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Abstract

The FORTRESS (Feature Optimization and Robustness
Techniques for 3D Detection Systems) method introduces a
novel approach to enhancing the robustness of 3D object
detection in autonomous driving. Building on the RayDN
architecture, FORTRESS incorporates a modified EVA ViT-
Large backbone, pre-trained on ImageNet, to achieve deep
and resilient feature extraction. The method is further en-
hanced with a strategic combination of Augmix and Deep-
Aug data augmentation techniques, carefully crafted to
address diverse environmental changes and maintain ro-
bustness against real-world data distribution shifts. The
training process is systematically structured, progressing
from clean datasets to increasingly complex scenarios, each
phase contributing to the development of a more robust de-
tection system. By adopting feature optimization and ro-
bustness techniques, FORTRESS not only refines the detec-
tion capabilities but also ensures the model’s adaptability to
varied and unforeseen environmental conditions. Prelimi-
nary results have demonstrated the method’s potential as an
effective solution for robust BEV detection challenges in au-
tonomous driving. Additionally, FORTRESS was validated
in the ICRA 2024 RoboDrive Challenge, where it achieved
second place in Track 1: Robust BEV Detection.

1. Introduction

The rise of autonomous driving technologies has intensified
the focus on developing robust detection systems that can
accurately interpret and navigate complex environments.
Bird’s Eye View (BEV) detection is particularly critical, of-
fering a comprehensive perspective essential for the safe op-
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eration of autonomous vehicles. The RoboDrive Challenge,
specifically Track 1: Robust BEV Detection, provides a
platform to address this challenge using advanced computer
vision techniques. Our solution, FORTRESS (Feature Opti-
mization and Robustness Techniques for 3D Detection Sys-
tems), aims to significantly improve the accuracy and ro-
bustness of BEV detection.

BEV detection is vital for understanding a vehicle’s sur-
roundings from a top-down perspective, integrating sensor
data to create a comprehensive view of road conditions, ob-
stacles, and navigational cues. However, the dynamic na-
ture of driving environments and the limitations of current
detection technologies present significant challenges, such
as varying environmental conditions, occlusions, and the
need for precise object detection and depth estimation.

FORTRESS addresses these challenges by incorporating
a novel pipeline for camera-only 3D object detection, a so-
phisticated feature extraction backbone, and data augmen-
tation techniques. This approach ensures performance and
adaptability in real-world scenarios, setting a new bench-
mark for BEV detection systems in autonomous vehicles.

2. Related Work

2.1. 3D Object Detection

The field of 3D object detection has advanced significantly
with the rise of deep learning and computer vision. Initial
approaches relied on geometric properties and stereoscopic
vision for depth estimation [18]. However, the introduction
of deep convolutional neural networks shifted focus towards
data-driven methods, enhancing model accuracy through
large-scale training. Notable milestones include LiDAR-
based models like PointNet and PointRCNN, which have
set benchmarks for 3D detection accuracy [14, 15]. More
recently, cost-effective methods that infer 3D information
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Figure 1. Pipeline of FORTRESS.

from 2D images, such as MonoDIS and Pseudo-LiDAR,
have gained traction due to their seamless integration with
camera systems [16, 17]. Advanced techniques for multi-
view camera 3D detection in BEV space, like BEVFormer,
BEVDepth, and Sparse4D, have achieved performance lev-
els comparable to LiDAR-based approaches, marking sub-
stantial progress [9–11].

2.2. Robustness of Visual Systems

Research on adversarial robustness has focused on defend-
ing models against malicious inputs designed to cause er-
rors, with foundational work by Madry et al. and Good-
fellow et al. demonstrating the effectiveness of adversarial
training [5, 7, 13]. Meanwhile, natural robustness, crucial
for real-world deployment, addresses a model’s reliability
across diverse environmental conditions and sensor noise.
Enhancements in natural robustness often involve data aug-
mentation and robust training that simulate real-world dis-
turbances. Benchmarks like ImageNet-C have been instru-
mental in testing models against common visual corrup-
tions, driving the development of more resilient architec-
tures [2, 6, 8].

3. Methodology
Our method for the RoboDrive Challenge, titled
FORTRESS (Feature Optimization and Robustness
Techniques for 3D Detection Systems), leverages advanced
computational techniques to enhance the robustness and ac-
curacy of Bird’s Eye View (BEV) detection. By integrating
sophisticated data processing, augmentation, and adaptive
training strategies, FORTRESS effectively addresses the
challenges of 3D object detection in dynamic driving
environments. The pipeline of FORTRESS is illustrated in
Fig. 1.

3.1. Pipeline

FORTRESS follows a novel pipeline based on RayDN [12]
for camera-only 3D object detection, with specific enhance-

ments tailored for multi-view scenarios. This method mit-
igates common issues like redundant and incorrect detec-
tions, which often arise from challenges in depth estima-
tion from 2D images. By implementing depth-aware hard
negative sampling along camera rays, the method generates
hard negative examples that are visually similar to true pos-
itives, forcing the model to improve its depth-related fea-
ture discrimination. This plug-and-play module integrates
seamlessly with any DETR-style multi-view 3D detector,
offering a significant boost in detection accuracy without
increasing computational overhead or affecting inference
speeds, as demonstrated by its superior performance on the
NuScenes dataset [1].

3.2. Backbone

FORTRESS utilizes the EVA ViT-Large [3], a next-
generation Transformer-based model pre-trained on Ima-
geNet. The EVA-02 [4] variant employs a plain Trans-
former architecture extensively trained to reconstruct ro-
bust, language-aligned vision features via masked image
modeling. This backbone excels at extracting high-quality
features crucial for precise object detection under variable
environmental conditions, all while maintaining efficiency,
making it ideal for autonomous driving applications.

Figure 2. Visualization of Augmix-enhanced Data.



Figure 3. Visualization of DeepAug-enhanced Data.

3.3. Data Augmentation

To ensure reliability across diverse conditions, FORTRESS
incorporates efficient data augmentation strategies: Augmix
and DeepAug. Visualization of enhanced data can be seen
in Fig. 2 and Fig. 3.

Augmix enhances model robustness by applying a se-
quence of image processing techniques—such as pixel shuf-
fle, random hue, and random saturation—that preserve the
semantic integrity of images while introducing diverse, re-
alistic variations. This approach significantly improves the
model’s ability to estimate uncertainty and resist data cor-
ruptions that were not present during training, effectively
bridging the gap between controlled training conditions and
real-world scenarios.

The method constructs augmented images by apply-
ing a series of operations to the original image x. Let
O1,O2, . . . ,On represent these operations. An augmenta-
tion chain can be expressed as:

x′ = On(O2(O1(x)) . . .)

The outputs from multiple chains x′
1, x

′
2, . . . , x

′
k are then

combined using element-wise convex combinations, with
mixing weights w sampled from a Dirichlet distribution
Dir(α, . . . , α). The mixed image x̃ is represented as:

x̃ = w1 · x′
1 + w2 · x′

2 + · · ·+ wk · x′
k

Finally, x̃ is blended with the original image x using an-
other convex combination, where the mixing coefficient β is
sampled from a Beta distribution Beta(α, α). The resulting
image y is defined as:

y = β · x+ (1− β) · x̃

This comprehensive process, incorporating randomness
in operation selection, severity, and mixing, enhances the
model’s robustness and generalization, preparing it to han-
dle a wide range of unseen data variations and corruptions.

DeepAug introduces a more innovative approach to data
augmentation by focusing on the internal representations

within deep neural networks rather than applying transfor-
mations directly to raw images. Clean images are processed
through image-to-image networks, such as CAE and EDSR,
where random perturbations are introduced at various net-
work layers. This process generates images that, while pre-
serving semantic integrity, exhibit significant visual differ-
ences from their original counterparts. Perturbations in-
clude operations like zeroing, negating, and convolving,
which create diverse visual variations. This approach ef-
fectively trains the model to recognize and adapt to a wider
spectrum of visual inputs.

The combination of Augmix and DeepAug equips
FORTRESS to handle a broad range of environmental
changes and ensures robustness against shifts in data dis-
tributions encountered during real-world deployment.

3.4. Training Strategy

The training strategy for FORTRESS is carefully structured
to expose the model to a diverse array of scenarios. It begins
with training on clean, unaltered data from the nuScenes
dataset to establish a baseline for accuracy and robustness.
As training progresses, complexity is introduced incremen-
tally: first by incorporating data enhanced with Augmix,
and then by integrating data augmented with both Augmix
and DeepAug. This phased approach not only layers the
model’s robustness but also ensures it develops the ability to
generalize effectively across varied environmental and op-
erational conditions, ultimately leading to a more resilient
and reliable detection system.

Through these strategic implementations, FORTRESS
establishes a new approach for robustness and accuracy in
BEV detection, offering a comprehensive and adaptable so-
lution to meet the evolving challenges of autonomous driv-
ing technology.

4. Experiments
4.1. Experimental Setups

Our proposed approach was implemented using the Py-
Torch framework, with the FORTRESS model trained on
eight NVIDIA GeForce RTX 4090 GPUs. The training
utilized only the images from the training split of the
nuScenes dataset. The regimen began with 24 epochs on the
clean nuScenes training data, followed by 16 epochs with
Augmix-enhanced data, and concluded with 16 epochs on
data augmented with both Augmix and DeepAug.

4.2. Implementation Details

Augmix. The initial implementation of Augmix shared sub-
stantial overlap with the corruptions used in the RoboDrive
competition. Given the competition rules prohibiting the
use of identical corruptions during training, we propose al-
ternative augmentation techniques—specifically pixel shuf-



Table 1. NDS of corruption categories on the Robodrive Challenge Track1 phase2 test dataset. (Part 1)

Corruptions Bright Dark Fog Frost Snow Contrast Defocus Blur Glass Blur Motion Blur Zoom Blur

RayDN 0.354 0.528 0.334 0.256 0.616 0.336 0.493 0.451 0.380 0.119
FORTRESS (Augmix) 0.421 0.627 0.336 0.439 0.648 0.480 0.587 0.434 0.413 0.156
FORTRESS (Augmix+DeepAug) 0.431 0.627 0.375 0.466 0.609 0.492 0.584 0.465 0.447 0.188

Table 2. NDS of corruption categories on the Robodrive Challenge Track1 phase2 test dataset. (Part 2)

Corruptions Elastic Transform Color Quant Gaussian Noise Impluse Noise Shot Noise ISO Noise Pixelate JPEG Average

RayDN 0.470 0.487 0.588 0.363 0.483 0.482 0.559 0.429 0.429
FORTRESS (Augmix) 0.434 0.661 0.691 0.468 0.532 0.511 0.566 0.382 0.488
FORTRESS (Augmix+DeepAug) 0.448 0.667 0.706 0.424 0.560 0.508 0.568 0.475 0.502

Table 3. Clean performance on the nuScenes dataset validation split.

Models NDS mAP mATE mASE mAOE mAVE mAAE

BEVFormer 0.517 0.415 0.672 0.274 0.369 0.397 0.198
RayDN 0.624 0.541 0.518 0.252 0.274 0.230 0.195
FORTRESS (Augmix) 0.623 0.541 0.509 0.253 0.268 0.248 0.194
FORTRESS (Augmix+DeepAug) 0.619 0.536 0.506 0.256 0.294 0.248 0.187

fle, random hue, and random saturation. These methods
were chosen to simulate data degradation while adhering
to the rules, thus enhancing the detection model’s general-
ization capabilities.
DeepAug. DeepAug involves augmenting data using CAE
and EDSR models. This process is integrated during the im-
age loading phase, either on-the-fly or using pre-generated
augmented data to optimize computational efficiency. In
practice, we pre-generate the augmented data, and during
training, images are loaded based on a random probability
rd (with a threshold t empirically set to 0.6). If rd exceeds
t, EDSR-processed data is used; otherwise, CAE-processed
data is employed. To maintain consistency in detection out-
comes, certain operations typically included in DeepAug,
such as horizontal and vertical flips, were excluded.

4.3. Comparative Study

The RoboDrive Track 1: Robust BEV Detection compe-
tition challenges algorithms to recover from 18 types of
corruptions, each designed to simulate various environ-
mental and sensor-induced damages. Tab. 1 and Tab. 2
present the results of our baseline RayDN model and the
FORTRESS method across these 18 corruption types, eval-
uated using the NDS metric. After applying Augmix, we
observed performance improvements on most corruption
types, including notable gains of 0.182 and 0.173 NDS on
Frost and Color Quant, respectively, resulting in an av-
erage NDS of 0.488. However, slight performance de-
clines were noted on corruptions such as Glass Blur, Elastic
Transform, and JPEG. With the subsequent incorporation of
DeepAug, overall robustness further improved, raising the
average NDS to 0.502. These results demonstrate that both
Augmix and DeepAug contribute significantly to enhancing
NDS across the dataset.

4.4. Results on the nuScenes Dataset

We also evaluated the performance of our methods on the
clean data from the nuScenes validation split, as shown
in Tab. 3. RayDN demonstrated a notable improvement,
achieving an NDS increase of 0.1068 compared to BEV-
Former, establishing a strong foundation for our approach.
The FORTRESS method, after incorporating Augmix aug-
mentation, maintained nearly all of its performance on clean
data. Following an additional 16 epochs of training with
DeepAug-enhanced data, the NDS on clean data slightly
decreased to 0.619. However, at this stage, FORTRESS
achieved the highest robustness NDS, indicating a trade-off
between performance on clean and robust data. This result
underscores that FORTRESS’s augmentation strategies ef-
fectively enhance robustness without significantly compro-
mising performance on uncorrupted datasets, preserving its
detection capabilities.

5. Conclusion
In this study, we presented FORTRESS, an advanced ap-
proach aimed at enhancing the robustness and accuracy
of BEV detection for autonomous vehicles. By integrat-
ing Ray Denoising with the EVA ViT-Large backbone and
leveraging effective data augmentation techniques such as
Augmix and DeepAug, FORTRESS significantly improves
detection performance across diverse environmental condi-
tions. Our results demonstrated substantial gains in han-
dling various data corruptions in the RoboDrive Challenge,
while maintaining strong performance on clean data from
the nuScenes dataset. This work establishes a foundation
for further research into reliable and efficient BEV detection
systems, striving to achieve a balance between high perfor-
mance and robustness in real-world scenarios.
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