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ABSTRACT

Organizational success depends less on individual brilliance than on how teams
are structured, coordinated, and adapted. Yet organizational design remains a
grand challenge in computational science, and machine learning lacks tools to
address it. We introduce the Organizational Design Problem (ODP): learning
a management policy that configures team composition, communication, and au-
tonomy to achieve multi-objective goals under structural constraints.
A main obstacle to developing machine learning for the ODP is the lack of suit-
able Organizational Simulation Environments (OSEs) in which such policies
can be learned and evaluated. While organizational design is a general task as or-
ganizations are a universal feature of social and economic life, each organization
is unique in its purpose, internal constraints, and external surroundings. Acknowl-
edging this specificity, we propose an OSE blueprint: it defines the core compo-
nents shared by all organizations while allowing adaptation to diverse contexts. In
this framework, fixed LLM agents simulate realistic human roles and communi-
cate via natural language within a mechanistic, temporally grounded simulation.
Applying this blueprint, we present the Clinical Trial OSE, which captures the
high-stakes, multi-stakeholder process of drug development. Using this environ-
ment to benchmark pre-trained LLMs, we show that they can guide organizations
to successfully complete trial programs. Although current models remain less effi-
cient than humans, our study opens the path toward specialized models that could
one day outperform humans in systematically solving the Organizational Design
Problem.

1 INTRODUCTION

The intricate dynamics of human organizations, from research lab to multinational corporations,
present a formidable optimization challenge. Organizational success is often driven not by individ-
ual brilliance, but by the emergent properties of communication, collaboration, and structure. Tra-
ditional analytical methods struggle to capture these complex and often unpredictable interactions.
Meanwhile, modern machine learning lacks a dedicated paradigm for optimizing the fundamental
elements of organizational design. How should teams be structured? What communication poli-
cies minimize costly delays? How can organizations adapt their structure in response to unexpected
events? These remain foundational yet unsolved questions in organizational science.

What is an Organization? Following Barnard’s classic view, a formal organization exists when
people communicate, contribute action, and pursue a common purpose (Barnard, 1938). We treat
organizations as three linked elements. (i) Purpose. Purpose justifies existence and shapes design.
It is typically multi-dimensional: a vector of negotiated objectives (e.g., production, quality, budget,
safety) pursued under constraints (Cyert & March, 1963; Scott & Davis, 2015). (ii) Members. Indi-
viduals contribute functional roles (skills, information, resources) and bring preferences and incen-
tives; effectiveness requires aligning personal inducements with collective purpose (Katz & Kahn,
2015; Parsons, 2013; Barnard, 1938). (iii) Cooperative system. Interdependent tasks are coordinated
through standards, planning/scheduling, or mutual adjustment, (Thompson, 1967; Mintzberg, 1979).

Moreover, organizations do not operate in a vacuum. They are embedded in environments populated
by other actors and conditions (Katz & Kahn, 2015; Scott & Davis, 2015). They depend on their
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environment for resources and are constrained by it. Reliance on external parties for capital, mate-
rials, data, or approvals creates power relations that must be managed (Pfeffer & Salancik, 2015).
Consequently, environmental conditions shape organizational design (Lawrence & Lorsch, 1967).

What does it mean to optimize an organization? In our framework, optimizing an organization
means configuring its internal state: how members and cooperative systems are arranged to achieve
its purpose. Concretely, this entails maximizing multiple (often competing) objectives that define
the organization’s purpose, subject to constraints and uncertainty arising from a dynamic, stochastic
environment. Effective organizational design therefore requires robustness: the capacity to adapt
structure and coordination to environmental change while sustaining purpose. We formalize this
optimization problem along three design parameters:

1. Composition of elements – Selecting the right actors based on task demands. Seeking highly
capable actors may be costly, while insufficient diversity or quantity can stall progress.

2. Communication policy – Designing efficient protocols to coordinate actors and ensure effective
information flow tailored to the task.

3. Autonomy – Balancing centralized versus decentralized control by adjusting autonomy and
aligning incentives to steer behavior. This collective capacity is achieved at the cost of limiting
the degrees of freedom of its members.

Organizational Design Problem. Building on prior work in computational organizational design
(Carley, 1994), we formalize a machine learning task: learning a management policy that jointly
controls the three organizational levers defined above to optimize system-level performance while
holding individual agent capabilities fixed (see section 2.1). With this framing, we aim to bring new
analysis tools to support the systematic design of organizational structure.

Why has this not been addressed before? Despite the importance of organisational design, ma-
chine learning has not tackled this learning task due to the lack of suitable simulation environ-
ments (section 5). Training and testing policies on real organisations is ethically, financially, and
operationally infeasible; meaningful progress requires simulations that capture both agents’ deci-
sions and their external context. Just as physics relies on simulated environments to study galaxies
or molecules, organisational science requires high-fidelity simulations to understand and optimise
complex human systems. Our framework provides such an environment, enabling controlled exper-
iments on structure, communication, and incentives that would be impractical in vivo.

Recent advances in LLMs make this possible by enabling human-like agents capable of natural-
language coordination and complex task reasoning (Zhou et al., 2024b; Park et al., 2023), and can
perform office-style work (Xu et al., 2025; Boisvert et al., 2025). However, existing LLM simula-
tions are rarely grounded in non-LLM surroundings, limiting their evaluative power. We close this
gap by pairing LLM-based agents with domain-grounded mechanistic simulations, providing a
testbed in which management policies can be learned and assessed under realistic constraints.

Why a reinforcement learning environment? A learned management policy can be queried at
every time step, enabling continuous, adaptive reconfiguration of an organization, a granularity
that cannot be matched by expert-designed plans. This aligns with contingency theory (Dobbin,
1998), which holds that optimal structures must evolve with changing internal and external condi-
tions. Reinforcement learning provides a natural framework for such adaptive, long-horizon con-
trol. However, our OSE differs from existing multi-agent environments in two ways: (i) it optimizes
organization-level levers: agent selection, communication, and collaboration; rather than individual
policies; and (ii) its hybrid nature: coupling LLM-based agents with mechanistic models.

Our work aims to bridge the gap between traditional reinforcement learning and LLM-based agents.
Currently, the available environments to explore this intersection are mostly OS and web-based
tasks (Xie et al., 2024; Zhou et al., 2024a). By creating an environment that faithfully captures
the dynamics of real-world organisations, we contribute to extending this line of work to strategic,
high-stakes domains requiring reasoning, memory, and language understanding.

Use case: Clinical trials. To demonstrate the power and utility of our benchmark, we instantiate it
in one of the most complex, high-stakes domains: clinical trials. The development of a new drug is
a decade-long, multi-billion dollar process where over 90% of initiatives fail, often due to logistical
inefficiencies and poor strategic planning rather than scientific shortcomings. A clinical trial serves
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as a perfect microcosm of organizational complexity (see simulation reports in appendix C.2), in-
volving diverse stakeholders, strict regulatory constraints, and critical deadlines. By modeling the
key actors, resources, and tasks within a trial, we create the first environment of its kind, enabling
researchers to explore how different organizational structures impact drug development.

In summary, our contributions are:

1. The Organizational Design Problem (ODP) is defined as learning a management policy over
(i) actor composition, (ii) communication policies, and (iii) agent autonomy to optimize multiple
objectives under constraints. We cast the ODP as a multi-objective POMDP, providing a rigorous
basis for discovering and evaluating organizational structures.

2. We introduce Organizational Simulation Environments (OSEs): a blueprint that couples
domain-specific mechanistic models with fixed LLM agents that communicate in natural language
within a discrete-time simulation. The blueprint specifies core components and engineering patterns,
enabling the first environments for training and evaluating LLM agents on the ODP across domains.

3. We release an open-source Phase II Clinical Trial OSE modeling up to 25 different actors and 8
drugs across 5 scenarios, with elements such as patients, adverse events, clinical studies, biomarkers,
PK/PD, and regulatory constraints toward Phase III approval. This benchmark enables controlled
studies of how organizational structure affects the speed, cost, and success of drug development.

4. We benchmark baseline management policies, including a large range of pretrained LLMs, on
the Clinical Trial OSE, yielding insights for developing stronger management policies.

Stage 2: Instantiation of an OSEStage 1: The OSE blueprint Stage 3: Optimising a management Policy

Data Expert Knowledge

OSE
Blueprint

OSE Management
Policy

Components:

Enginneering
solution:

LLM Agents Discrete Time simulation Mechanistic Model

ActorsIncentives

External
Factors

Ressources

ODP
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Transition function Configuration States / observations
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Figure 1: Roadmap for Computational Organizational Design. This paper introduces a blueprint
for Organizational Simulation Environments (OSE) in section 2, presents a concrete instantiation in
section 3, and benchmarks baseline management policies in section 4.

2 COMPUTATIONAL ORGANIZATIONAL DESIGN

2.1 DEFINITION OF THE ORGANIZATIONAL DESIGN PROBLEM (ODP)

We frame the ODP as a Multi-Objective Partially Observable Markov Decision Process
(MOPOMDP) defined by the tuple ⟨O,S,A, P, R⃗⟩. The state space S represents all possible states
of the organization and its environment, with St denoting the state at time t.

Actors. An actor g is a fixed policy πg : õgt , z
g
t , I

g
t 7→ agt , which at time t maps aggregated

observations õgt , a configuration zgt , and an incentive Igt to an action agt . Since only a fraction of the
environment is accessible to the organization and an even smaller portion observable by the actor,
each actor receives a partial observation ogt in O. To relax the Markov assumption, we aggregate
past observations into õgt =

∑t
k=T0

okg , where T0 is the time the actor joined the organization. The
policy of each actor can be modulated by configuration zgt and explained by incentive Igt .

Organizations. From the management policy’s perspective, its own observation Θt at time t is
defined as the set of nt ready-to-act actors: Θt = {πg(õ

g
t , ·, ?)}g≤nt , which embeds both actors’

experience (aggregated observations) and keep their incentives hidden. The management policy Π ∈
Ψ therefore chooses the organizational size nt and the configuration vector zt = (z1t , z

2
t , . . . , z

nt
t )

to pursue its objectives. Thus, the action space A is the set of finite sequences of configurations, Z∗.

Transition Function. The management policy influences the environment only indirectly, by con-
figuring the actors’ behavior. Only the actors {πg}g≤nt can directly interact with the environment.
From the perspective of management, the stochastic transition function P can be expressed as

3
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P (st+1|st, {agt }g≤nt
) = P (.|st, {πg(õgt , z

g
t , I

g
t }g≤nt

)

= P (.|st, zt) (πg is fixed and õgt , I
g
t are included in st).

Vectorial Reward Function. To capture the competing goals inherent in any complex organization,
the vectorial reward function R⃗ maps a trajectory τ ∈ T to a reward vector of dimension d.

R⃗ : T → Rd; R⃗(τt) = (r
(1)
t , r

(2)
t , . . . , r

(d)
t )

Each component represents a distinct objective and is typically sparse and event-driven. Thus, the
management policy goal is not to find a single “optimal” policy, but rather to discover the Pareto
frontier: the set of policies where no single objective can be improved without degrading another.

A trajectory is τ = (s0, z0, s1, z1, . . .) with distribution under the management policy Π ∈ Ψ and
initial state distribution ρ is given by pΠ(τ) = ρ(s0)

∏
t≥0 Π(zt | st)P (st+1 | st, zt).

For a policy Π ∈ Ψ, the expected objectives are

J(Π) = Eτ∼pΠ
[R⃗(τ)] =

(
J1(Π), . . . , Jm(Π)

)
, Ji(Π) = Eτ∼pπ

[ ri(τ) ].

For two management policies Π,Π′ in Ψ, we define J(Π) ⪰ J(Π′) ⇐⇒ Ji(Π) ≥ Ji(Π
′) ∀i,

A management policy Π⋆ is Pareto-optimal if ∄Π ∈ Ψ : J(Π) ≻ J(Π⋆). The set of all such
policies is Ψ⋆ =

{
Π ∈ Ψ

∣∣∄Π′ ∈ Ψ : J(Π′) ≻ J(Π)
}

.

The Pareto frontier in objective space is F = {J(π) ∈ Rm | Π ∈ Ψ⋆}. Thus, the multi-objective
reinforcement learning problem is to characterize Ψ⋆ and its image F .

2.2 ORGANIZATIONAL SIMULATION ENVIRONMENT (OSE)

The OSE provides a framework to train and benchmark management policies. It instantiates all com-
ponents of the formalism introduced above, except the management policy itself. In this subsection,
we describe how to implement these components in practice for any domain.

Resources
D) Mechanistic

models

Actor 1 Actor 2
Actor 3

Actor 4

Actor 5 Actor 6

Organisation

 | Actor 3 
Configuration: Inactive
Memory: [...]

Mechanistic
models simulation

LLM generated
simulation

Organizational
Simulation
Environment

A) Role : statistician
B) Incentive: Always favor email to meetings
C) Tools: analyseStudyResults

    

External Factors
E) External factor

prompts

F) Metrics
G) Achievements

Outcome

Configuration

Management
Policy

  Observations

Figure 2: Overview of an OSE. At each time step, the management policy selects an organizational
configuration Zt. In this configuration, actors reason, communicate, and interact with resources and
external factors. At the end of the step, their observations are fed back to the management policy.

2.2.1 STATE SPACE

The environment must support diverse, interdependent tasks that can only be solved through col-
laboration among multiple actors to provide realistic challenges for management policies. Since
organizations are fundamentally human-centered, we aim to replicate human decision-making for
these actors. The state captures both the organization and its surrounding environment, which we
partition into two components with distinct simulation requirements (see fig. 2).
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LLM generation. We rely on LLMs to simulate both the actors’ policies πg and the external
factors. External factors denote entities outside organizational control, such as customers, providers,
or competitors, with which the organization must interact. Since these interactions are at least partly
human in nature, LLM simulation provides greater realism.

Discrete-time simulation. Non-human, quantitative resources should be modeled mechanistically
in discrete time. This includes variables directly tied to objectives R⃗, where LLM noise would
be undesirable (e.g., time, money, machines). Discrete-time rules also govern communication and
coordination among actors, ensuring synchronization across the simulation.

2.2.2 TRANSITION FUNCTION AND TIME

The OSE evolves according to a stochastic transition kernel P (s′t+1 | st, z) that integrates both or-
ganizational dynamics and temporal constraints. Time plays a critical role in shaping organizational
efficiency. Each action incurs a time cost, and each actor should be single-threaded to reflect cogni-
tive limitations. Thus, trade-offs between reasoning and communication, and choices of communi-
cation partners, become integral to structural optimization (as shown in fig. 5). OSEs are therefore
fundamentally event-driven: actor actions, resources, and external factors consume heterogeneous
amounts of the “time” resource and schedule events that influence future st. The transition ker-
nel is applied at each time tick of the internal clock of the simulation. Discrete-time control enables
transparent measurement and robust regulation of stochastic LLM generation throughout the rollout,
mitigating hallucination drift and preserving a precise record of the numerous LLM calls.

2.2.3 ACTOR MODEL

To simulate actors that behave as closely as possible to humans, we model each actor with an LLM.
Hence, an actor defined by πg : õg, zg, Ig 7→ ag is instantiated as an LLM whose prompt consists
of a system prompt γg concatenated with the actor’s parameters (õg, zg, Ig). This setup leverages
the few-shot reasoning abilities of pre-trained LLMs and offers several advantages. First, it enables
natural language observations and actions, which are both expressive and interpretable, and allow for
communication in human-like language. Second, it provides flexibility in defining and modifying
both configurations and incentives. However, this approach also raises several technical challenges:

Memory. While aggregated observations may be arbitrarily long, LLMs have limited context win-
dows. A memory mechanism is needed to compress older observations into compact representations.

Tools. While LLMs excel at generating natural language, they may hallucinate and are less reliable
for simulating non-linguistic complex actions. To address this, such actions are implemented via
discrete-time simulation and exposed to the LLM as callable tools (Team, 2024).

Simplified assumptions. Real organizations are composed of heterogeneous individuals with di-
verse personalities, skills and experience. To reproduce this diversity in a controlled manner, we
make the following assumptions: (i) Each actor has a fixed role, which determines its system prompt
γg and the set of available tools. (ii) Each actor has fixed incentives Ig that modulate its behavior,
introduce misalignment with organizational goals, and remain hidden from the management pol-
icy. These incentives do not change over time (∀t > 0, Igt = Ig). When choosing to expand the
organization, the management policy can select the role of new actors, but their incentives are ran-
domly assigned. These assumptions allow us to generate diverse agents using a fixed library of
human-defined roles and incentives.

2.3 CONFIGURATION SPACE

In this version of the OSE, we define the configuration space Z as a set of mutually exclusive states:
Reasoning, Communicating Asynchronously, Communicating Synchronously, or Inactive.

Reasoning. The actor (i.e. an LLM) generates internal reasoning traces, task-related deliverables,
or tool calls. These outputs remain private and are not observed by the other actors.

Communicating Asynchronously. The actor produces messages or reasoning traces directed to a
group of recipients. Messages are appended to the recipients’ aggregated observations.

5
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Communicating Synchronously. The actor engages in real-time interaction with a designated
group of peers. All participants must also be in the synchronous state with the same group, and
all generated messages are shared among them, allowing for immediate responses.

Inactive. The actor produces no output.

Each configuration can be represented as a mixed graph: 1) Nodes represent actors. 2) Self-loops
denote reasoning. 3) Directed edges denote asynchronous communication. 4) Bi-directional edges
denote synchronous communication. 5) Nodes without outgoing edges are inactive.

State exclusivity requires each node to have at most one outgoing edge. Valid synchronous com-
munication further requires that the corresponding connected component forms a fully connected
subgraph. Two opposing directed edges correspond to two distinct asynchronous communications,
while a single bi-directional edge represents one synchronous interaction. See fig. 1 and fig. 2.

3 INSTANTIATING AN OSE : A CLINICAL TRIAL CASE STUDY

Drug discovery and development is a lengthy, costly, and high-risk process, often taking 10–15 years
and costing over $2 billion per approved drug (Sun et al., 2022). Despite this investment, nearly
90% of clinical drug development efforts fail. Optimizing the organizational processes involved
in clinical trials is thus critical to maximize the efficient use of time and resources. Poor resource
management directly affects the commercial viability of a drug. For instance, delays reduce the ef-
fective patent window (Williams, 2017), discouraging full trial development, while mismanagement
increases costs and raises the profitability threshold, leading to premature trial termination (Sertkaya
& Franz, 2022). Consequently, failures in clinical trials are often attributed to management ineffi-
ciencies and lack of strategic planning (Sadoon et al., 2023; Sun et al., 2022).

Clinical development proceeds in three phases. Phase I is highly standardized; Phase III largely
scales designs established in Phase II. Phase II, by contrast, offers the richest design space yet
suffers high attrition (about 66% rejection) (Torres-Saavedra & Winter, 2022). Accordingly, our
case study instantiates an OSE for Phase II clinical trial programs by specifying seven elements:
A) Role-definition prompts, B) Incentive prompts, C) Actor tools, D) Mechanistic models, E)
External-factor prompts, F) Metrics, G) Achievements.

3.1 INSTANTIATING THE ORGANIZATION

As detailed in section 2.2.3, each actor is specified by A) a role prompt. In the Clinical Trial
OSE, we consider four roles: Investigator, Clinical Program Lead, Statistician, and Regulatory Lead
(system prompts are listed in appendix D.5). Each role has access to a distinct set of C) tools
(e.g., DesignSingleArmStudy, ApproveClinicalStudy, AnalyseStudyResults,
SubmitApplicationPhaseIII) that interface with organizational resources and external fac-
tors. Tools incur heterogeneous time costs (e.g., AnalyseStudyResults requires 4 hours for a
single-arm study and 8 hours for a comparative study) and may fail if used incorrectly (e.g., due to
invalid parameters or timing). A complete catalog of tools is provided in table 6.

To further diversify behavior, we define nine B) incentive prompts that assign each actor a distinct
identity. Some incentives are role-specific, such as the Investigator’s risk aversion: “The actor is
very cautious about side-effects. They do not tolerate any mild adverse events.” Others are generic,
such as laconic communication: “The actor always keeps communication to a minimum, sending
the shortest possible emails.” Combining roles with incentives yields up to 25 unique actor profiles,
sampled at hire by the management policy. The full set of incentives and experiments illustrating
their effects is summarized in table 8.

3.2 INSTANTIATING THE ORGANIZATION’S SURROUNDINGS

The organization’s surroundings comprise two elements: resources and external factors. Resources
are simulated with D) mechanistic models grounded in medical and biological knowledge. Table 1
lists the resources defined for the Clinical Trial OSE and their associated models.

External factors are actors outside the organization, instantiated as LLM agents via E) external
factor prompts. In the Clinical Trial OSE, a key external factor is the Regulatory Agency, which

6
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interacts with the Regulatory Lead through the tool submitApplicationPhaseIII to guide
the Phase III application (prompt in appendix D).

These elements, together with the organization, are integrated into a discrete-time simulation using
SimPy (Zinoviev, 2024), a Python-based discrete event simulation framework.

Table 1: Resources and their associated mechanistic models

Resources Drug Biomarker Adverse Events Patient Single Arm Study Comparative Study

Mechanistic
Models

Pharmacokinetics Dose-
response

Risk models Phenotype Dosage, Recruitment,
Admin

Dosage, Recruitment,
Standard of care, Admin

3.3 INSTANTIATING THE VECTORIAL REWARD

The vectorial reward is instantiated through F) metrics. A special metric is the Completion ob-
jective, which quantifies how far a management policy progresses within a simulated scenario. To
evaluate completion, we introduce G) Achievements: verifiable meta-tasks that require coordinated
actions from one or multiple actors. Clinical Trial OSE’s achievements are provided in appendix D.

Building on the completion objective, the vectorial reward for the Clinical Trial OSE combines sev-
eral metrics. The Correct outcome metric measures the percentage of trials reaching the expected
result. In our environment, a Phase II trial can terminate in one of three ways: interruption due to
safety or efficacy concerns relative to the standard of care, transition to Phase III, or expiration of
the time limit without completion. Each drug is associated with one of the first two outcomes as
its expected result (table 7). Additional metrics capture the cost of running the organization. The
Total time records the simulated duration until episode termination, since longer trials reduce the
exploitation window, while the Worked time captures cumulative working hours across all actors.
Secondary cost factors include the Study completed count and the Patient hired count. Finally,
patient well-being is assessed through the Adverse event count.

4 EXPERIMENTS AND RESULTS

4.1 BENCHMARK

Completion (%) Correct Outcome (%) Worked Time (hours) Total Time (days) Studies Completed Count Patients Hired Count Adverse Events Count

1.00 100

28
587

1.80

49

9.20

0.98

76

508

402

3.88

236

17

0.98

90

277
729

2.75

74

12

0.95

79

400

685

2.58 199

30

0.63

64 725

233

0.93
41 3.57

0.92

85

650

496

3.10

316

14

0.10 40

1870

332 0.00 1.45 0.00

0.61

40

360

6388

1.55 133 11

Human Fixed Plan GPT5 GPT-oss-120b Gemma3-27B-it GPT-oss-20b Llama-3.1-8B Qwen2.5-7B

Figure 3: Comparison between Human, Fixed Plan and LLM policies.

Baselines. fig. 3 compares three types of policies on the Clinical Trial OSE, reporting performance
across the vectorial reward metrics. The policies are: 1. Human: a domain expert familiar with
clinical trials and the environment acts as the management policy. 2. Fixed Plan: a predetermined
schedule that cycles through meetings, reasoning, and email exchanges, inspired by structured rou-
tines commonly used in organizational management (Orlikowski & Yates, 2002). 3. LLM: pre-
trained LLMs used as management policies. Detailed experimental details in appendix B. In all
experiments, environment actors are powered by Qwen2.5-7B.

Results. Fixed Plan and GPT-5, the best-performing LLM policy, achieve completion scores compa-
rable to the Human policy but reach the correct outcome less frequently. Both require substantially
more resources: Fixed Plan uses 18× more working hours, while GPT-5 requires 10× more hours
and extends trial duration by 20%. They also rely on additional clinical studies, increasing adverse
events and patient recruitment. GPT-5, however, is more efficient than Fixed Plan, using fewer hours
and progressing faster, highlighting potential benefits of LLM-based policies. By contrast, smaller
LLMs such as Qwen2.5-7B and Llama-3.1-8B perform poorly, with Llama completing only 10%
of trials and both achieving just 40% correct outcomes. Given the variability in drug difficulty,
per-scenario results with standard deviations are reported in appendix C.1.
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Figure 4: Simulation report extracts illustrating recurrent inefficiencies across policies. Full
reports in appendix C.2. (a) Human policy: study designed, approved, and monitored with timely
communication. (b) LLM inefficiencies: noisy active states. (c) LLM inefficiencies: missed com-
munication. (d) Fixed Plan inefficiency: rigid, poorly timed actions. (e) Human correction of actor
error in adverse event handling. (f) The LLM fails to detect the error and proceeds incorrectly.

Table 2: Hallucination rate and average cost per episode .
Clinical Trial OSE (Qwen2.5-7B) Management Policy (GPT5) Combined

Hallucination
Rate

Input
Token

Output
Token

Estimated
Price

Input
Token

Output
Token

Estimated
Price

Estimated
Price

15% 250k ˜20k 0.1$ 320k 10k 0.4$ 0.5$

Modes of failure. The Clinical Trial OSE produces a full report after each simulation episode (ap-
pendix C.2), which helps us understand why some policies are less efficient. fig. 4 shows typical
cases: (a) To start a clinical study, the Human policy follows a clear sequence: the study is de-
signed, then approved, and finally monitored. After each reasoning step, the human makes sure to
communicate by email. This structured process allows the trial to progress smoothly. (b) In com-
parison, LLMs sometimes add extra “active” states that do not help the trial. In this case, actors
keep reasoning and sending messages without moving the study forward. These noisy steps waste
working time, delay progress and are likely to confuse the actors. (c) Another frequent issue is that
LLMs skip important communication steps. Here, a message expected at t = 4 is missing, which
later forces the actors to repair the situation. This shows how small mistakes in communication
can create larger problems downstream. (d) The Fixed Plan policy cannot adapt. It keeps rotating
through predefined actions, even when they are not appropriate. For example, reasoning happens
when communication would be needed, and vice versa. This rigid cycle produces many useless
working hours. (e) In a Phase IIb transition, the Clinical Program Lead receives results showing an
increase in severe adverse events. The correct choice is to stop the trial, but the actor fails to do so.
The Human policy forces the actor into reasoning mode to detect and fix the mistake, preventing
unsafe continuation. (f) The same situation as (e) occurs with GPT-5, but here the mistake is not
corrected. GPT-5 fails to notice the safety issue and even starts a new study, showing that it cannot
reliably identify domain-specific problems.

Worked Time

To
ta

l T
im

e

Figure 5: Pareto Frontier

Pareto Frontier. The ODP is multi-objective: we seek the Pareto
frontier of R⃗. To illustrate this, we extend the Fixed Plan into a family
of management policies parameterized by Length (size of the reason-
ing window) and Stride (number of inactive steps between windows).
Varying them produces policies whose Worked Time and Total Time
performance (fig. 5) exhibits a Pareto trade-off (blue dashed line); no
single policy minimizes both.

Cost and fidelity of the Clinical Trial OSE. Running one episode
(a full clinical trial) costs < $1 on average (table 2), covering envi-
ronment and execution of the GPT-5 management policy. The policy

contributes ∼ 80% of cost, reflecting GPT-5’s higher API price relative to Qwen. We define hal-
lucinations as generating factually incorrect or nonsensical content (Xu et al., 2024c) (e.g., wrong
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study IDs, fabricated results). Actor logs show a 15% hallucination rate; > 90% occur in 10% of
the episodes, often triggering cascading errors.

5 RELATED WORK

This section summarizes the extended discussion in appendix A, which clarifies the positioning of
the ODP task, compares it with existing environments, and reviews ML for clinical trials.

Multi-Agent Reinforcement Learning (MARL) and its hierarchical variants (MAHRL) study coor-
dination, communication, and scheduling for task allocation and policy learning (Kim et al., 2019;
Jiang & Lu, 2018). Yet, they rarely combine features central to real organizations: natural-language
interaction, partial goal alignment, fixed heterogeneous agents, mechanistic grounding, and long-
horizon optimization. LLM-based agentic frameworks model teamwork, negotiation, and game-
theoretic behavior (Li et al., 2023b; Hua et al., 2024a; Fontana et al., 2025) and systems like Chat-
Dev, MetaGPT, and AutoGen improve task decomposition and collaboration (Qian et al.; Hong et al.;
Wu et al.), but they typically optimize task performance within purpose-built agents rather than orga-
nizational design. Existing benchmarks reflect this split: MARL suites (e.g., PettingZoo, StarCraft)
lack human-like language agents, while social simulations (e.g., Sotopia, WarAgent, Smallville)
emphasize dialogue without mechanistic environments. Our work formulates organizational design
as a learning problem that optimizes structure and communication among fixed LLM-based roles
under realistic constraints, integrating natural language, mechanistic grounding, mixed alignment,
and temporal modeling to enable systematic benchmarking.

Machine learning for clinical trials spans evidence synthesis, design, cohort construction, matching,
outcome prediction, and auxiliary tasks such as summarization and writing, but prior simulations
tend to emphasize biological or statistical models or narrow LLM tasks like QA and trial prediction.
We instead introduce an organizational-level simulation of clinical trials that models interacting
agents and tasks over time, uses LLMs to emulate actor decisions, and exposes an RL interface for
learning management policies. By operating at system scale with modular integration and config-
urable organizational policies, our environment enables rigorous study of clinical trial management
as an optimization problem, bridging LLM-based social simulation with mechanistically grounded,
long-horizon organizational design.

6 DISCUSSION

Limitations. While we propose a blueprint to build OSEs, filling the required components with
data and expert knowledge still demands substantial modeling effort to design mechanistic models
and coordinate their interactions. This engineering work is essential, as the quality of the learned
management policies depends directly on the fidelity of the simulation. For instance, the Clinical
Trial OSE was developed in close collaboration with academic and industry experts in clinical trials,
who reviewed and validated the simulator.

Broad Impact. This work enables the development of management policies at the intersection of
Reinforcement Learning and LLM agents. Our results (section 4) already suggest actionable de-
sign principles and open directions. Beyond management policies, the OSE blueprint can seed a
broader family of environments across domains well beyond clinical trials, e.g., companies, gov-
ernment agencies, educational institutions, and charities, reflecting the generality of organizational
structure. Developing such environments can advance multiple areas in parallel, including multi-
agent RL, LLM-based agents, inter-agent communication, memory modeling, and both mechanistic
and language-based simulation.

Future of Organizational Simulation Environments. The roadmap for the Clinical Trial OSE and
the general OSE blueprint includes enriching the environment with new actor types, additional drugs,
and coverage of earlier (Phase I) and later (Phase III) trial stages. Another direction is enhancing
agent capabilities, for example, by integrating retrieval-augmented generation (RAG) systems or
fine-tuning role-specific agents. Most importantly, methods to automatically generate OSEs from
data or expert interaction would address current limitations and enable scalable development of
domain-specific environments. .
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A DETAILED RELATED WORK

A.1 ORGANIZATIONAL DESIGN PROBLEM

Multi-Agent Reinforcement Learning (MARL) Multi-Agent Reinforcement Learning (MARL)
has been widely used to study coordination, communication, and scheduling problems that are rel-
evant subcomponents of organizational design. For example, MARL has been applied to job and
task scheduling (Kim et al., 2019), and to the learning of communication policies—either through
centralized control mechanisms (Kim et al., 2019; Du et al., 2021; Niu et al., 2021) or decentral-
ized protocols (Jiang & Lu, 2018; Singh et al., 2018; noa, a). These studies often distinguish be-
tween explicit communication (using dedicated channels or messages) and implicit communication
(emerging from observed actions or shared environments), both of which are essential for effective
organizational functioning.

A closer direction is explored in Multi-Agent Hierarchical Reinforcement Learning (MAHRL)
(Sivagnanam et al., 2024), where a high-level orchestrator agent delegates tasks to lower-level
agents. In feudal MARL settings (Ahilan & Dayan, 2019), the orchestrator and subordinate agents
are trained end-to-end, enabling hierarchical coordination. However, these approaches overlook crit-
ical aspects of real-world organizations—such as the use of natural language communication, partial
alignment of goals between agents, and constraints on modifying internal agent policies. Further-
more, MARL environments typically train all agents jointly, whereas real organizational design
problems often require optimizing the structure and communication among fixed, heterogeneous
agents.

Agentic Frameworks and LLM-based Simulations

Recent advances in large language models (LLMs) have led to the emergence of agentic frameworks,
where LLM-based agents simulate complex social and collaborative behavior. These frameworks
are sometimes used to model organizational settings, but most focus on static simulations rather
than optimization. Notable works have used LLM agents to study team formation (Li et al., 2023b),
diplomatic negotiation (Hua et al., 2024a), and coordination in conversational games (Xu et al.,
2024b). However, these studies rely on free-form language interactions without grounding in a
mechanistic simulation environment, which limits reproducibility and makes the agents susceptible
to hallucinations that break the underlying dynamics, as highlighted in (Ma et al., 2025).

Other works in this space focus on decision-making and rationality through the lens of game theory.
For example, LLMs have been tested in classical social dilemmas or negotiation games to study
emergent strategies, rational behavior (Hua et al., 2024b), or alignment with human preferences
(Fontana et al., 2025). While some works propose improved workflows or coordination protocols
(Hua et al., 2024b), they remain limited by the simplicity of the underlying games. Moreover, they
treat the setting as a static game-theoretic problem, not a machine learning task involving long-term
organizational optimization through a learning orchestrator.

Several recent multi-agent frameworks—such as ChatDev (Qian et al.), MetaGPT (Hong et al.),
and AutoGen (Wu et al.)—focus on decomposing complex tasks (e.g., software development or
mathematical reasoning) among specialized LLM agents. These systems leverage modular design
and structured collaboration to outperform single-agent baselines. However, their primary goal is
improved task performance, not the study or optimization of organizational structure. Additionally,
the agents in these frameworks are purpose-built and optimized, often lacking constraints such as
fixed policy, single-threaded operation, or costly communication—constraints that are essential in
realistic organizational simulations.

Positioning and Novelty of Our Work

Our work is distinct in that we treat organizational design as a machine learning problem. We
aim to optimize the structure and communication patterns of an existing organization composed of
fixed LLM-based agents simulating human roles. Unlike prior work, we (i) explicitly model natural
language communication, (ii) assume partial goal alignment among agents, (iii) ground interactions
in mechanistic environments, and (iv) restrict the orchestrator from altering internal agent policies.
These constraints mirror real organizational settings and enable benchmarking and generalization.
To the best of our knowledge, no prior work systematically formulates this problem or proposes a
learning-based solution for optimizing such simulated organizations.
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Table 3: Comparison of multi-agent and agentic frameworks across features relevant to the organi-
zational design task.

Type
of

Task

Task Solved Centralised
Orches-
trator

Fixed
Actor

Policies

Optimise
NL

comm.

Partially
Aligned
Agents

Simulating
Existing

Organisations

Modify
Organizational

Structure

References

MARL

Task
scheduling

✓ ✓ ✗ ✗ ✓ ✗ (Kim et al.,
2019)

Learning
communica-
tion policies

✗ ✗ ✓ ✗ ✗ ✗ (Jiang & Lu,
2018)

Multi-Agent
Hierarchical

RL

✓ ✓ ✗ ✗ ✗ ✗ (Sivagnanam
et al., 2024)

Feudal
multi-agent
hierarchy

✓ ✗ ✗ ✗ ✗ ✗ (Ahilan &
Dayan, 2019)

Agentic
Frame-
works

Human
interaction
simulation

✗ ✗ ✗ ✓ ✓ ✗ (Li et al.,
2023b)

Game theory
studies

✗ ✗ ✗ ✓ ✗ ✗ (Fontana et al.,
2025)

Task-solving
agents (e.g.,

coding)

✗ ✗ ✓ ✗ ✗ ✓? (Qian et al.)

Our
Work

Organizational
design

✓ ✓ ✓ ✓ ✓ ✓

A.2 EXISTING ENVIRONMENTS

The novelty of our organizational design task is reflected in the limitations of existing environments.
As summarized in Table 4, none of the current environments support all the essential characteristics
required to study and optimize organizational structures. Our proposed environment is, to the best
of our knowledge, the first to satisfy all these requirements simultaneously.

Table 4: Comparison of environments based on organizational design task’s requirements

Type of
Environ-

ment

Envi-
ronment

Managed
Agents

LLM Agents
for Human
Simulation

Mixed
Aligned
Agents

Temporal
Model

Org.
Shap-

ing

Natural
Lang.
Com

Mechanistic
Simula-

tion

Task
Optimi-
sation

Standard
MARL en-
vironment

Particle
env

✓ ✗ ✗ ✓ ✗ ✗ ✓ Yes

Pettingzoo ✓ ✗ ✗ ✓ ✗ ✗ ✓ Yes

Starcraft ✓ ✗ ✗ ✓ ✓ ✗ ✓ Yes

Social
interaction
with LLM

Sotopia ✓ ✓ ✓ ✗ ✗ ✓ ✗ Yes

WarAgent ✓ ✓ ✓ ✗ ✗ ✓ ✗ Yes

Smallville ✓ ✓ ✓ ✓ ✗ ✓ ✓ No

Game
theory

MAgIC ✗ ✓ ✓ ✗ ✗ ✓ ✗ Yes

Company
environ-

ment

The
agent

company

✗ ✗ ✗ ✗ ✗ ✗ ✓ Yes

WorkArena ✗ ✗ ✗ ✗ ✗ ✗ ✓ Yes

WorkBench ✗ ✗ ✗ ✗ ✗ ✗ ✓ Yes

Ours - ✓ ✓ ✓ ✓ ✓ ✓ ✓ Yes

Most standard Multi-Agent Reinforcement Learning (MARL) environments, such as the Particle
Environment (noa, 2025), PettingZoo (noa, b), and StarCraft Multi-Agent Challenge (Samvelyan
et al., 2019), focus on low-level coordination and task solving. While they enable decentralized agent
management and sometimes study communication, they do not rely on natural language, nor do they
simulate human-like decision-making using LLMs. Furthermore, they are typically built around
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decentralized training, making it non-trivial to incorporate a centralized orchestrator or manager
without first pre-training a meaningful population of agent behaviors.

Crucially, these environments do not attempt to bridge the simulation-to-reality gap that is central
to studying real-world organizational dynamics. In contrast, large language models (LLMs) have
been shown to mimic human-like behavior in complex, open-ended settings. For instance, Park
et al. (2023) demonstrate how LLM agents in Smallville can exhibit emergent social behavior such
as planning birthday parties or forming alliances, providing strong evidence that LLMs can serve
as effective proxies for human agents in simulated organizations. A broader overview of LLM
capabilities in real-world-like settings is provided by Guo et al. (2024).

Environments developed after the emergence of LLMs have attempted to use them for social or
strategic simulations. Examples include Sotopia (Zhou et al., 2024b) and WarAgent (Hua et al.,
2024a), which examine communication and negotiation among LLM agents with mixed incentives.
However, these environments are limited to dialogue-based interaction without grounding in mech-
anistic simulations. As a result, they lack temporal modeling, making it impossible to measure com-
munication efficiency or long-term task performance. They are also vulnerable to hallucinations that
can disrupt the consistency of environment dynamics (Ma et al., 2025).

Some recent environments do incorporate natural language into grounded simulations, such as grid-
worlds with communication tasks (Slumbers et al., 2023; Li et al., 2023a; Zhang et al., 2024). How-
ever, these environments remain limited: they lack realism and/or are not task-driven or organiza-
tionally oriented, and often do not allow for a central orchestrator to manage the system. As such,
they are insufficient for simulating and optimizing realistic organizations.

Other works aim to benchmark LLM performance on tasks relevant to company workflows(Xu et al.,
2024a; Koteczki et al., 2024; Styles et al., 2024; Boisvert et al., 2025; Neehal et al., 2024). These
environments evaluate how well LLMs can act as autonomous agents capable of executing specific
business tasks, often with the goal of replacing human workers. In contrast, our approach does not
aim to replace workers with LLMs, but rather to use LLMs to simulate fixed human-like agents in
order to study and optimize the organization itself. Nevertheless, these works justify our modeling
choice: they demonstrate that LLMs can reasonably simulate human workers across a wide range of
cognitive tasks.

Our proposed environment closes this gap. It is the first to combine LLM-based agents, mixed align-
ment of incentives, natural language communication, temporal modeling, and mechanistic simula-
tion in a unified framework for organizational optimization.

A.3 CLINICAL TRIALS IN MACHINE LEARNING

Machine learning has been applied to various aspects of clinical trials. The rise of Large Language
Models (LLMs) has particularly enabled applications in clinical evidence synthesis (Wang et al.,
2024), trial design, including patient feature selection (Neehal et al., 2024), cohort creation (Lin
et al., 2024), and patient-trial matching (Ghosh et al., 2025), as well as in outcome prediction (Yue
et al., 2024) and support tasks such as medical writing (Markey et al., 2025), summarization (Lin
et al., 2024), and note generation (Lin et al., 2024). However, optimizing the organizational struc-
ture of clinical trials remains an unexplored area in machine learning and has only recently been
discussed conceptually (Sadoon et al., 2023).

Although simulations are widely used in clinical ML, they typically rely on mechanistic models or
trained neural models that simulate specific biological processes (Zhao et al., 2009; Moore et al.,
2004; Ribba et al., 2022), or statistical counterfactual models (Zang et al., 2023). In contrast, our
simulation operates at a higher organizational level. It models the entire system of actors and their
tasks within a clinical trial.

Our environment differs in three key ways:

1. Scale and Modularity: Unlike prior work that focuses on micro-level biological processes,
our simulation spans multiple agents and tasks. It is designed to integrate finer-grained
simulations where necessary.

2. LLM-based Decision-Making: On top of using mechanistic logic, we leverage LLMs to
simulate the realistic decision-making processes of organizational actors.
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3. RL Interface: Our environment is implemented as a RL environment, enabling the bench-
marking of various organizational strategies and methods rather than supporting only a
fixed task.

In the domain of LLM-based agentic frameworks, few multi-agent systems exist for the medical
field. Most are designed to solve narrowly defined tasks such as medical question-answering (Li
et al., 2024), clinical trial outcome prediction (Yue et al., 2024), or clinical trial design (Li et al.,
2025). Others serve as benchmarks for diagnosis (Schmidgall et al., 2024) or QA (Fan et al., 2024).
None address the higher-level organizational optimization task proposed in this paper.

A key distinction between our work and prior frameworks lies in the simulation characteristics nec-
essary for organizational benchmarking. As summarized in table 5, our framework uniquely incor-
porates a temporal model (to account for deadlines and scheduling efficiency) and supports organi-
zational policies (communication and scheduling) as configurable inputs, both of which are absent
in previous works.

Table 5: Summary of the comparison between our clinical trial environment and relevant works in
the medical and machine learning field.

Paper Type Task Multi-
Agent

Decision-
making

Temporal
model

Organisation
as input

References

Logistics in
CT industry

Framework Organizational
optimisation

✗ Mechanistic ✓ ✗ (Sadoon et al., 2023)

PK/PD
simulation

Method Precision
dosing

✗ Mechanistic ✓ ✗ (Moore et al., 2004; Ribba
et al., 2022)

Target trial
emulation

Method Drug
repurposing

✗ Deep-
learning

✗ ✗ (Zang et al., 2023)

Agent
hospital

Method Medical QA ✓ LLM ✗ ✗ (Li et al., 2024)

AI hospital Benchmark Diagnostic ✓ LLM ✗ ✗ (Schmidgall et al., 2024)

AgentClinic Benchmark Medical QA ✓ LLM ✗ ✗ (Fan et al., 2024)

ClinicalAgent Method CT outcome ✓ LLM ✗ ✗ (Yue et al., 2024)

TrialGenie Method CT design ✓ LLM ✗ ✗ (Li et al., 2025)

Ours RL envi-
ronment

Organizational
optimisation

✓ LLM ✓ ✓ —
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B EXPERIMENTAL DETAILS

The results in fig. 3 are averaged over 20 seeds (4 seeds per drug scenario). Except for GPT-5, all ex-
periments were conducted with locally deployed open-source LLMs on two H100 GPUs. Sampling
parameters were kept at their default values except the temperature set to 0.2. In all experiments, the
environment was run by Qwen2.5-7B-Instruct.

B.1 LLM MANAGEMENT POLICIES

All LLM management policies, irrespective of the underlying model, use the same prompt (fig. 6)
and default sampling parameters. When the parameter reasoning effort is enabled, it is set to
low. To keep costs under control, we cap the number of LLM calls per episode at 2000.
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You are the management agent of a clinical trial program. You coordinate an organization
composed of multiple actors, each with specific roles. Your objective is to achieve the
organizational goal while minimizing actor involvement, so they remain available for
other tasks.

**Organizational goals:**
1. Identify the Minimum Efficient Dose of the drug {drug.name} by completing single arm

studies.
2. Start the phase B of the clinical trial program
3. Demonstrate comparative advantage of the drug {drug.name} by completing comparative studies

.
4. Send applications to the regulatory authorities for the phase III approval.
5. While doing these goals, interrupt the clinical trial program if the drug is unsafe or

ineffective.

The goals have to be achieved in the listed order.

**Actors and tasks:**
- Investigators is the main actor: they can design and monitor clinical studies.
- Studies must be approved by a Clinical Trial Lead after being designed.
- Completed studies must be analyzed by a Statistician.
- Only the Clinical Trial Lead can start the phase B of the program.
- Only the Clinical Trial Lead can interrupt the clinical trial program.
- Only the Regulatory Lead can send applications to the regulatory authorities.
- The Regulatory Lead should send multiple applications and improve them based on feedback

from the regulatory agency.
- As soon as a comparative study is analyzed, the Regulatory Lead should start sending

applications to the regulatory agency.

Each time an actor is using a tool or performing a task, they are busy and cannot be assigned
to anything but "inactive". You can see the current activities of the actors below.

Actors only have access to the information present in their observations. Make sure that the
actor has the required information to perform their tasks. Use communication states to
share information between actors.

When there is no information to share, favor reasoning or inactive states.
Actors takes time to work, do not assume that a given task is realised at the moment you

ordered it. Wait to obtain a confirmation in the observations.

At each time step, you must propose a new **configuration** of the organization in JSON format
.

A configuration maps each actor type to a tuple ‘(state, recipient)‘ where:

- ‘"reasoning"‘: the actor thinks and executes their task (for examples : starting studies,
approving studies, analysing studies, monitoring studies, sending applications). The
recipient list must be empty.

- ‘"communicate_async"‘: the actor sends a message to the actors listed in ‘recipient‘.
- ‘"communicate_sync"‘: the actor participates in a synchronous meeting with all actors in ‘

recipient‘. All actors that are recipients of a meeting must also have the same state and
recipients. The actor should be included in its recipient.

- ‘"inactive"‘: the actor is idle and does nothing.

Make sure to call the actors by their full id, which is of the form ‘Role:UniqueNumber‘ (e.g.,
‘Investigator:1‘, ‘Regulatory Lead:3‘).

If you need additional actors, you can expand the organization by adding new actors of any
role . Only if needed, you can add up to 2 actors per role but keep in mind that each
additional actor increases the cost of the clinical trial program. To add a new actor,
simply include them in the configuration with their desired state and recipients. Make
sure the new actor has a unique ID.

When you remove an actor from the configuration, they are no longer part of the organization
and cannot be re-added later.

Alternatively, while waiting for monitored studies’ results (studies that are being monitored
but not yet completed), you MUST **stall the organization** for a fixed time by returning
a JSON file of the form:

‘‘‘json
{’{"waiting duration": <hours>}’}
‘‘‘
Never stall the organization if any study has not been approved or not being monitored.

Approve or start monitoring such studies should be your priority.

### Previous configuration:
{previous_configuration}

### START Actors’ observations:
{"\n".join(actor.observation for actor in actors)}
### END Actors’ observations.

### Current timestamp: {timestamp}

### On-going and past studies:
{studies.information}

### Actors’ current activities:
{"\n".join(actor.activity for actor in actors)}

Figure 6: System prompt for the LLM management policies.
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C ADDITIONAL RESULTS

C.1 RESULTS PER DRUG-SCENARIO
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Figure 7: Atorvastatin
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Figure 8: Ceftolozane
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Figure 9: FF-10501-01
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Figure 10: PF-05221304
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Figure 11: IPI

Figure 12: Results per scenario-drug with their associated standard deviations as error bars.
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C.2 COMPLETE SIMULATION REPORTS
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Figure 13: Complete report of the human policy on a clinical trial for Atorvastatin. The policy
achieves the correct outcome.
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Figure 14: Truncated report (12 286 out of 26 590 steps) of the GPT-5 policy on a clinical trial
for IPI. The policy achieves the correct outcome.
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D CLINICAL TRIAL OSE: DETAILS

D.1 TOOLS

Table 6: Summary of actors’ tools for the Clinical Trial OSE.

Tool Actor Type Interact with Time Cost Description

design single arm study Investigator single-arm study,
patient, drug

3 Design a single-arm study.

design comparative study Investigator comparative study,
patient, drug

5 Design a comparative study.

monitor study Investigator single-arm study,
comparative study

- Start monitoring an approved study. Lasts
until the study is completed.

request information soc Investigator drug 1 Request information about the standard of
care to design a comparative study.

consult toxicity guidelines Clinical
Program Lead

adverse events 1 Consult information about the severity of
an adverse event.

approve Phase IIb Clinical
Program Lead

- 5 Start Phase IIb of a clinical trial.

approve study Clinical
Program Lead

single-arm study,
comparative study

4 Approve the study.

interrupt program Clinical
Program Lead

- 1 Stop the clinical trial program due to severe
toxicity or lack of results.

analyze results Statistician single-arm study,
comparative study

3–5 Statistically analyze a study.

submit application Regulatory
Lead

regulatory agency 5 Submit an application for a Phase III trial to
a regulatory agency.

D.2 DRUG-SCENARIO DETAILS

Table 7: Summary of drugs, conditions, biomarkers, adverse events, and outcomes in clinical trials.

Drug ID Standard
of Care

Correct
outcome

Reason Condition Biomarker Adverse Events Clinical
Trial

Reference

Atorvastatin
Simvastatin Application

approved
Reduced toxicity
compared to SOC

High
cholesterol C-LDL Muscle pain –

Myopathy ()
Simvastatin

Ceftolozane
Cefepime Application

approved
Increased effect

compared to SOC
Hematological
Malignancies Temperature Rash –

increased ALT
(Chaftari

et al., 2022)Cefepime

PF-
05221304

Placebo Application
approved

Increased effect
compared to SOC

Non-alcoholic
fatty liver
disease

Liver Fat
Content

Headache –
Hypertriglyc-

eridemia

(Calle et al.,
2021)

FF-10501-
01

Placebo Program
interrupted

Toxicity Acute myeloid
leukemia

Partial /
Complete
remission

Mucositis (Garcia-
Manero

et al., 2020)

IPI
NIVO Program

interrupted

Lack of increased
effect compared to

SOC

Advanced
MCC

refractory

Tumor
size Fatigue (Bhatia

et al., 2025)NIVO

D.3 ACHIEVEMENTS

We define achievements by distinguishing two possible outcomes of the clinical trial:

Case 1: The trial is interrupted by the Clinical Program Lead. In this case, the achievements are:

• A single-arm study is designed.

• A single-arm study is approved.

• A single-arm study is completed.

• A single-arm study is analyzed.
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Case 2: The trial proceeds to completion (i.e., an application for a Phase III trial is accepted) without
interruption. In this case, the achievements are:

• A single-arm study is designed.
• A single-arm study is approved.
• A single-arm study is completed.
• A single-arm study is analyzed.
• Phase IIb is initiated.
• A comparative study is designed.
• A comparative study is approved.
• A comparative study is completed.
• A comparative study is analyzed.
• An application is submitted to the regulatory agency.
• The application for a Phase III trial is accepted.

D.4 INCENTIVES

Table 8: Description of the possible incentives for each actor type. We made custom metric to
measure the impact of each incentive on the actor behavior. Results measured over 10 seeds

Incentive Description Actor
Type

Metric With Incentive Without
Incentive

Approve the first study immediately without checking
anything

Clinical
Trial
Lead

Mean message count
before approval

0.2 0.8

Delay the approval of the first study until you have
received at least three messages from the Investigator.

Clinical
Trial
Lead

Time step of first study
approval

50.2 ± 66.9 37.7 ± 40.5

Consult toxicity guidelines very regularly to make
sure you know them well.

Clinical
Trial
Lead

Count times con-
sult toxicity guidelines

called

36.1 ± 17.6 22.1 ± 18.6

You are very cautious about side-effects. DO NOT
tolerate any mild adverse events.

Investigator Minimum Efficient Dose
higher

6 / 10 3 / 10

Always ask the Clinical Trial Lead about toxicity
guidelines before starting a study

Investigator Count mentions of
toxicity guidelines

36.8 ± 42.8 10.5 ± 12.1

You don’t have time to reason, make sure to always
use at least one tool in each of your answers

Any Incentives caused more
calls

8 / 10 2 / 10

Be very mindful before using any tool, make sure you
took a few hours of reasoning before using them

Any Number of tool calls by
Clinical Trial Lead

61.3 ± 48.5 44.3 ± 18.6

Keep your communication to the minimum, send
emails as short as possible

Any Token count of messages 68.0 ± 9.4 88.4 ± 15.5

Be very detailed in your communication, write long
emails that contain all the information you can think
of

Any Token count of messages 180.4 ± 17.3 88.4 ± 15.5
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D.5 ACTOR’S PROMPTS

You are a Clinical Trial Lead {actor.ID} overseeing a clinical trial.
Your role is to coordinate between investigators, Clinical Trial Leads, Regulatory Leads and

statisticians.
Some decision such as starting medical studies require your approval.
It is also your responsibility to consult toxicity guidelines when side-effects or adverse

events are observed.
In addition, you can interrupt the trial due to serious viability concerns (due to lack of

statistically significant results) or safety issues.
Keep all communications short and to the point. Never lie or make up false information. Make

sure that each clinical claim is supported by study results and include study_ID. When
needed, communicate you actions to the relevant actors.

Your goal is to achieve all your tasks.
#TASKS:
- Monitor the clinical trial program (Review and if suited, approve executive decisions.

Interrupt the program if needed).
- Deciding on approval for executive decision (Based on the context, decide to give your

approval or not for the important decision made by other actors).
- Respect toxicity guidelines (When a side effect or adverse event is observed, consult the

toxicity guidelines to determine the appropriate course of action).
- Gather enough evidence and check the toxicity of the drug before starting the phase II B of

the clinical trial program (Only after obtaining the Minimum Efficient Dose and the
optimal dosage with confidence from the Investigator and if quantitative results of
finished studies have been provided, you can decide to start the phase II-B of the
clinical trial program. In your rational, you must provide the evidence supporting the
decision, including the study results that ground your decision. Do not allow any phase
II-B clinical trial if the no therapeutic benefit is demonstrated or if the toxicity is
unacceptable).

Figure 15: System prompt for the Clinical Trial Lead actor.

You are an Investigator {actor.ID} in a clinical trial for the drug with id {drug.name}.
Information about the drug: {drug.information}
You oversee scientific execution and can run studies.
Design and run studies when needed but do not initiate them without proper justification as

they are costly.
Once a study has been designed and approved, you must monitor it with the appropriate tool. Do

not design new studies until already approved studies are being monitored.
Current and past studies: {studies.information}.
Keep all communications short and to the point. Never lie or make up false information. Make

sure that each clinical claim is supported by study results and always include study_ID
and side-effects. When needed, communicate you actions to the relevant actors.

Your goal is to achieve all your tasks.
#TASKS:
- Find Minimum Efficient Dose (Select the optimal dosage for the drug which will be used in

subsequent phases of the clinical trial. This dosage should be the minimum dosage that
shows efficacy without unacceptable toxicity. To find this dosage you can rely on single
arm studies).

- Gather enough evidence and check the toxicity of the drug before starting the phase II B of
the clinical trial program (Only after obtaining the Minimum Efficient Dose and the
optimal dosage with confidence from the Investigator and if quantitative results of
finished studies have been provided, you can decide to start the phase II-B of the
clinical trial program. In your rational, you must provide the evidence supporting the
decision, including the study results that ground your decision. Do not allow any phase
II-B clinical trial if the no therapeutic benefit is demonstrated or if the toxicity is
unacceptable).

- Demonstrate comparative advantage (Demonstrate the therapeutic advantage of the drug over
the standard of care (or placebo if it doesn’t exist). To do this, you can conduct
comparative studies).

Figure 16: System prompt for the Investigator actor.
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You are a Regulatory Lead {actor.ID} for a clinical trial.
Your role is to compile all the information required to submit the phase III study application

to the regulatory agency.
You will need to communicate with the investigator to obtain all this information.
Once you judge you have enough information, you can submit the application.
The regulatory agency will send feedback on your application. The application can later be

improved based on this feedback.
The application must contain the following details:

-study_ids: list of the IDs of all studies that support the application. These studies
must be completed and analysed. One of them must be a comparative study.

-effect_size: effect_size expected with confidence interval.
-dose_recommended: recommendation for dosage in phase III studies with its rational based

on dose-response curve.
-Comparative_advantage: explanation of the comparative advantage of the drug over the

standard of care (or placebo if it doesn’t exist) sources with statistics over
comparative studies results.

Keep all communications short and to the point. Never lie or make up false information. Make
sure that each clinical claim is supported by study results and include study_ID. When
needed, communicate you actions to the relevant actors.

Your goal is to achieve all your tasks.
#TASKS:
- Obtain approval from regulatory agency for phase III clinical trial (You need to find the

necessary information to fill the application. Only after gathering enough information,
you should submit the application. You can improve it based on the regulatory agency’s
feedback until you get the approval)

Figure 17: System prompt for the Regulatory Lead actor.

You are a Statistician {actor.ID} in a clinical trial program.
Your role is to help the research team make data-driven decisions by providing insights from

the study data.
Keep all communications short and to the point. Directly convey information to those who need

it. When needed, communicate you actions to the relevant actors.
Consider that the only two reasons results are not statistically significant are either a lack

of power (too few patients included in the study) or the drugs have equivalent effects.
Keep all communications short and to the point. Never lie or make up false information. Make

sure that each clinical claim is supported by study results and include study_ID. When
needed, communicate you actions to the relevant actors.

Your goal is to achieve all your tasks.
#TASKS:
- Statistical support for the research team (Provide statistical support and insights to the

research team based on the study data. When prompted, perform statistical analysis for
other team members).

Figure 18: System prompt for the Statistician actor.

You are a regulatory agency overseeing clinical trials.
Your role is to review application for phase III clinical trial program.
When receiving an application, provide feedback on its strengths and weaknesses. Verify that

all the necessary elements are included.
Offer guidance on how to improve the application if needed.
Keep all communications short and to the point. Never lie or make up false information.

Figure 19: System prompt for the Regulatory Agency external factor.
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