
Neuro-Symbolic Task Planning and Replanning
using Large Language Models*

Minseo Kwon and Young J. Kim

Abstract— In robotic task planning, symbolic planners are
robust but struggle with long, complex tasks due to their
exponential growth of the search space. By contrast, LLM-based
planners reason faster and incorporate commonsense knowl-
edge, but show lower success rates and lack failure recovery.
We present a novel neuro-symbolic task planning framework
with subgoal decomposition to overcome the drawbacks of
symbolic planners (slow speed) and LLM-based methods (low
accuracy). It breaks down complex tasks into subgoals using a
multimodal LLM, then selects either a symbolic planner or an
MCTS-based LLM planner to handle each subgoal according
to its complexity. Furthermore, we propose a neuro-symbolic
task replanning algorithm for task planning failure recovery.
During task planning and low-level code generation, the LLM
acts as a multimodal error detector, ensuring the validity of the
planning process and triggering replanning when necessary. We
demonstrate that both task planning and replanning improve
high success rates across diverse PDDL domains, as well as
in real and simulated robotics environments. More details are
available at http://graphics.ewha.ac.kr/LLMTAMP/.

I. INTRODUCTION

Robotic task planning has traditionally relied on sym-
bolic methods such as PDDL [3], which generate action
sequences from structured problem specifications. However,
their exhaustive search over large state spaces often leads to
computational inefficiency [4]. In contrast, Large Language
Model (LLM)-based methods leverage commonsense reason-
ing for faster inference [5], but tend to suffer from lower
success rates and limited failure recovery when faced with
complex tasks or real-world uncertainties. LLMs can serve
as policy models (i.e., L-Policy) that directly generate action
sequences, or as world models (i.e., L-Model) that predict
state transitions [5] in task planning. Despite improved
adaptability, these methods still struggle with accuracy and
robustness in long-horizon planning tasks.

To address these challenges, we introduce a neuro-
symbolic task planning framework that leverages a multi-
modal LLM as an L-Model to divide complex tasks into
subgoals. By extracting semantic and spatial information
through a multimodal LLM, we encode the task into a PDDL
problem, allowing the L-Model to generate subgoals that
constrain the overall search space. If the given subgoal is
complex, we use the Monte Carlo Tree Search (MCTS) al-
gorithm while using LLMs as L-Policy to solve each subgoal,
reducing the correction inefficiency in LLM-based planners.

*This paper is an extended abstract version of the original papers [1],
[2].

The authors are with the Department of Computer Science
and Engineering at Ewha Womans University in Korea
{minseo.kwon|kimy}@ewha.ac.kr .

If the given subgoal is moderately complex, requiring a
smaller minimum description length (MDL) [5], we use
a symbolic planner instead. Finally, the generated plan is
translated into low-level Python code, where each high-level
action is grounded by selecting continuous parameters for
real-world manipulation.

Additionally, we propose a neuro-symbolic task replanning
framework that enhances failure recovery by integrating a
symbolic planner with a multimodal LLM. When failures oc-
cur during planning formulation or low-level code execution,
the LLM acts as a syntax and semantic checker grounded
in both language and vision, triggering replanning. If the
symbolic planner fails to generate a valid plan, we reprompt
the LLM with the planner’s error message, the scene image
and description, and the initial problem PDDL to enable
visually grounded correction. For Python execution errors,
the exception message is similarly reprompted to generate a
revised plan.

Experiments with dual robot manipulators and a robotic
simulator confirm that both frameworks increase success
rates across diverse manipulation tasks. Moreover, the first
framework significantly reduces planning time. For detailed
algorithmic descriptions and experimental results, please
refer to the original publications [1], [2].

II. RELATED WORKS

Recent studies have integrated LLMs with symbolic plan-
ning methods. [6] translated natural language problem de-
scriptions into PDDL initial states and goals using few-shot
prompting. [7] addressed task and motion planning (TAMP)
by translating text-based tasks into STL specifications and
correcting syntax and semantic errors via reprompting. How-
ever, these approaches do not directly apply to real-world
robotic manipulation tasks, where structured language input
is unavailable. [8] extended this by combining LLMs with
vision models to generate planning problems from real-world
scenes, but primarily focused on task-level planning without
addressing low-level execution details like action parameter
selection.

[9] proposed a hierarchical planning framework leverag-
ing VLM-generated subgoals for a TAMP planner, evaluating
performance against a VLM-based action generator regarding
task completion and success rates. Our approach not only
demonstrates the effectiveness of subgoal decomposition but
also integrates a multi-level subgoal generator with both
symbolic and MCTS LLM planners, analyzing their com-
plementary strengths based on task complexity by evaluating
success rates and planning times.

http://graphics.ewha.ac.kr/LLMTAMP/

Multi Modal

LLM

Planning

Problem 𝑃

LLM Initialization

• Domain knowledge

• In-context examples

User’s Goal Task

“Stack the blocks

in new order.”

Planning Formulation Task Planning for Subgoals

Problem

Translator

Subgoal Generation

Translator
Low-Level

Code
“The left stack has 4

blocks, 7, 8, 9, and

10 from top to

bottom…”

Symbolic

Planner

MCTS Planner

L-Policy

Sub-Plan

𝜋𝑖

Sub-

Problem 𝑃𝑖

𝑖 = 𝑖 + 1

L-Model

LLM

{𝑃0 … 𝑃𝑛−1}

{𝜋0, … , 𝜋𝑛−1}

Fig. 1: Neuro-symbolic task planning framework with subgoal decomposition. LLM (the green blocks) and symbolic languages (the orange blocks) are
used for various steps in the pipeline.

III. PROBLEM FORMULATION

We formulate our task planning problem as below in both
frameworks:

P ≡ ⟨S,O,A, T , s0, S
⋆⟩, (1)

where S is a finite set of fully observable states, O is
environment objects, A is a finite set of possible actions,
T : S × A → S is a deterministic state transition function,
s0 ∈ S is an initial state, and S⋆ ⊂ S is a set of goal
states. Our planning objective is to find a policy π =
{a1, · · · , an|∀ai ∈ A} for P in Eq. 1 to transit from s0
to ∃sn ∈ S⋆ in finite steps.

IV. TASK PLANNING WITH SUBGOAL DECOMPOSITION

This section introduces our first framework: task planning
with subgoal decomposition. An overview of the pipeline is
in Fig. 1.

A. Planning Formulation

For the robot to interpret the initial scene and encode it into
a PDDL problem, we first extract information about object
types and their spatial relationships. A multimodal LLM such
as GPT-4o is used to process visual and textual prompts
simultaneously. Given a color image from the robot’s view-
point and the prompt, “What objects are on the table? Tell
me each of their appearance and spatial relationships.”,
the LLM returns a structured scene description capturing
object types and their spatial relations. Based on this scene
description, together with the user-provided goal task in
natural languages, the domain PDDL, and an in-context
example, the LLM generates the full planning problem P .

The objects detected in the scene form the object
set O (e.g., (:objects red-block green-block
blue-block)), which is later used as arguments
for PDDL actions and predicates. The spatial rela-
tionships (e.g., “with the blue block on top, fol-
lowed by the red block, and the green block at
the bottom”) are converted into grounded predicates
(e.g., (on red green)(on blue red)), forming the
initial state s0. Similarly, the user-provided goal is mapped
to PDDL goal states (e.g., (on-table red t6)(on
green red)(on blue green)), defining S⋆. The rest
of the planning components S, A, and T are obtained
directly from the domain PDDL.

B. Subgoal Generation

We leverage the commonsense reasoning of LLMs, i.e., the
L-Model, to decompose a given goal into multiple subgoals,
reducing the complexity of task planning. Specifically, we
define an ordered set of subgoals G = {S⋆

0 , S
⋆
1 , · · · , S⋆

n},
where each subgoal S⋆

i must be reachable from the previous
state S⋆

i−1 through a finite sequence of transitions, with S⋆
0 =

{s0} as the initial state and S⋆
n = S⋆ as the final goal.

Our objective is to decompose the original problem P into
smaller sub-problems Pi, each defined as:

Pi ≡ ⟨S,O,A, T , si, S
⋆
i+1⟩. (2)

To generate G, we prompt the LLM with domain knowledge,
a one-shot example, and step-by-step problem-solving
explanations. For instance, in the Blocksworld-new domain,
if blocks are initially stacked as (on b1 b2)(on b2
b3)(on-table b3 t1), reversing the order requires
sequentially unstacking each block to achieve (clear
b1)(clear b2)(clear b3)(clear-table t1),
enabling proper rearrangement.

C. Task Planning

After generating subgoals, we find a policy πi ⊂ π for
each sub-problem Pi. If applying πi to si results in si+1 ∈
S⋆
i+1, we proceed to the next sub-problem Pi+1, setting si+1

as its initial state. The final policy is π =
⋃

i πi, represented
as a PDDL plan. For each Pi, we select:

1) Symbolic LLM Planner: If the size |Pi| is moderate,
we use the Fast Downward [4] planner. While symbolic
planners plan slowly for complex tasks, they guarantee an
exact solution to Pi if one exists.

2) MCTS LLM Planner: For large |Pi|, using a sym-
bolic planner to solve Pi is impractical due to the high
combinatorial search space. In this case, we use an MCTS
algorithm combined with the LLM. Our MCTS LLM planner
first samples ns plans for a sub-problem Pi using an LLM
(i.e., , L-Policy), then builds a state tree with the LLM-
sampled plans, which serves as the reduced search space.
The MCTS algorithm then searches this tree to identify an
action sequence that leads to a state satisfying the subgoal
S⋆
i+1.

D. Low-Level Code Generation

To execute the high-level task plan, each PDDL ac-
tion is translated into low-level Python action primitives

Multi Modal

LLM

Planning

Problem 𝑃

LLM Initialization

• Domain knowledge

• In-context examples

User’s Goal Task

“Move the closest

block into the

basket.”

Planning Formulation Task Planning

Problem

Translator
Translator

Low-Level

Code

“On the table, there

is a red basket…”

Symbolic

Planner

LLM

Task Plan

Scene description

Low-Level

Code Generation

Replanning due to syntactic

or semantic failure
Replanning due to

Python failure

Fig. 2: Neuro-symbolic task replanning framework. The green blocks represent the use of LLM, and the orange blocks represent symbolic planning using
symbolic languages. Red arrows show two cases of replanning, where the first arrow indicates syntax/semantic errors in problem formulation, and the
second one contains Python exceptions in low-level codes.

(e.g., pick up object, place object). While sym-
bolic actions only specify discrete parameters like object
names, the robot requires continuous parameters (e.g., grasp
or place poses). Hence, we compute 2D bounding boxes
of target objects using an open-vocabulary object detection
model. Then, we expand them to 3D by integrating depth
information and applying a pointcloud-based grasp pose
estimation algorithm for picking. For placing, we enable the
LLM to select the appropriate target from a set of predefined
table positions based on the scene context.

V. TASK REPLANNING

We present a task replanning framework to address the
lack of failure recovery in LLM-based planning pipelines,
as illustrated in Fig. 2. While the planning formulation and
low-level code generation stages remain unchanged from the
previous framework, this version differs in two key aspects:
it only handles symbolic planning without subgoal decom-
position and incorporates LLM-based replanning grounded
in both language and vision.

We integrate an automatic replanning module that detects
failures and reprompts the LLM for correction. Failures
typically arise from two sources: errors in PDDL generation
(e.g., syntax issues or semantic mismatches between the
initial state and goal) and low-level Python execution errors
(e.g., invalid function names or missing arguments). Unlike
[7], which compares the planner’s output trajectory to the
original text instruction for semantic checking, we check not
only whether the PDDL goal state aligns with the user’s goal,
but also whether the PDDL initial state matches the actual
scene image.

When a planning failure is detected, we invoke a zero-
shot CoT prompt that includes the symbolic planner’s error
message to guide the LLM in refining the problem PDDL.
Syntax errors, such as malformed predicates or invalid ob-
ject names, are corrected by updating the PDDL structure.
Semantic errors occur when the initial state does not match
the actual scene or when the goal state misaligns with the
user’s intended goal. This correction process is informed
by the symbolic planner’s output, the scene image, and the
previously generated initial and goal states. For Python-
level execution errors, which are less frequent, the LLM is
similarly reprompted with the exception message to refine
the code.

Fig. 3: Physical and simulated robotic demonstration of the first framework,
each on Blocksworld-new (left image) and Barman-new domain (right
image).

VI. EXPERIMENTS

A. Subgoal Decomposition

Comparisons: We evaluated our task planning framework
across three PDDL domains (Barman-new, Blocksworld-
new, Gripper-new) by comparing four methods: (1) CoT
planner (baseline LLM planner with few-shot CoT prompt-
ing), (2) FD planner (baseline symbolic planner using the
Fast Downward planner), (3) Symbolic LLM planner, and
(3) MCTS LLM planner (3 ≤ ns ≤ 5). As in Fig. 4,
the CoT planner was the fastest but had near-zero success
rates for complex tasks, while the FD planner maintained
100% accuracy but suffered from exponential planning time
growth. Our Symbolic LLM planner achieved 100% success,
and our MCTS LLM planner reached 98.5%, 92.6%, and
88.2% for the three domains. Both also significantly reduced
planning time compared to the FD planner.

Ablation Study on Goal Decomposition: We also con-
ducted an ablation study by running our MCTS LLM planner
(ns = 5) with and without goal decomposition. The version
with decomposition achieved much higher success rates,
while the version without it converged to zero on complex
tasks.

Symbolic LLM vs. MCTS LLM: In the Barman-new
domain, where each subgoal (making a cocktail) has a long
MDL and the state space S is large, the planning time of the
Symbolic LLM planner grows rapidly with increasing n, as
in Fig. 4. In contrast, the MCTS LLM planner exhibits nearly
linear growth in planning time, achieving better performance
in this domain. On the other hand, in Blocksworld-new and
Gripper-new, domains where the MDL between subgoals
is shorter and the domain’s state space S is smaller, the
Symbolic LLM planner performs faster than the MCTS LLM
planner, as its planning time scales more gradually.

CoT FD Symbolic LLM MCTS LLM (𝑛𝑠 = 3) MCTS LLM (𝑛𝑠 = 4) MCTS LLM (𝑛𝑠 = 5) MCTS LLM without Goal Decomposition (𝑛𝑠 = 5)

0

20

40

60

80

100

2 4 6 8 10

Su
cc

es
s R

at
e

(%
)

n

0

20

40

60

80

100

3 5 7 9

Su
cc

es
s R

at
e

(%
)

n

0

20

40

60

80

100

2 4 6 8 10

Su
cc

es
s R

at
e

(%
)

n

0

100

200

300

400

2 4 6 8 10

Pl
an

ni
ng

 T
im

e
(s

)

n

(a) Barman-new

0

50

100

150

200

3 5 7 9

Pl
an

ni
ng

 T
im

e
(s

)

n

(b) Blocksworld-new

0

50

100

150

200

2 4 6 8 10

Pl
an

ni
ng

 T
im

e
(s

)

n

(c) Gripper-new

Fig. 4: Success rates (top row) and planning time (bottom row) of CoT, FD, Symbolic LLM, MCTS LLM planners with 3 ≤ ns ≤ 5, and MCTS LLM
planner without goal decomposition with ns = 5. The x axis in all the graphs denotes the domain complexity n.

Robot Demonstration: We also validated our framework
using a dual UR5e manipulator with Robotiq 3F grippers
in the Blocksworld-new domain and using the CoppeliaSim
[10] in the Barman-new domain as in Fig. 3.

B. Replanning with Syntax and Semantic Checking

We evaluated our replanning framework on block-
stacking and block rearrangement tasks derived from the
Blocksworld-new domain. With replanning (limited to four
attempts), success rates improved to 96.7% for block-
stacking from 73.3%, and 100% for block rearrangement
from 93.3%. PDDL syntax errors and Python failures were
completely eliminated. The framework was also validated
in a real-world setting using a dual UR5e manipulator with
Robotiq 3F grippers as in Fig. 5.

Fig. 5: Physical demonstration of the second framework on block-stacking
(left image) and block rearrangement task (right image).

VII. CONCLUSION AND FUTURE WORK

We presented two neuro-symbolic frameworks integrating
a symbolic planner and an LLM to address the limitations
of symbolic planners (slow speed) and LLM-based plan-
ners (low accuracy, lack of failure recovery): task planning
with subgoal decomposition and task replanning. Although
currently separate, integrating replanning into the subgoal
decomposition framework could improve robustness by refin-
ing problem formulation and correcting low-level execution
errors. Future work will focus on unifying these approaches

to enhance overall efficiency and reliability in real-world
tasks.

ACKNOWLEDGMENT
This work was supported in part by the ITRC/IITP Pro-

gram (IITP-2025-RS-2020-II201460), and in part by the
NRF (NRF-2022R1A2B5B03001385) in South Korea.

REFERENCES

[1] M. Kwon, Y. Kim, and Y. J. Kim, “Fast and accurate task planning
using neuro-symbolic language models and multi-level goal decom-
position,” in 2025 IEEE International conference on robotics and
automation (ICRA). IEEE, 2025, accepted.

[2] M. Kwon and Y. J. Kim, “Neuro-symbolic task replanning
using large language models,” Journal of Korea Robotics Society,
vol. 20, no. 1, p. 52–60, Feb. 2025. [Online]. Available:
http://dx.doi.org/10.7746/jkros.2025.20.1.052

[3] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[4] M. Helmert, “The fast downward planning system,” Journal of Artifi-
cial Intelligence Research, vol. 26, pp. 191–246, 2006.

[5] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as common-
sense knowledge for large-scale task planning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[6] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone,
“Llm+ p: Empowering large language models with optimal planning
proficiency,” arXiv preprint arXiv:2304.11477, 2023.

[7] Y. Chen, J. Arkin, C. Dawson, Y. Zhang, N. Roy, and C. Fan,
“Autotamp: Autoregressive task and motion planning with llms as
translators and checkers,” in 2024 IEEE International conference on
robotics and automation (ICRA). IEEE, 2024, pp. 6695–6702.

[8] K. Shirai, C. C. Beltran-Hernandez, M. Hamaya, A. Hashimoto,
S. Tanaka, K. Kawaharazuka, K. Tanaka, Y. Ushiku, and S. Mori,
“Vision-language interpreter for robot task planning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 2051–2058.

[9] Z. Yang, C. Garrett, D. Fox, T. Lozano-Pérez, and L. P. Kaelbling,
“Guiding long-horizon task and motion planning with vision language
models,” arXiv preprint arXiv:2410.02193, 2024.

[10] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ international
conference on intelligent robots and systems. IEEE, 2013, pp. 1321–
1326.

http://dx.doi.org/10.7746/jkros.2025.20.1.052

	Introduction
	Related Works
	Problem Formulation
	Task Planning with Subgoal Decomposition
	Planning Formulation
	Subgoal Generation
	Task Planning
	Symbolic LLM Planner
	MCTS LLM Planner

	Low-Level Code Generation

	Task Replanning
	EXPERIMENTS
	Subgoal Decomposition
	Replanning with Syntax and Semantic Checking

	CONCLUSION AND FUTURE WORK
	References

