
Under review as submission to TMLR

Federated Learning with Efficient Local Adaptation for Real-
ized Volatility Prediction

Anonymous authors
Paper under double-blind review

Abstract

Financial markets are inherently complex, with private trading activities distributed across
various exchanges and platforms, leading to isolated datasets and fragmented data sources.
Learning from limited local data leads to inaccurate realized volatility prediction due
to incomplete representations of market dynamics. Federated learning (FL) can foster
collaborative insights while ensuring privacy and regulatory compliance across diverse trading
platforms. However, heterogeneity in datasets and dynamic participation making FL for
financial markets slow and inaccurate. To address this issue, we propose Federated Learning
with Efficient Local Adaptation (FLELA). The key idea is to enhance the local model
with probabilistic techniques, including local linearization of the global model and a crucial
optimization step to fine-tune parameters, so each participants can apply enhanced local
model to achieve higher accuracy. Through extensive experimental evaluations, FLELA
consistently outperforms existing federated learning algorithms, demonstrating superior
predictive accuracy and efficiency in realizing volatility prediction. Even in the face of
significant data fragmentation across massive trading venues, the proposed FLELA can
achieve mean loss of 7.358×10−5, VaR95% of 2.284×10−4, and CVaR95% of 3.978×10−4 in
merely five rounds of FL, which is one order better than the state-of-the-art FL approaches,
underscoring its efficacy and superiority.

1 Introduction

Predicting realized volatility within the realm of deep hedging is a critical task in financial forecasting, crucial
for effective risk management and strategic investment decisions. Financial markets inherently produce
fragmented, asynchronous data across multiple trading venues. These platforms do not release their data to
any third party, due to privacy concerns, regulatory restrictions, and technical challenges Kairouz et al. (2021).
The fragmentation of trading data across various exchanges or venues significantly impacts the accuracy and
reliability of realized volatility predictions. When data is scattered across different platforms, the collective
understanding of the market state is incomplete. Volatility prediction, which often relies on comprehensive
market data to assess price movements and liquidity, can suffer from inaccuracies or biases. Each exchange
may display varying liquidity levels and pricing for the same asset, leading to potential misestimations of
volatility if one exchange’s data does not reflect broader market conditions Otero (2002)Madhavan (2000).

Implementing a federated learning (FL) system allows each trading platform to retain control over its data
while contributing to a collaborative model that predicts realized volatility. This approach addresses privacy
and regulatory concerns by avoiding direct data sharing Yang et al. (2019). However, there are unique
challenges in financial markets faced by FL. Trading platforms may not always be available to participate
in training due to operational constraints or schedules. The timing of data updates and the frequency of
trades vary across platforms, challenging the federated model training in predicting volatility Hasbrouck
(2007). Varying availability, communication limitations, and regulatory restrictions lead to dynamic federated
training environment, which slows down the training speed. Furthermore, the communication intervals
between updates can significantly exceed the time required for local computations, reflecting the on-and-off
nature of trading activity McMahan et al. (2017). It is crucial to mitigate the risk of training stagnation
which often occurs when the system overly relies on trading platforms that are slow to respond.

1

Under review as submission to TMLR

When applying FL across multiple trading platforms, the inherent heterogeneity of local datasets and
the dynamic nature of participation highlight the importance of tailoring the global model to the specific
characteristics of each trading platform’s data. To deliver robust performance with heterogeneous trading
platform datasets and the varying participation rates of different trading platforms, we propose a novel
approach that leverages the strengths of FL alongside local adaptation, i.e., Federated Learning with Efficient
Local Adaptation (FLELA). Our method involves linearizing the trained global model suitable for fast local
optimization. By leveraging enhanced linearized local training and adaptive strategies, FLELA demonstrates
its effectiveness in local realized volatility prediction. Furthermore, we integrate inductive biases into a
probabilistic framework, utilizing the Jacobian matrix of the deep neural network model as the kernel. This
enables interpretable posterior inference in function space, providing precise estimates of uncertainty and
predictive distributions for local realized volatility prediction Jacot et al. (2018). This allows each trading
platform to quickly and effectively fine-tune the global model to better capture the unique characteristics
of its local market data, thereby improving the accuracy of volatility predictions. The experimental results
show that across diverse trading platform distributions and varying participation rates, FLELA consistently
achieves lower mean loss, Value at Risk (VaR95%), and Conditional Value at Risk (CVaR95%) values,
underscoring its versatility and robustness.

In the following sections, we summarize related work in Section 2 and describe the fragmented financial
markets and our problem formulation in Section 3. We explain our proposed method for efficient local
adaptation using probabilistic frameworks in Section 4. We then present empirical evaluations of our approach
in Section 5, discuss the implications of our findings, and explore avenues for future research in Section 6.

2 Related Work

In the context of financial markets, particularly when addressing the challenge of predicting realized volatility
using order book data, the concept of FL can be particularly relevant due to the decentralized nature of data
acquisition Banabilah et al. (2022). Order books in financial markets, which record buy and sell orders for
securities, represent a dynamic and fragmented data environment, i.e., data islands, that can benefit from FL
approaches Hasbrouck (2007).

The existing FL methods face specific limitations when applied to realized volatility prediction in financial
markets. The high heterogeneity, rapid data changes, and need for timely updates in financial environments
necessitate more adaptive and efficient FL methods. By limiting the impact of local updates that deviate
significantly from the global model, FedProx Li et al. (2020) introduces a proximal term to the local objective
function to stabilizes the optimization process. Financial markets exhibit significant heterogeneity in trading
activities and market conditions across different exchanges and platforms Arthur et al. (2018)Cantillon & Yin
(2011). Although FedProx mitigates some effects of heterogeneity, its proximal term may not fully capture the
complex, dynamic nature of financial data. The proximal term can slow down convergence, which is critical in
high-dynamic trading scenarios where rapid model updates are essential. While SCAFFOLD Karimireddy et al.
(2019) introduces control variates to correct the drift in local updates, ensuring better alignment with the global
model, the rapidly changing nature of financial data can still lead to significant misalignments between local
and global models, affecting prediction accuracy Boukherouaa et al. (2021). Although FedPer Arivazhagan
et al. (2019) allows each client to have a personalized model by decoupling the shared global parameters from
the client-specific local parameters, the high variability and unpredictability in financial markets may require
frequent adjustments to the personalized models, complicating the learning process. Managing and updating
personalized models for a large number of participants can be resource-intensive, potentially limiting the
scalability of FedPer in large-scale financial networks.

Recent advancements have expanded our understanding of DNN behavior, revealing that infinitely wide DNNs
behave similarly to their associated Taylor expansions around initialization Chizat et al. (2019). This analysis
was extended to finite-width DNNs, demonstrating similarities to linear models during training Seleznova &
Kutyniok (2022). Further research investigates the inductive biases of linearized neural networks, finding
that they can effectively summarize full network functions Maddox et al. (2021). These insights inspire our
research, addressing the challenge in federated learning (FL) where the global model may not capture the
unique characteristics of each trading platform’s local data, resulting in suboptimal local volatility predictions.

2

Under review as submission to TMLR

The proposed FLELA aims to refine the global model through adaptive local training, enhancing accuracy
for local trading platforms.

3 Fragmented Financial Markets

3.1 Background

In financial markets, private trading occurs across numerous exchanges and platforms, leading to the creation
of isolated datasets. Each platform maintains its own transaction and order book data, reflecting buy and sell
orders and their execution. This fragmentation offers a partial view of market activity for any given asset,
with significant variations in prices and order depth across platforms Hasbrouck (2007).

The order book is a vital tool for traders, providing insights into short-term trading decisions by displaying
order imbalances and potential support and resistance levels for a stock. Realized volatilities tend to increase
when directional movements become more frequent, reflecting heightened market activity and uncertainty.
Trading data represents executed transactions in the market, offering insights into market dynamics such
as price movements and trading volumes. Predicting short-term realized volatility is essential for risk
management and trading strategies. By analyzing order book and trade data within fixed time intervals, we
aim to forecast future volatility levels, enabling better decision-making and risk mitigation.

Extracting insights from order book data is crucial for understanding market dynamics and assessing stock
value. Metrics such as the bid-ask spread, weighted average price, and volume-related metrics provide valuable
information about market liquidity and potential volatility. FL is desirable for all trading platforms because
it enables them to leverage a global model that incorporates diverse data sources, leading to more robust and
accurate local predictions while preserving data privacy and confidentiality.

3.2 Problem Formulation

Consider a distributed dataset consisting of n data sample pairs {xi, yi}n
i=1 across |E| trading platforms.

Each data sample pair represents features extracted from order book and trading data, with xi denoting the
feature vector and yi representing the corresponding label, which is the volatility. There are 363 features
for each sample generated from order book and trading data, capturing essential market dynamics such as
bid-ask spreads, price movements, and trading volumes.

We denote the local dataset of the c-th trading platform as Pc, which contains nc training samples. The
union of all local datasets from each trading platform, P1 ∪ P2 ∪ · · · ∪ P|E|, encompasses the entire dataset,
ensuring that each sample belongs to exactly one trading platform’s dataset. For trading platform c, the
labels {yi}i∈Pc represent the volatility levels observed in the corresponding platform’s trading data. These
volatility labels are used as the ground truth for training the predictive model.

We aim to develop a predictive model, represented by a deep neural network function f , which maps an input
feature vector x to an output volatility prediction y. The model is trained using the distributed dataset
across multiple trading platforms, leveraging the features extracted from order book and trading data to
predict future volatility levels accurately. The local objective function for trading platform c is defined as

minimize
w

Lc(w) = 1
2

∑
i∈Pc

(f(xi, w)− yi)2 for c = 1, · · · , |E|. (1)

Meanwhile, the global objective function, aggregating the local objectives across all trading platforms, is
given by

minimize
w

L(w) = 1
|E|

|E|∑
c=1

Lc(w). (2)

This formulation underscores the decentralized nature of the data and the collaborative effort involved in
training a neural network model across multiple trading platforms.

3

Under review as submission to TMLR

4 Federated Learning with Efficient Local Adaptation (FLELA)

In this section, we propose Federated Learning with Efficient Local Adaptation (FLELA) to address the
challenges of heterogeneous local datasets and dynamic participation in financial markets. While the global
objective function in (2) aims to capture general patterns across all trading platforms, it may not fully
encapsulate the unique characteristics of each local dataset, leading to suboptimal performance for individual
platforms in (1). FLELA enables each trading platform to adapt the globally trained model to its specific local
data. Initially, trading platforms collaboratively train a global model, ensuring data privacy and leveraging
collective knowledge. Following this, each platform fine-tunes the global model through adaptive local training,
adjusting the parameters to better fit local market data. This approach enhances the accuracy of volatility
predictions by combining the strengths of FL with tailored local adaptations, effectively addressing the
heterogeneity of local datasets and the dynamic nature of the financial markets.

4.1 Federated Training Procedure

The initial values of the weights play a crucial role in the efficiency of the training process. Arbitrary initial-
ization methods can impede training progress, potentially leading to slow convergence or even stagnation Xie
et al. (2017). To ensure stable and effective training, it’s essential to maintain consistent variance in the
activation distributions as the network deepens. The initial weights are drawn from a Gaussian distribution
with a mean of zero and a standard deviation that is inversely proportional to the square root of the number
of input units, which is expressed as w0 ∼ N

(
0, 1/
√

nin
)
, where w0 represents the initial weight vector, and

nin denotes the number of input units feeding into the layer. Drawing weights from a distribution tailored
to the network architecture helps maintain a balanced variance in the activation distributions, which helps
prevent issues such as vanishing or exploding gradients, promoting smoother gradient flow and more stable
training dynamics.

Each training round unfolds in a dynamically evolving environment where the participation of trading
platforms fluctuates unpredictably. The subset of trading platforms engaging in FL training, denoted as
St ⊆ |E|, remains uncertain and is subject to variation. To mirror the dynamic participation characteristic
of real-world scenarios, we simulate the participation set St by sampling it from a predefined distribution,
where we explore Exponential, Geometric, Gamma, and Chi-square in this work.

Upon determining the active participants for round t, the current global model wt is distributed to the
selected trading platforms in St. These platforms then initialize their local models for the training round by

{wt
c,0 = wt}c∈St , (3)

where wt
c,0 represents the initial local model weights for trading platform c at the onset of round t. This

approach ensures that all participating trading platforms commence the round with identical copies of the
global model, fostering collaboration within the dynamic participation environment. For the local training on
trading platform c, corresponding to financial market data, the k-th step of updating the model is formulated
as

wt
c,k+1 = wt

c,k − αl∇Lc(wt
c,k), (4)

where αl represents the local learning rate, tailored to the specific dynamics of each platform. The local
training process extends over K iterations, resulting in the final local model

wt
c,K = wt −

K∑
k=1

αl∇Lc(wt
c,k), (5)

which integrates weighted gradient descents across all local steps. The discrepancy between the local and
global models after K iterations is quantified by

△wt
c = wt

c,K −wt, (6)

illustrating the divergence of each trading platform’s model from the initial global parameters in the context
of financial market data. The aggregation of these local updates to form the next iteration of the global

4

Under review as submission to TMLR

model is governed by

wt+1 ← wt +
αt

g

|St|
∑
c∈St

△wt
c, (7)

where the contribution of each local model is normalized by the number of participating trading platforms
and adjusted by the global learning rate αt

g in the round t, ensuring an equitable update based on collective
learning within the financial market context. This step marks the conclusion of the t-th round, preparing for
subsequent rounds of federated learning in the dynamic environment of financial markets.

4.2 Local Adaptation Procedure

The global model w∗, obtained after FL training, may not be fully optimized or may exhibit poor local
performance due to the diverse nature of local datasets and the dynamic participation. Nonetheless, it serves
as the baseline for adaptive local training. To derive the local adaptive training strategy, we consider a given
neural network model function f . We can approximate f around the trained model parameters w∗ using a
Taylor expansion

f(x; w) ≈ f(x; w∗) + Jw∗(x)T (w −w∗), (8)

where Jw∗(x) denotes the Jacobian matrix of partial derivatives of f with respect to the model parameters at
w∗, with dimensions p× |Pc|. This Jacobian represents the sensitivity of the output with respect to changes
in the model parameters near w∗.

We formulate the probabilistic model governing the output y, given input features x extracted from order
book and trading data, and model parameters w as

p(y |x, w) = N
(
f(x; w), σ2

c

)
= 1√

2πσ2
c

e
− (y−f(x;w))2

2σ2
c , (9)

where σ2
c represents the variance associated with the Gaussian noise, capturing the inherent uncertainty and

noise in the model predictions of volatility. This distribution’s mean is specified by the linear approximation
obtained from the Taylor expansion of f , with a variance σ2

c .

For volatility prediction in financial markets using federated learning, deviations from the baseline global
model w∗ influence the mean prediction through the Jacobian adjustment, while the Gaussian term N (0, σ2

c)
accounts for the stochastic nature of the predictions. This framework establishes a robust basis for trading
platforms to adapt and retrain the global model locally, ensuring performance optimization tailored to the
unique characteristics of individual datasets.

For each trading platform c with its local dataset {(xi, yi)}|Pc|
i=1 , the likelihood function quantifies the probability

of observing the given data. It incorporates both the individual variances from the Gaussian noise and the
deviations of the model predictions from actual data points. This integration is captured by the model’s
output and its linear approximation around w∗ which is formulated as

Pc(w) = 1
(2πσ2

c)
|Pc|

2

exp

− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2

 . (10)

This formulation enables trading platforms to effectively assess the fit between their local data and the global
model, guiding them in refining the model parameters to better capture the underlying patterns in volatility
dynamics.

For rapid local adaptation within our financial market volatility prediction, we transform the likelihood
function into its logarithmic form as

log(Pc(w)) = −|Pc|
2 log(2πσ2

c)− 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2, (11)

5

Under review as submission to TMLR

which simplifies the expression by converting the product of probabilities into a sum of logarithms, lin-
earizing the effects of the parameters and enhancing the tractability of the optimization problem. Notably,
− 1

2σ2
c

∑|Pc|
i=1(yi − f(xi; w))2 represents the sum of squared residuals, adjusted by the inverse of the noise

variance σ2
c .

Therefore, the local adaptation process can be formulated as minimizing the following loss function

L̂c(w) = 1
2σ2

c

|Pc|∑
i=1

(yi − (f(xi; w∗) + Jw∗(xi)T (w −w∗)))2 + |Pc|
2 log(2πσ2

c), (12)

which comprises a term that evaluates the sum of squared deviations between the predicted volatility and the
actual volatility, scaled by the noise variance σ2

c , and a constant term that standardizes the loss based on the
dataset size and noise level in the context of local financial market data.

We define Jw∗ = {Jw∗(xi)}Pc
i=1 as the collection of Jacobian matrices of the model’s predictions with respect

to the features generated from order book and trading data, evaluated at w∗. The sum of the outer products
of these Jacobian matrices across all data points forms a symmetric matrix, which can be expressed as

|Pc|∑
i=1

Jw∗(xi)Jw∗(xi)T = Jw∗JT
w∗ , (13)

which reflects the covariance structure of the gradients, capturing the sensitivity of the model’s predictions to
the features derived from the trading platforms’ data. To facilitate a clearer understanding and to simplify
computations in practice, this loss function can be reformulated as

L̂c(w) = (w −w∗)T 1
2σ2

c

Jw∗JT
w∗(w −w∗)− (w −w∗)T 1

σ2
c

Jw∗(yc − fc)

+ 1
2σ2

c

(yc − fc)T (yc − fc) + |Pc|
2 log(2πσ2

c),
(14)

where fc = {f(xi; w∗)}Pc
i=1 and yc = {yi}Pc

i=1. It quantifies the balance between the model’s internal
predictions and the observed deviations from the actual volatility outcomes, scaled by the noise variance, σ2

c .
This local loss function is critical for adapting the global model to better fit the specific characteristics of the
local trading platform’s data. The local model adaptation is achieved by setting the gradient of the designed
local loss function, ▽▽▽L̂c(w), to zero as

▽▽▽L̂c(w) = 1
σ2

c

Jw∗JT
w∗(w −w∗)− 1

σ2
c

Jw∗(yc − fc) = 0. (15)

By solving this equation, we identify the stationary point, which is typically a minimum for a well-defined
convex function

w = (Jw∗JT
w∗)−1Jw∗(yc − fc) + w∗, (16)

which suggests that the local model adaptation is proportional to the pseudo-inverse of the aggregated
Jacobian product, adjusted by the residuals between the observed volatility and the model’s predicted
volatility. Importantly, the term (Jw∗JT

w∗)−1Jw∗ only needs to be computed once, providing significant
computational efficiency.

When predicting for a new data sample, xi derived from order book and trading data, the model leverages
both the learned parameters and the inherent variability in observations for making predictions by following
formulation

ŷi = f(xi; w∗) + Jw∗(xi)T (Jw∗JT
w∗)−1Jw∗(yc − fc) +N (0; σ2

c). (17)

This formula represents the linearized update to the model’s prediction, adjusted by the newly optimized
parameters, and includes a Gaussian noise term, which accounts for the inherent uncertainty in the prediction.
It plays a crucial role in ensuring a realistic forecast of local volatility.

6

Under review as submission to TMLR

By incorporating the baseline prediction using the global model parameters f(xi; w∗), the adjustment to the
prediction based on the local training data Jw∗(xi)T (Jw∗JT

w∗)−1Jw∗(yc − fc) and the inherent variability in
the predictions, we provide an adaptive approach to predicting volatility, tailored to the unique characteristics
of each trading platform’s data. This approach ensures that the predictions remain both accurate and robust,
even in the face of dynamic and heterogeneous market conditions. The convergence analysis is shown in
Appendix A.

5 Experiments

5.1 Local Training and Test Datasets Design

We aim to forecast short-term volatility for 112 stocks spanning multiple sectors Andrew Meyer (2021). The
dataset comprises both order book and trade data for these stocks, aggregated into multiple time buckets.
The values in the order book represent the latest snapshots of market activity, taken at one-second intervals.
Each time bucket comprises order book data spanning the 600 seconds. Our experiments involve predicting
the volatility for each time bucket of the stocks. There are 428, 932 samples in the entire dataset, where
107 of the stocks have data for 3830 time buckets, while 3 stocks have data for 3829 time buckets, 1 stock
has data for 3820 time buckets, and another stock has data for 3815 time buckets. The entire dataset is
divided into 10, 000 trading platforms based on a Dirichlet distribution-based non-IID setting Hsu et al.
(2019). The Dirichlet distribution’s concentration parameter, α, determines the stock distribution for each
trading platform which is set to 0.5 in our experiments. Each trading platform randomly splits its data into a
training set and a test set, with 20% allocated for testing. This setup allows us to estimate the performance
of each FL algorithm on each trading platform’s test set using its personalized model.

We compare the performance of the proposed FLELA to other state-of-the-art FL methods: FedProx Li
et al. (2020), SCAFFOLD Karimireddy et al. (2019), and FedPer Arivazhagan et al. (2019). The neural
network architecture comprises 363 elements in the input layer and 1 in the output layer. It includes 2 hidden
layers, each with 40 neurons using the Tanh activation function. The experimental results provide compelling
evidence supporting the contributions of FLELA in addressing the challenges of federated learning. We
employ stochastic gradient descent (SGD) optimization with a learning rate of 0.01 for both local and global
updating. The batch size for local update in each trading platform is 500. Our experimental platform features
an 8-core CPU, a 14-core GPU, and 16GB of RAM.

5.2 Performance Comparison

In Fig. 1, we present a comparative analysis of the proposed FLELA against baseline approaches across
varying levels of trading platform participation. Across various participation rates and rounds, FLELA
consistently outperforms other methods, including Individual Train, FedProx, SCAFFOLD, and FedPer, in
terms of mean loss, Value at Risk (VaR), and Conditional Value at Risk (CVaR). The Individual Train only
conducts local training with the same number of parameter updating as the other FL methods, i.e., 50 epochs
in Fig. 1(a)(c) and 200 epochs in Fig. 1(b)(d). As shown in Fig. 1(a), FLELA demonstrates rapid convergence
to low loss values even with only 10% trading platform participation over 5 rounds, with each trading platform
undergoing 10 local epochs, where FLELA achieves significantly lower mean loss (7.726e-05) compared to
Individual Train (0.0132), FedProx (0.0031), SCAFFOLD (0.0015), and FedPer (0.0017). Moreover, with a
trading platform participation rate of 30% over 20 rounds, FLELA continues to exhibit superior performance
with substantially lower mean loss, VaR95%, and CVaR95% values compared to other algorithms, as depicted
in Figures 1(c) and 1(d). These results underscore FLELA’s ability to adapt to heterogeneous trading
platform datasets and varying participation rates, effectively mitigating the risk of training stagnation and
ensuring robust and efficient federated model training. By leveraging enhanced linearized local training,
FLELA not only improves predictive accuracy but also addresses the challenge of insufficient training by
maximizing the utility of available data. Thus, the experimental findings provide strong empirical support for
FLELA’s advancement in federated learning, particularly in the context of realizing volatility prediction tasks
in dynamic financial environments with heterogeneous local datasets among numerous trading platforms.

7

Under review as submission to TMLR

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

0.020

0.025

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

(a) 5 Rounds, 10% Participation (b) 20 Rounds, 10% Participation

Mean VaR95% CVaR95%0.000

0.002

0.004

0.006

0.008

0.010

0.012

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

Mean VaR95% CVaR95%0.000

0.002

0.004

0.006

0.008

0.010

0.012

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

(c) 5 Rounds, 30% Participation (d) 20 Rounds, 30% Participation

Figure 1

8

Under review as submission to TMLR

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

0.020

0.025

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

(a) Exponential (b) Geometric

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

Mean VaR95% CVaR95%0.000

0.005

0.010

0.015

0.020

Lo
ss

FedProx
SCAFFOLD
FedPer
SuPerFed
FLELA

(c) Gamma (d) Chisquare

Figure 2

9

Under review as submission to TMLR

Table 1: The Computation Cost Comparison for One Round

Participation Rate Fedprox (s) SCAFFOLD (s) FedPer (s) SuPerFed (s) FLELA (s)
30% 74.39 105.9 46.18 99.63 48.16
60% 144.83 208.51 90.42 186.67 94.43

As shown in Fig. 2, we provide the comparative analysis across various participation distributions to evaluate
the efficacy of FLELA in addressing the inherent challenges of FL with dynamic participation. The experiments
were conducted with a 20% participation rate, 10 federated rounds, and 10 local epochs in each round.
As shown in Fig. 2(a) where trading platforms are sampled from an exponential distribution, with a scale
parameter of 1.0, FLELA demonstrates a remarkable ability to achieve a mean loss of 7.358× 10−5, VaR95%
of 2.284× 10−4, and CVaR95% of 3.978× 10−4, outperforming FedProx, SCAFFOLD, and FedPer by an
order. As shown in Fig. 2(b), where trading platforms are sampled from a geometric distribution with a
probability of success of an individual trial set at 0.35, FLELA once again emerges as the top-performing
algorithm. Fig. 2(c) explores the performance of algorithms when trading platforms are sampled from a
Gamma distribution, with a shape parameter of 2.0 and a scale parameter of 1.0. In Fig. 2(d), where trading
platforms are sampled from a chi-square distribution with the number of degrees of freedom set at 2.0, FLELA
continues to outshine the baseline algorithms.

By consistently delivering superior performance metrics, FLELA showcases its adaptability in scenarios
characterized by varying levels of data availability and participation. By consistently achieving lower mean loss,
VaR95%, and CVaR95% values, FLELA underscores its resilience and adaptability in optimizing federated
model training across a spectrum of trading platform distributions. These results indicate FLELA’s adeptness
at navigating volatile market conditions and optimizing federated model training even in the face of erratic
trading platform participation patterns.

5.3 Computation Cost Comparison

FLELA demonstrates efficient computation times across different participation rates, indicating its adaptability
to varying levels of trading platform involvement. This adaptability mitigates the challenge of irregular
participation by ensuring timely model updates and preventing stagnation in the federated learning process.
By achieving competitive computation times without compromising privacy or regulatory compliance,
FLELA enables collaborative model training across fragmented financial datasets. This privacy-preserving
collaboration addresses concerns related to data sharing restrictions and enhances the feasibility of federated
learning in decentralized financial environments.

Despite data fragmentation and irregular participation, FLELA maintains stable performance in predicting
realized volatility. Its robustness ensures reliable volatility estimates, crucial for risk management and
investment decision-making in dynamic financial markets. As shown in Table 1, at a participation rate of
60%, FLELA exhibits relative efficient computation time among the evaluated FL methods, with a processing
time of 94.43 seconds. This performance surpasses that of both Fedprox and SCAFFOLD, which require
144.83 seconds and 208.51 seconds, respectively. FedPer demonstrates comparable efficiency to FLELA, with
a computation time of 90.42 seconds. Considering Fedprox, SCAFFOLD, and FedPer require more rounds to
converge, the overall computation costs of FLELA is much lower. This numerical comparison underscores the
superior computational efficiency of FLELA.

6 Conclusions and Discussions

In conclusion, we introduce a novel approach FLELA tailored to address the challenges of FL in dynamic
financial environments. By leveraging probabilistic frameworks and local adaptation, FLELA demonstrates
remarkable adaptability and robustness in handling heterogeneous trading platform datasets and varying
participation rates. Through comprehensive experimental evaluations, FLELA consistently outperforms
existing FL algorithms, including FedProx, SCAFFOLD, and FedPer, in terms of predictive accuracy and

10

Under review as submission to TMLR

efficiency. The experimental results underscore FLELA’s potential in realizing volatility prediction tasks,
which are crucial for risk management and strategic decision-making in financial markets. In addition, the
proposed light-weight local adaptation will be applied for many other FL applications with heterogeneous
datasets and dynamic participants. In our future research, we aim to incorporate unobserved market factors
and refine our approximation methods to enhance predictive accuracy, particularly during periods of high
volatility or low liquidity.

References
CameronOptiver IXAGPOPU Jiashen Liu Matteo Pietrobon (Optiver) OptiverMerle Sohier Dane Ste-

fan Vallentine Andrew Meyer, BerniceOptiver. Optiver realized volatility prediction, 2021. URL
https://kaggle.com/competitions/optiver-realized-volatility-prediction.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

W Brian Arthur, John H Holland, Blake LeBaron, Richard Palmer, and Paul Tayler. Asset pricing under
endogenous expectations in an artificial stock market. In The economy as an evolving complex system II,
pp. 15–44. CRC Press, 2018.

Syreen Banabilah, Moayad Aloqaily, Eitaa Alsayed, Nida Malik, and Yaser Jararweh. Federated learning review:
Fundamentals, enabling technologies, and future applications. Information processing & management, 59
(6):103061, 2022.

El Bachir Boukherouaa, Mr Ghiath Shabsigh, Khaled AlAjmi, Jose Deodoro, Aquiles Farias, Ebru S Iskender,
Mr Alin T Mirestean, and Rangachary Ravikumar. Powering the digital economy: opportunities and risks
of artificial intelligence in finance. International Monetary Fund, 2021.

Estelle Cantillon and Pai-Ling Yin. Competition between exchanges: A research agenda. International
journal of industrial organization, 29(3):329–336, 2011.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. Advances
in neural information processing systems, 32, 2019.

Joel Hasbrouck. Empirical market microstructure: The institutions, economics, and econometrics of securities
trading. Oxford University Press, 2007.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS),
31:8571–8580, 2018.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems
in federated learning. Foundations and Trends® in Machine Learning, 14(1):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for on-device federated learning.
arXiv preprint arXiv:1910.06378, 2(6), 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

Wesley Maddox, Shuai Tang, Pablo Moreno, Andrew Gordon Wilson, and Andreas Damianou. Fast adaptation
with linearized neural networks. In International Conference on Artificial Intelligence and Statistics, pp.
2737–2745. PMLR, 2021.

11

https://kaggle.com/competitions/optiver-realized-volatility-prediction

Under review as submission to TMLR

Ananth Madhavan. Market microstructure: A survey. Journal of Financial Markets, 3(3):205–258, 2000.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Jorge Otero. High-frequency data, frequency domain inference, and volatility forecasting. Review of Economics
and Statistics, 84(4):669–681, 2002.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects of depth
and initialization. In International Conference on Machine Learning, pp. 19522–19560. PMLR, 2022.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution for
training extremely deep convolutional neural networks with orthonormality and modulation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176–6185, 2017.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
applications. In ACM Transactions on Intelligent Systems and Technology (TIST), volume 10, pp. 1–19.
ACM, 2019.

A Convergence Analysis

In each training round t, we dynamically select a subset of trading platforms St ⊆ E, where |St| = S denotes
the number of participating platforms in that round. The current global model wt−1 is distributed to all
selected platforms. Each participating platform i initializes its local model with the received global model,
i.e., wt

i,0 = wt−1. The local models are then updated through K iterations of stochastic gradient descent
(SGD) based on their local data. The update rule for the local parameters at iteration k is given by

wt
i,k = wt

i,k−1 − αl∇Li(wt
i,k−1), (18)

where αl is the local learning rate, and ∇Li(w) represents the stochastic gradient of the local loss function
Li at platform i. After K iterations, the final local model for platform i is

wt
i,K = wt−1 −

K−1∑
k=0

αl∇Li(wt
i,k). (19)

We assume that ∇Li(w) is an unbiased stochastic gradient with variance bounded by σ2. The global model
is updated by aggregating the updates from all selected local models. The update rule for the global model
with global step size αg is

wt = wt−1 + αg

S

∑
i∈St

(wt
i,K −wt−1) = wt−1 − αg

S

∑
i∈St

K−1∑
k=0

αl∇Li(wt
i,k). (20)

To facilitate the analysis, we define the effective step size as α̃ = Kαlαg. The update applied to the server
model in round t can be expressed as

δt−1 = − α̃

KS

∑
i∈St

K−1∑
k=0

∇Li(wt
i,k). (21)

The expectation of the server update, considering the participation of all platforms E, is

E[δt−1] = − α̃

K|E|
∑
i∈E

K−1∑
k=0

∇Li(wt
i,k). (22)

12

Under review as submission to TMLR

The reduction can be shown by examining the distance from the minimizer w∗

∥wt −w∗∥2 = ∥wt−1 + δt−1 −w∗∥2

= ∥wt−1 −w∗∥2 + 2
(
wt−1 −w∗)T

δt−1 + ∥δt−1∥2.
(23)

We use Et−1[·] to denote the expectation conditioned on all the randomness generated prior to round t. Thus,
we have

Et−1

[(
wt−1 −w∗)T

δt−1
]

= − α̃

K|E|
∑
i∈E

K−1∑
k=0

E
[
∇Li(wt

i,k)T
(
wt−1 −w∗)]

. (24)

We assume the eigenvalues of the Hessian of all {Li(w)}i∈E are bounded within (µ, β), and the quadratic
upper bound and quadratic lower bound for local objective function Li(wt−1) can be obtained as

Li(wt−1) ≤ Li(wt
i,k−1) + ▽▽▽Li(wt

i,k−1)T (wt−1 − wt
i,k−1) + β

2 ∥wt−1 − wt
i,k−1∥2, (25)

and
Li(w∗) ≥ Li(wt

i,k−1) + ▽▽▽Li(wt
i,k−1)T (w∗ − wt

i,k−1) + µ

2 ∥w∗ − wt
i,k−1∥2. (26)

Then, we can get

▽▽▽Li(wt
i,k−1)T (wt−1 − w∗) ≥ Li(wt−1)− Li(w∗) + µ

2 ∥w∗ − wt
i,k−1∥2 − β

2 ∥wt−1 − wt
i,k−1∥2. (27)

By Triangle inequality, we have

∥w∗ − wt
i,k−1∥2 ≥ 1

2∥w∗ − wt−1∥2 − ∥wt−1 − wt
i,k−1∥2. (28)

Combining with β ≥ µ, we can obtain

▽▽▽Li(wt
i,k−1)T (wt−1 − w∗) ≥ Li(wt−1)− Li(w∗) + µ

4 ∥w∗ − wt−1∥2 − β∥wt−1 − wt
i,k−1∥2. (29)

Therefore, we have

Et−1
[
(wt−1 −w∗)T δt−1]

≤ − α̃

K|E|
∑
i∈E

K−1∑
k=0

(
Li(wt−1)− Li(w∗) + µ

4 ∥w
t−1 −w∗∥2 − β∥wt

i,k−1 −wt−1∥2
)

.
(30)

The drift of the local model from the global model is formulated as

ε = 1
K|E|

∑
i∈E

K−1∑
k=0
∥wt

i,k−1 −wt−1∥2, (31)

then we obtain

Et−1
[
(wt−1 −w∗)T δt−1]

≤ −α̃
(

L(wt−1)− L(w∗) + µ

4 ∥w
t−1 −w∗∥2

)
+ α̃βε. (32)

For the sequence of local gradients {∇Li(wt
i,k−1)} during the training procedure, the variance is defined by

E[∥∇Li(wt
i,k−1) − E[∇Li(wt

i,k−1)]∥2]
= E[∥∇Li(wt

i,k−1)∥2]− 2∥E[∇Li(wt
i,k−1)]∥2 + ∥E[∇Li(wt

i,k−1)]∥2

= E[∥∇Li(wt
i,k−1)∥2]− ∥E[∇Li(wt

i,k−1)]∥2.

(33)

13

Under review as submission to TMLR

Similarly, we can get that

E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2]

= E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2]− ∥ α̃

KS

S∑
i=1

K−1∑
k=0

E[∇Li(wt
i,k−1)]∥2.

(34)

We assume the variance of local gradients is upper bounded by

E[∥∇Li(wt
i,k−1) − E[∇Li(wt

i,k−1)]∥2] ≤ γ2, (35)

and by Jensen’s inequality, we have that

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2

≤ α̃

KS

S∑
i=1

K−1∑
k=0
∥∇Li(wt

i,k−1)− E[∇Li(wt
i,k−1)]∥2.

(36)

Using the linearity of the expectation we have

E[∥ α̃

KS

S∑
i=1

K−1∑
k=0

(∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)])∥2]

≤ α̃

KS

S∑
i=1

K−1∑
k=0

E[∥∇Li(wt
i,k−1)− E[∇Li(wt

i,k−1)]∥2].

(37)

Then, we have the upper bound of Et−1
[
∥δt−1∥2]

as

Et−1

[
∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2

]
≤ ∥ α̃

KS

S∑
i=1

K−1∑
k=0

∇Li(wt
i,k−1)∥2 + α̃2γ2

KS
. (38)

By the triangle inequality, we have

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1) + ∇Li(wt−1)
)
∥2

≤ 2∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1)
)
∥2 + 2∥ α̃

S

S∑
i=1

∇Li(wt−1)∥2.

(39)

By Jensen’s inequality and the β-smoothness property, we have

∥ α̃

KS

S∑
i=1

K−1∑
k=0

(
∇Li(wt

i,k−1)−∇Li(wt−1)
)
∥2

≤ α̃

KS

S∑
i=1

K−1∑
k=0
∥∇Li(wt

i,k−1)−∇Li(wt−1)∥2

≤ α̃β2

KS

S∑
i=1

K−1∑
k=0
∥wt

i,k−1 −wt−1∥2.

(40)

14

Under review as submission to TMLR

We can also obtain

∥ α̃

S

S∑
i=1

∇Li(wt−1)∥2 = ∥ α̃

S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
+ ∇L(wt−1)∥2

≤ 2∥ α̃

S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
∥2 + 2∥α̃∇L(wt−1)∥2

≤ 2α̃2B + 4βα̃2 (
L(wt−1)− L(w∗)

)
,

(41)

by the triangle inequality, where we define the gradient dissimilarity is upper bounded by

∥ 1
S

S∑
i=1

(
∇Li(wt−1)−∇L(wt−1)

)
∥2 ≤ B. (42)

We can conclude that

Et−1[∥δt−1∥2] ≤ 2α̃β2ε + 4α̃2B + 8βα̃2 (
L(wt−1)− L(w∗)

)
+ α̃2γ2

KS
, (43)

and the improvement in one round is

Et−1[∥wt − w∗∥2] = ∥wt−1 − w∗∥2 + 2Et−1[(wt−1 − w∗)T δt−1] + Et−1[∥δt−1∥2]

≤ ∥wt−1 − w∗∥2 − 2α̃
(

L(wt−1)− L(w∗) + µ

2 ∥w
t−1 − w∗∥2

)
+ 2α̃βε + 2α̃β2ε + 4α̃2B + 8βα̃2 (

L(wt−1)− L(w∗)
)

+ α̃2γ2

KS

= (1− α̃µ)∥wt−1 − w∗∥2 + (8βα̃2 − 2α̃)
(
L(wt−1)− L(w∗)

)
+ 2α̃β(β + 1)ε + 4α̃2B + α̃2γ2

KS
.

(44)

Since the local updating is stochastic, and we have defined the variance of the sampled gradient from the full
local gradient as σ2

E∥gi(w)−∇Li(w)∥2 = σ2 = E∥gi(w)∥2 − ∥∇Li(w)∥2. (45)

If we define a = 1
K−1 , then we can obtain the upper bound of the expectation

E∥wt
i,k −wt−1∥2 ≤

(
1 + 1

K − 1

)
E∥wt

i,k−1 −wt−1∥2 + Kα2
l E∥gi(wt

i,k−1)∥2

=
(

1 + 1
K − 1

)
E∥wt

i,k−1 −wt−1∥2 + Kα2
l ∥∇Li(wt

i,k−1)∥2 + Kα2
l σ2.

(46)

Then, we want to eliminate the gradients with the local updating model ∇Li(wt
i,k−1) by applying the

inequality
∥∇Li(wt

i,k−1)∥2 = ∥∇Li(wt
i,k−1)−∇Li(wt−1) +∇Li(wt−1)∥2

≤ 2∥∇Li(wt
i,k−1)−∇Li(wt−1)∥2 + 2∥∇Li(wt−1)∥2.

(47)

Based on the Lipschitz continuous gradient, we have

∥∇Li(wt
i,k−1)−∇Li(wt−1)∥2 ≤ β2∥wt

i,k−1 −wt−1∥2, (48)

and we can obtain

E∥wt
i,k −wt−1∥2 ≤

(
1 + 1

K − 1 + 2Kα2
l β2

)
E∥wt

i,k−1 −wt−1∥2

+ 2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2.

(49)

15

Under review as submission to TMLR

To upper bound the drift over K local updates, we can unroll the recursion from wt
i,0 to wt

i,K−1. Since
wt

i,0 = wt−1, we can obtain

E∥wt
i,K −wt−1∥2 ≤

K−1∑
k=0

(
1 + 1

K − 1 + 2Kα2
l β2

)k

(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2). (50)

This upper bound is a geometric series where 2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2 is the coefficient, and 1 + 1
K−1 +

2Kα2
l β2 is the common ratio between adjacent terms. This upper bound can also be written as

K−1∑
k=0

(1 + 1
K − 1 + 2Kα2

l β2)k(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2) = q(2Kα2
l ∥∇Li(wt−1)∥2 + Kα2

l σ2). (51)

where q is a constant with a fixed local learning rate αl and local updating iterations K defined as

q =
1−

(
1 + 1

K−1 + 2Kα2
l β2

)K

1−
(

1 + 1
K−1 + 2Kα2

l β2
) . (52)

Then, we come to analysis of the dynamic trading platform participation. According to the quadratic upper
bound and the linear lower bound of the local objective function, we can obtain the inequality as

Li(w∗)− Li(w) = Li(w∗)− Li(z) + Li(z)− Li(w)

≤∇Li(w∗)T (w∗ − z) + ∇Li(w)T (z − w) + β

2 ∥z − w∥2

= ∇Li(w∗)T (w∗ − w) + (∇Li(w∗) − ∇Li(w))T (w − z) + β

2 ∥z − w∥2.

(53)

We define
z = w − 1

β
(∇Li(w) − ∇Li(w∗)), (54)

and then, we have

(∇Li(w∗) − ∇Li(w))T (w − z) = − 1
β

∥∇Li(w∗) − ∇Li(w)∥2,

β

2 ∥z − w∥2 = 1
2β

∥∇Li(w∗) − ∇Li(w)∥2,

(55)

hence,

Li(w∗)− Li(w) ≤∇Li(w∗)T (w∗ − w)− 1
2β

∥∇Li(w∗) − ∇Li(w)∥2, (56)

which leads to

Li(w)− Li(w∗)−∇Li(w∗)T (w − w∗) ≥ 1
2β

∥∇Li(w∗) − ∇Li(w)∥2. (57)

Since
1
|E|

∑
i∈E

(Li(w)− Li(w∗)) = L(w)− L∗, (58)

then, we have

2β(L(w)− L∗) ≥ 1
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2. (59)

16

Under review as submission to TMLR

The bound on the local gradient can be found as

1
|E|

∑
i∈E

∥∇Li(w)∥2 = 1
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗) + ∇Li(w∗)∥2

≤ 2
|E|

∑
i∈E

∥∇Li(w) − ∇Li(w∗)∥2 + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2

≤ 4β(L(w)− L∗) + 2
|E|

∑
i∈E

∥∇Li(w∗)∥2.

(60)

And the upper bound of the local training drift is

ε ≤ 1
|E|

∑
i∈E

q
(
2Kα2

l ∥∇Li(wt−1)∥2 + Kα2
l σ2)

≤ 8qKα2
l β(L(w)− L∗) + 4qKα2

l

|E|
∑
i∈E

∥∇Li(w∗)∥2 + qKα2
l σ2.

(61)

The improvement in one round can be rewritten as

Et−1[∥wt − w∗∥2] ≤ (1− α̃µ)∥wt−1 − w∗∥2 + (8βα̃2 − 2α̃)(L(wt−1)− L(w∗))

+ 2α̃β(β + 1)ε + 4α̃2B + α̃2γ2

K|E|
≤ (1− α̃µ)∥wt−1 − w∗∥2 + c3(L(wt−1)− L(w∗))

+ 2α̃β(β + 1)c1 + c2,

(62)

where we define
c1 = 4qKα2

l

|E|
∑
i∈E

∥∇Li(w∗)∥2 + qKα2
l σ2,

c2 = 4α̃2B + α̃2γ2

K|E|
,

c3 = 16β2(β + 1)qKα̃α2
l + 8βα̃2 − 2α̃.

(63)

Then, we can obtain the following upper bound

Et−1[L(wt−1)− L(w∗)] ≤ Et−1

[
1
c3

(1− α̃µ)∥wt−1 − w∗∥2 − 1
c3

∥wt − w∗∥2
]

+ 2
c3

α̃β(β + 1)c1 + c2

c3
.

(64)

We assume the eigenvalues of the Hessian of L̂i(w) are bounded within (µi, βi), i.e.,

µi ≤ ∥
1
σ2

i

Jw∗JT
w∗∥ ≤ βi. (65)

We assume the local gradient w.r.t w∗ is bounded by ϵi, i.e., ∥∇L̂i(w∗)∥ ≤ ϵi, and w∗
i is the optimal model

for trading platform i. The improvement of local adaptation in the model space can be bounded by

∥w − w∗
i ∥ = ∥w∗ − (∇2L̂i(w∗))−1∇L̂i(w∗) − w∗

i ∥
= ∥(∇2L̂i(w∗))−1[∇L̂i(w∗) + ∇2L̂i(w∗)(w∗

i − w∗)]∥.
(66)

Since
∇L̂i(w∗

i) = ∇L̂i(w∗) + ∇2L̂i(w∗)(w∗
i − w∗), (67)

17

Under review as submission to TMLR

we obtain that

∥w − w∗
i ∥ = ∥(∇2L̂i(w∗))−1[∇L̂i(w∗

i) − ∇L̂i(w∗)] + (∇2L̂i(w∗))−1∇L̂i(w∗)∥. (68)

We assume the local gradient w.r.t w∗ is bounded by ϵi. Then, we have

∥(∇2L̂i(w∗))−1∇L̂i(w∗)∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗)∥ ≤ ϵi

µi
. (69)

Furthermore, we have

∥(∇2L̂i(w∗))−1[∇L̂i(w∗
i) − ∇L̂i(w∗)]∥ ≤ ∥(∇2L̂i(w∗))−1∥∥∇L̂i(w∗

i)−∇L̂i(w∗)∥

≤ βi

µi
∥w∗

i − w∗∥.
(70)

Therefore, we have
∥w − w∗

i ∥ ≤ βi

µi
∥w∗

i − w∗∥ + ϵi

µi
. (71)

By approximating the global model with a local linearization w.r.t each trading platform’s local dataset, the
model updates are tailored to the local data distribution. This leads to more accurate predictions for each
trading platform’s data, reducing overall prediction error. To obtain the decrement of objective function
L̂i(w), we first derive the second-order Taylor expansion of L̂i(w∗

i) as

L̂i(w) = L̂i(w∗)−∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

+ 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

= L̂i(w∗)− 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗).

(72)

Local adaptation can significantly reduce the objective function L̂i(w), thereby decreasing the need for
additional rounds of FL. The second-order Taylor expansion shows that the loss reduction is proportional to
the squared norm of the residual yi − fi, bounded by curvature information from the Hessian matrix as

L̂i(w∗)− L̂i(w) = 1
2∇L̂i(w∗)T (∇2L̂i(w∗))−1∇L̂i(w∗)

≤ ∥(∇2L̂i(w∗))−1∥ · ∥∇L̂i(w∗)∥2

= σ2
i ∥(Jw∗JT

w∗)−1∥ · ∥ 1
σ2

i

Jw∗(yi − fi)∥2

≤ βi

σ2
i µi
· ∥(yi − fi)∥2.

(73)

By effectively reducing the local loss, each trading platform contributes more accurate volatility prediction.
Consequently, fewer communication rounds are needed, making the FL process more efficient and scalable.
This reduces the need for extensive FL rounds, ultimately leading to better performance in realized volatility
prediction.

18

	Introduction
	Related Work
	Fragmented Financial Markets
	Background
	Problem Formulation

	Federated Learning with Efficient Local Adaptation (FLELA)
	Federated Training Procedure
	Local Adaptation Procedure

	Experiments
	Local Training and Test Datasets Design
	Performance Comparison
	Computation Cost Comparison

	Conclusions and Discussions
	Convergence Analysis

