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Figure 1: PokeFlex captures the deformability of various everyday and 3D-printed objects, as illus-
trated by the poking manipulator on the Left. On the Right, the Top Row contains segmented RGB
images of selected objects. The Middle Row shows reconstructed objects in an undeformed state.
The Bottom Row provides reconstructed 3D-textured meshes of deformed objects.

ABSTRACT

Data-driven methods have shown great potential in solving challenging manipula-
tion tasks, however, their application in the domain of deformable objects has been
constrained, in part, by the lack of data. To address this, we propose PokeFlex,
a dataset featuring real-world paired and annotated multimodal data that includes
3D textured meshes, point clouds, RGB images, and depth maps. Such data can
be leveraged for several downstream tasks such as online 3D mesh reconstruction,
and it can potentially enable underexplored applications such as the real-world
deployment of traditional control methods based on mesh simulations. To deal
with the challenges posed by real-world 3D mesh reconstruction, we leverage a
professional volumetric capture system that allows complete 360° reconstruction.
PokeFlex consists of 17 deformable objects with varying stiffness and shapes. De-
formations are generated by dropping objects onto a flat surface or by poking the
objects with a robot arm. Interaction forces and torques are also reported for the
latter case. Using different data modalities, we demonstrated a use case for our
dataset in online 3D mesh reconstruction. We refer the reader to our website1 or
the password protected supplementary material2 for further demos and examples.

1 INTRODUCTION

Data-driven methods have recently demonstrated promising results in deformable object manipu-
lation, significantly advancing automation in industries such as healthcare, food processing, and
manufacturing (Bartsch et al., 2024; Deng et al., 2024; Avigal et al., 2022; Yan et al., 2021). To
further advance research in this area, the development of high-quality datasets is essential. Such
datasets are crucial for training manipulation policies, estimating material parameters, and training
3D mesh reconstruction models. The latter, in particular, plays a vital role in facilitating the close-
loop execution of control methods based on mesh simulations (Duenser et al., 2018). In light of

1
https://anonymized-pokeflex-dataset.github.io/

2
https://drive.google.com/drive/folders/1d8iNoJZ0dUVlzP6XxP7xwGPhdVtwQ7du

Password: P0keFlex-ICLR2025-Dataset

1

https://anonymized-pokeflex-dataset.github.io/
https://drive.google.com/drive/folders/1d8iNoJZ0dUVlzP6XxP7xwGPhdVtwQ7du
https://anonymized-pokeflex-dataset.github.io/
https://drive.google.com/drive/folders/1d8iNoJZ0dUVlzP6XxP7xwGPhdVtwQ7du
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Table 1: Dataset overview (per object, per sequence).
Sequence Data Poking Dropping

3D textured deformed mesh model ✓ ✓
RGB images from two Volucam cameras (cameras from the MVS) ✓ ✓
RGB-D images from two RealSense D405 sensors (eye-in-hand mounted) ✓
RGB-D images from two Azure Kinect sensors (eye-to-hand mounted) ✓
Estimated 3D contact forces and torques ✓
End-effector poses ✓

Camera and Object Data

Camera intrinsic and extrinsic parameters ✓
3D textured template mesh model ✓
Open-source print files to reproduce the 3D printed objects ✓
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Figure 2: Samples of different data modalities provided by the PokeFlex dataset.

these needs, the objective of this work is to create a reproducible, diverse, and high-quality dataset
for deformable volumetric objects that is grounded in real-world data.

Current state-of-the-art simulation methods can be an attractive alternative to collect such datasets as
they provide easy access to privileged information such as deformed mesh configurations and contact
forces (Tripicchio et al., 2024; Huang et al., 2022; Macklin, 2022; Qiao et al., 2021; Todorov et al.,
2012; Faure et al., 2012). However, such simulators require careful system identification and fine-
tuning to address the sim-to-real gap, which ultimately requires real-world data. Static scans rotating
around the scene (Pai et al., 2001; Garcia-Camacho et al., 2022; Lu et al., 2024) or custom multi-
camera systems (Chen et al., 2022) can be used to collect real-world 3D models. The former can
be excessively time-consuming and is unsuitable to capture temporal dynamics. The latter requires
careful synchronization and data curation, especially when using noisy lower-cost sensors.

To address these challenges, we leverage a professional multi-view volumetric capture system
(MVS) that allows capturing detailed 360° mesh reconstructions of deformable objects over time
(Collet et al., 2015), which we use as ground-truth meshes. We integrate a robotic manipulator with
joint-torque sensing capabilities into the MVS, enabling contact force estimation and facilitating
automated data collection. Moreover, to enhance reproducibility and to expand the diversity of data
modalities, we also integrate and synchronize lower-cost Azure Kinect and Intel RealSense D405
RGB-D sensors into the MVS.

Our work proposes the PokeFlex dataset (Figure 1), featuring the real-world behavior of 17 de-
formable objects, including everyday and 3D-printed objects. Deformations are generated via con-
trolled poking and dropping protocols. An overview of the paired, synchronized, and annotated
data is presented in Table 1, and illustrated in Figure 2. We demonstrated a use case of the Poke-
Flex dataset, proposing baseline models capable of ingesting PokeFlex multimodal data. We present
evaluation criteria for benchmarking the results. Specifically, we train neural network models for
deformed mesh reconstructions based on template meshes and various input data modalities, includ-
ing images, point clouds, end-effector poses and forces. The proposed architectures are suitable for
online applications, reconstructing 3D meshes at a range from 106 Hz to 215 Hz depending on the
input data modality, on a desktop PC with an NVIDIA RTX 4090 GPU. The pretrained models will
be available with the PokeFlex dataset.
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Table 2: Feature comparison of the PokeFlex dataset with other deformable object datasets.
Real-
world Meshes Point

clouds
RGB

images
Force
torque

# of
objects

# of
time frames

Type of
deformation

PokeFlex (ours) ✓ ✓ ✓ ✓ ✓ 17 19k Poke, drop
HMDO (Xie et al., 2023) ✓ ✓ ✓ 12 2,166 Manual†

PLUSH (Chen et al., 2022) ✓ ✓ ✓ Force‡ 12 22.84k Airstream
DOT (Li et al., 2024) ✓ ✓ ✓ 4 117k Manual
Household Cloth Object Set
(Garcia-Camacho et al., 2022) ✓ ✓§ ✓ 27 67 /

Defgraspsim (Huang et al., 2022) ✓ 34 1.1M Grasp
† by hand ‡ by providing air nozzle poses § for ten static scenes of the cloth objects folded

2 RELATED WORK

Deformable object datasets. Depending on the use of synthetic or real-world data, deformable
object datasets can be roughly categorized into two major groups. Huang et al. (2022), for in-
stance, evaluates multiple grasping poses for deformable objects on a large-scale synthetic dataset.
Qualitative sim-to-real experiments for such dataset, show that their simulator captures the general
deformation behavior of objects during grasping. Similarly, Lu et al. (2024) introduces a simulation
environment and benchmark for deformable object and garment manipulation, incorporating static
scans of real-world objects to generate simulation models. Notably, they also scan 3 plush toys in
static configurations. However, careful system identification and parameter tuning are necessary to
achieve higher sim-to-real fidelity for synthetic datasets.

On the other hand, real-world data collection opens up the door to better capture the complex behav-
ior of deformable objects. Current real-world datasets focus mostly on RGB images. HMDO (Xie
et al., 2023) also provides real-world 3D meshes for objects undergoing deformation due to hand
manipulation. However, they fell short of providing point cloud or force contact information. Chen
et al. (2022) provides points clouds and force contact information but it does not perform 3D mesh
reconstruction and the deformations are only globally produced using an airstream. Li et al. (2024)
offer a large number of frames, however, the object diversity in their dataset is limited. Zhang et al.
(2024) presents a pilot dataset with only one type of deformable object under quasi-static deforma-
tion, limited camera views, and no reported interaction forces.

In a departure from other datasets, PokeFlex offers a more comprehensive list of features including;
3D meshes, point clouds, contact forces, higher diversity of objects, and multiple types of defor-
mations as detailed in Table 2. For simplicity, we report only the effective number of paired time
frames in our table, in contrast to what is reported by Xie et al. (2023) and Li et al. (2024), where
the total number of samples is computed as the number of time frames times the number of cameras.

Data-driven mesh reconstruction methods vary widely in terms of the input data modalities they
employ. Previous approaches that rely on point clouds to predict deformations are typically trained
on synthetic data (Amin Mansour et al., 2024; Lei & Daniilidis, 2022; Niemeyer et al., 2019). While
synthetic training data offers controlled and dense point cloud representations, it often leads to a
sim-to-real gap as real-world point cloud measurements tend to be noisy and sparse, especially
in dynamic and unstructured environments. In contrast, methods using single images as input have
gained attention for their real-world reconstruction capability without the need for depth information
(Wang et al., 2021; Jack et al., 2019; Kanazawa et al., 2018). However, many of these image-
based approaches are not optimized for online inference, making them unsuitable for downstream
applications in robotics, where online feedback is essential. For instance, Xu et al. (2024) proposes
an instant image-to-3D framework to generate high-quality 3D assets, but requires up to 10 seconds
per frame, limiting its practicality for scenarios demanding real-time processing.

3 METHODOLOGY

3.1 DATA ACQUISITION

The PokeFlex dataset involves the acquisition of deformations under two different protocols (i) pok-
ing and (ii) dropping. For the poking protocol, we use a robotic manipulator that pokes objects with

3
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Figure 3: Sample frames from a poking sequence, with a close-up onto the foam dice.
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Figure 4: Left: Robotic manipulator positioned inside MVS with external lower-cost camera sensors
during a poking sequence. Right: Overview of the system architecture to capture PokeFlex data.

a transparent acrylic stick multiple times along a randomly oriented horizontal vector (Figure 3).
The dataset also provides the CAD model for the mounting tool, which holds two RealSense cam-
eras and a 192 mm long acrylic stick with a radius of 10 mm. For the dropping protocol, objects
are attached to a light nylon cord at approximately 2 m height and captured in a free-fall drop onto a
flat surface. We record data at 30 fps and 60 fps for the poking and dropping protocols, respectively.
We leverage a professional multi-view volumetric capture system (MVS), consisting of 106 cameras
(53 RGB / 53 infrared) with 12 MP resolution.

For the poking protocol, we integrated and synchronized additional hardware to the MVS capture
system to ensure temporally aligned data capture across all modalities. The additional hardware
includes the robot manipulator and four additional RGB-D cameras: two Azure Kinect cameras to
capture the scene from opposing viewpoints, and two Intel RealSense D405 cameras mounted on
the robot’s end-effector. The robot logs end-effector poses, interaction forces and torques at 120 Hz,
while these four cameras record RGB-D data at 30 Hz.

To synchronize devices, we rely on a Linear Timecode (LTC) signal provided by an Atomos Ul-
trasync device. The cameras of the MVS have a leader/follower architecture, where the internal
clocks of the follower cameras are synchronized to one single leader camera, which reads the LTC
signal. In addition to the MVS control system, we use two desktop PCs to read the additional
data streams: a Robot PC that reads the robot data and the streams of the two RealSense D405
cameras and a dedicated Kinect PC that reads the streams of the two Azure Kinect devices. The
robot PC is synchronized with the capture system by reading the same LTC signal provided by the
Atomos Ultrasync device. The Kinect cameras are hardware-synchronized with each other. Their
synchronization with the capture system is achieved retrospectively by comparing the current time-
code displayed on a screen in the camera frames of the Kinect and the camera frames of the capture
system. An overview of the architecture is illustrated on Figure 4 (Right).

We utilize a system similar to that described by Collet et al. (2015) to reconstruct the meshes and tex-
tures of the objects under deformation. When recording at 30 fps, the MVS generates approximately
27 GB of raw data per second. This data is then processed using commercial software provided by
Acturus Studio on 10x On-Prem Nodes servers, achieving an output rate of approximately one 3D
frame per minute. The authors curate the reconstructed meshes and textures to ensure that only the
deformable objects are retained in the scene.

4
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Figure 5: Superimposed representation of the proposed network architectures for ingesting the multi-
modal PokeFlex data to predict deformed mesh reconstruction.

3.2 LEARNING-BASED MESH RECONSTRUCTION

We leverage PokeFlex to train models for template-based mesh reconstruction, where we infer the
deformation of the rest-state mesh of an object using various combinations of input data modalities:
sequences of images, point clouds, and/or robot data. Figure 5 illustrates the building blocks that we
used to generate different architectures depending on the input modalities.

At a high level, we use three main common components for all models: an encoder for extracting
features from an input modality, an attention mechanism for exploiting temporal information from
the sequences, and a conditional Real-NVP (Amin Mansour et al., 2024) for predicting the offsets of
template vertices, yielding the predicted deformed mesh. Real-NVP utilizes a series of conditional
coupling blocks, each defined as a continuous bijective function. This continuous bijective operation
ensures that the model is homeomorphic, which allows stable deformation of a template mesh while
preserving its topology.

Image input: For pipelines using images as input, we use a DinoV2 vision transformer to extract
embeddings of each image frame. In particular, we use a DinoV2-small model, pretrained via distil-
lation from the largest DinoV2 transformer presented in Oquab et al. (2023) (LVD-142M dataset).
The embedding dimension is later reduced using a 1D convolutional layer and a subsequent fully
connected layer (Feature Dim. Reduction block in Figure 5).

Point cloud input: When using point clouds, we leverage a FoldingNet encoder (Yang et al., 2018)
for representation learning, which is trained end-to-end together with the attention mechanism and
the conditional-NVP.

Robot data input: To fuse the robot data, we concatenate the measured end-effector forces and the
position of the interaction point. The concatenated data is later fed into a single fully connected
layer, to match the dimensionality of the embeddings used for the attention mechanisms.

A self-attention mechanism is employed for variations of the architecture in Figure 5 that use a single
data modality as input. In contrast, a cross-attention mechanism is applied when handling multiple
data modalities simultaneously. For the experiments presented in the results section, we use cross-
attention to handle a mixture of image sequences and robot data sequences as input. However, other
combinations of input data are also possible.

All architectures are end-to-end trained using the same loss. We include the weights of the DinoV2
transformer during backpropagation for finetuning. The main point face distance (PFD) criterion
LPFD accounts for the global deformation of the objects, which computes the average squared dis-
tance d(p,f) from the set of sampled points pi ∈ P on the predicted mesh to the nearest faces in
the set of triangular faces fi ∈ F of the ground truth mesh and vice versa (eq. (1)). Moreover, to
deal with the local deformations generated in the poking region, we add a region-of-interest (ROI)
loss LROI (eq. (2)) that computes the unidirectional chamfer distance from the points pi in the ROI
to the set of sampled points qi ∈ Q of the ground truth mesh. The ROI is defined using the indicator
function I(C(pi)), which evaluates to 1 if point pi is close enough to the contact point t according

5
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Figure 6: Rest-state reconstructed 3D meshes of all 17 objects featured in the PokeFlex dataset.

to a threshold ϵ, and if the minimum vertical component of the contact point pi,y is bigger than the
minimum vertical coordinate across all the vertices ymin scaled by a factor (eq. (3)).

LPFD =
1

|P|
∑
pi∈P

min
fj∈F

d(pi,fj) +
1

|F|
∑
fj∈F

min
pi∈P

d(fj ,pi) , (1)

LROI =
1

|P|
∑
pi∈P

I(C(pi)) · min
qj∈Q

∥pi − qj∥2 , (2)

C(pi) = (∥pi − t∥ ≤ ϵ) ∧ (pi,y > 0.2 · ymin) . (3)

The total loss is then set as L = LPFD + 0.5LROI.

4 RESULTS

4.1 DATASET

The PokeFlex dataset comprises 17 deformable objects (Figure 6), including 13 everyday items as
well as 4 objects that are 3D printed with a soft thermoplastic polyurethane filament. Even though
the everyday objects in our dataset can be purchased from global vendors, their availability is not
guaranteed worldwide. Therefore, to enhance the usability of our dataset we include deformable
3D printed objects, providing print files and detailed specifications for reproducibility. The 3D
printed objects include the Stanford bunny (Turk, 1994), a cylinder, a heart (Noor et al., 2019), and
a pyramid. Further details about the 3D printing can be found in Appendix A.1.

The dimensions and the weights of the PokeFlex objects range from 7 cm to 58 cm and from 22 g to
1 kg, respectively. Furthermore, using Hooke’s law and applying RANSAC for linear regression to
avoid outliers, we estimated the objects’ stiffnesses to be in the range of 148–3,879 N/m.

For the poking protocol, we recorded 4-8 sequences with a duration of 5-6 seconds at 30 fps for
each object. Similarly, for the dropping protocol, we recorded 3 sequences of 1 second at 60 fps
for each object. Figure 7 shows two reconstructed sequences for poking and dropping. In the case
of the poking sequences, each frame includes synchronized and paired data from all modalities, as
illustrated in Figure 2.

6
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#1Frame: #4 #7 #10 #13 #16 #19

#1Frame: #2 #3 #4 #5 #6 #7

30 Hz

60 Hz

Figure 7: Top: Mesh reconstructions of foam dice for a poking sequence shown in every third frame.
Bottom: Mesh reconstructions of plush octopus for a dropping sequence.

The total number of reconstructed frames used to generate ground-truth data was 19k, which com-
prises 16.1k frames for the poking sequences and 3.1k frames for the dropping sequences. Consid-
ering the different modalities, the total of PokeFlex amounts to more than 240k samples. It is worth
noting that after curating the frames of the poking sequences, i.e., discarding the frames where the
robot arm is not in contact with the objects, the total number of active paired poking frames sum
up to 8.1k. A summary of the physical properties of the objects, as well as a per-object list of the
recorded frames under deformation for the poking sequences, is presented in Appendix A.2. For the
dropping protocol, we recorded 180 frames per object.

4.2 EVALUATION OF LEARNING-BASED RECONSTRUCTION

Overview of training data. In the following experiments, we exclusively used poking sequences
from the dataset because of the higher diversity of input data modalities available. The input se-
quence length was set to 5, chosen heuristically for better performance. The train-validation split
was generated by randomly choosing one recording sequence per object as the validation set.

Metrics. During training, we reposition and re-scale all meshes into a cube of unit size ([−0.5, 0.5]3)
to maintain a consistent scale across all objects. The losses LPFD and LROI are computed in this
normalized scale. Additionally, we calculate the relative point-to-face distance (RPFD) by dividing
LPFD by the average point-to-face distance between the template mesh MT and the ground truth
mesh MGT. An RPFD value below 1 indicates that the predicted deformed mesh MP is closer to
the ground truth than the undeformed template, with smaller values indicating better accuracy.

To further assess the prediction accuracy, we evaluate two additional metrics between the predicted
mesh and the ground truth mesh in their original scale: the unidirectional L1 Norm Chamfer Dis-
tance CDUL1 (eq. (4)) and the volumetric Jaccard Index J (eq. (5)), which we defined in terms of
the volume operator V . The two metrics provide insights into the L1 Norm surface distance and the
volume overlap ratio, respectively.

CDUL1 =
1

|P|
∑
pi∈P

min
qj∈Q

∥pi − qj∥1 , (4)

J(MA,MB) =
V (MA ∩MB)

V (MA ∪MB)
. (5)

Learning from RGB images of different cameras. In this experiment, we train different models
to predict meshes using sequences of RGB images only. Each model was trained for a specific cam-
era, namely Volucam (capture system), Intel RealSense D405, Azure Kinect, and a Virtual camera

7
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Table 3: Mean prediction performance for all models trained on a single viewpoint from different
cameras for all objects. Arrows indicate that a better performance is either higher ↑ or lower ↓.
Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Volucam 6.69 8.38 0.698 7.433 0.799
RealSense 7.91 7.37 0.693 7.675 0.806
Kinect 11.20 9.79 0.839 8.505 0.767
Rendered 12.97 12.28 0.826 8.761 0.761
Brighter RealSense 14.57 13.25 0.853 9.126 0.754
Darker RealSense 13.89 11.74 0.957 9.831 0.736

(Images rendered from ground truth mesh). The viewpoint of each camera is different. Addition-
ally, we provide experiments evaluating the robustness of our model for varying lighting conditions.
This was achieved by adjusting each channel, by a constant value of ±20, on a scale of 0-255, and
introducing noise drawn from a normal distribution with a standard deviation of 10. For training,
we use all objects. The performance of the different models is reported in Table 3. The training
hyperparameters used for this and the following experiments are reported in Appendix A.3.

Learning from different data modalities.

In this experiment, we train different mesh prediction models from sequences of different input
modalities. Same as in the previous experiment, we trained multi-object models using all 17 objects
from the dataset. Detailed performance for the evaluated data modalities can be found in Table 4.
Inference rates across different data modalities, detailed in Appendix A.4, range from 106 Hz to 215
Hz for dense point clouds and forces, respectively. Figure 8 shows examples of predicted meshes
with different levels of reconstruction quality obtained using a multi-object model trained from
image-sequences only. Additionally, Appendix A.5 reports a detailed breakdown of the per-object
performance for models trained from sequences of images, images + robot data, and point clouds.

13.74

Ground Truth

Prediction

6.60

0.550

10.032

0.781

9.50

9.31

0.338

8.194

0.815

1.35

2.18

0.072

4.177

0.926

Figure 8: Examples of deformation predictions for a foam dice and their corresponding metrics.
Meshes are rendered side by side with and without texture to highlight the deformation in the ROI.

5 DISCUSSION

Quality of ground-truth meshes. The overall geometry of the objects in the dataset, in static
configurations, is well captured by the meshes reconstructed with the MVS as shown in Figure 6,
even though the system’s intended use is the reconstruction of human-size objects. Furthermore,
the proposed poking protocol, using a transparent acrylic stick, helps prevent occlusions at the con-
tact point, leading to detailed reconstruction of objects even when they undergo deformations, as
can be seen in Figure 9 (Left). However, reconstruction of fine-grained details for smaller objects
such as the 3D-printed Stanford armadillo (Curless & Levoy, 1996) remains challenging with the
current setup of the professional capture system, as seen in Figure 9 (Right). Better fine-grained
reconstruction results can be expected by rearranging the cameras in a smaller workspace.
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Table 4: Mean prediction performance for proposed model configurations trained on all objects.
Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Images 6.69 8.38 0.698 7.433 0.799
Robot data 7.43 5.80 0.847 8.014 0.785
Images + robot data 5.39 5.10 0.594 6.642 0.821
Dense synthetic point
clouds (5k points) 4.76 4.92 0.569 6.338 0.831

Sparse synthetic point
clouds (100 points) 6.14 5.61 0.577 6.569 0.815

Kinect point clouds 6.17 6.56 0.592 6.619 0.807
Kinect point clouds
+ robot data 6.86 6.18 0.539 6.613 0.817

12cm

15
cm

11
cm

22cm

Figure 9: Examples of reconstructed ground truth meshes for medium (Left) and small (Right) size
objects in deformed states. Reconstruction of fine-grained details is a limitation of our current setup
(close-up views on the Right).
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Figure 10: Acting force vs. end effector
displacement, shown across all frames
for three objects from PokeFlex.

Estimated stiffness. The estimated stiffness that we
provide for the featured objects is only intended to of-
fer insights into the range of material properties included
in PokeFlex. The simple linear interpolation method
using RANSAC can successfully characterize the linear
Hookean behavior of objects such as the foam or plush
dice shown in Figure 10. More sophisticated approaches,
like the ones presented by Sundaresan et al. (2022) and
Heiden et al. (2021) leveraging differentiable simulation,
are needed to better characterize the nonlinear behavior
exhibited by thinner objects such as the plush turtle.

Learning from RGB images of different cameras.
The results in Table 3 show that the best performance is
obtained using RGB images coming from the Volucam or
the RealSense cameras. The model trained from the Volucam cameras performs the best in terms of
the validation loss LPFD and the chamfer distance CDUL1. The model trained from RealSense images
performs best with respect to all other losses and metrics (LROI, RPFD, CDUL1, J(MP,MGT)).
In particular, the high performance of the latter model in terms of LROI can be attributed to the
proximity of the RealSense camera relative to the ROI. Furthermore, regardless of the variability
in terms of the validation losses for different cameras, the performance measured by the chamfer
loss remains within a few millimeters of the best-performing model, showing that good-performing
models can be trained using camera sensors that are external to the professional capture system,
even if they have different viewpoints.

Multi-object mesh reconstruction from different modalities. Table 4 shows that the dense
synthetic point clouds yield the best performance among all data modalities. A drop in performance
is observed for the sparser synthetic point clouds, and the noisier point clouds captured by the
Kinect. The model trained from images and robot data achieves the second-best performance overall,
outperforming the model trained from images only, showcasing the importance of the robot data, and
hinting at the effectiveness of our cross-attention mechanism. Combining robot data with the Kinect

9
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Figure 11: Validation accuracy for image-based mesh reconstruction, evaluated by Jaccard Index J
(Left) and RPFD (Right), plotted against the deformation level quantified by Jaccard distance dJ .

point clouds also leads to performance improvements relative to only using the Kinect point clouds,
however the performance gains are more subtle.

To analyze the levels of accuracy across multiple objects, we focus on the image-based mesh re-
construction model. Figure 11 shows J(MP,MGT) and RPFD for only 3 objects separately, for
clarity of visualization. The horizontal axis is the Jaccard distance, which indicates the level of
deformation of the ground truth mesh with respect to the rest-state template mesh, defined as
dJ(MT,MGT) = 1 − J(MT,MGT). Figure 11 shows that the best prediction performance is
obtained for the plush moon, having the highest Jaccard Index and the lowest RPFD. The corre-
sponding results for all objects are reported in Appendix A.5, together with the histograms that
show the samples distribution.

In contrast, for low deformation regimes (small values of dJ(MT,MGT)), the foam cylinder exhibits
a lower accuracy, reaching values higher than 1 for the RPDF metric. Such high values correspond to
a performance worse than that of predicting the rest-state mesh. Both performance metrics reported
in Figure 11 show, overall, a negative correlation with the Jaccard distance for all objects, indicating
that the prediction accuracy of our models decreases for larger deformations. Further experiments,
testing the generalization of 3D mesh reconstruction to unseen objects are reported in Appendix A.7.

6 CONCLUSION

This paper introduced PokeFlex, a new dataset that captures the behavior of 17 deformable volumet-
ric objects during poking and dropping. The focus is on volumetric objects, while thin clothing items
or thin cables are not considered in the dataset. Compared to previously existing datasets, we provide
a wider range of paired and annotated data modalities, which are supplemented with data streams
from lower-cost camera sensors. In an effort to enhance reproducibility, the objects included in our
dataset can be either purchased from global providers or 3D printed with our open-source models.
The 3D printed objects also allow for finer control over their expected behavior through knowledge
of their material properties and internal structures, especially useful for sim-to-real transfer.

Using different combinations of the data modalities provided in PokeFlex, we train and benchmark
a list of baseline models for the task of multi-object template-based mesh reconstruction. In doing
so, we present a list of suitable criteria for evaluating PokeFlex.

We are excited about the potential of PokeFlex to inspire new research directions in deformable ob-
ject manipulation and to serve as a foundational resource for the robotics community. With its rich,
multimodal data and its focus on reproducibility, we believe that PokeFlex will drive innovation in
both simulation-based and real-world applications of deformable object manipulation. This includes
better material parameter identification to fine-tune simulators, viewpoint-agnostic online 3D mesh
reconstruction methods, and policy learning for manipulation tasks. As we continue to expand the
dataset and explore new possibilities, we anticipate that PokeFlex will become an invaluable tool for
researchers developing next-generation techniques. We look forward to sharing this dataset with the
community and fostering collaborations that push the boundaries of robotics research.
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A APPENDIX

A.1 3D PRINTING DETAILS

All 3D printed objects were printed using thermoplastic polyurethane (TPU) Filaflex Shore 60A Pro
White filament on Prusa MK3S+ and Prusa XL 3D printers equipped with 0.4mm nozzles. The
mechanical properties of the filament are presented in Table 5.

Table 5: Mechanical Properties of Filaflex shore 60A Pro TPU provided by the manufacturer.
Mechanical properties Value Unit Test method according to

Tensile strength 26 MPa DIN 53504-S2
Stress at 20% elongation 1 MPa DIN 53504-S2

The printing parameters of the 3D printed objects are summarized in Table 6, where the infill used
for all objects is the isotropic gyroid pattern with uniform properties and behavior in all directions.
Example of the gyroid pattern can be seen in Figure 12.

Table 6: Printing parameters of 3D printed objects featured in the PokeFlex dataset.
Object Infill density [%] Layer thickness [mm] Perimeters Bottom layers Top layers

Bunny (Turk, 1994) 10 0.2 3 3 3
Cylinder 10 0.15 2 3 3
Heart (Noor et al., 2019) 10 0.2 3 3 3
Pyramid 8 0.2 3 3 3

5cm

Figure 12: Top (Left) and bottom (Right) view of 3D printed pyramid, with a close-up view of the
interior gyroid infill pattern.
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A.2 PROPERTIES OF FEATURED OBJECTS

In Table 7, we summarize the physical properties and the number of frames per object. The Frames
column of the table presents the total captured frames of the poking sequences for each object, and
the Deformations column gives the number of active poking frames after the data curation, i.e.,
discarding the frames where the robot arm is not in contact with the objects. It is worth noting that
we report only the effective number of paired time frames in our table, in contrast to the total number
of samples, which is computed as the number of time frames multiplied by the number of cameras.

Table 7: Physical properties of objects featured in the PokeFlex dataset. Dimensions of sphere-like
objects are described by their diameter (D). Cylinder-like objects are characterized by their diameter
(D) and height (H). For objects with irregular or complex shapes, dimensions are provided using a
bounding box defined by length (L), width (W), and height (H). Stiffness of the objects is estimated
according to the method described in Section 4.1.

Object Weight [g] Dimensions [cm] Est. stiffness [N/m] Frames Deformations

Beanbag 184 DxH: 26x9 523 1084 363
Foam cylinder 153 DxH: 12x29 250 990 407
Foam dice 140 L: 15.5 748 1220 738
Foam half sphere 41 D: 15 1252 619 384
Memory foam 213 LxWxH: 17.5x8.5x7 395 420 141
Pillow 975 LxWxH: 58x50x10 474 1085 565
Plush dice 340 L: 22 149 1259 567
Plush moon 151 D: 17 366 959 517
Plush octopus 130 LxWxH: 22x22x11 325 1085 525
Plush turtle 194 LxWxH: 35x30x10 1035 930 427
Plush volleyball 303 D: 22 323 1099 604
Sponge 28 LxWxH: 22x12x6.1 1045 1237 772
Toilet paper roll 134 DxH: 10.5x9.5 2156 600 295
3D printed bunny 105 LxWxH:13x9x15 950 1127 593
3D printed cylinder 223 DxH: 10x20 585 1020 574
3D printed heart 100 LxWxH: 16x9x10 1198 940 444
3D printed pyramid 48 LxWxH: 14.5x14.5x7 861 420 193

For the dropping protocol, we recorded 3 sequences of 1 second at 60 fps for each object, summing
up to 180 time frames per object. Figure 13 shows two additional reconstructed deformed mesh
sequences for dropping the foam cylinder and the pillow, respectively.

60 Hz

Frame: #1 #2 #3 #4 #5 #6 #7

Figure 13: Sample of mesh reconstructions of foam cylinder (Top) and pillow (Bottom) for a drop-
ping sequence, respectively.
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A.3 TRAINING DETAILS

The hyperparameters used to train the models in Section 4.1 are listed in Table 8.

Table 8: Training hyperparameters.
Hyperparameters Value

Learning rate 1e-4
Batch size 16 (5 objects) / 8 (1 object)
Optimizer Adam
Weight decay 5e-6
Learning rate scheduler Cosine
Minimum learning rate 1e-7
Epochs 200

A.4 INFERENCE SPEED FOR DIFFERENT INPUT DATA MODALITIES

Table 9 shows the measured inference rates for our five proposed models with different input data
modalities. The rate is tested with an AMD Ryzen 7900 x 12 Core Processor CPU and NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

Table 9: Inference rate for proposed model configurations.
Input Inference Speed

Images 115 Hz
Forces 215 Hz
Images + forces 110 Hz
Point clouds (5000 points) 106 Hz
Point clouds (100 points) 195 Hz
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A.5 PER OBJECT ANALYTICS FOR LEARNING-BASED MESH RECONSTRUCTION

In the following, we present the performance metrics across all objects for several modalities. This
includes models trained on images (Table 10), images + robot data (Table 11), and point clouds
(Table 12). The respective values show the performance on the validation sequence for each object.

Table 10: Prediction metrics for each object for image-based mesh reconstruction. Bold values
indicate better performance than the average across all objects.

Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Beanbag 5.86 12.78 0.467 7.994 0.833
Foam cylinder 5.87 7.61 1.366 9.300 0.767
Foam dice 5.06 12.19 0.845 5.900 0.884
Foam half sphere 0.81 2.24 0.229 2.640 0.927
Memory foam 9.34 17.21 0.978 7.432 0.723
Pillow 1.35 1.88 0.920 10.70 0.840
Plush dice 4.80 5.05 0.823 9.511 0.869
Plush moon 3.85 6.73 0.391 5.437 0.890
Plush octopus 2.28 2.09 0.855 6.851 0.773
Plush turtle 2.10 0.89 1.174 9.268 0.732
Plush volleyball 8.96 15.73 0.290 9.083 0.835
Sponge 8.39 4.71 0.513 7.661 0.734
Toilet paper roll 24.93 37.33 0.501 9.055 0.672
3D printed bunny 10.60 4.38 0.677 6.943 0.714
3D printed cylinder 5.04 6.06 0.777 6.005 0.820
3D printed heart 8.17 4.70 0.341 6.115 0.764
3D printed pyramid 6.53 4.09 0.988 5.725 0.695

Table 11: Prediction metrics for each object for using the combination of images and robot data as
input. Bold values indicate better performance than the average across all objects.

Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Beanbag 5.70 7.59 0.810 8.114 0.825
Foam cylinder 2.10 1.43 0.623 6.807 0.844
Foam dice 1.66 5.96 0.667 4.276 0.925
Foam half sphere 0.80 1.12 0.272 2.622 0.928
Memory foam 22.27 23.93 1.585 10.007 0.588
Pillow 0.84 0.96 0.625 9.092 0.877
Plush dice 2.47 2.35 0.629 7.689 0.902
Plush moon 4.32 3.43 0.518 6.304 0.869
Plush octopus 1.23 1.01 0.536 5.612 0.823
Plush turtle 1.73 0.58 0.949 8.705 0.760
Plush volleyball 2.45 2.57 0.166 6.076 0.901
Sponge 5.29 1.43 0.340 6.439 0.791
Toilet paper roll 17.94 22.80 0.385 7.651 0.726
3D printed bunny 8.79 3.86 0.791 6.284 0.722
3D printed cylinder 5.21 5.61 0.666 5.943 0.822
3D printed heart 6.79 4.17 0.294 5.658 0.789
3D printed pyramid 5.43 3.61 0.878 5.617 0.705
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Table 12: Prediction metrics for each object for point-cloud-based mesh reconstruction. Bold values
indicate better performance than the average across all objects.

Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Beanbag 9.18 8.63 1.402 9.608 0.790
Foam cylinder 0.73 0.67 0.337 4.701 0.909
Foam dice 1.98 2.6 0.414 4.415 0.924
Foam half sphere 0.32 1.41 0.148 2.202 0.952
Memory foam 4.54 8.26 0.578 5.008 0.786
Pillow 0.85 1.23 0.666 8.835 0.882
Plush dice 2.22 2.68 0.583 7.433 0.905
Plush moon 0.68 1.15 0.179 3.546 0.946
Plush octopus 4.88 4.68 1.310 8.937 0.692
Plush turtle 1.22 0.89 0.98 8.076 0.762
Plush volleyball 1.67 3.36 0.106 5.307 0.921
Sponge 5.28 2.55 0.354 7.237 0.760
Toilet paper roll 14.13 17.06 0.314 6.901 0.742
3D printed bunny 12.22 7.74 0.883 7.289 0.665
3D printed cylinder 3.06 2.36 0.573 4.834 0.858
3D printed heart 9.91 6.73 0.488 6.475 0.754
3D printed pyramid 4.29 6.97 0.653 4.681 0.765
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A.6 VALIDATION ACCURACY FOR IMAGE-BASED MESH RECONSTRUCTION.

In the plots below, we show J(MP,MGT) and RPFD for all objects, and the underlying distribution
for each object in form of a histogram (Figure 14 - Figure 19).
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Figure 14: Beanbag, foam cylinder, foam dice.
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Figure 16: Plush dice, plush moon, plush octopus.
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Figure 17: Plush turtle, plush volleyball, sponge.
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Figure 18: Toilet paper roll, 3D printed bunny, 3D printed cylinder.

0.0 0.2 0.4 0.6
dJ(MT,MGT)

0.60

0.65

0.70

0.75

0.80

0.85

J(
M

P
,M

G
T
)
↑

3D Printed Heart

3D Printed Pyramid

0.0 0.2 0.4 0.6
dJ(MT,MGT)

10−1

100

R
P

F
D
↓

3D Printed Heart

3D Printed Pyramid

Baseline

0.0 0.2 0.4 0.6
dJ(MT,MGT)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

#
S

am
p

le
s

1

2

1

6

8

5 5

7

6

7

16

9

2

3D Printed Heart

0.0 0.1 0.2 0.3 0.4
dJ(MT,MGT)

0

5

10

15

20

#
S

am
p

le
s

0

1
2

1

10

23

11

13

4

3D Printed Pyramid

Figure 19: 3D printed heart, 3D printed pyramid.
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A.7 GENERALIZATION PERFORMANCE FOR LEARNING-BASED MESH RECONSTRUCTION

In the following, we show our model’s capabilities to generalize predictions. We trained models on
the modalities point clouds (Table 13) and the combination of images and robot data (Table 14) on
13 different objects and evaluated on 4 unseen objects. The evaluation on unseen objects included
all sequences.

Table 13: Generalization results for 4 unseen objects for point-cloud-based mesh reconstruction.
Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Validation set
(13 objects) 3.93 3.51 0.698 6.229 0.836

Foam cylinder 4.78 2.38 0.652 8.659 0.794
Plush volleyball 2.78 3.16 0.182 6.260 0.899
Sponge 9.34 3.03 0.603 8.314 0.731
Toilet paper roll 15.43 10.67 0.387 7.546 0.754

Table 14: Generalization results for 4 unseen objects using images and robot data as input.
Input LPFD · 103 ↓ LROI · 103 ↓ RPFD ↓ CDUL1[mm] ↓ J(MP,MGT) ↑
Validation set
(13 objects) 5.07 4.36 0.737 6.840 0.814

Foam cylinder 8.13 5.42 1.206 10.820 0.738
Plush volleyball 8.83 8.19 0.452 9.561 0.829
Sponge 15.90 8.409 1.117 8.410 0.640
Toilet paper roll 37.31 40.45 0.650 9.952 0.667
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