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Abstract. Traditional Reinforcement Learning (RL) methods can solve
complex, long-horizon tasks but struggle to generalize to new non-Markov
tasks without retraining. Recent compositional approaches address this
by learning a set of sub-policies that can be composed at test time to
solve unseen, temporally extended tasks—formulated as finite state au-
tomata (FSA)—in a zero-shot manner. However, existing methods are
typically restricted to discrete domains or suffer from sub-optimality in
stochastic environments. We address both limitations by extending com-
positional RL to continuous state spaces using Radial Basis Function
(RBF) features and a novel regression-based value iteration algorithm
that enables optimal composition over learned sub-policies. Our method
supports more globally efficient planning in environments with spatially
extended goals and achieves optimal behavior in both deterministic and
stochastic settings, outperforming prior compositional baselines.

Keywords: Compositional Strategies - Reinforcement Learning - Tem-
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1 Introduction

Traditional Reinforcement Learning (RL) methods can solve complex, long-
horizon tasks, even in environments that closely resemble the real world. How-
ever, they often learn a single policy for a single task, without considering any
temporal or hierarchical structure. This limits generalization to tasks or environ-
ments that are slightly different. While re-training for each new task is possible,
this is costly and does not exploit shared structure across tasks.

Compositional Strategies (CS) aim to address challenges such as scalability,
sample inefficiency, and poor generalization by decomposing tasks, policies, or
value functions into reusable components. Rather than learning a new policy
from scratch, they recombine previously learned behaviors, enabling transfer,
faster learning, and greater interpretability.

Hierarchical Reinforcement Learning (HRL), a class of CS, addresses limita-
tions of standard RL by decomposing long-horizon tasks into sub-tasks solved by
lower-level policies, which are coordinated by a higher-level policy. This tempo-
ral abstraction shortens horizons, improves credit assignment, simplifies sub-task
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learning, and supports more efficient exploration. As a result, HRL often out-
performs flat RL in domains such as continuous control and long-horizon games
[9]. A central HRL framework is the options framework [12], which allows agents
to act not only with primitive actions but also with temporally extended behav-
iors, or options. Each option is defined by an initiation set, an internal policy,
and a termination condition. Options enable planning over variable-length action
sequences, facilitating behavior reuse and reducing decision-making depth.

However, one of the major difficulties with HRL and compositional strategies
is that the learned sub-components may not be globally optimal. That is, each
sub-policy may only be locally optimal for the sub-task(s) it was trained on since
it does not consider the global goal or context. Combining these sub-policies to
solve the full, high-level task may then lead to a suboptimal overall solution, also
called recursive optimality [4]. Stronger forms of optimality, such as hierarchical
or even global optimality, are often more desirable.

Other approaches improve generalization by conditioning policies directly on
goal specifications. Universal Value Function Approximators (UVFAs) extend
value functions with goal descriptors, enabling transfer across goal configura-
tions without retraining [10]. However, they are typically limited to simple goal
formulations—such as target states or coordinates—and cannot capture richer
temporal or logical structures.

Reward Machines (RMs) address this limitation by decomposing reward func-
tions into Finite State Automata that encode temporal and logical dependencies
between sub-goals [5, 6]. By exposing reward structure, RMs allow agents to rea-
son over loops, conditionals, and interleavings, capturing both Markovian and
some non-Markovian objectives. Q-learning over RMs accelerates learning com-
pared to standard Q-learning or hierarchical methods, but it requires a value
function per RM state and a manually defined automaton for each task, which
hinders scalability.

To overcome these constraints, recent methods condition policies directly
on task specifications expressed in Linear Temporal Logic (LTL) [15, 7]. Condi-
tioning on symbolic instructions enables zero-shot generalization to unseen LTL
tasks, but these approaches rely on large end-to-end neural models, limiting
interpretability and scalability in complex, continuous domains.

Thus, sometimes, it is useful to take a more structured approach. Structured
alternatives offer advantages in transparency, verifiability, and instructability.
They allow agents to follow composite instructions not seen during training and
yield more predictable behavior compared to black-box models.

Several more structured compositional strategies exist, such as the Logical
Options Framework (LOF) and Skill Machines [2,14]. LOF’s composed poli-
cies are hierarchically optimal but typically not globally optimal in the case of
stochastic dynamics since each option deterministically targets its sub-goal. At
the same time, by extending the Boolean Task Algebra framework [13], Skill Ma-
chines support not only temporal but also spatial composition. Although their
method is shown to be satisficing, it may yield suboptimal solutions since the
final high-level policies are recursively rather than globally optimal.
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Kuric et al. [8] address these limitations by combining Optimistic Linear
Support (OLS) and Successor Features to build a convex coverage set of com-
posable sub-policies. Their method guarantees globally optimal solutions for
non-Markovian, high-level tasks, even under stochastic dynamics. However, it is
restricted to discrete domains, where sub-goals are defined as individual states
and planning over exit states remains tractable. Extending this to continuous
domains is challenging, both in defining spatial sub-goals and in handling un-
bounded sets of exit states.

In this work, we extend structured compositional methods to continuous
domains by building on the SF-OLS framework. Our main contributions are:

— We define spatial sub-goals using Radial Basis Functions (RBFs), enabling
sub-policy learning over continuous regions.

— We introduce a regression-based value iteration method to compose sub-
policies for zero-shot generalization to tasks defined by arbitrary FSAs.

— We empirically show that our method outperforms LOF and other baselines
in environments with stochastic dynamics and spatially extended goals.

2 Background and Notation

2.1 Preliminaries

We begin by briefly reviewing standard reinforcement learning (RL) terminology
and concepts. A Markov Decision Process (MDP) is defined as a tuple M =
(S, A,p,r,y), where S is the state space, A the action space, p(s’ | s,a) the
transition probability of reaching state s’ from state s via action a, (s, a, s’) the
reward function, and « € [0,1) the discount factor that weights future rewards.

The agent aims to learn a policy 7 : & — A that maximizes the expected
discounted return:

J(m) =Ex lz v'r(St, A, Sti1) (1)

t=0

The action-value function Q™ (s,a) gives the expected return from (s, a) under
7, and satisfies the Bellman equation:

Qﬂ— (Sa a) = Es’wp(~|s,a) [’I"(S, a, 5/) + 'Y]Ea’N'fr(~|s’)Q7r (Sl7 al)} . (2>
Furthermore, the optimal @-function satisfies the Bellman optimality equation:
Q*(s,a) = Egrop(|s.a) {r(s, a,s’) + 7 max Q* (¢, a’)] , (3)

from which an optimal policy 7* can be derived [11].
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2.2 The Successor Features Framework

Successor Features (SFs) decompose the reward and value functions into envi-
ronment features and a task-specific weight vector. The reward is assumed to be
a linear product of a feature vector and weight vector:

r(s,a,8') = ¢(s,a,s") 'w, (4)

where ¢(s,a,s’) € R? are features of the transition and w € R? encodes task-
specific preferences [3]. Under this formulation, the action-value function be-
comes:

Q"(s,a) = Ex

YAl | (Se=s,A = G)] w
1=t
= Q/)T((sv a)TW7 (5)

where ¢ = @ (8¢, a, s¢11). The vector ¥™(s,a) is the Successor Feature, repre-
senting the expected discounted feature vector under policy m:

Y7 (s,a) = Ex [Z 7 i | (Sp =5, A =a) (6)

i=t

This representation naturally leads to Generalized Policy Improvement (GPI),
which allows for transfer over a family of Markov Decision Processes (MDPs)
[3]. If we consider all MDPs in which all components are the same except the
reward functions induced by different weight vectors w, we can define that as a
family of MDPs:

M? = {M(S, A;p,1,7) | rw(s,a,8") = @(s,a,8") 'w, Yw € R}

Given policies IT = {ry,...,m,} learned on tasks in M?  a GPI policy for a
new task with reward weights w’ is defined as:

mapi(s) € argmax max QF, (5, a), (7)
a TE

and is guaranteed to perform at least as well as the best policy in I on the new
task [3, 8].

2.3 Convex Coverage Set

A key question is which task vectors wy, ..., w, to train policies for, such that
the resulting set IT leads to strong GPI performance on unseen tasks w’. Alegre et
al. [1] address this by converting the MDP family M? into a multi-objective MDP
(MOMDP) and applying multi-objective RL to compute a Convex Coverage Set
(CCS) of non-dominated successor features:

COS = {47 | 3w s.t. Vo™, 9™ - w > o™ - w)
= {y" | 3w s.t. Vo', VI > VI (8)
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We define IIccs as a set of policies corresponding to SFs in the CCS, i.e.,
for every ¥™ € CCS, there exists a 7' € IToeg such that ™ = ™. Each policy
in IIccys is optimal for at least one task w, and for any new task vector w’, an
optimal policy exists in I[locs. As a result, applying GPI to a complete CCS
yields an optimal policy for all w € W [1].

To construct IIocg, we can use an algorithm like Successor Features Opti-
mistic Linear Support (SF-OLS), an extension of the Optimistic Linear Support
algorithm to the SF framework [1]. SF-OLS incrementally builds the CCS by
proposing new task weights w, selected from a priority queue based on expected
improvement. For each selected w, a new policy is trained on the induced MDP
My, and added to the set. This process continues until convergence.

2.4 Finite State Automata Tasks and Product MDP

Complex temporal tasks can be specified using propositional logic and Finite
State Automata (FSA). We assume a set of boolean propositional symbols P
representing (sub-)goals in the environment. Each symbol is associated with one
or more low-level states ¢ € £ in the MDP M, referred to as exit states. Entering
an exit state produces a truth assignment in 27 under a known observation
mapping O : S — 27 that is known to the agent [8].

A high-level task is then defined as an FSA F = (U, uo, T, L, ), where U
is a finite set of FSA states (distinct from MDP states), ug is the initial FSA
state, T C U is the set of terminal (accepting) FSA states, L: U x (UUT) —
27 is a labeling function that maps FSA transitions to truth values for the
propositional symbols, and 6 : & — {0,1} is a sparse reward function non-zero
only at terminal FSA states [8]. Each transition corresponds to a propositional
symbol and is enabled by the associated exit states; all other symbols cause
the FSA to remain in the current state (see Fig. 1 or App. B for a graphical
representation). Intuitively, the FSA captures progress in the high-level task,
not every transition in the underlying MDP. A transition between FSA states
only occurs when the agent reaches exit states whose propositional assignments
satisfy the condition for that transition. Exit states that do not satisfy any
such condition leave the FSA unchanged, reflecting no progress toward task
completion.

Combining a high-level FSA task with the low-level MDP family yields a
product MDP M’ = F x M? with augmented state space U x S [8]. We assume
zero intermediate reward and a terminal reward R = 1 only in FSA terminal
states ur € T. Policies over this product MDP take the form p: U xS — A(A),
where A(A) is the probability simplex over A. The corresponding augmented
Q-function is:

Q*(u,s,a) =E, [Z VRN U, = u, Sy = 5,4, =al . (9)

i=t
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2.5 Solving the Product MDP with SF-FSA-VI

Since the agent’s objective is to reach an FSA terminal state ur to receive
reward, it suffices to find optimal weight vectors w*(u) for each FSA state u to
solve the product MDP. These weights summarize the agent’s desired behavior
in each FSA state. Assuming we have access to the CCS, we can use GPI to
retrieve an optimal policy for any w(u) € W. The resulting optimal Q-function
is:

QL. (u,s,a) = max w*(u)T97(s,a), (10)

ncllccs

where w*(u) reflects the globally optimal objective for being in FSA state u
given the full FSA structure.

To compute w*(u), Kuric et al. [8] propose SF-FSA-VI, a dynamic program-
ming algorithm similar to value iteration. They allocate a single weight element
w; and feature element ¢; to each unique exit state, where the features are
simple indicator functions that are 1 if the agent is in the respective exit state ¢;
and 0 otherwise. To obtain w*(u), Vu € U, they use the following update rule:

Wi (u) = max Qy (7(u, O(¢;)) €, a)

= maxw (r(u, 0(e;))) %7 (. a) ()
where 7(u, O(g;)) € U is the FSA state that results from achieving the valuation
O(g;) in u. Thus, each w(u) encodes the Q-values for all augmented state pairs
(u,€) consisting of an exit state.

3 Method

3.1 Learning by Defining Features over the Continuous Domain

Extending SF-OLS and SF-FSA-VI to continuous spaces introduces key chal-
lenges. In particular, sub-goals in continuous domains correspond to infinitely
many exit states, making the discrete approach of assigning one feature per exit
state intractable. In discrete settings, goal-related exit states are finite, allowing
each to be assigned a feature index and corresponding weight in ¢ and w. In
contrast, in continuous domains, the infinite number of such states would lead
to unbounded feature and weight vectors and make planning over all possible
exit states infeasible.

To enable smooth generalization across space, we define features using Ra-
dial Basis Functions (RBFs) over the continuous domain. These features softly
activate based on spatial proximity to predefined centers. Formally, each feature
at index 7 in the feature vector ¢ is defined as:

202

Se —2i)% + (5 — )2
¢i(5)5(s€5i)~exp<(z i)+ (3y yl)), (12)

where (s, s,) is the current 2D state, (x;,y;) the RBF center, o the bandwidth,
and (s € &p,) an indicator for whether s is an exit state for p;, and p; is the
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propositional variable linked to the feature at index ¢ in the feature vector ¢.
Using this formulation, we can define one or more RBF features for each propo-
sitional variable (see App. D, Fig. 8).

Due to the multiplication with the indicator function, each feature is asso-
ciated with a single propositional symbol p € P and is non-zero only on exit
states corresponding to that goal type. Feature placement can be done manu-
ally—leveraging prior knowledge about where goal regions are located—or au-
tomatically, for example, by defining a uniform grid of RBF centers.

In principle, any feature function over the continuous domain can be used
to construct the feature vector ¢. For instance, we validated that Fourier fea-
tures can be integrated into our framework and exhibit comparable qualitative
behavior. However, for the experiments presented in this work, we focus solely
on RBF features to maintain consistency.

3.2 Approximating Values during Planning

Sampling a Finite Set of Exit States In continuous environments, each
feature ¢; corresponds to infinitely many exit states, complicating the value
iteration procedure from [8]. To make planning tractable, we approximate each
region &,, by selecting a finite set of representative exit states. Concretely, we
place a uniform grid over the state space and select the grid cell centers that lie
within &, (one could also use random sampling as an alternative). This enables
estimating the value of spatial sub-regions associated with each feature ¢; and
its corresponding propositional symbol p;.

Augmented Features and Weight Vectors. To enable planning in contin-
uous domains with finite exit state approximations, we adopt a unified repre-
sentation of the value function. While prior work [8] uses a separate task vector
w(u) for each FSA state u, we instead concatenate all task vectors into a sin-
gle augmented weight vector w and define a corresponding augmented feature
vector ¢(§), where § = (s,u) combines the environment state and FSA state.

The augmented feature vector is defined by stacking gated copies of the base
features ¢(s):

fre
#(5) = 5(u§)-¢(s) , W= W(uj,) : (13)

Since only one §(u;) is active at a time, this construction selects the relevant

task vector w(u) and recovers the value estimate Ry (s) = ¢(s)w.

Augmented Successor Features with FSA Structure. To extend our aug-
mented representation to successor features (SFs), we define a structured vector
that respects the FSA’s dynamics. As before, we concatenate SFs across FSA



8 T. van Gelder and H. van Hoof

states, but now incorporate the structure of transitions enabled by specific propo-
sitional symbols.

Let p : U x U — P U {0} map each FSA state pair (u;,u;) to the unique
propositional symbol that enables the transition, or @ if no such transition exists."
For each plausible transition from u; to any other FSA state uo, ..., u;, we define
a masked SF vector 97 (u;, s,a) by masking the base SF vector ¢ (s, a) using
two conditions:

1. 6((ui, uj) € E), which is 1 if the transition from wu; to u; exists, and
2. 6(pk = p(uy, uj))7 which is 1 if the k-th feature corresponds to the unique
symbol that enables the transition.

This leads to the following definition of our masked SFs:

8 ((uiug) € E) - 6(pr = p(ui, uy)) - 97 (s, a)
Y7 (uis s,a) = ; eR:L (14)
§((us,uj) € E) - 8(pa = p(ui, uy)) - 3 (s, a)

We then define the full augmented vector by stacking the masked sub-vectors
corresponding to all possible transitions from u; to all FSA states:

1/"3(“7,7 57a)

™ (ug,5,a) = i (u“ ) e RiUI, (15)

1/}‘7;/”71(“% S,G)

This structured construction enables us to associate each FSA state with
the specific SFs that contribute to its possible transitions. By concatenating the
masked sub-vectors across all potential transitions, we obtain a unified repre-
sentation ¥™(u;, s,a) that preserves the FSA’s compositional structure. This
formulation allows us to solve for the global weight vector w through a single
regression step during planning, capturing task dynamics across all FSA states
in a consistent manner.

Planning Model. To enable high-level planning over FSA-structured tasks, we
model the value function as a linear combination of augmented state features:

V(3) = (3)w, (16)

where § = (s,u) is the combined MDP and FSA state, and w is the global
augmented weight vector shared across tasks.

1 A more flexible formulation might allow multiple propositional variables to enable
a single transition. However, our current notation does not limit the expressivity
of our FSAs: in such cases, we split the transition into multiple transitions (and
intermediate FSA states), one for each proposition, and later merge the resulting
states back into a single FSA state.
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Following standard value iteration, we define a Bellman-like update: V(3) «
max, E [R + ’ka(E’)], where 7 is a sub-policy, and k is the number of low-level
steps before the FSA transitions. Since we are using function approximation,
directly assigning this target to V(5) is not feasible. Instead, we compute a
regression target y(5), where we derive the following sequence for non-terminal
states u ¢ T

y(3) = mf:xE [R + ’ka(E')] = mTfriXE [ka(E’)] = mgx]E hkqb(é’)—rw]
T . T
= max (E [v* (3] w) = maxEg-r [wﬂ(é,a)} w, (17)

where 1/;”(5, a) denotes the augmented successor feature vector for state § and
action a under policy 7. Conceptually, we are equating the features of the next
augmented state §’, discounted by the number of lower-level steps k it took to
get there, to the SFs of the current augmented state §, where we consider only
the augmented states containing an exit state § = (u, e). This is consistent with
the definition of SFs, which represent the expected discounted sum of features
encountered when following a given policy from the current state. The SFs and
the CCS over which we maximize are learned as described in Sections 2.2 and 2.3,
following the approaches in [1] and [8].

Since the environment gives a reward only when the task is completed (i.e.,
u € T), we define the regression target:

1, if 5 is terminal (u € T)

y(s) = - T 18
b8 maxEqr [1/:”(5,(1)} w, otherwise. (18)

Weight Learning via Regression. To learn the weight vector w, we fit the
approximation ¢(3) 'w = §j(3), where §(3) is the target from Equation (18). At
each planning iteration, we collect feature vectors and corresponding targets for
the set of augmented exit states and construct:

— a feature matrix @, where each row corresponds to a feature vector ¢(§)T,
and
— a target vector y, whose entries are the corresponding target values (5).

We then solve the following regularized linear system using ridge regression:
dw Ry
W= (@ d+el) DTy, (19)

where € > 0 is a small regularization constant that ensures numerical stability
and helps prevent overfitting.

This procedure resembles approximate dynamic programming, but rather
than predicting the value of low-level actions, it estimates the value of high-
level actions—namely, completing sub-goals and advancing through the FSA.
See Appendix C for pseudo-code of our planning algorithm.



10 T. van Gelder and H. van Hoof

Execution. After having estimated w, we extract the sub-vector w(u) corre-
sponding to the current FSA state u from the full augmented weight vector w
and perform GPI during execution:

wapr(u, s) € arg max max ™ (s,a) " w(u). (20)

4 Experiments

4.1 Environments and Tasks

We evaluate our method in a continuous version of the Office environment in-
troduced by [5], which involves three propositional sub-goals: P = {w, &, o}.
In our adaptation, the discrete grid is replaced by a continuous 2D space. The
agent moves in one of four cardinal directions, matching the original setting.
To encourage generalization, we add zero-mean Gaussian noise (std. 0.05) to
each step. The step size is set to 0.8, which approximates the original tile-based
movement.

Fig. 1: FSA tasks for the Office environment: Sequential (a), Disjunctive (b), and
Composite (c)

Tasks and Layouts. To test generalization and planning robustness, we extend
the original Office environment by introducing new layouts with varied goal and
obstacle configurations (see App. A, Fig. 3).

Original Office. This layout includes six goal regions—two per propositional
variable in P = {#, =& o}. Each region occupies a 1 x 1 tile, and its associated
symbol becomes true when the agent enters it. We place one Radial Basis Func-
tion (RBF) feature at the center of each tile with a fixed bandwidth o = 1. This
setup validates that our approach generalizes from the original discrete domain
to the continuous setting. We evaluate on three canonical tasks adapted from [8]:
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a sequential task (“Go to coffee, then to mail, then to an office”), a disjunctive
task (“Go to coffee or mail, then to an office”), and a composite task (“Go to
both coffee and mail in any order, then to an office”)—see Fig. 1.

To increase complexity, we introduce a second set of tasks—one of each
type—with longer logical sequences (see App. B, Fig. 4). These extended tasks
highlight the limits of conventional Q-learning and the growing benefits of com-
positional methods like SF-OLS as task complexity and diversity increase.

Office Areas. Unlike the Original Office layout, where each propositional goal
corresponds to a single tile, the Office Areas layout defines each goal as a con-
tinuous region spanning multiple 1 x 1 tiles, introducing spatial ambiguity and
requiring more nuanced planning. The propositional set is P = {A, B, C}.

The B region is split into two disjoint sub-areas on opposite sides of a central
obstacle wall. The left sub-area is closer to A, while the right is nearer to C.
Notably, the right B area is large enough that the agent’s exact entry point
affects the cost of reaching C. For example, in the task “go to A, then B, then
C,” the agent must not only select the appropriate B sub-area but also reason
about which entry point minimizes the cost of reaching C thereafter.

To support such spatial reasoning, we assign two RBF features to the right
B area (one near C, one farther) and one RBF to each of the remaining smaller
goal areas. All RBFs use a fixed bandwidth ¢ = 3. We evaluate on the same
three FSA tasks as before, now adapted to P = {A,B, C} (see App. B, Fig. 5).

Teleport. We introduce a stochastic variant of the Office environment with tele-
portation tiles—special tiles that instantly transport the agent to one of two
predefined destinations at random. This setup evaluates the agent’s planning
under uncertainty. The layout includes two goal areas, A and B, placed on op-
posite sides of a long vertical wall. The propositional set is P = {A, B}. Each
goal region is represented by a 1 x 1 tile with a single RBF feature at its center
(0 =1). A teleporter at the bottom of the map randomly sends the agent—with
equal probability—to a tile just above either goal, creating a high-risk, high-
reward shortcut, offering the potential for significant time savings at the cost of
destination uncertainty.

This mechanism poses a planning trade-off: for example, in a task requiring
the agent to reach goal A specifically, the agent should avoid the teleporter to
prevent being sent near B and needing a long detour. In contrast, for a disjunctive
task like “Go to A or B,” the teleporter becomes optimal, as either destination
satisfies the goal and yields a shorter expected path. We evaluate two tasks in
this layout: a disjunctive and a composite one (see App. B, Fig. 6). This tests
the agent’s capacity for goal-conditioned reasoning in stochastic settings.

4.2 Evaluation

We evaluate our method and baselines on the FSA tasks defined for each envi-
ronment variant. Periodically during training, we measure the number of steps
required to complete each task, assigning a reward of —1 per timestep—so lower
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cumulative rewards indicate more efficient completion. We refer to this metric as
Mean Negative Step Reward, which is used only for evaluation to quantify task
efficiency, and differs from the reward used during training. Results are averaged
over multiple independent runs (five by default) with different seeds.

Baselines. We compare against two baselines: a Flat Deep Q-Network (Flat
DQN) and the Logical Options Framework (LOF). All models take the agent’s
normalized (z,y) coordinates as input (scaled to [0,1] based on observation
bounds).

Flat DQN. The Flat DQN baseline is trained directly on the product MDP
M = F x M?, where F is the FSA task and M¢? the low-level MDP. In
addition to spatial input, the agent receives a one-hot encoding of the current
FSA state (length |U{]), preserving the Markov property.

Since Flat DQN learns a single policy for a specific FSA task and does not
generalize across tasks, we train a separate agent for each task. Given a fixed
total budget of training steps per method, this budget is distributed evenly across
the different agents. As a result, increasing the number of FSA tasks reduces the
number of training steps allocated to each Flat DQN agent.

Logical Options Framework. LOF is a compositional baseline similar to our
method. It learns a library of options, each targeting a specific sub-goal, and
constructs a meta-policy by treating these options as macro-actions. The result-
ing option-level MDP is solved via value iteration, yielding a policy that maps
states to options without requiring further environment interaction at execution
time. Unlike SF-OLS, LOF learns only one option per sub-goal and does not
support options that reach combinations of sub-goals. This limits its flexibility
and can lead to suboptimal performance in stochastic environments.?

Model Architectures and Training Details All methods use the same DQN
backbone: a feedforward network with two hidden layers of 256 units and ReLU
activations. We apply standard components, including a uniform replay buffer
and target networks updated every 1000 steps. Exploration follows an e-greedy
strategy with e linearly decaying from 1.0 to 0.1 over the first 50% of training.
For full hyperparameter settings and schedules, see Appendix E or refer to our
codebase 3.

5 Results

Figure 2 shows the average performance of the three methods on sets of FSA
tasks, evaluated periodically during learning. For SF-OLS and LOF, this corre-

2 See App. E for implementation details and how the number of options varies per
environment.
3 https://github.com/timtimtim3 /sf-fsa-vi-regression
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sponds to learning the low-level policy set IIccs and the option base, respec-
tively. The Flat DQN curve reflects a setup where separate networks are trained
per FSA task and updated in an interleaved manner—i.e., as if training all net-
works concurrently by cycling through them and incrementing a shared global
step counter.

Original Office 3 FSA Original Office 6 FSA
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4 4
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Fig. 2: Evaluation curves across Office layouts. Each plot shows the average num-
ber of steps to complete a task, averaged over all tasks per layout and 5 seeds.
Shaded areas denote one standard deviation. Curves are smoothed (moving av-
erage, window size 10). Episodes end after 200 steps. Red and blue stars indicate
when a new policy is added for SF-OLS and LOF, respectively.

5.1 Original Office

In the Original Office environment, both compositional methods converge to op-
timal behavior on the simpler set of three FSA tasks, while Flat DQN achieves
near-optimal performance (Figure 2, a). This confirms that our continuous ex-
tension of SF-OLS performs on par with established baselines.
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However, when the task set expands to six FSA tasks—three of which are
more complex—a clear performance gap emerges (Figure 2, b): SF-OLS and
LOF maintain high performance, while Flat DQN degrades significantly.

This drop stems from two main factors. First, Flat DQN trains a separate
policy per task, so more tasks split the training budget across more networks.
Increasing the training time for Flat DQN can partially mitigate this issue, allow-
ing it to recover near-optimal performance (see Fig. 7 in App. D). Nevertheless,
its performance still lags behind SF-OLS and, in contrast to SF-OLS and LOF,
Flat DQN lacks any generalization capabilities to new FSA tasks.

Second, the added tasks are longer and more complex, with sparser rewards.
These tasks require a longer sequence of correct actions before any reward is
observed, making them harder to learn from scratch via monolithic RL. In con-
trast, for compositional methods like SF-OLS and LOF, increased task complex-
ity does not directly affect the difficulty of the learning phase. This is because
sub-policy learning is decoupled from the global task specification—each sub-
policy is learned independently of the final FSA structure, and thus the overall
training complexity remains constant.

5.2 Office Areas

In the Office Areas environment, SF-OLS consistently outperforms both LOF
and Flat DQN (Figure 2, ¢). Flat DQN fails to fully converge within the training
budget, while LOF’s is limited by learning only one option per propositional goal.

Specifically, for the propositional variable B in P = {A, B,C}, LOF learns
a single option that does not differentiate between the left- and right-side sub-
regions of goal area B. As a result, its policy navigates uniformly to the nearest
reachable part of either region—regardless of the downstream impact on future
goals (see Q-values in App. D, Fig. 9). This behavior leads to suboptimal per-
formance in tasks such as “Go to A, then to B, then to C.” For such tasks, LOF
may select the left-side B region after reaching A, inadvertently increasing the
distance to C, even though the right-side B region lies adjacent to C and would
offer a more efficient trajectory.

In contrast, SF-OLS overcomes this limitation by learning distinct sub-policies
for different spatial regions within the same goal area (see Q-values of sub-policies
in App. D, Fig. 10). This allows it to selectively target the B sub-region closest to
C, enabling more globally efficient plans (see value iterated Q-values in App. D,
Fig. 11). This illustrates a key advantage of SF-OLS over LOF—mnamely, its ca-
pacity to represent and utilize spatially refined behaviors within goal regions for
improved long-horizon planning.

5.3 Teleport

In the stochastic Teleport environment, SF-OLS achieves optimal performance,
while LOF is slightly suboptimal (Figure 2, d). The gap stems from how sub-
policies are learned. LOF constructs only two options—one for each goal (A and
B)—both of which follow deterministic paths that avoid the teleporter. While
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this satisfies both the disjunctive and composite tasks, it results in suboptimal
trajectories; in the disjunctive task, the teleporter offers a faster expected route,
since reaching either goal suffices. For the composite task, teleporting to one
goal and walking to the other is optimal. LOF’s fixed sub-policies miss this
opportunity.

In contrast, SF-OLS learns an additional policy targeting both sub-goals.
This policy takes the teleporter and proceeds to the nearest goal, allowing SF-
OLS to exploit stochastic shortcuts, resulting in lower step counts. Though
the performance difference is modest here, it would likely grow in larger en-
vironments—where the shortcut yields greater time savings—or under increased
stochasticity—e.g., with multiple teleporters or more complex tasks. This high-
lights SF-OLS’s advantage in handling stochastic dynamics.

6 Discussion and Conclusion

This work addresses the challenge of solving temporally extended, non-Markovian
tasks in continuous state spaces by extending the SF-OLS framework to this
setting. SF-OLS builds a reusable set of low-level policies using successor fea-
tures (SFs), enabling zero-shot generalization to new finite state automata (FSA)
tasks. Our main contribution is adapting SF-OLS to continuous domains by
defining features that capture goal conditions over continuous spaces, and de-
veloping a regression-based value iteration algorithm to compute optimal task
vectors for arbitrary FSA tasks.

We demonstrate that our continuous variant of SF-OLS outperforms both a
Flat DQN baseline and a compositional method, LOF, particularly in environ-
ments where goals span spatial regions rather than singular points or tiles. The
key advantage of SF-OLS over LOF stems from its capacity to learn multiple
distinct sub-policies that target different parts of a goal area. This enables glob-
ally efficient planning, as SF-OLS can select sub-policies that consider both the
immediate goal and downstream transitions. Furthermore, we show that SF-OLS
maintains optimal behavior under stochastic dynamics, whereas LOF leads to
suboptimal decisions in such settings.

Despite its strong empirical performance, a limitation of our approach could
be its reliance on hand-designed, linear feature representations, which may re-
quire domain knowledge and tuning to work effectively across different settings.
A second limitation concerns the handling of FSA tasks with conditional ef-
fects. The policies in our basis are trained to reach each goal region directly,
irrespective of such effects, which may lead to suboptimal behavior for tasks
where entering certain regions causes adverse consequences—such as triggering
FSA transitions that require the agent to visit additional regions. Notably, this
limitation is not unique to SF-OLS; other compositional methods like LOF ex-
hibit similar shortcomings. For a more extensive discussion of this limitation,
see Appendix F.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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B FSA Tasks

Fig.4: Complex set of FSA tasks for the Office environment: Sequential (a),
Disjunctive (b), and Conjunctive (c)

Fig. 5: FSA tasks for the Office Areas environment: Sequential (a), Disjunctive
(b), and Composite (c)

start - @

Fig. 6: FSA tasks for the Teleport Office environment: Disjunctive (a), and Com-
posite (b)
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C Algorithms

Algorithm 1 SF-FSA-VI Regression

Input: Low-level MDP My, task specification F

1:
2:
3:

10:
11:
12:
13:
14:

Obtain ITccs on My
Initialize w = 0 € ]R'u“d, and € to some small value like 1le — 5.
Sample a set of exit states £ // e.g., by random sampling or grid layout over
sub-goal areas
while not done do
Initialize & = 0 € RUEHUDXUI) "5nq y = 0 € RIEN U
for each v € U do
for each € € £ do
Compute g(e,u) using Equation (18) and ¢(e,u) using the Definition
in (13)
Store g(e,u) and ¢(e,u) in y and P, respectively
end for
end for
Solve for w* using Equation (19)
end while
return {w*(u) Yu € U}
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D Additional Figures
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Fig. 7. Evaluation curve for Flat DQN on the 6-task variant of the Original
Office layout. The plot shows the average number of steps (reported as negative
rewards) needed to complete a task, averaged over all FSA tasks and across 3
seeds. Shaded regions denote one standard deviation. The curve is smoothed
(moving average, window size 10), and episodes terminate after 200 steps.

o RBF Activations for A RBF Activations for B RBF Activations for C
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Fig.8: RBF feature activations for propositional variables in the Office Areas
layout. Sub-goal A on the left, B in the middle, C on the right. Saturation
indicates activation strength.
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Fig. 10: SF-OLS sub-policy Q-values in the Office Areas layout. Weights on the
left of each plot indicate which combination of features is being steered towards.
Feature activations on sub-goals are indicated by colored dots. Arrows indicate
greedy actions with highest Q-values; open circles denote terminal actions; ar-
row color encodes Q-value magnitude. Demonstrates SF-OLS’s capacity to learn
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E Hyper-parameters and Experimental Setup

E.1 Hyper-parameters

Table 1: Training hyperparameters used across methods and environments.

Parameter [Value
Network and DQN Parameters
Architecture 2-layer MLP with 256 units per layer, ReLU
activations

Optimizer Adam
Learning rate 3x107*
Replay buffer size 1% 108
Batch size 256
Target update frequency Every 1000 steps
Exploration strategy e-greedy
Initial e 1.0
Final € 0.1
€ decay schedule Linear over first 50% of training steps

Discount Factors
FlatQ (FlatDQN) v =10.99
Compositional methods (SF-OLS, LOF)|y = 0.95

Training Budgets
Original Office 1,050,000 steps
Office Areas 900,000 steps
Office Teleport 600,000 steps
FlatQ — Original Office 6-FSA-Long 2,100,000 steps

Compositional-Specific Parameters

OLS priority threshold & 10.2
Seeds
Default 1001, 1002, 1003, 1004, 1005

FlatQ — Original Office 6-FSA-Long Only 1001, 1002, 1003 used

E.2 LOF Experimental Setup

In the Original Office environment, we designate each individual exit state tile as
a distinct sub-goal, leading LOF to learn a separate option for each. This results
in an option library containing six options — one for each unique tile associated
with the three propositional variables (i.e., two tiles per variable). For example,
the two coffee tiles are treated as independent sub-goals, each with its own
corresponding option. In contrast, SF-OLS treats multiple exit states associated
with the same propositional variable as interchangeable: a feature defined for a
given proposition (e.g., coffee) can be active on any of its associated exit states.
As such, this formulation provides LOF slightly different information than SF-
OLS by distinguishing each propositional variable into multiple sub-goals — one
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for each exit state tile (e.g., treating ®' and ®° as separate sub-goals derived
from w).

In the Office Areas environment, we instead define a single sub-goal per
propositional variable, resulting in a total of three options. This design choice
is motivated by the fact that the propositional variables correspond to a large
number of exit state tiles. Defining a separate option for each of these tiles
would lead to an impractically large option set. While it would be theoretically
possible to define each exit tile as a distinct sub-goal — potentially improving
performance — this approach does not scale to larger environments due to the
large increase in the number of options. One could mitigate this by coarsening the
spatial resolution of the grid (thereby reducing the number of distinct sub-goals)
or by adopting a more flexible representation similar to that of SF-OLS, wherein
features are defined over spatial regions rather than individual tiles. However,
to preserve consistency with the original LOF formulation and maintain its role
as a baseline, we do not pursue such modifications here, focusing instead on
improving the SF-OLS framework.
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F Extended Discussion

A limitation of our approach lies in its handling of FSA tasks that involve condi-
tional effects or side effects associated with specific propositional variables. For
instance, consider a task that requires reaching a goal region “G,” but where
passing through an intermediate region “M” (e.g., mud) causes the agent to be-
come dirty, triggering an FSA transition that requires visiting a cleaning region
“C” before completing the task. In such cases, entering the mud region leads to
an overall longer trajectory compared to avoiding it altogether. However, the
policies in our basis are trained to reach each goal region directly, irrespective
of such side effects, since they only terminate if the terminal action is taken.
Consequently, if “M” lies along the shortest path to “G,” the policy targeting
“G” may traverse “M,” resulting in suboptimal behavior for the task at hand.
One possible workaround is to exclude “M” from the reachable set during policy
training—for example, by automatically terminating any episode upon entering
“M”—Dbut this introduces a trade-off: for other FSA tasks that do not distinguish
between being clean or dirty, the learned policy would unnecessarily avoid “M,”
resulting in a longer path than necessary. Ideally, the agent should be able to
solve both types of FSA tasks using a shared set of base policies, adapting its be-
havior through high-level planning rather than policy-level exclusions. Notably,
this challenge is not unique to SF-OLS—other compositional methods like LOF
are similarly limited in this regard.

One potential avenue to address this issue is to train each policy in the base
set to avoid entering any goal region other than its intended target—for exam-
ple, by automatically terminating episodes upon entering a goal. This would
encourage policies to take detours around other goal regions unless the agent
starts within one. In the context of a task like “go to G” where cleanliness is ir-
relevant, this approach may lead to suboptimal behavior: the agent might avoid
region “M” (mud) even if passing through it would yield a shorter trajectory.
To restore optimality, one could enrich the FSA by explicitly adding transi-
tions corresponding to such intermediate goals. For instance, by adding a path
to the FSA that allows visiting “M” before “G,” the planning procedure could
choose to first execute the policy that reaches “M” and then the one that reaches
“G,” resulting in the shorter route being selected. However, this approach comes
with notable drawbacks. First, it requires manually augmenting the FSA with
transitions that account for all relevant combinations of sub-goals. Second, to
ensure globally optimal behavior, the FSA would need to include every poten-
tially beneficial intermediate goal sequence—e.g., “X — M — G”—even if “X”
lies en route to “M,” but is not necessary for the task. Without such explicit
transitions, the planner might avoid useful regions like “X” because the corre-
sponding policy would steer around them. Thus, while this solution offers a path
to greater flexibility, it shifts the complexity to the task design phase by requir-
ing a carefully constructed, exhaustive FSA. As such, it remains unclear how to
effectively address these challenges in continuous state spaces, and we believe
this is an important direction for future work



