
Non-Rectangular Robust MDPs with Normed
Uncertainty Sets

Navdeep Kumar∗
Technion

Adarsh Gupta
Finsynth.ai

Maxence Mohamed Elfatihi
École Polytechnique

Giorgia Ramponi
University of Zurich

Kfir Levy
Technion

Shie Mannor
Technion

Abstract

Robust policy evaluation for non-rectangular uncertainty set is generally NP-hard,
even in approximation. Consequently, existing approaches suffer from either expo-
nential iteration complexity or significant accuracy gaps. Interestingly, we identify
a powerful class of Lp-bounded uncertainty sets that avoid these complexity bar-
riers due to their structural simplicity. We further show that this class can be
decomposed into infinitely many sa-rectangular Lp-bounded sets and leverage
its structural properties to derive a novel dual formulation for Lp robust Markov
Decision Processes (MDPs). This formulation reveals key insights into the adver-
sary’s strategy and leads to the first polynomial-time robust policy evaluation
algorithm for L1-normed non-rectangular robust MDPs.

1 Introduction

Robust Markov Decision Processes (MDPs) effectively handle uncertainties in environmental pa-
rameters, making them indispensable for high-stakes domains such as robotics, finance, healthcare,
and autonomous driving, where failures can have catastrophic consequences [24, 12, 30, 25, 16].
They also outperform standard MDPs in terms of generalization, ensuring robust performance across
diverse scenarios [37, 38, 26]. Consequently, extensive research has been conducted on robust
MDPs [23, 10, 36, 17, 3, 25, 16, 14, 34, 35, 33, 7, 20, 18, 39, 31, 1, 15], primarily focusing on
rectangular uncertainty sets that leverage the contractive robust Bellman operator. However, practical
robust MDPs often feature non-rectangular uncertainty sets, where rectangular relaxations can result
in overly suboptimal solutions [21, 8, 36]. Intuitively, non-rectangular uncertainty set could be
thought of as an n-dimensional sphere of unit radius, and its rectangular relaxation is the smallest
n-dimensional cube encapsulating the sphere. The ratio between the sphere and the encapsulating
cube is exponential in the dimension (O(2−n)) [28]). This suggests that the rectangular relaxation
of the non-rectangular uncertainty set, contains many additional environments. Moreover, most of
the additional environments would lie near the corners representing big differences from the center
in many coordinates – scenarios unlikely to occur in the real world, as aptly captured by the paper
titled "Lightening doesn’t strike twice, robust MDPs [22]". These improbable, highly perturbed
environments can lead to a significant gap between the solutions of non-rectangular robust MDPs and
their rectangular relaxations.

While non-rectangular robust MDPs capture much better interdependencies across the states, they
lack the existence of contractive robust Bellman operators, which makes the problem very difficult
to solve with standard dynamic programming techniques [8]. This makes non-rectangular robust

∗corrosponding author email navdeep.kumar@zohomail.in

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

MDPs a crucial yet challenging area of study, with only a limited body of work existing on the topic
[36, 21, 8].

The key challenge for non-rectangular robust MDPs is robust policy evaluation . That is, given
oracle access to the robust gradient (robust policy evaluation), the robust policy gradient method can
efficiently achieve an ϵ-close globally optimal policy with an iteration complexity of O(ϵ−4) [33].
However, the robust policy evaluation for general convex non-rectangular uncertainty sets is strongly
NP-hard, even for approximations [36]. Despite this hardness, [21] first proposed two methods for
non-rectangular robust policy evaluation for general convex uncertainty sets: One with exponential
iteration complexity in the state-action space, and another that approximates the solution but with a
possible very high accuracy gap in the worst case (see Table 1).These pioneering approaches remain
computationally prohibitive or overly imprecise, consistent with the NP-hardness result.

Interestingly, the NP-hardness result in [36] applies specifically to kernel uncertainty sets with certain
polyhedral structures (see Appendix for details). For Lp -bounded uncertainty sets, [8] showed that
robust policy evaluation can be done efficiently, though this is limited to reward uncertainty, a much
simpler case compared to kernel uncertainties. This raises a critical open question: Are there useful
classes of kernel uncertainty sets that avoid this NP-Hardness barrier? And we show that L1

normed non-rectangular uncertainty sets are efficiently solvable in polynomial time.

We identify a specific class of non-rectangular uncertainty sets, bounded by an Lp- ball around
a nominal kernel, and demonstrate that it effectively circumvents the NP-hardness result of [36].
Moreover, we show that robust policy evaluation for this non-rectangular Lp- -bounded uncertainty
set is equivalent to robust policy evaluation over an infinite collection of sa-rectangular Lp -bounded
uncertainty sets. While robust policy evaluation for each sa-rectangular set is computationally
tractable [20, 18], managing this infinite collection poses significant challenges. To overcome this,
we leverage the property that the worst kernel for each sa-rectangular uncertainty set is a rank-one
perturbation of the nominal kernel [18]. This insight enables us to express the robust policy evaluation
problem (or robust return) in a novel dual form, providing a clearer understanding of the adversary’s
behavior. Furthermore, this dual formulation facilitates the development of a binary search method
for robust policy evaluation, achieving an iteration complexity of O(log ϵ−1) for approximating the
robust return up to ϵ tolerance.

In summary, robust MDPs are critical for handling uncertainties in high-stakes domains, yet existing
methods are largely confined to rectangular uncertainty sets, limiting real-world applicability. Non-
rectangular uncertainty sets, though more realistic, often face NP-hard challenges in robust policy
evaluation. This work identifies a promising class of non-rectangular Lp -bounded kernel uncertainty
sets, demonstrating that they circumvent existing NP-hardness results and enable efficient robust
policy evaluation. By connecting robust evaluation for these sets to an infinite collection of sa-
rectangular uncertainty sets and leveraging their structure, we propose a computationally efficient
binary search method with logarithmic iteration complexity. This approach not only advances the
understanding of non-rectangular robust MDPs but also opens the door to future investigation into
broader classes of non-rectangular uncertainty sets in robust MDPs.

2 Preliminary

A robust Markov Decision Process (RMDP) can be described as a tuple (S,A, γ, µ,R,U), where
S is the state space, A is the action space, µ is an initial distribution over states S, γ is a discount
factor in [0, 1), R is a reward function mapping S × A to R, and U set of transition kernel P that
maps S × A to ∆S [16, 25] . A policy π : S → ∆A is a decision rule that maps state space to
a probability distribution over action space. Let Π = (∆A)

S denote set of all possible policies.
Further, π(a|s), P (s′|s, a) denotes the probability of taking action a in state s by policy π, and the
probability of transition to state s′ from state s under action a respectively. In addition, we denote
Pπ(s′|s) =

∑
a π(a|s)P (s′|s, a) and Rπ(s) =

∑
a π(a|s)R(s, a) as short-hands. The return of a

policy π, is defined as Jπ
P = ⟨µ, vπP ⟩ = ⟨Rπ, dπP ⟩where vπP := DπRπ is value function, dπP = µ⊤Dπ

is occupation measure and Dπ = (I − γPπ)−1 is occupancy matrix [27]. As a shorthand, we denote
the state-action occupation measure as dπP (s, a) = dπP (s)π(a|s) and the usage shall be clear from the
context. For an uncertainty set U , the robust return Jπ

U for a policy π, and the optimal robust return
J∗
U , are defined as:

Jπ
U = min

P∈U
Jπ
P , and J∗

U = max
π

Jπ
U ,

2

Table 1: Related Work on Robust Policy Evaluation for Non-Rectangular Uncertainty Sets.

Method Uncertainty
Set

Iteration Com-
plexity

Accuracy Irreducibility
Assumption 1
of [21]

NP-Harness
Result of
[36]

[8] Reward
Lp Normed

O(log ϵ−1) ϵ No No

Algorithm
3.1 of [21]

General
Kernel Set

O(2q log ϵ−1) ϵ No Yes

Algorithm
3.2 of [21]

General
Kernel Set

O(ϵ−2) δd(2ϵ+ δP) Yes Yes

Ours Kernel L1

Normed
log(ϵ−1) ϵ No No

The constants q, δd, δP can be as large as O(S2A) , O(2S) and O(S
√
A) respectively.

respectively. The objective is to determine an optimal robust policy π∗
U that achieves the optimal

robust performance J∗
U . Unfortunately, even robust policy evaluation (i.e., finding the worst-case

transition kernel Pπ
U ∈ argminP∈U Jπ

P) is strongly NP-hard for general (non-rectangular) convex
uncertainty sets [36]. This makes solving non-rectangular robust MDPs a highly challenging problem.

To make the problem tractable, a common approach is to use s-rectangular uncertainty sets, Us =
×s∈SPs, where the uncertainty is modeled independently across states [36]. These sets decompose
state-wise, capturing correlated uncertainties within each state while ignoring inter-dependencies
across states. A further simplification is the sa-rectangular uncertainty set, Usa, where uncertainties
are assumed to be independent across both states and actions. Formally, Usa = ×(s,a)∈S×APs,a,
where Ps,a are independent component sets for each state-action pair [16, 25, 34, 35].

A Lp-bounded uncertainty sets, Usa
p and Us

p , which are centered around a nominal transition kernel P̂
are defined as Usa

p = {P |
∑

s′ Psa(s
′) = 1, ∥Psa − P̂sa∥p ≤ βsa}, and Us

p = {P |
∑

s′ Psa(s
′) =

1, ∥Ps− P̂s∥p ≤ βs}, where radius vector β is assumed small enough to ensure all kernels within the
uncertainty sets are valid [14, 7, 20, 18] . Interestingly, for Lp bounded uncertainty set, adversarial
(worst) kernels is a rank one perturbation of the nominal kernel that is used later in the paper [18].

Dual Formulation. The primal formulation of an MDP is defined as:

max
v∈V
⟨µ, v⟩, with its dual: max

d∈D
⟨d,R⟩,

where V = {v | v = Rπ + γPπv, π ∈ Π} represents the set of value functions. The dual formulation
relies on the state-action occupancy measure d, where d ∈ D ⊂ R|S|×|A| satisfies the non-negativity
constraint (d ⪰ 0) and the flow conservation constraint:

∑
a d(s, a) − γ

∑
s′,a′ d(s′, a′)P (s |

s′, a′) = µ(s), ∀s ∈ S. The feasible set D forms a convex polytope [2], whereas the set of value
functions, V , is a polytope that is generally non-convex [6]. This dual formulation offers several
advantages, including efficient handling of constraints and the ability to solve the problem using
linear programming techniques.

For robust MDPs, the geometry of robust value functions is significantly more intricate compared to
standard MDPs [32]. While the dual formulation for standard MDPs is well-established, this work is
the first to derive a dual formulation for this specific class of non-rectangular robust MDPs, providing
critical insights and laying the foundation for the development of robust policy evaluation methods.

3 Method

In this section, we introduce Lp-bounded non-rectangular uncertainty set, and demonstrate that
its rectangular relaxation may yield highly sub-optimal solutions. Then, we establish that this

3

uncertainty set avoids the NP-Hardness results established in [36]. Subsequently, we show that the
robust evaluation for this uncertainty set is equivalent to robust evaluation over an infinite collection
of sa-rectangular robust MDPs. This equivalence leads to a novel dual formulation and, ultimately,
a binary search method for robust policy evaluation. We begin with defining non-rectangular Lp-
bounded uncertainty set as:

Up =
{
P

∣∣∣ ∥P − P̂∥p ≤ β,
∑
s′

P (s′ | s, a) = 1
}
,

where P̂ is the nominal kernel, β is uncertainty radius, and ∥P − P̂∥p = (
∑

s,a,s′(P (s′|s, a) −
P̂ (s′|s, a))p)

1
p . The simplex constraint ensures that the transition kernel P satisfies the unity-

sum-rows property, as discussed in [20]. Following previous works [7, 20, 18], we assume the
radius β is sufficiently small to ensure all the kernels within the uncertainty sets are valid transition
kernels. As discussed in [20], this assumption can be lifted by imposing boundary constraints
(0 ≤ P (s|s, a) ≤ 1) at the expense of additional complexity and without yielding significant
additional insights. Throughout the paper, we use dπ, vπ, Jπ, Dπ as shorthand for dπ

P̂
, vπ

P̂
, Jπ

P̂
, and

Dπ
P̂

, respectively, w.r.t. nominal kernel P̂ .

Why non-rectangular RMDPs. Note that the non-rectangular uncertainty sets allow noise in one
state to be coupled with noise in other states. Before delving into solving them, we first discuss their
importance. Why are uncertainty sets modeled with non-rectangular sets Up (e.g., L2-balls) better
than rectangular ones?

In Figure 1, we illustrate this by capturing the uncertainty set using non-rectangular U2 (circle/sphere)
balls and rectangular (square/cube) balls. The blue dots represent possible environments, with
the origin being the nominal environment. Points farther away from the origin indicate larger
perturbations. Specifically, points near the corners of the square/cube represent environments with
large perturbations in nearly all dimensions or coordinates simultaneously. The likelihood of such
simultaneous perturbations is very low, and this issue becomes even more pronounced in higher
dimensions. This phenomenon is well discussed in the paper Lightning Doesn’t Strike Twice: Coupled
RMDPs[22].

Figure 1: Modeling Uncertainty with Non-Rectangular and Rectangular L2-Balls.

Moreover, as shown in the result below, most of the volume of a high-dimensional cube lies near
its corners outside the embedded sphere. This implies that rectangular robust MDPs are overly
conservative, as their uncertainty sets focus on environments near the corners—corresponding to
highly unlikely extreme perturbations.

4

Proposition 3.1. Let Usa
2 and Us

2 denote the smallest sa-rectangular and s-rectangular sets, respec-
tively, that contain U2. Then:

vol(U2)
vol(Usa

2)
= O(c−SA

sa), and
vol(U2)
vol(Us

2)
= O(c−S

s),

where vol(X) denotes the volume of the set X , S = |S|, A = |A| and cs, csa > 1 are constants.

The result follows from comparing the n-dimensional sphere’s volume cnr
n (cn → 0) [28], to the

enclosing cube’s volume 2nrn (side 2r), resulting in a ratio of O(2−n).

In summary, real-world uncertainty sets are often non-rectangular and highly coupled. Their rectan-
gular relaxations (the smallest rectangular uncertainty sets encapsulating the original non-rectangular
sets) introduce exponentially more additional environments, many of which correspond to highly
perturbed kernels that are improbable in practice. As a result, relaxed rectangular robust MDPs can
produce overly conservative and suboptimal solutions compared to their non-rectangular counterparts.

Complexity. While non-rectangular robust MDPs better capture real-world uncertainty sets, robust
policy evaluation (even approximation) has been proven NP-hard for general uncertainty sets defined
as intersections of finite hyperplanes [36]. Specifically, [36] reduces an Integer Program (IP) with
m constraints to robust MDPs where the uncertainty set consists of intersections of m half-spaces
(m-linear constraints). This polyhedral structure is fundamental to the hardness proof, consequently,
it does not extend to our uncertainty sets Up for p > 1. For the case of U1, the IP reduction does
apply, but since U1 is defined by a single global constraint (∥P − P̂1∥1 ≤ β), this implies that the
corresponding IP has only one simple constraint which is efficiently solvable. A detailed discussion
can be found in Appendix B.2.

Intuitively, the NP-Hardness result primarily applies to polyhedral uncertainty sets with numerous
vertices. This leaves room for the possibility that many uncertainty sets defined by a small number
of global constraints, such as norms or distances, might fall outside the scope of this hardness and
could potentially be tractable. However, we leave this intriguing question for future exploration: is
NP-Hardness merely the tip of the iceberg?

Divide and Conquer. The above discussion highlights the potential tractability of Lp-robust MDPs,
prompting us to address the challenge of solving them. A key insight is that the non-rectangular
uncertainty set Up can be expressed as a union of sa-rectangular sets Usa

p (b) with varying radius
vectors b, as formalized in the result below. Each sa-rectangular set can be efficiently solved
individually, paving the way for a more manageable approach to the overall problem.

(a) Illustration of Proposition 3.2: N-dimensional
sphere can be written as infinite union of n-
dimensional inscribing cubes.

(b) Projections of set D along principal components,
for S = 3, A = 2 with 10 millions samples, strongly
suggesting non-convexity.

Figure 2:

5

Proposition 3.2. [Decomposition] The non-rectangular uncertainty set Up can be expressed as:

Up =
⋃
b∈B

Usa
p (b),

where B = {b ∈ RS ×A
+ | ∥b∥p ≤ β}, and Usa

p (b) = {P | ∥P (· | s, a) − P̂ (· | s, a)∥p ≤
b(s, a),∀(s, a)}, is sa-rectangular uncertainty set with radius vector b.

The proof of the above result intuitively generalizes the idea that a circle (or n-dimensional sphere)
can be covered by an inscribed square (or n-dimensional rectangles) touching its boundaries and a
continuum of its rotated versions, as shown in Figure 2(a). This offers a significant simplification to
the problem at hand, as it implies that non-rectangular policy evaluation (difficult) can be decomposed
into sa-rectangular uncertainty sets (easier) as:

Jπ
Up

= min
b∈B

min
P∈Usa

p (b)
Jπ
P . (1)

In essence, we have simplified a complex problem into an infinite number of more manageable
ones. However, the task remains incomplete. Although a closed-form expression exists for
Jπ
Usa

p
= Jπ −

∑
s,a d

π(s, a)bsaσq(v
π
Usa

p
), where q is the Hölder conjugate of p (i.e., 1

p + 1
q = 1)

and σp is the generalized standard deviation (GSTD) defined as σp(v) = minω∈R ∥v − ω1∥p
[20], this approach is still computationally impractical. The core challenge lies in solving
maxb∈B

∑
s,a d

π(s, a)bsaσq(v
π
Usa

p (b)), which remains a formidable task. To circumvent this, we
leverage the dual formalism, which is elaborated in the next section.

3.1 Dual Formulation of Robust MDPs

Here, we present a dual formulation for robust MDPs specifically for Lp-bounded uncertainty sets.
While this formulation is inherently more intricate than the classical dual formulation for standard
MDPs [27], it forms the foundation for all subsequent results in this work.

Now, leveraging results from [18], we know that the worst-case kernel for sa-rectangular uncertainty
sets, Pπ

Usa
p (b) = P̂ − bk⊤, can be expressed as a rank-one perturbation of the nominal kernel, where

k ∈ K := {k | ∥k∥p ≤ 1,1⊤k = 0}. Consequently, the adversary can restrict their focus to rank-one
perturbations, enabling us to reformulate the robust return as:

Jπ
Up

= min
b∈B

min
k∈K

Jπ
P̂−bk⊤ = min

b∈B
min
k∈K

µ⊤Dπ
P̂−bk⊤R

π,

where the last equality stems from Jπ
P = µ⊤Dπ

PR
π. Further, leveraging Lemma 4.4 from [18] or

directly applying the Sherman–Morrison formula [4] (see Proposition D.1), the robust return can be
expressed as:

Jπ
Up

= min
b∈B,k∈K

[
µ⊤DπRπ − γµ⊤Dπbπ

k⊤DπRπ

1 + γk⊤Dπbπ

]
,

where bπs :=
∑

a π(a|s)bsa. The following result introduces a more concise and interpretable form
of this robust return expression.

Lemma 3.3. [Penalized Robust Return] The robust return can be expressed as:

Jπ
Up

= Jπ − γ max
b∈B,k∈K

⟨k, vπR⟩⟨dπ, bπ⟩
1 + γ⟨k, vπb ⟩

,

where vπb = Dπbπ represents the value function with uncertainty radius b as the reward vector.

For the first time, the above result expresses the robust return in terms of the nominal return Jπ and a
penalty term involving only nominal values (dπ, vπR = vπ, and vπb). Notably, the denominator term
1 + γ⟨k, vπb ⟩ is strictly positive (see appendix for details). In the subsequent subsections, we delve
deeper into evaluating this penalty term and analyzing the nature of the optimal (k, b) for a given
policy π, revealing the adversary. Finally, by maximizing the robust return Jπ

Up
over policies, we get

a dual formulation, as stated below.

6

Theorem 3.4 (Dual Formulation). The optimal robust return is the solution to

J∗
Up

= max
D∈D

min
k∈K,b∈B

[
µTDR− γµTDb

kTDR

1 + γkTDb

]
where D =

{
DπHπ | π ∈ Π

}
, Dπ = (I − γP̂π)−1 and Hπ : RS ×A → RS is a policy averaging

linear operator defined as HπR := Rπ .

The dual formulations for the sa-rectangular and s-rectangular cases differ notably in their definitions
of B. In the sa-rectangular case, B = {β}, whereas in the s-rectangular case, B = {b ∈ RS×A |
∥bs∥p ≤ βs}. These distinctions are elaborated in the appendix. The result above frames the dual
of robust MDPs as a min-max problem, offering valuable and insightful perspectives. However, as
Figure 2(b) suggests (with further details in the appendix), the set D may be non-convex, which
complicates the problem. Despite this, we believe that the dual formulation holds potential for future
work, providing deeper insights and enabling the development of improved algorithms. In this work,
we keep our focus on the robust policy evaluation while policy improvement is addressed via existing
robust policy gradient method with proven guarantees [33], discussed further in Appendix C.

3.2 Robust Policy Evaluation

Now, we directly attempt to evaluate the penalty term in Lemma 3.3 which leads to a binary search-
based robust policy evaluation algorithm. The key idea is to identify a bisection function:

F (λ) = max
b∈B,k∈K

k⊤Eπ
λb,

where Eπ
λ := γ

[
DπRπµ⊤Dπ − λDπ

]
Hπ. Note that Eπ

λ is constructed using quantities that
are computationally straightforward, and Hπ : RS×A → RS represents the policy-averaging linear
operator, defined by (HπR)(s) :=

∑
a π(a|s)R(s, a).

Proposition 3.5. For p = 1, F can be evaluated in closed form as

F (λ) = γβ max
s∈S,a∈A

π(a|s)∥dπ(s)vπ − λDπ(·, s)∥sp,

where ∥x∥sp = maxi xi−mini xi

2 and Dπ = (I − γP̂π)−1.

Proof. The proof is referred to Proposition G.4.

Note that the above result requires computation of vπ, dπ, Dπ which can be approximated iteratively
with time complexity O(S2A log ϵ−1) or exactly via matrix inversion with time complexity O(S3A3).
Lemma 3.6 (Robust Policy Evaluation). Let λ∗ be a fixed point of the function F (λ), then the robust
return can be expressed as:

Jπ
Up

= Jπ − λ∗.

And λ∗ can be efficiently computed using binary search Algorithm 1 as F (λ) > λ ⇐⇒ λ > λ∗.

Proof. The proof can be found in Appendix (see Lemma F.2).

The result enables a direct computation of the robust return by iteratively refining λ until convergence,
leveraging the monotonicity properties of F (λ). Further, the bisection property of F established in
the result, directly implies the linear convergence rate of Algorithm 1, as stated result below.

Algorithm 1 Binary Search for Robust Policy Evaluation
Initialize: Upper limit λu = 1

1−γ , lower limit λl = 0

1: while not converged: n = n+ 1 do
2: Bisection value: λn = (λl + λu)/2
3: Bisection: λl = λn if F (λn) > λn, else λu = λn.
4: Update robust return: Jn = Jπ

P where P = proj(P0 − bkT),
(b, k) ∈ argmaxb∈B,k∈K k⊤Eπ

λb, and proj is simplex projection operator.
5: end while

7

Theorem 3.7. Algorithm 1 converges linearly, i.e.,

Jn − Jπ
Up
≤ O(2−n).

We conclude that robust evaluation can be performed efficiently with linear iteration complexity.
However, each iteration involves solving the subproblem maxx∈B ∥Ax∥q, as part of Algorithm 1
which can solved in closed form shown in Proposition 3.5. For p = 2, we provide a spectral heuristic
for its approximation in the appendix, however for other p ̸= 1, 2, it can be hard.

4 Revealing the Adversary

We provide the first insights into the structure of the worst-case kernel in non-rectangular robust
MDPs, addressing an unexplored area in the literature. The following result reveals that, similar to
rectangular uncertainty sets [18], the worst-case transition kernel is a rank-one perturbation of the
nominal kernel, but with a more complex structure.

Theorem 4.1 (Worst-Case Kernel). For a policy π and uncertainty set Up, the worst-case transition
kernel is:

Pπ
Up

= P̂ − bk⊤,

where (k, b) solves:

max
k∈K, b∈B

Jπ
b ⟨k, vπR⟩

1 + γ⟨k, vπb ⟩
.

The above result follows directly from Lemma 3.3. It highlights the adversary’s strategic use of
k, b, and their interaction with the value functions vπR and vπb , revealing a more nuanced structure
compared to the rectangular case. The adversary’s objectives in selecting the worst-case kernel are
twofold:

• Maximizing Trajectory Uncertainty (Jπ
b): The adversary seeks to increase the agent’s vis-

its to high-uncertainty states, enhancing its ability to steer the agent toward disadvantageous
outcomes.

• Optimizing the Perturbation Direction (k): The adversary selects k to maximize k⊤vπR,
thereby pushing the agent into low-reward trajectories, while simultaneously minimizing
k⊤vπb to ensure the agent remains exposed to high-uncertainty states.

These insights provide a deeper understanding of the adversary’s behavior and offer practical guidance
for designing more resilient robust algorithms to counteract such strategies effectively.

Message to Practitioners

The adversary focuses solely on rank-one perturbations of the nominal kernel, iteratively
boosting its influence by pushing the agent into high-uncertainty states, then leveraging that
influence to steer the agent toward low-reward trajectories, ultimately driving the agent to the
lowest possible return.

5 Experiments: Robust Policy Evaluation with L1 Normed Uncertainty Set

We conduct a numerical comparison of our Algorithm 1 and CPI (Algorithm 3.2 from [21], reproduced
as Algorithm 2 in the appendix) for robust policy evaluation. The experiments are performed using a
randomly generated nominal kernel P̂ , reward function R, and policy π. An uncertainty set U1 is
constructed using the nominal kernel with a fixed uncertainty radius β.

Figure 14 demonstrates the convergence behavior of both methods, presenting results based on the
number of iterations (left panel) and computation time (right panel). The left panel shows the robust
return achieved per iteration, while the right panel depicts the robust return as a function of wall-clock
time. Note that the x-axes of the figure have a logarithmic scale in order to clearly capture the slow
convergence of the CPI method.

8

Figure 3: Robust Return for β (Uncertainty Radius, S=12 and A=8, γ=0.9 and convergence tolerance
of 10−4 . Robust Return of Random Kernel is minimum of 500 millions kernels samples for each β

• Our Algorithm 1. We apply our Binary Search Algorithm 1 to perform robust policy
evaluation with the given nominal kernel P̂ and uncertainty radius β. Each iteration of the
algorithm involves computing F (λ), using close form solution provided in Proposition 3.5.
Our algorithm converges very quickly requiring only a few iterations.

• Algorithm 3.2 of [21]. We run Algorithm 2 with precomputed values of dπ and Aπ. The
step sizes are chosen to be either a small constant or dynamically adjusted, as described
in the algorithm. Note that Line 3 of the algorithm involves solving argminP∈U1

⟨x, P ⟩.
This constrained optimization is solved using a numerical method (scipy.minimize). This
gradient based method improves very slowly and converges very far from the true robust
return as the uncertainty set U1 is very non-rectangular.

• Brute Force Benchmark. To approximate the true robust return, we generate a large
number of random samples {Pi | i ≤ n} from U1 and estimate the empirical minimum,
mini J

π
Pi

, as a proxy for the robust return. Note this method requires exponential number of
samples to reasonably cover the entire uncertainty set. Hence the values obtained in Figure
14, are an approximate upper bound on the true robust return.

The results in Figure 14 reflect a general trend observed across a wide range of experiments conducted
with state space sizes ranging from S = 5 to S = 190 and uncertainty radius β ∈ {0.005, 0.01, 0.05}.
Our proposed algorithm consistently demonstrates superior performance, converging in significantly
fewer iterations and less computation time while the computational demands of the CPI algorithm
grow substantially with larger state spaces. Hence, our method exhibits more favorable scaling
properties, making it practical for high-dimensional problems.

The codes, detailed explanations, and additional experiments are available at https://anonymous.
4open.science/r/non-rectangular-rmdp-77B8. System details for the experiments are as
follows: Operating System: macOS Sequoia (Version 15.4.1), Chip: Apple M2, Cores: 8 (4
performance and 4 efficiency), Memory: 16 GB (LPDDR5).

6 Discussion

We studied robust Markov decision processes (RMDPs) with non-rectangular Lp-bounded uncer-
tainty sets, balancing expressiveness and tractability. We showed that these uncertainty sets can be
decomposed into infinitely many sa-rectangular sets, reducing robust policy evaluation to a min-max
fractional optimization problem (dual form). This novel dual formulation provides key insights

9

https://anonymous.4open.science/r/non-rectangular-rmdp-77B8
https://anonymous.4open.science/r/non-rectangular-rmdp-77B8

Figure 4: Comparison of Algorithm 1 (Ours) and the CPI Algorithm for β (Uncertainty Radius)
= 0.05, S = 10, A = 8, γ = 0.9, and a convergence tolerance of 10−4.

into the adversary and leads to the development of an efficient robust policy evaluation algorithm.
Particularly, we provided first polynomial time policy evaluation for non-rectangular L1 normed
uncertainty set. These findings further pave the way for scalable and efficient robust reinforcement
learning algorithms.

Limitations. Similar to [7, 20, 18], we have considered small enough uncertainty radius to ensure
positivity of the kernel. As discussed in [20], imposing this additional positivity constraints (or
dealing with nominal kernel with zero transition probability to some states) would significantly
complicate the analysis without yielding significant additional insights. However, we leave a thorough
investigation of this topic for future work.

Optimal robust policies for non-rectangular uncertainty sets may be history dependent [36], but we
focus on stationary policies since even their evaluation is NP-hard [36]. Extending to non-stationary
cases is left for future work.

Future Work. Our results naturally extend to uncertainty sets that can be expressed as a finite union
of Lp balls. Furthermore, any uncertainty set can be approximated using a finite number of Lp balls,
with smaller balls providing a better approximation. However, the number of balls required for an
accurate approximation may grow prohibitively large. While this work is limited to Lp norms, it may
be possible to generalize our approach to other types of uncertainty sets. A key challenge in such an
extension would be identifying the structure of the worst-case kernel and developing corresponding
matrix inversion techniques.

Particularly, in the case of KL-divergence–based uncertainty sets, the structure of the worst-case
transition kernel is known [31]—it takes an exponentiated form rather than a rank-one form. It
may be possible to derive an analogue of the Sherman-Morrison formula, or a practically useful
approximation, for this case.

Acknowledgments and Disclosure of Funding

This research was partially supported by Israel PBC- VATAT, by the Technion Artificial Intelligent
Hub (Tech.AI) and by the Israel Science Foundation (grant No. 447/20).

Additionally, part of this work was supported by the Israel Science Foundation (grant No. 3019/24).

References
[1] M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo, M. Zhang, and J. Wang.

Wasserstein robust reinforcement learning, 2019.

[2] E. Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[3] J. A. Bagnell, A. Y. Ng, and J. G. Schneider. Solving uncertain markov decision processes.
Technical report, Carnegie Mellon University, 2001.

10

[4] M. S. Bartlett. An Inverse Matrix Adjustment Arising in Discriminant Analysis. The Annals of
Mathematical Statistics, 22(1):107 – 111, 1951.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, March 2004.

[6] R. Dadashi, A. A. Taïga, N. L. Roux, D. Schuurmans, and M. G. Bellemare. The value function
polytope in reinforcement learning, 2019.

[7] E. Derman, M. Geist, and S. Mannor. Twice regularized mdps and the equivalence between
robustness and regularization, 2021.

[8] U. Gadot, E. Derman, N. Kumar, M. M. Elfatihi, K. Levy, and S. Mannor. Solving non-
rectangular reward-robust mdps via frequency regularization, 2023.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition
edition, 1979.

[10] V. Goyal and J. Grand-Clément. Robust markov decision process: Beyond rectangularity, 2018.

[11] J. Grand-Clément, N. Si, and S. Wang. Tractable robust markov decision processes, 2024.

[12] G. A. Hanasusanto and D. Kuhn. Robust data-driven dynamic programming. In C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[13] J. M. Hendrickx and A. Olshevsky. Matrix p-norms are np-hard to approximate if p \neq
1,2,\infty. CoRR, abs/0908.1397, 2009.

[14] C. P. Ho, M. Petrik, and W. Wiesemann. Partial policy iteration for l1-robust markov decision
processes, 2020.

[15] C. P. Ho, M. Petrik, and W. Wiesemann. Robust ϕ-divergence MDPs. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022.

[16] G. N. Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, May 2005.

[17] D. L. Kaufman and A. J. Schaefer. Robust modified policy iteration. INFORMS J. Comput.,
25:396–410, 2013.

[18] N. Kumar, E. Derman, M. Geist, K. Y. Levy, and S. Mannor. Policy gradient for rectangu-
lar robust markov decision processes. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[19] N. Kumar, K. Wang, K. Levy, and S. Mannor. Policy gradient for reinforcement learning with
general utilities, 2023.

[20] N. Kumar, K. Wang, K. Y. Levy, and S. Mannor. Efficient value iteration for s-rectangular
robust markov decision processes. In Forty-first International Conference on Machine Learning,
2024.

[21] M. Li, D. Kuhn, and T. Sutter. Policy gradient algorithms for robust mdps with non-rectangular
uncertainty sets, 2024.

[22] S. Mannor, O. Mebel, and H. Xu. Lightning does not strike twice: Robust mdps with coupled
uncertainty. CoRR, abs/1206.4643, 2012.

[23] S. Mannor, O. Mebel, and H. Xu. Robust mdps with k-rectangular uncertainty. Math. Oper.
Res., 41(4):1484–1509, nov 2016.

[24] S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance in value function
estimation. In Proceedings of the Twenty-First International Conference on Machine Learning,
ICML ’04, page 72, New York, NY, USA, 2004. Association for Computing Machinery.

11

[25] A. Nilim and L. E. Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Oper. Res., 53:780–798, 2005.

[26] C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song. Assessing generalization in
deep reinforcement learning, 2018.

[27] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. In
Wiley Series in Probability and Statistics, 1994.

[28] D. J. Smith and M. K. Vamanamurthy. How small is a unit ball? Mathematics Magazine,
62(2):101–107, 1989.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

[30] A. Tamar, S. Mannor, and H. Xu. Scaling up robust mdps using function approximation. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages
181–189. JMLR.org, 2014.

[31] K. Wang, U. Gadot, N. Kumar, K. Levy, and S. Mannor. Robust reinforcement learning via
adversarial kernel approximation, 2023.

[32] K. Wang, N. Kumar, K. Zhou, B. Hooi, J. Feng, and S. Mannor. The geometry of robust
value functions. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato,
editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 22727–22751. PMLR, 17–23 Jul 2022.

[33] Q. Wang, C. P. Ho, and M. Petrik. Policy gradient in robust mdps with global convergence
guarantee, 2023.

[34] Y. Wang and S. Zou. Online robust reinforcement learning with model uncertainty, 2021.

[35] Y. Wang and S. Zou. Policy gradient method for robust reinforcement learning, 2022.

[36] W. Wiesemann, D. Kuhn, and B. Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

[37] H. Xu and S. Mannor. Robustness and generalization, 2010.

[38] C. Zhao, O. Sigaud, F. Stulp, and T. M. Hospedales. Investigating generalisation in continuous
deep reinforcement learning, 2019.

[39] R. Zhou, T. Liu, M. Cheng, D. Kalathil, P. Kumar, and C. Tian. Natural actor-critic for robust
reinforcement learning with function approximation. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

12

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper is theoretical in nature, the claims are reflected in abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Discussed in the last section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

13

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proof in appendix and assumption in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Paper is theoretical in nature, toyish experiments are just for the sake of
completeness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

14

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Codes are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: No training , no tests sets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Provided in the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is theoretical in nature, hence not relevant.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical in nature, hence not relevant.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is theoretical in nature, hence not relevant.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

17

Answer: [NA]

Justification: The paper is theoretical in nature, hence not relevant.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper is theoretical in nature, hence not relevant.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical in nature, hence not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

18

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is theoretical in nature, hence not relevant.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper is theoretical in nature, hence not relevant. LLM is used for only
writing and editing only english text.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

Notations and Definitions

For a set S, |S| denotes its cardinality. ⟨u, v⟩ :=
∑

s∈S u(s)v(s) denotes the dot product between
functions u, v : S → R. ∥v∥qp := (

∑
s|v(s)|p)

q
p denotes the q-th power of Lp norm of function

v, and we use ∥v∥p := ∥v∥1p and ∥v∥ := ∥v∥2 as shorthand. For a set C, ∆C := {a : C →
R|ac ≥ 0,∀c,

∑
c∈C ac = 1} is the probability simplex over C. var(·) is variance function, defined

as var(v) =
√∑

s∈S(v(s)− v̄)2 where v̄ =
∑

s∈S v(s)

|S| is the mean of function v : S → Rd. 0,1
denotes all zero vector and all ones vector/function respectively of appropriate dimension/domain.
1(a = b) := 1 if a = b, 0 otherwise, is the indicator function. For vectors u, v, 1(u ≥ v) is
component wise indicator vector, i.e. 1(u ≥ v)(x) = 1(u(x) ≥ v(x)). A × B = {(a, b) | a ∈
A, b ∈ B} is the Cartesian product between set A and B.

A Related Work

Rectangular Robust MDPs. In the literature, the sa-rectangular uncertainty is a very old assumption
[16, 25]. [36] introduced s-rectangular uncertainty sets and proved its tractability, in addition to the
intractability of the general non-rectangular uncertainty sets. The most advantageous aspect of the
s-rectangularity, is the existence of contractive robust Bellman operators. This gave rise to many
robust value based methods [14, 33]. Further, for many specific uncertainty sets, robust Bellman
operators are equivalent to regularized non-robust operators, making the robust value iteration as
efficient as non-robust MDPs [7, 34, 20]. There exists many policy gradient based methods for robust

19

https://neurips.cc/Conferences/2025/LLM

Table 2: Useful Notations

Notation Definition Remark

p, q 1
p + 1

q = 1 Holder’s conjugates

σp Standard deviation w.r.t. Lp norm

vπ, vπP,R (I − γPπ)−1Rπ Value function

Dπ, Dπ
P,R (I − γPπ)−1 Occupancy matrix

dπ, dπP,µ µT (I − γPπ)−1 Occupancy measure

U ,Usa
p ,Us

p ,Up Uncertainty sets

MDPs, relying upon contractive robust Bellman operators for the robust policy evaluation [35, 18].
Further, [39, 31] try to refine the process, and directly get samples from the adversarial model via
pessimistic sampling . There exist other notions of rectangularity such as k-rectangularity [23] and
r-rectangularity [10] which are sparsely studied. However, [11] shows, the theses uncertainty sets are
either equivalent to s-rectangularity or non-tractable.

Non-Rectangular Reward Robust MDPs. Policy evaluation for robust MDPs with non-rectangular
uncertainty set is proven to be a Strongly-NP-Hard problem [36], in general. For a very specific case,
where uncertainty is limited only to reward uncertainty bounded with Lp norm, [8] proposed robust
policy evaluation via frequency (occupation measure) regularization, and derived the policy gradient
for policy improvement.

Approximate Policy Evaluation for Non-Rectangular Kernel RMDPs. [21] provides the following
two policy evaluation methods for robust MDPs for general uncertainty sets.

• Langevian dynamics based Algorithm 3.1 of [21]: This Langevian dynamics based Markov
Chain Monte Carlo method solves the robust policy evaluation problem to global optimality
with arbitrary small accuracy ϵ. The iteration complexity of the algorithm is O(2q log 1

ϵ)
which is exponential in the dimension of the uncertainty set q. The algorithm is well suited
only for small dimensional uncertainty. For a general case the dimension q = S2A can be
very large, this makes the algorithm very computationally inefficient as expected from the
hardness result from [2].

• CPI sytle Algorithm 3.2 of [21] (presented in Algorithm 2): This CPI based algorithm
computes the robust policy with iteration complexity of O(1

ϵ2) with an accuracy of δd(2ϵ+
δP), where δd is mismatch-coefficient and δP is measure of non-rectangularity of the
uncertainty set. However, the mismatch coefficient may not exist without an irreducibility
assumption (Assumption 1 in [21]), moreover even under Assumption 1, the constant
δd = O(2S) can be exponentially large for ladder MDPs which have large diameter (more
details provided below). In addition, the non-rectangularity constant δP can be as large as
O(
√
S). Hence, a large δdδP > 2

1−γ makes the bound meaningless, as the sub-optimality is
upper bounded by 2

1−γ . To summarize, this approach is efficient only for small diameter
MDPs and almost rectangular uncertianty sets.

• Our Method: We provide a robust policy evaluation method for L2-robust MDPs with an
iteration complexity of O(log 1

ϵ) and with an accuracy of ϵ. This is possible as we showed
that the NP-hardness result of [2] doesn’t apply to this case.
We don’t require the irreducibility Assumption 1 of [21] which can be very limiting. Further,
the Lp robust MDPs may have very large tolerance δdδP hence the Algorithm 3.2 from [21]
is not applicable.

Difficult MDPs for Algorithm 3.2 of [21] :

20

• MDP with high mismatch coefficients : Consider an MDP with only one action and
state-space {si|1 ≤ i ≤ S}. Let s1 be the starting state. Let the kernel be defined as

Px(smax{i+1,S}|si) = x, Px(si|si) = 1− x.

Now let the uncertainty set be P = {Px | x ∈ [0.4, 0.6]}. Note that for this case, log(δd) ≥
log(d

P0.6 (sS |s1)
dP0.4 (sS |s1)) = O(S).

• High non-rectangularity coefficient : This is inspired from the fact that

δ = max
||a||≤1

[
max
b∈B∫

< a, b > −max
b∈B

< a, b >

]
,

where B = B(0, 1) is a unit ball around origin, and B∫ = [−1, 1]n is the smallest rectangular
cube containing B. Then choosing a = { 1√

n
}n, we have maxb∈B∫ < a, b >=

√
n and

maxb∈B < a, b >= 1. This implies δ ≥
√
n− 1.

From definition in page 11 of [21], we have
δP = max

P∈P∫
< ∇V, P > −max

P∈P
< ∇V, P >

where P∫ is the smallest s-rectangular uncertainty containing P . Here, P ∈ RSA×S , this
suggests δP can be of the order of O(S

√
A).

The discussion is summarize in the Table 1.

Algorithm 2 CPI Algorithm 3.2 of [21] for Robust Policy Evaluation

Input: Nominal kernel P̂ , policy π, Uncertainty set U .
1: while not converged: n = n+ 1 do
2: Define : f(P) := 1

1−γ

∑
s,a,s′ d

π
P̂
(s)π(a|s)Aπ

P̂
(s, a, s′)P (s′|s, a),

where Aπ
P (s, a, s

′) := γ
[
P (s′|s, a)vπP (s′)−

∑
s” P (s”|s, a)vπP (s′)

]
.

3: Compute P ∗ ∈ argminP∈U f(P).

4: Update the estimated worst kernel: Pn+1 = (1− αn)Pn + αnP
∗,

where αn = − (1−γ)3

4γ2 f(P ∗)

5: end while
Return: Robust return Jπ

P∞
.

Robust Policy Gradient Methods. The absence of contractive robust Bellman operators renders
the development of value-based methods for robust MDPs particularly challenging. Consequently,
policy gradient methods naturally emerge as a viable alternative. The update rule is given by:

πk+1 = Projπ∈Π

[
πk − ηk∇πJ

πk

Pk

]
, (2)

where Jπk

Pk
− Jπk

U ≤ ϵγk and learning rate ηk = O(1√
k
). This approach guarantees convergence to a

global solution within O(ϵ−4) iterations [33].

However, this update rule depends on oracle access to the robust gradient, which is highly challenging
to obtain because robust policy evaluation is an NP-hard problem.

B On the Non-Rectangular Uncertainty Sets

B.1 Why non-rectangular RMPDs

Proposition B.1. Let Usa
2 ,Us

2 be the smallest sa-rectangular set and s-rectangular set containing
U2 then

vol(U2)
vol(Usa

2)
= O(c−SA

sa), and
vol(U2)
vol(Us

2)
= O(c−S

s),

where vol(X) is volume of the set X and cs, csa > 1 are some constants.

21

Proof. Volume of n-dimension sphere of radius r is cnrn where cn ≤ 8π2

15 [28]. And to cover an
n-dimension sphere of radius r, we need a cube of radius 2r whose volume is (2r)n. Hence the first
result vol(U2)

vol(Usa
2) = O(2−SA) immediately follows.

Now, the volume of the set of X = ×s∈SXs where Xs is an A-dimension sphere of radius r,
then the volume of X is (cAr)S . And the volume of an SA dimensional sphere is cSAr

SA, where
limn→∞ cn → 0 [28]. Hence the ratio of their volume is O((cA)

S), implying the other result.

B.2 Complexity

Reduction of Integer Program to Robust MDP

0/1 Integer Program (IP): For g, c ∈ Zn, ζ ∈ Z, F ∈ Zm×n,

∃x ∈ {0, 1}n s.t. Fx ≤ g and c⊤x ≤ ζ?

is a NP-Hard problem [9], [36] which reduces into the following robust MDP.

Robust MDP:
1. State Space S = {bj , b0j , b1j | j = 1, · · · , n} ∪ {c0, τ}, where τ is a terminal state.
2. Singleton Action Space: A= {a}.
3. Uncertainty set: U = {Pξ | ξ ∈ [0, 1]n, F ξ ≤ g}
4. Discount factor γ ∈ [0, 1); Uniform initial state distribution µ.

5. Big reward M ≥ γAn
∑

i ci
2ϵ2 where ϵ << 1 helps in rounding.

6. Transitions and rewards are illustrated in Figure 5

Figure 5: MDP Pξ, and R(Figure 5 of [36]).

Robust policy evaluation is proven to be NP-hard for general uncertainty sets defined as intersections
of finite hyperplanes [36]. Specifically, robust MDPs with uncertainty set Uhard := {Pξ|Fξ ≤ g, ξ ∈
[0, 1]n} where Pξ is a specially designed kernel with ladder structure with only action (effectively no
decision) and a terminal state [36].

Note that Fξ ≤ g imposes m-linear constraints on Uhard while we allow only one global constraint
on Up. Observe that U1 = {Pξ | 1⊤ξ ≤ g, ξ ∈ [0, 1]n} is the nearest uncertainty to Uhard as both
have polyhedral structure. This restricts the class of the IP programms to have a number of constraints
m = 1 and the row of F to be all ones. In other words, only IP programmes that can be reduced to
U1 are of the following form: For , c ∈ Zn, ζ ∈ Z ,

∃x ∈ {0, 1}n s.t. 1Tx ≤ g, and cTx ≤ ζ?

Solution:

• Case 1) If g < 0 then no.
• Case 2) If g = 0, ζ ≥ 0 then yes and g = 0, ζ < 0 then yes.

22

• If g > 0 then compute the sum of g smallest coordinates of c, and this sum is less/equal than
ζ then answer is yes, otherwise no.

Further, for IP to be reducable to robust MDPs, the diameter of the uncertainty (maxP,P ′∈Uhard
∥P −

P ′∥1 = 2S) has to be large for the practical settings. Loosly speaking, robust MDPs with a Up
uncertainty have one global constraint and a small radius β, which corresponds to a Knapsack
Problem with a small budget (IP with one constraint and a small g) which are much easier to solve
[5, 9].

We can thus conclude that the hardness result of [36] doesn’t apply to our uncertainty case.

B.3 Decomposition

Proposition B.2. Non-rectangular uncertainty Up can be written as an infinite union of sa-
rectangular sets Usa

p , as

Up =
⋃
b∈B

Usa
p (b),

where B = {b ∈ RS ×A
+ | ∥b∥p ≤ β}. Note that all of them share the nominal kernel P̂ .

Proof. By definition, we have

Up = {P | ∥P − P̂∥p ≤ β,
∑
s′

P (s′|s, a) = 1} (3)

= {P |
∑
s,a

∥Psa − P̂sa∥pp ≤ βp,
∑
s′

P (s′|s, a) = 1} (4)

= {P |
∑
s,a

bpsa ≤ βp, ∥Psa − P̂sa∥pp = bpsa,
∑
s′

P (s′|s, a) = 1} (5)

= {P |
∑
s,a

bpsa ≤ βp, ∥Psa − P̂sa∥pp ≤ bpsa,
∑
s′

P (s′|s, a) = 1} (6)

=
⋃

∑
s,a bpsa≤βp,

{P | ∥Psa − P̂sa∥pp ≤ bpsa,
∑
s′

P (s′|s, a) = 1} (7)

=
⋃
b∈B

Usa
p (b). (8)

C Additional Results: Robust Policy Improvement

In the previous section, we identified that the worst-case kernel can be expressed as a rank-one
perturbation of the nominal kernel. Leveraging this structure, we developed a method to efficiently
evaluate the robust policy. This method also computes the perturbation (βk⊤) and, consequently, the
worst-case kernel.

Using the computed worst kernel, we can directly evaluate the gradient with respect to the policy.
This enables policy improvement through gradient ascent, as detailed in [33]:

πn+1 = proj
[
πn + ηk∇πJ

π
Pn

∣∣∣
π=πn

]
, (9)

where Pn is the worst-case kernel estimate for the policy πk. This method guarantees global
convergence with an iteration complexity of O(ϵ−4) [33].

Alternatively, the policy gradient can be derived for the approximate perturbation, as shown in the
result below.

Policy Gradient Theorem Once the worst kernel for a policy is computed using Algorithm 1, the
policy gradient can be used to update the policy. Alternatively, the following policy gradient theorem
provides a direct way to compute the gradient:

23

Lemma C.1 (Approximate Policy Gradient Theorem). Given a transition kernel P = P̂ − βk⊤, the
return is expressed as:

Jπ
P := Jπ

0 − γ
Jπ
β ⟨k, vπR⟩

1 + γ⟨k, vπβ ⟩
,

and the gradient is given by:

∇πJ
π
P = dπ ◦Qπ

R − γ
k⊤vπR

1 + γk⊤vπβ
dπ ◦Qπ

β − γ
Jπ
β (k

⊤Dπ)

1 + γk⊤vπβ
◦Qπ

R + γ2
Jπ
β (k

⊤vπ)(k⊤Dπ)

(1 + γk⊤vπβ)
2
◦Qπ

β .

Proof. The expression for the return follows directly from the inverse matrix theorem, as shown in
[18]. The gradient is then derived using the policy gradient theorem [29] in the format used in [19].

∇πJ
π
P = dπ ◦Qπ

R − γ
k⊤DπRπ

1 + γk⊤Dπβπ
dπµ ◦Qπ

β − γ
µ⊤Dβπ

1 + γk⊤Dπβπ
dπk ◦Qπ

R

+ γ2 µ
⊤Dβπk⊤DπRπ

(1 + γk⊤Dπβπ)2
dπk ◦Qπ

β ,

= dπ ◦Qπ
R − γ

k⊤vπR
1 + γk⊤vπβ

dπ ◦Qπ
β − γ

Jπ
β (k

⊤Dπ)

1 + γk⊤vπβ
◦Qπ

R + γ2
Jπ
β (k

⊤vπ)(k⊤Dπ)

(1 + γk⊤vπβ)
2
◦Qπ

β .

The main advantage of this policy gradient formulation is that terms like Jπ
β , v

π
β , Q

π
β , along with the

nominal terms Jπ
R, v

π
R, Q

π
R, can be efficiently computed using Bellman operators and bootstrapping

techniques.

Interpretation of Gradient Terms The approximate policy gradient reveals the interplay of various
components in robust MDPs:

• The first term, dπ ◦Qπ
R, represents the nominal policy gradient, emphasizing actions with

high rewards.

• The second term, γ k⊤vπ
R

1+γk⊤vπ
β
dπ ◦Qπ

β , discourages policies that place significant weight on
high-uncertainty Q-values, scaled by the vulnerability to adversarial actions.

• The last two terms, while more complex to interpret, further reflect the intricate dynamics of
robust MDPs.

Robust Policy Gradient Algorithm The robust policy gradient algorithm (Algorithm 3) converges
to an ϵ-optimal policy within O(ϵ−8) iterations.
Theorem C.2. The robust policy gradient method from [33] achieves global convergence within
O(ϵ−4) iterations for the policy gradient step. Algorithm 1 computes the worst-case kernel in O(n)
iterations at step n. The total iteration complexity for global optimality is O(ϵ−8).

Algorithm 3 employs a double-loop structure: the inner loop (Algorithm 1) computes the worst-case
kernel for a fixed policy, while the outer loop updates the policy using the derived gradient. An
actor-critic style alternative, where the kernel and policy are updated simultaneously, is left for future
work.

Algorithm 3 Robust Policy Gradient Algorithm
1: while not converged: n = n+ 1 do
2: Compute the worst-case kernel P = P̂ − βk⊤ for policy π using Algorithm 1 with tolerance

ϵ = γn.
3: Compute the policy gradient G using Lemma C.1.
4: Update policy: π ← proj

[
π + αnG

]
.

5: end while

24

Extension to KL Entropy Uncertainty Sets. For the KL uncertainty case, the worst kernel is
given by Pπ

Usa
KL

= (I − γP̂πAπ)−1 where Aπ is a diagonal matrix [31]. If we can invert this matrix,
then its possible to build upon it. We leave this for future work.

D Helper Results

Proposition D.1 (Sherman–Morrison Formula [4].). If A ∈ Rn×n invertible matrix, and u, v ∈ Rn,
then the matrix A+ uvT is invertible if and only if 1 + vTA−1u ̸= 0:

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Proposition D.2.

σq(v) := min
w∈R
∥v − w1∥q,= min

∥k∥p≤1,1T k=0
kT v

Proof. Follows directly from Lemma J.1 of [20].

Proposition D.3. For any vector ∥x∥ = 1, we have

max{∥ProjRn
+
(x)∥, ∥ProjRn

+
(−x)∥} ≥ 1√

2
,

where Rn
+ is positive quadrant.

Proof. For any vector ∥x∥ = 1, we have

∥x+∥2 + ∥x−∥2 = ∥x∥2 = 1.

And ProjRn
+
(x) = x+ and ProjRn

+
(−x) = x−, the rest follows.

Proposition D.4. For ∥k∥p and kT1 = 0, we have

1 + γkT (I − γPπ)−1bπ ≥ 0,

for all π, ∥b∥p ≤ β, b ⪰ 0.

Proof. This is true from the Sherman–Morrison formula as Jπ
P̂−bkT

is finite, hence the denominator
must be strictly greater than zero.

E Dual Formulation

Lemma E.1 (Sa-rectangular Duality). For the sa-rectangular uncertainty set U = Usa
p (β) with

radius vector β ∈ RS ×A, the robust return can be written as the following optimization problem,

Jπ
U = Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
,

where βπ
s =

∑
a π(a|s)βsa.

Proof. From [18], we know that the worst kernel Pπ
Usa

p (β) for the uncertainty set Usa
p (β) is a rank

one-perturbation of P . In other words,

Pπ
Usa

p (β) = P + βkT

25

for some k ∈ RS satisfying ∥k∥p = 1 and 1T k = 0. This implies that it is enough to look for
rank-one perturbations of the nominal kernel P̂ in order to find the robust return. That is,

Jπ
Usa

p (β) = min
P∈Usa

p (β)
Jπ
P

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

Jπ
P , (looking only at rank one perturbations)

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

µTDπ
PR

π

= min
P=P̂+βkT ,∥k∥p=1,1T k=0

µT (I − γPπ)−1Rπ

= min
∥k∥p=1,1T k=0

µT
(
I − γ(Pπ + βπkT)

)−1

Rπ

= Jπ − γ max
∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

Lemma E.2 (S-rectangular Duality). For U = Us
p , the robust return can be written as the following

optimization problem,

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπ⟩
1 + γk⊤Dπβπ

,

where Dπ = (I − γPπ)−1, dπ = µTDπ and vπ = DπRπ .

Proof.

Jπ
Us

p(β)
= min

∥Ps−(P)s∥p
p=βp

s ,1TPsa=1
Jπ
P

= min∑
a βp

sa≤βp
s

min
∥Psa−(P)sa∥p=βsa,1TPsa=1

Jπ
P

= min∑
a βp

sa≤βp
s

Jπ
Usa

p (β)

= min∑
a βp

sa≤βp
s

[
Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ

]

= Jπ − γ max∑
a βp

sa≤βp
s ,∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

The above result formulates the robust return in terms of nominal values only for the first time. This
implies the robust objective can be rewritten in the dual form as :

J∗
Us

p
= max

D∈D
min

k∈K,b∈B

[
µTDRπ − γµTDbπ

kTDRπ

1 + γkTDbπ

]
where D = {(I − γPπ

0)
−1 | π ∈ Π}, K = {k ∈ RS | ∥k∥p = 1, 1T k = 0}, and B = {b ∈ RS ×A |

∥bs∥p ≤ βs}.
Comparing the penalty term from the previous results in [20, 18], the dual formulation can be written
as

J∗
Us

p
= max

D∈D
min
k∈K

[
µTDRπ − γµTDβπ kTDRπ

1 + γkTDβπ

]
where βπ

s = ∥πs∥qβs.

Surprisingly, the optimization here looks as if it is optimized for the same value of βπ
s =

max∑
a βp

sa≤βp
s

∑
a π(a|s)βsa = βs∥πs∥q for all values of feasible k. This suggest that the ad-

versary payoff is maximized by maximizing the expected uncertainty in the trajectories.

26

Lemma E.3 (Non-rectangular Duality). For U = Up, the robust return can be written as the following
optimization problem

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπR⟩
1 + γ⟨k, vπβ ⟩

,

where Dπ = (I − γPπ)−1, dπ = µTDπ and vπ = DπRπ .

Proof. Now,

Jπ
Up(ϵ)

= min
∥P−P∥p

p=ϵp,1TPsa=1
Jπ
P

= min
∥β∥p

p≤ϵp
min

∥Psa−(P)sa∥p=βsa,1TPsa=1
Jπ
P

= min
∥β∥p

p≤ϵp
Jπ
Usa

p (β)

= min
∥β∥p≤ϵ

[
Jπ − γ max

∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ

]

= Jπ − γ max
∥β∥p≤ϵ,∥k∥p=1,1T k=0

µTDπβπkTDπRπ

1 + γkTDπβπ
.

The above result formulates the robust return in terms of nominal values only, for the first time.
Comparing with the existing result, we get a very interesting relation:

σq(v
π
U) = max

∥k∥p=1,1T k=0

kT vπR
1 + γkT vπβ

, (10)

where vπx = (I − γPπ)−1xπ .

The LHS is a robust quantity (variance of the robust return) which is express in the terms of purely
nominal quantities. This is the simplest of all such relations. We believe that the above relation can
help in theoretical derivations and experiment design but not exactly sure how yet.

E.1 Intuition on the Adversary

sa-rectangular case. We know that the σ(vπU) represents the penalty for robustness, expressed as:

Jπ
U = Jπ − γ⟨dπ, βπ⟩σq(v

π
U).

Understanding how σ(vπU) arises provides insight into the behavior of the adversary as described in
(10). Furthermore, if P = P̂ − βkT , then:

Jπ
P = Jπ − ⟨dπ, βπ⟩ kT vπR

1 + γkT vπβ
.

Here, k represents the direction in which the adversary discourages perturbations in the kernel. The
optimal direction k chosen by the adversary maximizes the objective in (10).

s-rectangular uncertainty sets. Now, we turn our attention to the coupled uncertainty case.

Lemma E.4. For U = Us
p , the robust return can be formulated as the following optimization problem:

Jπ
U = Jπ − γ min

∥β∥p≤ϵ,∥k∥p≤1,⟨1,k⟩=0

⟨dπ, βπ⟩⟨k, vπ⟩
1 + γk⊤Dπβπ

,

where Dπ = (I − γPπ)−1, dπ = µTDπ , and vπ = DπRπ .

27

Proof. The proof follows similarly to the sa-rectangular case and is detailed in the appendix. The
key additional step involves decomposing the s-rectangular uncertainty set Us

p into a union of
sa-rectangular uncertainty sets Usa

p .

By comparing the penalty term from previous results in [20, 18], we obtain:∑
s

dπ(s)∥πs∥qσq(v
π
U) = max∑

a βp
sa≤βp

s ,∥k∥p=1,1T k=0

(dπβπ)(kT vπ)

1 + γkTDπβπ
.

This relation is interesting as it connects the robust term on the left-hand side (LHS) with the
non-robust terms on the right-hand side (RHS).

Interestingly, the optimization here suggests that the adversary maximizes the expected uncertainty
in trajectories, as the same value of βπ

s = max∑
a βp

sa≤βp
s

∑
a π(a|s)βsa = βs∥πs∥q appears for all

feasible k.

F Robust Policy Evaluation

Proposition F.1. For λ∗ = maxx∈C
g(x)
h(x) , F (λ) := maxx∈C

(
g(x) − λh(x)

)
, we have

F (λ∗) = 0 and f(λ) ≥ 0 ⇐⇒ λ∗ ≥ λ.

Proof. • If F (λ) ≥ 0 then

∃x s.t. g(x)− λh(x) ≥ 0

=⇒ ∃x s.t.
g(x)

h(x)
≥ λ, (as h(x) > 0 for all x)

=⇒ max
x∈C

g(x)

h(x)
≥ λ.

• If F (λ) ≤ 0 then

g(x)− λh(x) ≤ 0, ∀x ∈ C

=⇒ g(x)

h(x)
≤ λ, ∀x ∈ C, (as h(x) > 0)

=⇒ max
x∈C

g(x)

h(x)
≤ λ

• If F (λ) = 0 then λ = maxx∈C
g(x)
h(x) implied from the above two items.

Lemma F.2. The robust return can be expressed as

Jπ
Up

= Jπ − λ∗,

where the penalty λ∗ is a fixed point of F (λ). Furthermore, λ∗ can be found via binary

search as F (λ) > λ if and only if λ > λ∗, where F (λ) = maxb∈B ∥Eπb∥q, Eπ = γ
(
I −

11⊤

S

)[
DπRπµ⊤Dπ − λDπ

]
Hπ , and HπR := Rπ .

Proof. We want to evaluate the following

λ∗ := max
b∈B,k∈K

γ
kTDπRπµTDπbπ

1 + γkTDπbπ
.

This is of the form maxx
f(x)
g(x) . Then according to Proposition F.1, we have f(λ∗) = 0 and f(λ) > 0

if and only if λ∗ > λ, where

28

f(λ) := max
b∈B,k∈K

[
γkTAπbπ − λ(1 + γkTDπbπ)

]
= max

b∈B,k∈K
k⊤Cπb− λ,

= max
b∈B,∥k∥p≤1

k⊤
(
I − 11T

S

)
Cπb− λ, (from Proposition G.6)

= max
b∈B
∥
(
I − 11T

S

)
Cπb∥q − λ, (Holder’s inequality)

where Aπ = DπRπµTDπ, Cπ := γ
(
Aπ − λDπ

)
Hπ .

G Evaluation of maxx,y xEy

In Algorithm 1 , we need to solve

zp := max
∥b∥p≤1,∥k∥p≤1,b⪰0,<k,1>=0

k⊤Eb

as sub-routine which is a bi-linear optimization. And bilinear optimization is NP-Hard in general. But
we have a special form, which might be solvable for many cases, as illustrate below. As we see later,
for L1 bounded uncertainty set, we provided provably efficient robust-policy evaluation method that
provides the solution in the close form. For p = 2, we provided heuristic algorithm that works well
in practice and also generalizes well beyond theoretically applicable uncertainty radius β. However,
we believe it is possible provable solve this sub-problem via standard methods as second-order cone
optimization or quadratic programming, but we are not aware of the exact positive nor negative result
about this case. For p =∞, non-rectangular uncertainty set degenerates to sa-rectangular one, which
is already efficiently solvable. And for other p, we are not sure if the efficient solution exists.

G.1 For p = 1

For uncertainty case U1 bounded by L1-ball. We have the close-form solution to our sub-problem.
Lemma G.1.

max
∥b∥1≤1,∥k∥1≤1,b⪰0,<k,1>=0

k⊤Eb = max
i
∥E(i, ·)∥sp,

where ∥x∥sp =
maxxi

−mini xi

2 is span-norm.

Proof.

max
∥b∥1≤1,∥k∥1≤1,b⪰0,<k,1>=0

k⊤Eb = max
∥b∥1≤1,b⪰0

max
∥k∥1≤1,<k,1>=0

k⊤Eb (11)

= max
∥b∥1≤1,b⪰0

∥Eb∥sp, (from Preposition G.2) (12)

= max
i
∥E(·, i)∥sp, (from Preposition G.3). (13)

Notably, the optimizers k∗, b∗ are given as

b∗(i) = 1(i = i∗),

where i∗ = argmaxi∥E(·, i)∥sp, and

k∗(imax) = −k∗(imin) =
1

2
,

where imax = argmaxi(Eb∗)(i) and imin = argmini(Eb∗)(i).

29

Proposition G.2.
max

∥k∥1=1,⟨1,k⟩=0
⟨k, x⟩ = ∥x∥sp,

where ∥x∥sp = maxi xi−mini xi

2 .

Proof. Let x ∈ Rn, then we have

max
∥k∥1=1,⟨1,k⟩=0

∑
i

kixi = max
∥k∥1=1,⟨1,k⟩=0

[∑
i:ki>0

kixi +
∑

i:ki<0

kixi

]
(14)

= max∑
i:ki>0 ki=−

∑
i:ki<0 ki=

1
2

[∑
i:ki>0

kixi +
∑

i:ki<0

kixi

]
(15)

=
maxi xi −mini xi

2
. (16)

Proposition G.3.
max

∥b∥1=1,b⪰0
∥Eb∥sp = max

i
∥E(·, i)∥sp,

where ∥x∥sp = maxi xi−mini xi

2 .

Proof.

max
∥b∥1=1,b⪰0

∥Eb∥sp = max
∥b∥1=1,b⪰0

∥
∑
i

E(·, i)bi∥sp, (matrix multiplication) (17)

≤ max
∥b∥1=1,b⪰0

∑
i

bi∥E(·, i)∥sp, (∥·∥sp satisfies triangle inequality) (18)

= max
i
∥E(·, i)∥sp, (maximization over b). (19)

Further, maxi∥E(·, i)∥sp is achievable by taking b to one-hot vector at index i that maximizes
maxi∥E(·, i)∥sp. Hence, we get the desired result.

Proposition G.4. For p = 1, F can be evaluated in closed form as

F (λ) = γmax
s,a

π(a|s)∥dπ(s)vπ − λDπ(·, s)∥sp,

where ∥x∥sp = maxi xi−mini x
2 .

Proof. From Lemma G.1, we have F (λ) = maxs,a∥Eπ
λ (·, (s, a))∥sp. And from definition, we have

Eπ
λ := γ

[
DπRπµ⊤Dπ − λDπ

]
Hπ . Further,(

DπRπµ⊤DπHπ
)(

s′, (s, a)
)
=
(
vπ(dπ)⊤Hπ

)(
s′, (s, a)

)
(20)

=
(
vπ(dπ(·, ·))⊤

)(
s′, (s, a)

)
(21)

= vπ(s′)dπ(s)π(a|s). (22)

Further, (
DπHπ

)(
s′, (s, a)

)
=

∑
x

dπs′(x)H
π(x, (s, a)) = dπs′(s)π(a|s). (23)

Finally, using ∥x∥sp = maxi,j
xi−xj

2 , we get the desired result.

30

G.2 For p = 2

For p = 2, we proposed a heuristic spectral Algorithm 2, to solve the above sub-problem. And as
the Figure 6, Figure 7 and Table 3 shows the superiority of its performance over numerical methods
(scipy). Further, we showed in the previous response that this method yields much better performance
than random search even when uncertainty radius β is big-enough.

For other p ̸= 1, 2, we are not sure if the above sub-problem is efficiently sovable or not. As a similar
problem without positivity and mean-zero constraints,

Ap→q := max
∥b∥p≤1,∥k∥p≤1

b⊤Ak = max
∥b∥p≤1

∥b⊤A∥q,

is very well studied problems, and several negative results are known in the literature for p ̸= 1, 2,∞
[13].
Proposition G.5. [Orthogonality Equivalence]Let K = {k | ∥k∥2 ≤ 1, 1⊤k = 0}, and W =

{kT (I − 11T

S) | ∥k∥2 ≤ 1} . Then we have,

K =W.

Proof. Now let k ∈ K, then kT (I − 11T

S) = k⊤ ∈ W . Now the other direction, let k ∈ W ,
then ⟨kT (I − 11T

S), 1⟩ = 0 by construction and ∥kT (I − 11T

S)∥p ≤ ∥k∥2 ≤ 1, this implies
kT (I − 11T

S) ∈ K.

The above result implies that

max
∥b∥2≤β,∥k∥p≤1,1T k=0

kTAb = max
∥b∥2≤β,k∈K

kTAb

= max
∥b∥2≤β,k∈W

kTAb, (as K =W from above Proposition G.5)

= max
∥b∥2≤β,∥k∥2=1

k⊤(I − 11T

S
)Ab, (def. ofW).

Further, we have equivalence of optimizers

argmax
∥k∥2≤1,1T k=0,∥b∥2≤β

kTAb =
{
(b∗, (I − 11T

S
)k∗) | (b∗, k∗) ∈ argmax

∥k∥2=1,∥b∥2≤β

k⊤(I − 11T

S
)Ab

}
.

Proposition G.6. The solving of

max
∥k∥2≤1,1T k=0,∥b∥2≤β

kTAb, is equivalent to max
∥k∥2=1,∥b∥2≤β

k⊤(I − 11T

S
)Ab.

Proof. Directly follows from the proposition above.

G.3 Eigenvalue Approach (Spectral Methods)

This section focus on deriving a spectral method for solving the optimization problem:

max
∥x∥2≤1, x≥0

∥Ax∥2,

where A ∈ Rn×n. Compute A⊤A. We perform eigenvalue decomposition of A⊤A:

A⊤A = V ΛV ⊤,

where Λ = diag(λ1, λ2, . . . , λn) (eigenvalues) and V = [v1, v2, . . . , vn] (eigenvectors). Further,
WLOG

λ1 ≥ λ, · · · , , and ∥v+i∥ ≥ ∥v−i∥ ∀i, ui :=
v+i
∥v+i ∥

where v+i = max(vi, 0), v−i = −min(vi, 0) denotes positive and negative parts respectively.

31

• Zero Order Solution:
f0 = ∥Au1∥.

• First order solution:
f1 = max

i
∥Aui∥.

• Second order solution:

f2 = max
i,j

max
t∈[0,1]

∥A (tvi + (1− t)vj)
+

∥(tvi + (1− t)vj)+∥
∥.

• Third order solution:

f3 = max
i,j,k

max
r,s,t,∈[0,1],r+s+t=1

∥A (rvi + svj + tvk)
+

∥(rvi + svj + tvk)+∥
∥.

Upper bounds on max∥x∥2≤1,x⪰0∥Ax∥2:

• Zero order upper bound: λ1

• First order upper bound:
√∑

i λici, where ci =
⟨vi, ui⟩2, if

∑i
j=1⟨vi, ui⟩2 ≤ 1

1−
∑i−1

j=1⟨vi, ui⟩2, if
∑i

j=1⟨vi, ui⟩2 ≥ 1,
∑i−1

j=1⟨vi, ui⟩2 ≤ 1

0 otherwise
.

Lemma G.7 (Zero Order Approximation). The highest projected eigenvector u =
v+
1

∥v+
1 ∥ is at least a

half-good solution, i.e.,

∥Au∥22 ≥
λ1

2
≥ 1

2
max

∥x∥2≤1, x≥0
∥Ax∥22.

Further, if A is rank-one then it is exact, i.e.,

∥Au∥2 = max
∥x∥2≤1, x≥0

∥Ax∥2.

Proof. We have ∥v+1 ∥ ≥ 1√
2

from Proposition D.3. Let u = (v1)+
∥(v1)+∥ =

∑
i σivi, where σi = ⟨u, vi⟩,

we have

uTATAu = (
∑
i

σivi)(
∑
i

λiviv
T
i)(

∑
i

σivi)

=
∑
i

λiσ
2
i , (as vi are orthogonal)

= λ1σ
2
1 +

∑
i ̸=1

λiσ
2
i ,

≥ λ1σ
2
1 +

∑
i ̸=1

λnσ
2
i , (as λ2 ≥ λ3, · · ·)

= λ1σ
2
1 + λn(1− σ2

1), (as
∑
i

σ2
i = 1)

≥ 1

2
(λ1 + λn), (as σ1 ≥

1√
2

).

Rest follows.

Proposition G.8 (First Order is Better than the First).

∥Auj∥22 ≥ max
i

λiσ
2
i ≥

λ1

2

where j ∈ argmaxi λi⟨vi, ui⟩ and σi = ⟨vi, ui⟩ ≥ 1√
2

.

32

Proof. Let uj =
(vj)+

∥(vj)+∥ =
∑

i σ
j
i vi, where σj

i = ⟨uj , vi⟩, we have

uT
j A

TAuj = (
∑
i

σj
i vi)(

∑
i

λiviv
T
i)(

∑
i

σj
i vi)

=
∑
i

λi(σ
j
i)

2, (as vi are orthogonal),

≥ λj(σ
j
j)

2,

= max
i

λi(σi)
2, (by definition of j).

Rest follows.

Proposition G.9. Second order solution f2 = maxi,j maxt∈[0,1]∥A
(tvi+(1−t)vj)

+

∥(tvi+(1−t)vj)+∥∥ is exactly
equal to max∥x∥2≤1,x⪰0∥Ax∥2 when A is rank two.

This approach is computationally efficient but may not always yield the exact solution, especially
when multiple eigenvectors significantly contribute to the optimal x.

The intuition behind this approach is that the matrix A⊤A can be decomposed into its eigenvalues
and eigenvectors, representing the principal directions of the transformation applied by A. The
eigenvector corresponding to the largest eigenvalue provides the direction of maximum scaling for
A. However, since the solution is constrained to the nonnegative orthant (x ≥ 0), we adjust the
eigenvectors by only considering their positive parts. The method identifies an approximate solution
uj by selecting and normalizing the positive part of the eigenvector that contributes the most to the
objective function.

Algorithm 4 Second Order Spectral Approximation for max∥x∥2≤1,x≥0 ∥Ax∥2
1: Normalize the positive part:

ui =
v+i
∥v+i ∥2

.

2: Compute scores for all eigenvectors:

Scorei = λi⟨vi, ui⟩.

3: Select j = argmaxi Scorei.
4: Output: Approximate solution uj = v+j /∥v

+
j ∥2 and approximate maximum value ∥Auj∥2.

Notes

• This approach is effective when the largest eigenvalue s1 dominates the others. It approxi-
mates the solution by leveraging the spectral properties of A⊤A.

• The result might not be exact if multiple eigenvalues contribute significantly, as the approach
considers only the contribution of individual eigenvectors.

G.4 Experimental Verification

This section describes three different methods for solving the optimization problem:

max
∥x∥2≤1, x≥0

∥Ax∥2,

where A ∈ Rn×n. The methods are compared in terms of their computational efficiency and the
quality of their solutions.

33

G.4.1 Brute Force Random Search

The brute force method randomly samples vectors x ∈ Rn from the nonnegative orthant, normalizes
them to satisfy ∥x∥2 = 1, and evaluates ∥Ax∥2 for each sampled vector. The steps are as follows:

1. Generate N random vectors xi ≥ 0, i = 1, . . . , N .

2. Normalize each vector to unit norm: xi ← xi/∥xi∥2.

3. Compute ∥Axi∥2 for each vector and select the maximum value.

This method is simple to implement but computationally expensive, as it evaluates A for a large
number of randomly generated vectors. See figure 6

Figure 6: Random Kernel Guess takes exponentially long time to converge. While Algorithm 1 only
took 0.14 sec to find the optimal value.

G.4.2 Numerical Optimization (Scipy Minimize)

This approach uses numerical optimization to directly solve the problem:

max
∥x∥2≤1, x≥0

∥Ax∥2.

The optimization problem is formulated as:

min
x
−∥Ax∥2, subject to ∥x∥2 ≤ 1 and x ≥ 0.

Steps include:

1. Define the objective function as −∥Ax∥2.

2. Impose constraints: ∥x∥2 ≤ 1 and x ≥ 0.

3. Solve the problem using scipy.optimize.minimize, with an initial guess x0.

This method provides the exact solution but is computationally more expensive than the spectral
method.

G.5 Comparison Metrics

The three methods are compared based on:

• Optimality: The maximum value ∥Ax∥2 achieved by each method.

• Time Efficiency: The computational time required by each method.

34

G.6 Results and Observations

The following plots compare the performance of the three methods:

• Optimality Plot: Shows that the maximum value obtained with scipy.minimize is slightly
better than our spectral method, while random search performs poorly.

• Time Efficiency Plot: Illustrates the that scipy.minimize scales much poorly with the
dimension, while our spectral method is way faster than both methods.

Figure 7: Comparison of optimality across methods.

Figure 8: Comparison of computational time across methods

35

Optimal values attained Time taken

n Random Spectral minimize Random Spectral minimize

10 4.10 4.45 4.46 0.12 0.0007 0.005
20 5.14 6.71 6.82 0.19 0.0003 0.01
50 9.23 11.59 11.93 0.25 0.0007 0.03

100 11.95 16.44 17.19 0.31 0.001 0.28
200 15.74 22.1 23.68 0.44 0.004 2.1
300 19.32 28.58 29.73 0.57 0.012 8.19
500 24.46 36.56 38.47 0.83 0.209 43.49
1000 33.91 51.64 54.25 1.38 0.171 313.6

Table 3: Attained Values and Time Taken.

G.6.1 Parameters of Experiments

The experiments were conducted to evaluate the performance of three methods—brute force random
search, eigenvalue heuristic, and numerical optimization—on solving the problem:

max
∥x∥2≤1, x≥0

∥Ax∥2.

State Space Cardinality and Random matrix Generation

• State Space Cardinality (n): The dimension of the problem, denoted by n, represents the
state space cardinality. In the experiments, n varied from 1 to 300 to analyze the scalability
of the methods.

• Matrix Generation: The matrix A ∈ Rn×n was generated as a random matrix with entries
sampled from a standard normal distribution:

Aij ∼ N (0, 1), i, j = 1, . . . , n.

The same random seed (seed = 42) was used across all runs to ensure reproducibility.
• 10000 random vectors x were generated for Brute Search Method.

Process of matrix Evaluation The goal of the experiments is to maximize ∥Ax∥2 under the
constraints ∥x∥2 ≤ 1 and x ≥ 0. The matrix A is evaluated by:

1. Generating random vectors x ∈ Rn for the brute force method.
2. Computing the spectral decomposition of A⊤A for the eigenvalue heuristic.
3. Defining and solving a constrained optimization problem for the numerical optimization

method.

The results, including the optimal values and computational times, are recorded for each method.

Evaluation Metrics The performance of the methods was assessed using the following metrics:

• Optimality: The maximum value ∥Ax∥2 obtained by each method.
• Computational Efficiency: The time taken by each method to compute the result.
• Scalability: The behavior of the methods as n increases.

This systematic evaluation ensures a fair comparison of the three approaches across varying problem
sizes.

Hardware and Software Specifications The experiments were conducted on the following hard-
ware and software setup:

• Model Name: MacBook Pro (2023 model).
• Model Identifier: Mac14,7.

36

• Chip: Apple M2 with 8 cores (4 performance and 4 efficiency cores).
• Memory: 16 GB Unified Memory.
• Operating System: macOS Ventura.
• Programming Language: Python 3.9.
• Libraries Used:

– numpy for numerical computations.
– scipy for numerical optimization.
– matplotlib for generating plots.
– time for recording computational times.

The experiments were designed to ensure reproducibility by fixing the random seed (seed = 42).
Computational times and results are specific to the above hardware configuration and may vary on
different systems.

H Convexity of D

H.1 MDP Configuration

We define an MDP with the following parameters:

• State space size: S = 3

• Action space size: A = 2

• Discount factor: γ = 0.9

• Random kernel P , random reward R, seed 42.
• Compute the set D = {DπHπ|π} with 10 millions random policies π

H.2 Dimensionality Reduction via PCA

Given the high-dimensional nature of the DπHπ representations, we apply Principal Component
Analysis (PCA) to extract meaningful structure.

• We retain the top 10 components to capture the dominant variations in the dataset.
• The explained variance ratio is visualized to assess how much information each component

retains.
• 2D projections of the first few principal components are generated for visualization.

H.3 Random Linear Projections

To further explore the geometry of the occupancy measure set, we apply random linear projections
of the high-dimensional data:

• 2D Random Projections: The data is projected onto randomly chosen 2D subspaces.

37

Figure 9: 2D PCA projections of the first 5 components.

Figure 10: 2D Random Projections of the Data.

I Experimental Evaluation: Single MDP Comparison

To assess the performance of our proposed binary search algorithm for robust policy evaluation
under L2-norm bounded uncertainty, we conduct a series of experiments comparing it against
existing methods on fixed Markov Decision Process (MDP) instances. The primary objective is to
evaluate convergence speed, accuracy relative to an estimated worst-case value, and consistency
across different problem configurations. More details of these experiments along with others can

38

be found in the appendix, and codes are available at https://anonymous.4open.science/r/
Kernel-Robust-RL-B742/

I.1 Experimental Setup

Algorithms Compared We evaluate the following algorithms:

1. Our Method: The binary search algorithm presented in this work, which leverages a
spectral method for computing the key bisection function F (λ).

2. CPI (Frank-Wolfe): The Conservative Policy Iteration algorithm adapted from [21] for
general robust policy evaluation.

3. SA-Rectangular L2 VI: Robust Value Iteration for (s,a)-rectangular L2 uncertainty, a
common baseline representing a structured relaxation.

4. S-Rectangular L2 VI: Robust Value Iteration for (s)-rectangular L2 uncertainty, another
structured relaxation.

Benchmark Generation For each MDP instance and policy, we establish an empirical benchmark
for the worst-case robust value. This is achieved by sampling 1,000 transition kernels from the L2

ball of radius β centered at the nominal kernel Pnominal. Each sampled kernel is projected to ensure it
remains a valid stochastic matrix and stays within the L2 ball. The policy π is evaluated for each
sampled kernel, and the minimum value obtained across these samples, V min

benchmark, serves as our
reference robust value.

MDP and Policy Configuration Experiments are conducted on randomly generated MDPs. For
each trial, a nominal transition kernel, a reward function, and a uniform initial state distribution µ are
generated. A fixed, randomly generated stochastic policy π is then used for robust policy evaluation
by all algorithms.

Experimental Configurations Two main sets of single MDP comparisons are performed:

1. Varying State Space (S): S ∈ {10, 50, 100, 200}, with actions A = 10 and uncertainty
radius β = 0.01.

2. Varying Uncertainty Radius (β): β ∈ {0.005, 0.01, 0.05, 0.1}, with state space S = 100
and actions A = 10.

The discount factor is γ = 0.9. Algorithms are run until convergence (tolerance of 10−6) or a
maximum iteration limit (100).

I.2 Results and Discussion

Figures 11 and 12 present the convergence behavior of the evaluated algorithms on representative
MDP instances for the varying state space and varying uncertainty radius configurations, respectively.
Each subplot shows the estimated robust value versus algorithm iterations. The horizontal dashed
line indicates V min

benchmark. An algorithm’s final point is marked with a star (⋆) if its estimated robust
value converges to within 10−6 of V min

benchmark.

Observations

• Convergence Speed and Accuracy of Our Method: Across all tested configurations, Our
Method consistently demonstrates superior performance. It generally converges in fewer
iterations and achieves a final robust value remarkably close to V min

benchmark, as frequently
indicated by the star marker. This suggests efficient and accurate identification of the robust
penalty λ∗.

• CPI Performance: The CPI algorithm typically converges but often settles at a value
slightly higher (less pessimistic) than V min

benchmark. While providing a robust estimate, its
subproblem, in the version tested, explores extreme points of the set of all stochastic kernels,
which may not always precisely align with the worst-case kernel strictly within the L2 ball.

39

https://anonymous.4open.science/r/Kernel-Robust-RL-B742/
https://anonymous.4open.science/r/Kernel-Robust-RL-B742/

Figure 11: Convergence of robust policy evaluation algorithms for varying state space sizes (S).
Algorithms whose final value is within 10−6 of the benchmark are marked with a star (⋆)

Figure 12: Convergence of robust policy evaluation algorithms for varying uncertainty radius (β).
Algorithms whose final value is within 10−6 of the benchmark are marked with a star (⋆)

40

• Rectangular Relaxations: Both sa-rectangular and s-rectangular L2 VI methods consis-
tently converge to robust values significantly lower than those found by Our Method, CPI,
and V min

benchmark. This highlights the conservatism inherent in rectangular relaxations when
dealing with non-rectangular uncertainty.

• Consistency Across Setups: The advantages of Our Method in terms of faster and more ac-
curate convergence are maintained robustly across different state space sizes and uncertainty
radius.

41

I.3 Performance with large uncertainty radius.

Our theory is limited to only small enough radius, however we show that our algorithm works with
bigger radius as well. Experimental Setup

• Environment: Fixed state space S = 12, action space A = 8, discount factor γ = 0.9. The
nominal kernel P0 and reward function R were generated randomly.

• Random Sampling: For each uncertainty radius β, we sampled over 500 million kernels
from the uncertainty set and computed the empirical minimum return.

• Algorithm 1 (Ours): For each β, our algorithm produced the worst-case rank-one pertur-
bation bk⊤. We then projected P0 − bk⊤ onto the simplex to obtain a valid kernel P ′, and
reported the return Jπ

P ′ as the worst-case estimate.

• Time Taken: Our algorithm typically takes 2–4 seconds, while random sampling of 500+
million kernels takes 400 minutes for each β.

• Nominal Return: The nominal return was −0.1414.

Table 4: Robust Return with different uncertainty raiduses.

β 10−4 10−3 0.002 0.01 0.05 0.1 0.5 1.0 2.0

Algorithm
1 (Ours)

-0.141 -0.142 -0.143 -0.150 -0.186 -0.231 -0.588 -1.026 -1.851

Random
Sampling

-0.141 -0.142 -0.142 -0.145 -0.159 -0.176 -0.315 -0.467 -0.779

Observation

As seen from the table, our algorithm consistently identifies worst-case kernels yielding significantly
lower (i.e., more conservative) returns compared to the empirical minimum over 500 million random
samples—even for large uncertainty radii. Furthermore, our method works much faster than random
sampling.

Conclusion

Our method performs exactly as expected for small uncertainty sets, with theoretical guarantees. For
larger uncertainty radii—where theory no longer applies directly—our algorithm still significantly
outperforms random sampling in estimating worst-case returns. We believe this demonstrates the
robustness and practical utility of our approach beyond the theoretically guaranteed regime.

System: AWS EC2 instance: c7a.32xlarge vCPUs: 128 Memory: 256 GiB Network Bandwidth:
Up to 50 Gbps Processor: 4th generation AMD EPYC Clock Speed: Up to 3.7 GHz.

J Experiments: Robust Policy Evaluation with L2 norm

We conduct a numerical comparison of our Algorithm 1 and CPI (Algorithm 3.2 from [21], reproduced
as Algorithm 2 in the appendix) for robust policy evaluation. The experiments are performed using a
randomly generated nominal kernel P̂ , reward function R, and policy π. An uncertainty set U2 is
constructed using the nominal kernel with a fixed uncertainty radius β.

Algorithm 5 Spectral method for computing maxx∈B ∥Ax∥2
1: Compute eigenvector vi and eigenvalues λi of A⊤A
2: WLOG let ∥v+i ∥2 ≥ ∥v

−
i ∥2 where v+i = max(vi, 0), v

−
i = −min(vi, 0)

3: Compute best score : j = argmaxi λi⟨vi,
v+
i

∥v+
i ∥2
⟩.

4: Output: Approximate maximum value β∥A v+
j

∥v+
j ∥2
∥2.

42

Figure 13: Robust Return for β (Uncertainty Radius, S=12 and A=8, γ=0.9 and convergence tolerance
of 10−4 . Robust Return of Random Kernel is minimum of 500 millions kernels samples for each β

Figure 14 demonstrates the convergence behavior of both methods, presenting results based on the
number of iterations (left panel) and computation time (right panel). The left panel shows the robust
return achieved per iteration, while the right panel depicts the robust return as a function of wall-clock
time. Note that the x-axes of the figure have a logarithmic scale in order to clearly capture the slow
convergence of the CPI method.

• Our Algorithm 1. We apply our Binary Search Algorithm 1 to perform robust policy
evaluation with the given nominal kernel P̂ and uncertainty radius β. Each iteration of the
algorithm involves computing F (λ), for which our Spectral Algorithm 5 is employed. Our
algorithm converges very quickly requiring only a few iterations.

• Algorithm 3.2 of [21]. We run Algorithm 2 with precomputed values of dπ and Aπ. The
step sizes are chosen to be either a small constant or dynamically adjusted, as described
in the algorithm. Note that Line 3 of the algorithm involves solving argminP∈U2

⟨x, P ⟩.
This constrained optimization is solved using a numerical method (scipy.minimize). This
gradient based method improves very slowly and converges very far from the true robust
return as the uncertainty set U2 is very non-rectangular.

• Brute Force Benchmark. To approximate the true robust return, we generate a large
number of random samples {Pi | i ≤ n} from U2 and estimate the empirical minimum,
mini J

π
Pi

, as a proxy for the robust return. Note this method requires exponential number of
samples to reasonably cover the entire uncertainty set. Hence the values obtained in Figure
14, are an approximate upper bound on the true robust return.

The results in Figure 14 reflect a general trend observed across a wide range of experiments conducted
with state space sizes ranging from S = 5 to S = 190 and uncertainty radius β ∈ {0.005, 0.01, 0.05}.
Our proposed algorithm consistently demonstrates superior performance, converging in significantly
fewer iterations and less computation time while the computational demands of the CPI algorithm
grow substantially with larger state spaces. Hence, our method exhibits more favorable scaling
properties, making it practical for high-dimensional problems.

The codes, detailed explanations, and additional experiments are available at https://anonymous.
4open.science/r/non-rectangular-rmdp-77B8. System details for the experiments are as
follows: Operating System: macOS Sequoia (Version 15.4.1), Chip: Apple M2, Cores: 8 (4
performance and 4 efficiency), Memory: 16 GB (LPDDR5).

43

https://anonymous.4open.science/r/non-rectangular-rmdp-77B8
https://anonymous.4open.science/r/non-rectangular-rmdp-77B8

Figure 14: Comparison of Algorithm 1 (Ours) and the CPI Algorithm for β (Uncertainty Radius)
= 0.05, S = 10, A = 8, γ = 0.9, and a convergence tolerance of 10−4.

44

	Introduction
	Preliminary
	Method
	Dual Formulation of Robust MDPs
	Robust Policy Evaluation

	Revealing the Adversary
	Experiments: Robust Policy Evaluation with L1 Normed Uncertainty Set
	Discussion
	Related Work
	 On the Non-Rectangular Uncertainty Sets
	Why non-rectangular RMPDs
	Complexity
	Decomposition

	Additional Results: Robust Policy Improvement
	Helper Results
	Dual Formulation
	Intuition on the Adversary

	Robust Policy Evaluation
	 Evaluation of x,yxEy
	For p=1
	For p=2
	Eigenvalue Approach (Spectral Methods)
	Experimental Verification
	Brute Force Random Search
	Numerical Optimization (Scipy Minimize)

	Comparison Metrics
	Results and Observations
	Parameters of Experiments

	Convexity of D
	MDP Configuration
	Dimensionality Reduction via PCA
	Random Linear Projections

	Experimental Evaluation: Single MDP Comparison
	Experimental Setup
	Results and Discussion
	Performance with large uncertainty radius.

	Experiments: Robust Policy Evaluation with L2 norm

