the Al can get sidetracked, especially when the student asked probing questions. The
emphasis on long explanations and general (and often repeated) analogies sometimes left little room
for meaningful student input. When students’ responses imply a misconception, the Al rarely asks
them to elaborate before providing an explanation; missing an opportunity for deeper interaction.
Raters suggest that a more inquisitive and interactive approach could stimulate students’ “mental
gears” by prompting them to reason from first principles. One rater recommended that the Al should
first identify the students’ misconception, ask them to explain why it’s wrong, and elaborate on their
reasoning. Then, instead of a one-size-fits-all explanation with generic analogies, the Al could focus
more correcting their misconceptions, based on their faulty reasoning.

By providing a more interactive approach, students would be probed to correct their reasoning from
within, guided by the Al, rather than learn from the AI’s all encompassing explanation of the prob-
lem. At the same time, the increase in interactivity, combined with flexible number of rounds in the
interaction, could increase engagement and elicit better learning.
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4.2.4 PERFORMANCE OF THE Al VS. PERFORMANCE OF THE STUDENT

We finally seek to understand the impact of interaction quality on post-test performance. We par-
ticularly exploit the construction of the pre-test FCI, where each question is paired with a post-test
question on the same concept. This means that we can trace the entire trajectory of a student through
the experiment at the individual concept level, as well as in aggregate.

In Figure [2] we examine the impact of how well the AI addressed the key concept, on whether
the student answered the corresponding post-test question correctly. For each concept, the outcome
variable is the binary correct/incorrect result of the post-test question, and the independent variable is
the expert annotation of the interaction quality. For each possible annotation, we plot the percentage
of cases where the student answered the post-test question correctly.

100 Post-test Performance vs. Al Evaluation
90 Point-Biserial r=-0.01

p=0.914 o8
Y. 1% p— % 68.9%
38 (n=33.0) (n=24.0) NEAS (n=161.0)
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20
10
0

Percentage Correct

Al Evaluation

Figure 2: Post-test performance against graded quality of the Al Peer’s responses per interaction

One might expect that students would do better when the Al gives a clear explanation of the key
concept, and worst when it explains the key concept incorrectly. But instead we see approximately
and statistically equal performance regardless of Al explanation quality. This suggests that rather
than directly internalizing the AI explanation, it is more the process here that is key, where the
student critically thinks about and discusses a concept with the AI. As shown in Appendix [A.6.1]
we find similar results with our other annotation types.

5 DISCUSSION

Our results show that Al intervention led to a statistically significant improvement in post-test scores
and normalized gains compared to the control group. This is in spite of the stubbornness of the
misconceptions described by Halloun & Hestenes| (1985): persisting after weeks of traditional ed-
ucation. Thus, Al-led dialogue has promising potential to remediate deep-held misconceptions in
educational settings. Further research is warranted to explore potential improvements to the design
of the Al Peer, and our understanding of the applications of this technology, such as application in
other learning areas. Implications extend beyond direct educational gains in science subjects; if we
can apply this concept to other domains such as critical and higher-order thinking, tools like our Al
companion may support humans to build robust critical cognition skills, and better assess uncertain
information at large.
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5.1 LIMITATIONS AND FUTURE WORK

While the results show promise, there are several limitations and areas for further research. We
established that the treatment group had a statistically and practically significant improvement after
talking with the Al in spite of the AI’s imperfect response quality. On the one hand, our approach
of emphasizing critical assessment of the Al responses, where the students are told the Al is sig-
nificantly inaccurate, can open new application areas (where Al would otherwise be too inaccurate
to use) and potentially empower and grow student thinking. On the other hand, though, a more
accurate Al might simply be better at teaching. This could potentially become particularly salient,
for example, if trying to boost students’ understanding from 90% to 100%, rather than the roughly
60% to 70% average score range here. Thus, while we hope this work will open doors towards Al
Peers as an education tool, there remain many open questions on this paradigm.

A logical first step is to test reasoning models like OpenAI’s 03 that exhibit superior performance on
complex reasoning tasks and application of knowledge on unfamiliar tasks, like our newly created
FCI questions. After conducting the study here, we tested 03 using our pre-test and achieved a
score of 83% over 5 iterations (Figure [d) — significantly higher than GPT-40’s 59%. Its costs were
comparable to GPT-40, and inference speed was fast enough for interaction with the user, suggesting
this is a promising model to experiment with.

Another limitation is the nature of the dialogue. To begin with, in educational settings, interaction
length should not be fixed at three rounds; instead, the student should be free to engage for as long
or as briefly as they prefer. Furthermore, graders indicated that the Al tended to provide lengthy,
generic responses with repetitive analogies. This led to poorer engagement; students were uninter-
ested when subjected to too lengthy texts and simultaneously not being probed to explain aspects of
their misconceptions to the model. This could at minimum reduce usage of such a tool in real set-
tings and limit its impact, and also may be significantly limiting how much students can learn from
it if it could be more to-the-point and motivating. To resolve this, a first step could be prompting the
Al to be more inquisitive and better elicit misconceptions from students during the dialogue, instead
of providing a more generic explanation of the problem. This has the potential to both increase
engagement, and provide a more tailored experience that better reduces underlying misconceptions.
More sophisticated approaches like fine-tuning, targeted RLHF, and leveraging adaptive feedback
loops could also be considered. Through tools like these, an Al Peer might be better equipped to
detect subtle misconceptions and engage students more deeply, fostering a personalized learning
experience.

Finally, the duration and scope of the research could be expanded. Since the post-test was singular
and immediately after the treatment, we do not know if the treatment resulted in a durable reduction
of students’ misconceptions, so longitudinal studies are needed. Furthermore, studies in other do-
mains would be valuable to assess how efficacy varies. The experimental setup used here can easily
be applied to any other domain where high-quality pre- and post-tests exist or can be created, such
as mathematics, biology, and social sciences—domains where conceptual understanding is equally
critical. Likewise, future research could explore its application across different educational lev-
els, including K-12 and community college settings, to better address the diverse learning needs of
students. Overall, by expanding the scope here, we hope this framework could lead to significant
improvements in the accessibility and efficacy of personalized education.
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A APPENDIX

A.1 PROMPTS
A.1.1 AI cCOMPLETING FCI QUESTIONS

Prompt = {questionText}

Answer the multiple choice question above. You must start the
answer with a single letter (a,b,c,d,e), then write a vertical
bar ’|’, followed by your explanation.

A.1.2 AI INTERACTING WITH THE TREATMENT GROUP

This is the system prompt provided to the Al when interacting with the student:

Prompt = ‘Your goal is to very effectively persuade students to
rethink and correct their misconception about the physics
concept related to the question they got wrong on a conceptual

physics test (like the Force Concept Inventory). You will be
having a conversation with a person who specifically got this
question wrong:

{questionText}
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The correct answer was option {correctAnswer}, but the
student chose {userAnswer}. Furthermore, we asked
the student to provide an open-ended response

explaining their reasoning for the answer, which
is summarized as follows:

{explanation}

Please generate a response that provides gradual
support to clarify their understanding, beginning
from familiar ideas and building step-by-step
toward the correct concept. Use relatable examples

and invite reflection, encouraging them to
question and reconsider their assumptions based on

their own reasoning. Use simple, clear language
that an average person will be able to follow, and

structure the conversation so they gain
confidence at each step and adjust their thinking
gradually. At the end of each of your messages,
ask the student a question about remaining
questions or doubts, or encourage them to
reformulate their thoughts, in a way that spurs
further discussion.®

A.1.3 SYNTHETIC MISCONCEPTIONS

This is the system prompt provided to the AI when generating synthetic misconceptions:

Prompt = Given the question {questionText}. Provide a plausible
and false physics-related reasoning explaining why option {
option} is the answer. Your role is to pretend to be a junior
university student whose answers and reasonings are not
correct. You can answer the question in 1st or 3rd person."

A.2 Al PERFORMANCE ON THE PRE-TEST

Average % correct on pre-test (gpt-40) per question (over 5 iterations)
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Figure 3: Performance of gpt-4o on the pre-test
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Average % correct on pre-test (03-mini) per question (over 5 iterations)
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Figure 4: Performance of 03-mini on the pre-test

A.3 STUDENT PERFORMANCE PLOTS

A.3.1 NORMALIZED GAIN BREAKDOWN

Distribution of Normalized Gain by Group
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Number of Students
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Figure 5: The treatment group showed higher, more consistent gains,
while the control group had a wider spread and partial negative gains
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A.3.2 IMPROVEMENT PER QUESTION CATEGORY

Improvement on Initially Incorrect Questions from Pre-Test to Post-Test
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Figure 7: Percentage Correct and User Count by Maximum Time Spent on Post-Test
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A.3.4 SCORES BY GROUP ON PRE-TEST

Percentage of correct answers per question by group on the pre-test
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Figure 8: Average Scores per Question in the Pre-Test

A.3.5 SCORES BY GROUP ON POST-TEST

Percentage of correct answers per question by group on the post-test
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Figure 9: Average Scores per Question in the Post-Test
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A.3.6 DISTRIBUTION OF CORRECT ANSWERS ON PRE-TEST
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Figure 10: Distribution of Correct Answers on Pre-Test

A.3.7 DISTRIBUTION OF CORRECT ANSWERS ON POST-TEST
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Figure 11: Distribution of Correct Answers on Post-Test
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Table 4: Evaluation Criteria for Three-Round Interactions with the Al

Category

Description

Al Evaluation

54.95% — Found the key physics concept the student needed to understand
and explained it clearly

25.26% — Touched on the key concept that the student needed to understand,
but did not focus on it significantly

8.53% — Did not address the key concept on which the student required
correction

11.26 % — Explained the key concept inaccurately, leading to potential damage

to the student’s understanding

Number of Inaccurate
Physics Statements

79.86% : 0 Inaccurate Physics Statements
15.70% : 1 Inaccurate Physics Statements
3.41%
0.68 %

: 2 Inaccurate Physics Statements

: 3 Inaccurate Physics Statements

Number of Misleading or
Ambiguous Physics State-
ments

63.36% : 0 ambiguous/misleading statementss
28.77% : 1 ambiguous/misleading statements
6.85% : 2 ambiguous/misleading statements

1.03% : 3 ambiguous/misleading statements

Student’s Reception

86.21% — Student accepted AI’s explanation
7.59% — Student did not accept the AI’s explanation

6.21% — The conversation resulted in the student learning the concept

incorrectly

Student Engagement 40.27 % — Student was especially engaged with the Al, characterized by longer
responses and interest
43.34% — Student was only moderately engaged with the Al, providing short
responses
16.38 % — Student was noticeably disengaged from the Al discussion

Al Summary in System | 76.52% — Good summary

Message

19.13% — Summary is more confident than the student, but generally agrees
3.48% — States the opposite of the student (e.g., student says ”I didn’t know

fact X and the summary says “fact X”’) or something unrelated
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A.4 GRADING TREATMENT Al RESPONSES

A.5 CHATTING BEHAVIOR

Chat Count

Chat Activity vs Pre-Test Performance by Question (Treatment Group)
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Figure 12: Chat Activity for % Wrongly Answered Pre-Test Questions

A.6 PERFORMANCE ON THE CONTROL TEST

Average % Correct
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Figure 13: Performance on the Control Test Against Number of Answers
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2;; A.6.1 CORRELATION BETWEEN POST-TEST RESULTS AND GRADED METRICS
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Figure 15: Post-test performance against the number of inaccurate statements per interaction
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Figure 17: Post-test performance against student reception of the Al Peer per interaction
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A.7.2 QUESTION 2

How often do you use Generative Al?
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Figure 20: Frequency in use of Al (e.g. ChatGPT / Midjourney)

A.7.3 QUESTION 3

How confident do you feel in your ability to use Generative Al tools effectively in educational or work settings?
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Figure 21: Confidence in use of Al in work/ educational settings
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