

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEASURING AND MITIGATING IDENTITY BIAS IN MULTI-AGENT DEBATE VIA ANONYMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-agent debate (MAD) aims to improve large language model (LLM) reasoning by letting multiple agents exchange answers and then aggregate their opinions. Yet recent studies reveal that agents are not neutral: they are prone to identity-driven sycophancy and self-bias, uncritically adopting a peer’s view or stubbornly adhering to their own prior output, undermining the reliability of debate. In this work, we present the first principled framework that joins sycophancy and self-bias to mitigate and quantify identity bias in MAD. First, we formalize the debate dynamics as an identity-weighted Bayesian update process. Second, we propose response anonymization: by removing identity markers from prompts, agents cannot distinguish “self” from “peer”, which forces equal weights on agent identity, thereby reducing bias. Third, we define the Identity Bias Coefficient (IBC), a principled metric that measures how often an agent follows a peer versus itself. Empirical studies across multiple models, datasets and debate rounds confirm that identity bias is widespread, with sycophancy far more common than self-bias. Our findings highlight the need to “mask” identity to ensure that MAD systems reason based on content rather than source identity.

1 INTRODUCTION

Humans have long relied on collective reasoning as a means of resolving uncertainty and reaching better decisions. Courtrooms, round tables, and scientific peer review all testify to the power of group decision-making. Drawing inspiration from these settings, the multi-agent debate (MAD) paradigm has been proposed as a method for strengthening the reasoning capabilities of large language models (LLMs) (Chan et al., 2024; Du et al., 2024; Bo et al., 2024; Li et al., 2024c). In a typical MAD system, several LLM agents are asked to solve a shared task, observe one another’s responses, and iteratively revise their answers before a final aggregation step. The intended effect of this system is to reinforce correct reasoning signals and enable mutual error correction.

Yet, the reliability of MAD remains contested. A key—but underexplored—factor behind these failures lies in *identity-driven biases*: agents’ tendency to respond differently depending on whether information originates from themselves or from their peers. Such biases can be categorized into two forms. Sycophancy occurs when an agent overweights peer responses, deferring even when its own beliefs are stronger. Self-bias, in contrast, arises when an agent disproportionately clings to its own prior outputs, ignoring valid counter-evidence. While both phenomena are well-documented in single-agent user interactions (Li et al., 2025b; Fanous et al., 2025; Liu et al., 2025b; Barkett et al., 2025; Malmqvist, 2025; Hong et al., 2025; Spiliopoulou et al., 2025; Chen et al., 2025c; Laurito et al., 2025; Chen et al., 2025b; Yuan et al., 2025), their role in shaping MAD dynamics has not been systematically investigated.

In this work, we first introduce a theoretical framework that rigorously models how agents’ identity biases manifest within MAD dynamics. We show that identity bias can distort debate dynamics, leading to premature consensus and erosion of MAD’s intended benefits. To capture these effects, we introduce interpretable metrics—*Conformity* and *Obstinacy*—which measure an agent’s tendency to align with its peer’s prior answer versus its own prior answer under disagreement. Building on a probabilistic formalization of debate, we model agents as sampling from latent belief distributions that are updated through peer interactions. Within this framework, we prove that the gap between Conformity and Obstinacy admits a clean decomposition into two terms: a belief difference

054 term, reflecting genuine content-driven asymmetries between self and peer, and an identity bias
 055 term, capturing distortions introduced solely by the labeling of responses as “self” or “peer.” This
 056 decomposition provides a principled way to separate rational belief updating from identity-driven
 057 distortions. Importantly, it reveals that much of the skew observed in practice does not originate
 058 from the agent’s belief state, but rather from asymmetries in how identities are weighted during the
 059 update process.

060 Motivated by our theory, we propose a simple yet powerful intervention: Response Anonymization.
 061 In standard debate prompts, each response is explicitly labeled by its source—whether it was
 062 generated by the agent itself or by a peer. These identity markers create the very channel through
 063 which sycophancy and self-bias arise. Anonymization removes this channel: by masking all identity
 064 labels from debate transcripts, the agent is presented with arguments without attribution. The key
 065 advantage of our method lies in its minimalism: it requires no model retraining, no auxiliary loss
 066 functions, and no architectural modifications. It is directly applicable across different model families
 067 and debate settings. At the same time, it preserves the substance of deliberation—agents still
 068 exchange and evaluate arguments—but eliminates the systematic distortions introduced by identity.

069 Extensive experiments across diverse models and benchmarks demonstrate both the pervasiveness of
 070 identity bias and the effectiveness of Response Anonymization in mitigating it. Notably, on MMLU,
 071 Qwen-32B (Yang et al., 2024) exhibits a large Conformity–Obstinacy gap (Sec. 4.1 Theorem 1) of
 072 0.608 in the vanilla setting, which reduces to just 0.024 under anonymization—a nearly complete
 073 removal of identity-driven distortion. Similar reductions are observed across other models and tasks,
 074 confirming that anonymization is a lightweight yet consistently effective method for aligning MAD
 075 dynamics with their intended purpose. We summarize our contributions as follows:

- 076 1. We formalize the debate process as a Bayesian belief update that explicitly incorporates the
 077 influence of agent identities. Our framework captures both directions of identity-driven behavior:
 078 sycophancy and self-bias. To the best of our knowledge, this is the first work to unify these
 079 concepts under the notion of identity bias.
- 080 2. We propose *Response Anonymization*, a simple yet effective approach to preclude identity-driven
 081 bias in multi-agent debate systems.
- 082 3. Building on our framework, we propose the *Identity Bias Coefficient* (IBC), a principled metric
 083 that quantifies the level of identity bias. We further extend our analysis to heterogeneous agents
 084 and multiple-peer settings, offering deeper insights into how identity bias shapes and influences
 085 the dynamics of debate.

086 2 PRELIMINARIES

088 **Multi-Agent Debate.** MAD is a collaborative framework in which multiple LLM agents engage in
 089 structured interactions by iteratively exchanging opinions and responses on a given task (Bo et al.,
 090 2024; Du et al., 2024; Chan et al., 2024; Tang et al., 2024; Wu et al., 2024; Chen et al., 2024c). A
 091 common design choice in MAD is the simultaneous-talk protocol (Chan et al., 2024), where agents
 092 asynchronously generate opinions at each debate round and iteratively exchange them in a structured
 093 manner. At round t , each agent observes both its own and its designated peers’ responses from round
 094 $t-1$, then updates its output with respect to the context. After multiple rounds, a final decision is
 095 typically obtained via an aggregation mechanism—most often majority voting. The goal of MAD
 096 is to leverage the ensemble effect of diverse reasoning paths from multiple agents, while critically
 097 examining the validity of the peer opinions to improve the overall quality of the final answer.

098 **MAD Protocol Formalization.** Let $(\mathcal{X}, \mathcal{Y})$ denote the input and output spaces of an agent. Each
 099 agent is modeled as a stochastic function $\pi_i : \mathcal{X} \rightarrow \mathcal{Y}$, typically an LLM, where $i \in \{1, 2, \dots, N\}$
 100 indexes the agents participating in the multi-agent debate (MAD) system. At the initial round $t=0$,
 101 each agent produces an answer $y_{i,0} \in \mathcal{Y}$ by sampling from $\pi_i(x)$ for a given input question $x \in \mathcal{X}$.
 102 At each subsequent debate round $t \geq 1$, agent i observes the responses of its peers from the previous
 103 round: $Y_{i,t-1} = \{y_{j,t-1} \mid j \in \mathcal{P}(i)\}$, where $\mathcal{P}(i) \subseteq \{1, \dots, N\}$ is the set of peers assigned to agent
 104 i . The agent may also optionally condition on its own prior output $y_{i,t-1}$, yielding the round- t
 105 response:

$$y_{i,t} = \pi_i(x; Y_{i,t-1}, y_{i,t-1}).$$

106 After T rounds, the system aggregates the final set of responses $\{y_{i,T}\}_{i=1}^N$ using majority voting to
 107 produce the debate outcome.

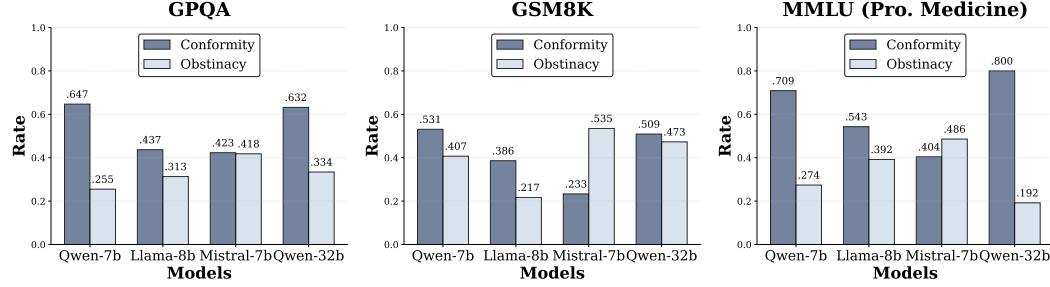


Figure 1: **Conformity vs. Obstinance.** Comparison is done on a 5-agent MAD system with a single peer assigned to each agent. The versions of the four models are Qwen2.5-7b-instruct, Llama3.1-8b-instruct, Mistral-7b-instruct-v0.3, Qwen2.5-32b-instruct, respectively.

3 IS IDENTITY BIAS A PROBLEM IN MULTI-AGENT DEBATE?

In this section, we show that LLM agents engaged in multi-agent debate are susceptible to *identity-driven biases*, which distort the intended dynamics of collective reasoning. Two prominent extreme forms of identity bias are sycophancy and self-bias. Sycophancy refers to the tendency of an LLM to uncritically adopt the views or preferences of a peer agent or user, often at the expense of factual accuracy or principled reasoning (Li et al., 2025b; Fanous et al., 2025; Liu et al., 2025b; Barkett et al., 2025; Malmqvist, 2025; Hong et al., 2025). Self-bias, in contrast, occurs when an LLM disproportionately favors its own prior outputs over those of its peers, even when alternative responses may be more accurate or better reasoned (Spiliopoulou et al., 2025; Chen et al., 2025c; Laurito et al., 2025; Chen et al., 2025b; Yuan et al., 2025).

Prior studies have primarily investigated these biases in *single-agent user interactions*. However, *systematic analysis of identity bias in multi-agent debate remains scarce*. Our framework unifies sycophancy and self-bias under the broader notion of identity bias, emphasizing their impact on the dynamics of deliberation. Both forms of biases can undermine the core purpose of MAD—leading to premature consensus, reinforce incorrect responses, and weaken the reliability of aggregated outcomes. Understanding and mitigating these biases is therefore central to evaluating the reliability of MAD as a paradigm for reasoning and decision-making with LLMs.

3.1 MOTIVATING ANALYSIS

Here, we first introduce quantitative metrics that capture the behavioral tendencies of debate agents. Specifically, we define the *Conformity* and the *Obstinacy*, which measure, respectively, an agent’s inclination to align with its peer versus to adhere to its own prior output. To ground the analysis in the simplest nontrivial interaction, we begin with the homogeneous single-peer setting: agents share the same base model architecture and persona, and each agent observes only one other agent (Chan et al., 2024; Du et al., 2024; Li et al., 2024c; Wang et al., 2024a; Zhang et al., 2024). This avoids confounding effects from group dynamics and provides a clean lens through which to study identity-driven behavior. Moreover, this setting is a sparse communication structure, which is practically useful because it is often reported to be superior to the fully-connected topology (Li et al., 2024c; Estornell & Liu, 2024; Zhang et al., 2024). Extension to the multi-peer setup will be discussed in Sec. 6.3. For agent i with respect to its peer agent j , we define:

$$\text{Conformity}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{j,t-1}\} \mid y_{i,t-1} \neq y_{j,t-1}] \quad (1)$$

$$\text{Obstinacy}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{i,t-1}\} \mid y_{i,t-1} \neq y_{j,t-1}], \quad (2)$$

where $y_{i,t}$ and $y_{j,t}$ denote the answers produced by agents i and j ($i \neq j$) at round t . The *Conformity* captures the degree to which agent i aligns with its peer’s prior answer in the presence of disagreement, while the *Obstinacy* reflects its propensity to remain self-reliant by repeating its own prior answer. Together, these indices provide interpretable, task-level statistics that allow us to compare and contrast identity-driven behaviors across models and tasks.

Empirical Findings. In Figure 1, we compare the Conformity and Obstinance metrics across four LLMs on three benchmark datasets. We take the aggregate statistic from $N = 5$ agents across multiple dataset samples to estimate them (see details in Appendix A.3). The gaps between

162 the two metrics are generally substantial, demonstrating that identity bias manifests to varying
 163 degrees across models and benchmarks. In most cases, Conformity exceeds Obstinacy, suggesting
 164 a dominant sycophantic tendency in LLM debate agents. Nevertheless, we also observe notable
 165 exceptions—such as Mistral-7B on GSM8K—where Obstinacy surpasses Conformity, suggesting
 166 that self-bias, though less frequent, can emerge as a significant factor in certain scenarios. These
 167 findings underscore the need for precise characterization of identity-driven behaviors, motivating the
 168 following section to formally model how identity bias influences debate dynamics and to introduce
 169 a method for eliminating its effects.

171 4 ELIMINATING IDENTITY BIAS VIA ANONYMIZATION

173 In this section, we introduce a theoretically grounded framework for quantifying and eliminating
 174 identity bias in multi-agent debate. We begin by formalizing debate dynamics as an identity-driven
 175 Bayesian belief update process. Then, we establish how the *Conformity* and *Obstinacy* map onto this
 176 update, thereby disentangling identity effects from belief-driven reasoning (Sec. 4.1). Finally, we
 177 propose a theoretically motivated intervention—*Response Anonymization*—as a simple and effective
 178 communication strategy to eliminate identity bias (Sec. 4.2).

179 4.1 FORMALIZING MULTI-AGENT DEBATE UNDER IDENTITY BIAS

181 To rigorously capture how individual agents generate responses within this debate framework, Choi
 182 et al. (2025) introduced a probabilistic modeling perspective. *However, prior work treats peer*
 183 *influence and self-reliance uniformly and does not consider identity bias in the modeling.* In contrast,
 184 our formalization explicitly distinguishes between two distinct behavioral tendencies: sycophancy
 185 (alignment with peers) and self-bias (persistence on one’s own prior outputs). This allows us to
 186 capture systematic deviations from unbiased belief updating.

187 In this framework, an agent’s behavior is formalized as arising from an underlying belief distribution
 188 over possible answers, and the belief update process is determined by its neighboring peer responses.
 189 This allows us to account for both the diversity of reasoning paths across agents and the stochasticity
 190 inherent in the MAD system. In particular, each agent is an idealized generative model governed by
 191 a Dirichlet-Compound-Multinomial (DCM) distribution. The Dirichlet prior captures the agent’s
 192 internal belief over possible answers, while the Multinomial models the stochastic generation
 193 process (e.g., via temperature or nucleus sampling). This distribution is thus a natural choice because
 194 it encapsulates both internal uncertainty and output randomness, while also providing a principled
 195 Bayesian framework for belief updates across debate rounds—enabling analytical study of dynamics
 196 during the debate process.

197 **Definition 1. (Agent Response Generation under DCM Model)** Consider an agent i at debate
 198 round t . The agent maintains a belief parameter vector $\alpha_{i,t} = (\alpha_{i,t}^{(1)}, \dots, \alpha_{i,t}^{(K)}) \in \mathbb{R}_+^K$, where
 199 each component $\alpha_{i,t}^{(k)}$ quantifies its confidence in option $k \in \mathcal{A}$. A response is produced through the
 200 following generative mechanism:

$$202 \quad (\text{Belief sampling}) \quad \theta_{i,t} \sim \text{Dirichlet}(\alpha_{i,t}), \\ 203 \quad (\text{Response generation}) \quad y_{i,t} \sim \text{Categorical}(\theta_{i,t}).$$

205 Marginalizing over the Dirichlet sample $y_{i,t} \in \mathcal{A}$, the probability of choosing answer k is expressed
 206 as $P(y_{i,t} = k \mid \alpha_{i,t}) = \alpha_{i,t}^{(k)} / \|\alpha_{i,t}\|_1$.

207 Building on this definition, we will formalize how an agent’s belief evolves throughout debate as a
 208 function of both its own prior response and those of its peers. We characterize this evolution with
 209 respect to the agent’s preferential bias toward a specific identity.

211 **Identity-driven Belief Update.** To better understand the identity-driven behaviors of agents, it is
 212 useful to think of them as shaping the way agents update their beliefs during debate. Each response
 213 from an agent or its peers can be viewed as evidence, but sycophancy and self-bias change how this
 214 evidence is weighted. Instead of treating all responses equally, a sycophantic agent may place extra
 215 weight on peer opinions, while a self-biased agent may lean more heavily on its own prior outputs.
 For example, when two agents disagree, a sycophantic one might still copy its peer’s answer despite

Q. Mary had 3 apples, but she ate 2 of them. How many apples are left?

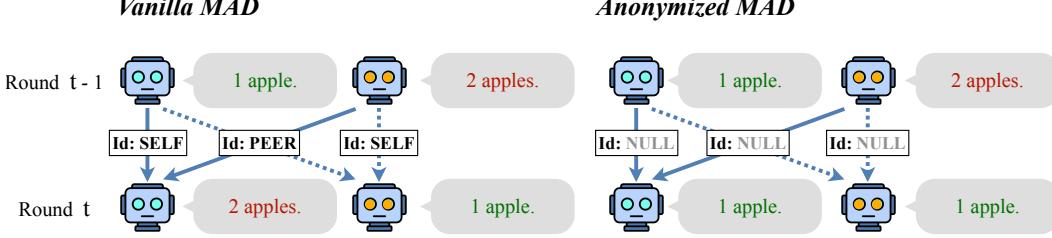


Figure 2: **Response Anonymization.** By anonymizing the responses in multi-agent debate, an agent’s answer is driven entirely by its belief state, rather than the agents’ identity information.

having stronger initial confidence in its own, while a self-biased one might stubbornly reinforce its prior choice even in the face of clear counterevidence. By framing these behaviors as a Bayesian update with adjustable weights, we can capture such systematic tendencies in a transparent and analyzable way. This motivates the following definition of identity-driven Bayesian belief updates. Building upon the DCM model from Definition 1, we define:

Definition 2. (Identity-driven Bayesian Belief Update from Agent Responses) Let $\{y_{j,t-1} \mid j \in \mathcal{P}(i) \cup \{i\}\}$ be the set of responses observable to agent i from its peers $\mathcal{P}(i)$ at round t . These responses induce a count vector $\mathbf{c}_{i,t} = w_i \mathbf{e}_{i,t} + \sum_{j \in \mathcal{P}(i)} w_j \mathbf{e}_{j,t}$, where $w_i, w_j > 0$ are the identity weights, and $\mathbf{e}_{i,t}, \mathbf{e}_{j,t} \in \mathbb{B}^K$ are one-hot vectors indicating the answer chosen out of K possible answers. Then, the agent updates its Dirichlet parameter as: $\boldsymbol{\alpha}_{i,t} = \boldsymbol{\alpha}_{i,t-1} + \mathbf{c}_{i,t}$.

Definition 2 defines that the way agents incorporate evidence during debate is not only a matter of content but also of identity. By allowing different weights on self versus peer responses, the update rule makes explicit how sycophancy or self-bias can systematically distort the belief evolution of an agent. This has important implications: identity bias can amplify errors by overweighting unreliable sources, or suppress corrective signals that would otherwise arise from diverse perspectives. At the same time, the weighted formulation provides a handle for analyzing and mitigating such behaviors, since interventions can target the relative weighting scheme rather than the entire belief update process. Based on the DCM model, we can provide a closed-form expression for the measurements:

Theorem 1. (Conformity and Obstinance under Identity-Driven Updates) Consider agent i and its peer j in the identity-driven Bayesian belief update model (Definition 2), where $y_{i,t-1} \neq y_{j,t-1}$. Let $\alpha_{i,t-1}^{(k)}$ denote agent i ’s belief mass on answer k at round $t-1$, and let $w_i, w_j > 0$ be the identity weights for self and peer, respectively. Then, the Conformity and Obstinance defined in Sec. 3.1 can be expressed as

$$\text{Conformity}_i = \frac{\alpha_{i,t-1}^{(y_{j,t-1})} + w_j}{\|\boldsymbol{\alpha}_{i,t}\|_1}, \quad \text{Obstinance}_i = \frac{\alpha_{i,t-1}^{(y_{i,t-1})} + w_i}{\|\boldsymbol{\alpha}_{i,t}\|_1}. \quad (3)$$

Moreover, their difference admits the decomposition

$$\Delta_i := \text{Conformity}_i - \text{Obstinance}_i = \frac{1}{\|\boldsymbol{\alpha}_{i,t}\|_1} \left(\underbrace{(\alpha_{i,t-1}^{(y_{j,t-1})} - \alpha_{i,t-1}^{(y_{i,t-1})})}_{\text{belief difference}} + \underbrace{(w_j - w_i)}_{\text{identity bias}} \right). \quad (4)$$

Proof. See Appendix C.1 for proof, Appendix C.3 for parameter estimation, and Sec. 6.3 for multi-peer extensions.

This form of expression reveals that conformity is governed jointly by the agent’s prior belief in its peer’s answer and the corresponding identity weight, while obstinance is analogously determined by its prior belief in its own answer and its self-weight. The quantity Δ_i provides a direct measure of agent i ’s relative orientation toward its peer versus itself. It is jointly determined by two components: (i) the *belief difference*, capturing the relative prior confidence in the peer’s answer versus the agent’s own, and (ii) the *identity bias*, capturing the asymmetry in how identity is weighted during the belief update. In the ideal case, the identity bias term vanishes (*i.e.*, $w_j = w_i$), so that the agent’s decisions depend exclusively on its underlying belief state. Guided by the theory, the next section introduces an approach for eliminating this identity bias through response anonymization.

270 4.2 RESPONSE ANONYMIZATION
271272 The decomposition in Theorem 1 reveals that an agent’s relative orientation toward its peer versus
273 itself, Δ_i , is shaped not only by differences in prior beliefs but also by asymmetries in how identity
274 is weighted. This leads to the following immediate consequence:275 **Corollary 1. (Absence of Identity Bias)** *If the identity weights are symmetric, i.e. $w_i = w_j$ for
276 $j \in \mathcal{P}(i)$, then the difference between Conformity and Obstinacy reduces to*

277
$$\Delta_i = \frac{\alpha_{i,t-1}^{(y_j,t-1)} - \alpha_{i,t-1}^{(y_i,t-1)}}{\|\alpha_{i,t}\|_1}.$$

278
279

280 *In this case, the relative tendency of agent i to conform versus remain obstinate depends solely on
281 its prior belief distribution, independent of identity-driven effects.*
282283 Corollary 1 suggests a natural design principle: if we can enforce symmetry in identity weights, the
284 influence of identity bias disappears and agents behave according to their beliefs alone. Standard
285 debate prompts (Appendix B.1), however, explicitly disclose the identity of each response, allowing
286 the agent to condition its update on whether an answer came from itself or from a peer. This
287 disclosure provides the very channel through which identity bias can arise. Our intervention is
288 to *anonymize* the prompt by removing all identity markers (Appendix B.2). In the anonymized
289 setting, the agent is presented with responses without attribution, and thus has no basis for assigning
290 different weights to self versus peer. This symmetry enforces equal identity weights, $w_i = w_j$,
291 and thereby eliminates any systematic preference for “self” or “peer” labels. In other words, after
292 anonymization, the agent’s relative tendency to align with its peer versus itself is driven entirely by
293 its belief state $\alpha_{i,t-1}$, rather than by identity information. This ensures that any residual bias reflects
294 content-based evaluation rather than identity-driven sycophancy or self-bias. A visual overview of
295 this anonymization process is provided in Figure 2.296 **Identity Bias Coefficient (IBC).** To directly quantify the role of identity asymmetry in shaping
297 agent behavior, we define the *Identity Bias Coefficient* (IBC):
298

299
$$\text{IBC}_i = \Delta_i^{\text{vanilla}} - \Delta_i^{\text{anonymized}} = \frac{w_j - w_i}{\|\alpha_{i,t}\|_1}. \quad (5)$$

300

301 This metric captures the portion of Δ_i attributable *solely* to identity bias, after removing the influence
302 of belief differences. In other words, IBC_i measures how much agent i ’s relative orientation toward
303 its peer versus itself is shifted by identity labels. A positive IBC indicates a stronger weighting of
304 the peer’s identity (*sycophancy*), while a negative IBC indicates a stronger weighting of the agent’s
305 own identity (*self-bias*).306 5 EXPERIMENTS
307308 5.1 SETUP
309310 **Models and Datasets.** We evaluate across five model families: Qwen2.5-7b-instruct,
311 Qwen2.5-32b-instruct (Yang et al., 2024), Llama3.1-8b-instruct (Grattafiori et al.,
312 2024), Mistral-7b-v0.3 (Jiang et al., 2023), and latest GPT-OSS-20b (Agarwal et al.,
313 2025), and evaluate on four benchmark datasets covering diverse reasoning tasks: Google-Proof
314 QA (GPQA) (Rein et al., 2024), MMLU Professional Medicine subset (Hendrycks et al., 2021b;a),
315 HellaSwag (Zellers et al., 2019), and the Grade-School Math 8K (GSM8K) (Cobbe et al., 2021).
316 See Appendix A.1 for more dataset details, and Appendix A.2 for other experimental details.317 5.2 EXPERIMENTAL RESULTS
318319 **Response anonymization reduces identity bias.** As shown in Table 1, the Δ values under the
320 base agent setting often exhibited substantial magnitudes, roughly capturing the presence of identity
321 bias across different model families and datasets. For example, on MMLU, Qwen-32B shows
322 $\Delta = 0.608$ in the vanilla setting. After applying Response Anonymization, this value drops to
323 $\Delta = 0.024$, confirming that much of the original effect was attributable to identity bias. Similar
324 reductions are observed across other models and benchmarks, highlighting the general effectiveness

Table 1: **Effects of Response Anonymization on Identity Bias.** \times and \checkmark are the base agent and the response-anonymized agent measurements, respectively. The positive Identity Bias Coefficients are colored blue, and red for negative values. The highlighted ‘IBC’ row shows the value difference between the top two rows. We retrieved the measurements from the first round of debate.

Agent	Anonymize	GPQA			MMLU (Pro. Medicine)			HellaSwag			GSM8K		
		Conf.	Obst.	Δ	Conf.	Obst.	Δ	Conf.	Obst.	Δ	Conf.	Obst.	Δ
Llama-8B	\times	0.437	0.313	0.124	0.543	0.392	0.151	0.569	0.308	0.261	0.386	0.217	0.169
	\checkmark	0.389	0.363	0.026	0.392	0.549	-0.157	0.465	0.456	0.009	0.406	0.317	0.089
	IBC			↓ 0.098			↓ 0.307			↓ 0.252			↓ 0.080
Mistral-7B	\times	0.423	0.418	0.005	0.404	0.486	-0.082	0.485	0.449	0.036	0.233	0.535	-0.302
	\checkmark	0.378	0.460	-0.082	0.408	0.475	-0.067	0.428	0.492	-0.064	0.302	0.459	-0.157
	IBC			↓ 0.087			↑ 0.015			↓ 0.100			↑ -0.145
Qwen-7B	\times	0.647	0.255	0.392	0.709	0.274	0.435	0.747	0.240	0.507	0.531	0.407	0.124
	\checkmark	0.485	0.424	0.061	0.498	0.471	0.027	0.484	0.516	-0.032	0.414	0.510	-0.096
	IBC			↓ 0.331			↓ 0.408			↓ 0.539			↓ 0.220
Qwen-32B	\times	0.632	0.334	0.298	0.800	0.192	0.608	0.696	0.304	0.392	0.509	0.473	0.036
	\checkmark	0.502	0.466	0.036	0.512	0.488	0.024	0.536	0.455	0.081	0.455	0.509	-0.054
	IBC			↓ 0.262			↓ 0.584			↓ 0.311			↓ 0.092
GPT-OSS-20B	\times	0.359	0.319	0.040	0.618	0.382	0.236	0.588	0.408	0.180	0.568	0.378	0.190
	\checkmark	0.335	0.371	-0.036	0.509	0.473	0.036	0.460	0.529	-0.069	0.528	0.417	0.111
	IBC			↓ 0.076			↓ 0.200			↓ 0.249			↓ 0.079

of anonymization as a mitigation strategy. In a homogeneous two-agent setting, the expected value of $\Delta_i^{\text{anonymized}}$ is zero because, for the pair of agents 1 and 2, their belief-difference terms satisfy $\Delta_1^{\text{anonymized}} = -\Delta_2^{\text{anonymized}}$. Nonetheless, the empirical estimates need not be exactly zero, as they naturally reflect variance arising from sample-level belief differences. The IBC removes this residual variance, allowing us to isolate the pure effect of identity bias independent of belief-differences.

Sycophancy is more prevalent compared to self-bias in MAD. Table 1 reports the Identity Bias Coefficient (IBC) values across models and datasets, which correspond to the quantities colored in blue and pink. As established in Sec. 4.2, the sign of IBC directly reflects whether an agent exhibits sycophantic ($\text{IBC} > 0$) or self-biased ($\text{IBC} < 0$) behavior. Out of 20 evaluated cases, 18 yield positive IBC values, while only 2 exhibit negative values. This clear skew toward positive values demonstrates that sycophancy is far more prevalent than self-bias in multi-agent debate.

The level of identity bias varies across tasks and model families. Although sycophancy emerges as the predominant pattern in our experiments, the magnitude of the Identity Bias Coefficient (IBC) is far from uniform across tasks or model families. For instance, Mistral-7B in Table 1 exhibits small IBC values, suggesting that it is comparatively less prone to identity-driven influence. Moreover, the relative scale of IBC differs substantially across benchmarks, highlighting that the degree of identity bias is task-dependent as well as model-dependent.

6 EXTENDED ANALYSES

6.1 IMPROVED TRUSTWORTHINESS

The core contribution of our response anonymization is improvement in trustworthiness of the MAD system. To concretely analyze the trustworthiness using two behavioral ratios, Subversion and Correction, defined as:

$$\text{Subversion} = \mathbb{P}[y_{i,t} = \text{incorrect} \mid y_{i,t-1} = \text{correct}, y_{j,t-1} = \text{incorrect}] \quad (6)$$

$$\text{Correction} = \mathbb{P}[y_{i,t} = \text{correct} \mid y_{i,t-1} = \text{incorrect}, y_{j,t-1} = \text{correct}]. \quad (7)$$

By comparing these ratios before and after anonymization in Table 2, we observe that the Subversion ratio consistently exhibits a larger relative drop than the Correction ratio. For instance, on the Professional Medicine (MMLU) benchmark with Qwen-32B, the Subversion ratio decreases by 64.3%, whereas the Correction ratio decreases by only 14.9% after anonymization. This indicates that LLM agents are more prone to subverting their originally correct answers when identities are visible, and that Identity Anonymization effectively reduces such undesirable behavior. However, despite the larger proportional drop in Subversion, we find that its overall positive effect on total accuracy is mitigated by the much larger number of Correction events. In other words, even though Subversion becomes significantly less frequent in ratio, the net accuracy impact is dominated by the greater volume of Correction cases, partially counteracting the benefit. Direct analysis on the performance is deferred to Appendix D.

Table 2: Trustworthiness Improvement after Response Anonymization.

Agent		GPQA	Pro. Medicine	HellaSwag	GSM8K
Llama-8B	Subv. (Drop %)	0.615 → 0.545 (11.4%)	0.507 → 0.321 (36.7%)	0.632 → 0.523 (17.2%)	0.513 → 0.412 (19.7%)
	Corr. (Drop %)	0.566 → 0.503 (11.1%)	0.649 → 0.537 (17.2%)	0.637 → 0.549 (13.8%)	0.481 → 0.503 (-4.6%)
Mistral-7B	Subv. (Drop %)	0.528 → 0.454 (14.0%)	0.381 → 0.376 (1.3%)	0.541 → 0.500 (7.6%)	0.494 → 0.545 (-10.3%)
	Corr. (Drop %)	0.472 → 0.435 (7.8%)	0.552 → 0.543 (1.6%)	0.512 → 0.436 (14.8%)	0.278 → 0.295 (-6.1%)
Qwen-7B	Subv. (Drop %)	0.717 → 0.500 (30.3%)	0.579 → 0.389 (32.8%)	0.709 → 0.430 (39.4%)	0.342 → 0.233 (31.9%)
	Corr. (Drop %)	0.711 → 0.553 (22.2%)	0.853 → 0.632 (25.9%)	0.767 → 0.488 (36.4%)	0.740 → 0.575 (22.3%)
Qwen-32B	Subv. (Drop %)	0.473 → 0.357 (24.5%)	0.750 → 0.268 (64.3%)	0.630 → 0.500 (20.6%)	0.455 → 0.333 (26.8%)
	Corr. (Drop %)	0.736 → 0.651 (11.5%)	0.839 → 0.714 (14.9%)	0.739 → 0.543 (26.5%)	0.727 → 0.727 (0.0%)
GPT-OSS-20B	Subv. (Drop %)	0.164 → 0.091 (44.5%)	0.064 → 0.059 (7.8%)	0.573 → 0.462 (19.4%)	0.397 → 0.288 (27.5%)
	Corr. (Drop %)	0.882 → 0.864 (2.0%)	0.965 → 0.951 (1.5%)	0.581 → 0.487 (16.2%)	0.809 → 0.753 (6.9%)

6.2 HETEROGENEOUS AGENTS

Our exploration has thus far focused on MAD systems with homogeneous agents, where all participants share the same model architecture and persona. Then, a natural question arises: does identity bias persist at the same level when agents are heterogeneous? To investigate this, we evaluate identity bias metrics in MAD systems composed of agents with distinct personas. Following Liu et al. (2024b), we apply the persona set tailored for “clinical knowledge” tasks to solve MMLU (Professional Medicine). The set includes a general-purpose “Assistant” as well as specialized roles such as “Doctor,” “Psychologist,” “Mathematician,” and “Programmer.” Each agent is initialized with a system prompt specifying its assigned role, using the same templates provided in Liu et al. (2024b) (see Appendix B.3 for the prompts).

Table 3 reports the comparison between homogeneous and heterogeneous configurations across three model families. Our results reveal two takeaways: (1) Response anonymization reliably eliminates identity-driven bias, even in the heterogeneous setting. For Qwen-7B, the raw Δ in the heterogeneous setting is 0.457 without anonymization, but drops sharply to 0.083 after anonymization—showing that much of the conformity–obstinacy gap vanishes once identity cues are removed. Similar trends hold across other models. (2) The IBC decreases when moving from homogeneous to heterogeneous agents (e.g., from 0.408 to 0.374 on Qwen-7B), suggesting that persona diversity reduces the extent to which behavior is driven by identity asymmetries.

6.3 EXTENSION TO MULTIPLE PEERS

While the single-peer setup is useful for isolating the effect of identity bias, practical MAD systems typically involve agents interacting with multiple peers simultaneously. We therefore extend the identity-driven belief update framework from Sec. 4.1 to a multi-peer setting.

Formulation. Given agent i ’s peer set $\mathcal{P}(i)$, let $\mathcal{D}(i) := \{j \in \mathcal{P}(i) \mid y_{j,t-1} \neq y_{i,t-1}\}$ denote the set of peers that *disagreed* in the previous round, and $\mathcal{A}(i) := \{j \in \mathcal{P}(i) \mid y_{j,t-1} = y_{i,t-1}\}$ denote the ones that *agreed*. Also define $Y_{\mathcal{D}(i)} := \{y_{j,t-1} \mid j \in \mathcal{D}(i)\}$ as the set of peer answers that disagreed with agent i ’s previous answer. Then, we generalize the Conformity and Obstinacy indices as follows:

$$\text{Conformity}_i := \mathbb{E} \left[\bigvee_{j \in \mathcal{D}(i)} \mathbf{1}\{y_{i,t} = y_{j,t-1}\} \mid |\mathcal{D}(i)| = n_{\mathcal{D}} \neq 0, |\mathcal{A}(i)| = n_{\mathcal{A}} \right]$$

$$\text{Obstinacy}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{i,t-1}\} \mid |\mathcal{D}(i)| = n_{\mathcal{D}} \neq 0, |\mathcal{A}(i)| = n_{\mathcal{A}}].$$

In this formulation, Conformity measures the probability that agent i aligns with a disagreeing peer, while Obstinacy measures the probability that agent i maintains its own prior response in the presence of $n_{\mathcal{D}}$ disagreeing peer agents.

Then, under Definition 2, the Dirichlet parameter update for agent i is: $\alpha_{i,t} = \alpha_{i,t-1} + w_i \mathbf{e}_{i,t} + W_{\mathcal{A}} \mathbf{e}_{i,t} + \sum_{k \in Y_{\mathcal{D}(i)}} W^{(k)} \mathbf{e}^{(k)}$, where $W^{(k)} := \sum_{j \in \mathcal{P}(i)} w_j \mathbf{1}\{y_{j,t-1} = k\}$ is the aggregate peer weight for answer k , $W_{\mathcal{A}} := W^{(y_{i,t-1})} = \sum_{j \in \mathcal{A}(i)} w_j$, and $\mathbf{e}^{(k)}$ refers to the one-hot vector

432 representing answer k . This yields the following expressions for the indices:

$$434 \quad \text{Conformity}_i := \frac{\sum_{k \in Y_{\mathcal{D}(i)}} (\alpha_{i,t-1}^{(k)} + W^{(k)})}{\|\alpha_{i,t}\|_1}, \quad \text{Obstinacy}_i := \frac{\alpha_{i,t-1}^{(y_{i,t-1})} + w_i + W_{\mathcal{A}}}{\|\alpha_{i,t}\|_1}.$$

437 The difference of the two indices can then be written as

$$438 \quad \Delta_i := \frac{1}{\|\alpha_{i,t}\|_1} \left(\underbrace{\sum_{k \in Y_{\mathcal{D}(i)}} \alpha_{i,t-1}^{(k)} - \alpha_{i,t-1}^{(y_{i,t-1})}}_{\text{belief difference}} + \underbrace{\sum_{k \in Y_{\mathcal{D}(i)}} W^{(k)} - w_i - W_{\mathcal{A}}}_{\text{identity-driven bias}} \right),$$

444 which parallels the structure of the single-peer case (equation 4). See Appendix C.2 for derivations.

445 If we assume homogeneous agents with $w_j \equiv w$, with $n_k := \sum_{j \in \mathcal{P}(i)} \mathbf{1}\{y_{j,t-1} = k\}$, each
446 aggregate weight is $W^{(k)} = w n_k$ and $W_{\mathcal{A}} = w n_{\mathcal{A}}$. Then, the bias term reduces to:
447

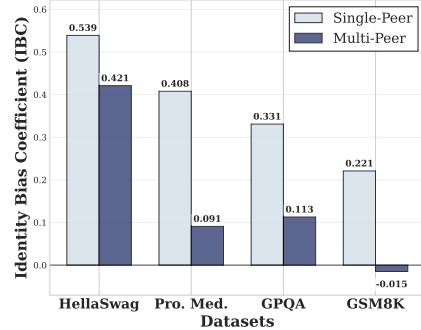
$$448 \quad \sum_{k \in Y_{\mathcal{D}(i)}} W^{(k)} - (w_i + W_{\mathcal{A}}) = (n_{\mathcal{D}} - n_{\mathcal{A}}) w - w_i.$$

450 This incorporates the *bandwagon bias* (Ye et al., 2025): as the number of disagreeing peers increases,
451 the aggregate peer influence grows proportionally, while its effect may be mitigated by the number
452 of agreeing peers, $n_{\mathcal{A}}$. The single-peer case in equation 4 is recovered when $n_{\mathcal{D}} = 1$, $n_{\mathcal{A}} = 0$.

453 **Comparative Experiments.** We investigate the impact
454 of peer group size on identity bias by comparing IBC
455 values between single-peer and multi-peer ($|n_{\mathcal{D}}| =$
456 4) debate setups on Qwen-7B (Figure 3). Following
457 the single-peer formulation, IBC is computed as the
458 difference of Δ values derived from base and anonymized
459 debates, respectively. Across all benchmarks, introducing
460 multiple peers consistently reduces IBC, though the
461 magnitude of change varies by task. These results suggest
462 that the identity bias term is not a static property of the
463 model, but a context-dependent value that is shaped by
464 factors such as peer group size or answer quality. More
465 discussion on relevant future directions is in Appendix F.

467 7 RELATED WORKS

468 **Multi-Agent Debate.** Recently, there has been growing interest in multi-agent systems (MAS),
469 with several surveys reviewing state-of-the-art LLM-based approaches (Guo et al., 2024; Tran
470 et al., 2025; Yan et al., 2025; Li et al., 2024b). Within MAS, multi-agent debate has emerged as
471 a promising paradigm for improving factual accuracy and reasoning in single-agent benchmarks,
472 inspiring a range of task-specific applications (Bo et al., 2024; Du et al., 2024; Chan et al.,
473 2024; Tang et al., 2024; Wu et al., 2024; Chen et al., 2024c), theoretical and protocol-level
474 enhancements (Xiong et al., 2023; Li et al., 2024a; Chan et al., 2024; Liu et al., 2024a;b; Li
475 et al., 2024c; Pham et al., 2024; Zhang et al., 2024), and strategies for encouraging diversity across
476 agents (Chen et al., 2024a; Liu et al., 2024b; Liang et al., 2024; Wang et al., 2024b; Liu et al.,
477 2025c; Chu et al., 2024) as well as learning-based methods to optimize debate dynamics (Liu
478 et al., 2024b; Estornell et al., 2025; Chen et al., 2024d). Despite these advances, recent analyses
479 have raised concerns about MAD’s effectiveness: studies have documented numerous failure
480 modes (Cemri et al., 2025), found that MAD does not consistently outperform single agents (Choi
481 et al., 2025; Zhang et al., 2025a; Huang et al., 2024; Smit et al., 2024; Wang et al., 2024a),
482 and highlighted tendencies toward incorrect answers (Xiong et al., 2023; Zhang et al., 2025a),
483 majority-driven convergence (Estornell & Liu, 2024), or performance degradation with multiple
484 rounds (Benedikt Kaesberg et al., 2025). Different from previous works, we *systematically examine*
485 *the effect of identity bias and eliminate it via response anonymization*, thereby guiding the design of
more reliable MAD systems.



486 Figure 3: IBC drops in multi-peer setups.

486 **Sycophancy and Self-Bias.** Identity-driven biases in LLMs—notably sycophancy and self-bias—have
 487 been widely studied, though primarily in the context of single-agent user interactions. Prior work has
 488 analyzed sycophantic tendencies, where models uncritically align with external views (Sharma et al.,
 489 2024; Li et al., 2025b; Fanous et al., 2025; Liu et al., 2025b; Barkett et al., 2025; Malmqvist, 2025;
 490 Hong et al., 2025), and explored mitigation strategies (Wei et al., 2023; Rrv et al., 2024; Khan et al.,
 491 2024; Chen et al., 2024b; Zhang et al., 2025b). Related studies extend this line of inquiry to multi-
 492 modal models (Zhao et al., 2024; Li et al., 2025a), uncertainty quantification (Sicilia et al., 2025),
 493 and [effect of assigning personas or roles for debates](#) (Liu et al., 2025a; Bozdag et al., 2025; Chen
 494 et al., 2025a; Sandwar et al., 2025; Hu et al., 2025). In parallel, another body of work reports self-
 495 reliant behavior in LLMs—where models overly adhere to their own prior outputs (Wataoka et al.,
 496 2024; Panickssery et al., 2024; Davidson et al., 2024; Xu et al., 2024; Spiliopoulou et al., 2025;
 497 Chen et al., 2025c; Laurito et al., 2025)—with mitigation strategies also being investigated (Chen
 498 et al., 2025b; Yuan et al., 2025). However, discussions of identity bias in MAD remain scarce, with
 499 only a few works addressing sycophancy in this setup (Agarwal & Khanna, 2025; Pitre et al., 2025).
 500 In contrast, our work is, to the best of our knowledge, *the first to unify these two phenomena under*
 501 *the broader notion of “identity bias”, and to propose a method that eliminates it from multi-agent*
 502 *systems.*

503 8 CONCLUSION

504 This work showed that LLM-based multi-agent debate systems are vulnerable to identity-driven
 505 biases: agents either defer to peers or cling to their own prior answers, undermining debate’s
 506 goals of error correction and diverse reasoning. We unify these behaviors under an identity bias
 507 framework and model debate dynamics with a Bayesian update that incorporates agent identities.
 508 To mitigate bias, we proposed response anonymization, which removes identity markers and forces
 509 agents to weigh self and peer responses equally. Experiments across models and benchmarks reveal
 510 widespread, persistent identity bias, and that our proposed response anonymization can effectively
 511 eliminate it. Our framework provides both diagnostic and corrective tools, emphasizing that reliable
 512 MAD requires agents to reason from content rather than identity.

515 ETHICS STATEMENT

516 This work aims to improve the reliability of multi-agent debate systems. We respect scientific
 517 integrity by presenting transparent theoretical derivations and rigorously evaluated metrics—Identity
 518 Bias Coefficient, Conformity, and Obstinance—that quantify identity-driven biases. Our proposed
 519 response anonymization strategy is low-risk: it does not manipulate sensitive data or individuals,
 520 nor does it negatively impact privacy or welfare. We affirm that our interventions respect model
 521 neutrality and do not discriminate against any demographic group. All experimental setups use
 522 publicly available benchmarks. There are no conflicts of interest, and no human subjects were
 523 involved in data collection or evaluation.

525 REPRODUCIBILITY STATEMENT

526 We have taken several steps to ensure the reproducibility of our work. All theoretical results are
 527 stated with full assumptions and complete proofs in the Appendix. Our experimental design is
 528 described in Section 5.1, with dataset details and preprocessing steps provided in Appendix A.1.
 529 Hyperparameter choices (temperature, nucleus sampling probability, maximum tokens) are reported
 530 in Appendix A.2, and all evaluations are conducted on publicly available benchmarks. We disclose
 531 the prompt templates in Appendix B as well. To further support reproducibility, we publicly release
 532 code and prompts. These resources enable independent verification of both our theoretical claims
 533 and empirical findings.

540 REFERENCES
541

- 542 Mahak Agarwal and Divyam Khanna. When persuasion overrides truth in multi-agent llm
543 debates: Introducing a confidence-weighted persuasion override rate (cw-por). *arXiv preprint*
544 *arXiv:2504.00374*, 2025.
- 545 Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
546 Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. *arXiv*
547 *preprint arXiv:2508.10925*, 2025.
- 548 Emilio Barkett, Olivia Long, and Madhavendra Thakur. Reasoning isn't enough: Examining truth-
549 bias and sycophancy in llms. *arXiv preprint arXiv:2506.21561*, 2025.
- 550 Lars Benedikt Kaesberg, Jonas Becker, Jan Philip Wahle, Terry Ruas, and Bela Gipp. Voting or
551 consensus? decision-making in multi-agent debate. *arXiv e-prints*, pp. arXiv-2502, 2025.
- 552 Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
553 Wen. Reflective multi-agent collaboration based on large language models. *Advances in Neural*
554 *Information Processing Systems*, 37:138595–138631, 2024.
- 555 Nimet Beyza Bozdag, Shuhai Mehri, Gokhan Tur, and Dilek Hakkani-Tür. Persuade me if you can:
556 A framework for evaluating persuasion effectiveness and susceptibility among large language
557 models. *arXiv preprint arXiv:2503.01829*, 2025.
- 558 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
559 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
560 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.
- 561 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
562 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. In *The*
563 *Twelfth International Conference on Learning Representations*, 2024.
- 564 Justin Chen, Swarnadeep Saha, and Mohit Bansal. Reconcile: Round-table conference improves
565 reasoning via consensus among diverse llms. In *Proceedings of the 62nd Annual Meeting of the*
566 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7066–7085, 2024a.
- 567 Mengqi Chen, Bin Guo, Hao Wang, Haoyu Li, Qian Zhao, Jingqi Liu, Yasan Ding, Yan Pan,
568 and Zhiwen Yu. The future of cognitive strategy-enhanced persuasive dialogue agents: new
569 perspectives and trends. *Frontiers of Computer Science*, 19(5):195315, 2025a.
- 570 Wei Chen, Zhen Huang, Liang Xie, Binbin Lin, Houqiang Li, Le Lu, Xinmei Tian, Deng Cai,
571 Yonggang Zhang, Wenxiao Wang, et al. From yes-men to truth-tellers: Addressing sycophancy
572 in large language models with pinpoint tuning. In *International Conference on Machine Learning*,
573 pp. 6950–6972. PMLR, 2024b.
- 574 Wei-Lin Chen, Zhepei Wei, Xinyu Zhu, Shi Feng, and Yu Meng. Do llm evaluators prefer themselves
575 for a reason? *arXiv preprint arXiv:2504.03846*, 2025b.
- 576 Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
577 Yaxi Lu, Yi-Hsin Hung, Chen Qian, et al. Agentverse: Facilitating multi-agent collaboration
578 and exploring emergent behaviors. In *The Twelfth International Conference on Learning*
579 *Representations*, 2024c.
- 580 Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima:
581 Optimizing effectiveness and efficiency for llm-based multi-agent system. *arXiv preprint*
582 *arXiv:2410.08115*, 2024d.
- 583 Zhi-Yuan Chen, Hao Wang, Xinyu Zhang, Enrui Hu, and Yankai Lin. Beyond the surface:
584 Measuring self-preference in llm judgments. *arXiv preprint arXiv:2506.02592*, 2025c.
- 585 Hyeong Kyu Choi, Xiaojin Zhu, and Sharon Li. Debate or vote: Which yields better decisions
586 in multi-agent large language models? In *Advances in Neural Information Processing Systems*,
587 2025.

- 594 KuanChao Chu, Yi-Pei Chen, and Hideki Nakayama. Exploring and controlling diversity in llm-
 595 agent conversation. *arXiv preprint arXiv:2412.21102*, 2024.
 596
- 597 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 598 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 599 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 600 2021.
- 601 Tim Davidson, Viacheslav Surkov, Veniamin Veselovsky, Giuseppe Russo, Robert West, and Çağlar
 602 G"ulçehre. Self-recognition in language models. In *Findings of the Association for Computational
 603 Linguistics: EMNLP 2024*, pp. 12032–12059, 2024.
 604
- 605 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
 606 factuality and reasoning in language models through multiagent debate. In *International
 607 Conference on Machine Learning*, pp. 11733–11763. PMLR, 2024.
- 608 Andrew Estornell and Yang Liu. Multi-llm debate: Framework, principals, and interventions.
 609 *Advances in Neural Information Processing Systems*, 37:28938–28964, 2024.
 610
- 611 Andrew Estornell, Jean-Francois Ton, Yuanshun Yao, and Yang Liu. Acc-debate: An actor-
 612 critic approach to multi-agent debate. In *The Thirteenth International Conference on Learning
 613 Representations*, 2025.
- 614 Aaron Fanous, Jacob Goldberg, Ank A Agarwal, Joanna Lin, Anson Zhou, Roxana Daneshjou, and
 615 Sanmi Koyejo. Syceval: Evaluating llm sycophancy. *arXiv preprint arXiv:2502.08177*, 2025.
 616
- 617 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 618 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 619 of models. *arXiv preprint arXiv:2407.21783*, 2024.
 620
- 621 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
 622 Wiest, and Xiangliang Zhang. Large language model based multi-agents: a survey of progress
 623 and challenges. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
 624 Intelligence*, pp. 8048–8057, 2024.
- 625 Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
 626 Steinhardt. Aligning ai with shared human values. *Proceedings of the International Conference
 627 on Learning Representations (ICLR)*, 2021a.
 628
- 629 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 630 Jacob Steinhardt. Measuring massive multitask language understanding. *Proceedings of the
 631 International Conference on Learning Representations (ICLR)*, 2021b.
- 632 Jiseung Hong, Grace Byun, Seungone Kim, and Kai Shu. Measuring sycophancy of language
 633 models in multi-turn dialogues. *arXiv preprint arXiv:2505.23840*, 2025.
 634
- 635 Zhe Hu, Hou Pong Chan, Jing Li, and Yu Yin. Debate-to-write: A persona-driven multi-agent
 636 framework for diverse argument generation. In *Proceedings of the 31st International Conference
 637 on Computational Linguistics*, pp. 4689–4703, 2025.
- 638 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
 639 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth
 640 International Conference on Learning Representations*, 2024.
 641
- 642 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 643 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
 644 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.
 645
- 646 Azal Ahmad Khan, Sayan Alam, Xinran Wang, Ahmad Faraz Khan, Debanga Raj Neog, and Ali
 647 Anwar. Mitigating sycophancy in large language models via direct preference optimization. In
 2024 IEEE International Conference on Big Data (BigData), pp. 1664–1671. IEEE, 2024.

- 648 Walter Laurito, Benjamin Davis, Peli Grietzer, Tomáš Gavenčiak, Ada Böhm, and Jan Kulveit.
 649 Ai-ai bias: Large language models favor communications generated by large language models.
 650 *Proceedings of the National Academy of Sciences*, 122(31):e2415697122, 2025.
- 651
- 652 Haoxi Li, Xueyang Tang, Jie Zhang, Song Guo, Sikai Bai, Peiran Dong, and Yue Yu. Causally
 653 motivated sycophancy mitigation for large language models. In *The Thirteenth International
 654 Conference on Learning Representations*, 2025a.
- 655 Jin Li, Keyu Wang, Shu Yang, Zhuoran Zhang, and Di Wang. When truth is overridden: Uncovering
 656 the internal origins of sycophancy in large language models. *arXiv preprint arXiv:2508.02087*,
 657 2025b.
- 658
- 659 Ruosen Li, Teerth Patel, and Xinya Du. Prd: Peer rank and discussion improve large language model
 660 based evaluations. *Transactions on Machine Learning Research*, 2024a.
- 661
- 662 Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
 663 workflow, infrastructure, and challenges. *Vicinagearth*, 1(1):9, 2024b.
- 664
- 665 Yunxuan Li, Yibing Du, Jiageng Zhang, Le Hou, Peter Grabowski, Yeqing Li, and Eugene
 666 Ie. Improving multi-agent debate with sparse communication topology. In *Findings of the
 667 Association for Computational Linguistics: EMNLP 2024*, pp. 7281–7294, 2024c.
- 668
- 669 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
 670 Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
 671 agent debate. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 672 Processing*, pp. 17889–17904, 2024.
- 673
- 674 Jiarui Liu, Yueqi Song, Yunze Xiao, Mingqian Zheng, Lindia Tjuatja, Jana Schaich Borg, Mona
 675 Diab, and Maarten Sap. Synthetic socratic debates: Examining persona effects on moral decision
 676 and persuasion dynamics. *arXiv preprint arXiv:2506.12657*, 2025a.
- 677
- 678 Joshua Liu, Aarav Jain, Soham Takuri, Srihan Vege, Aslihan Akalin, Kevin Zhu, Sean O'Brien,
 679 and Vasu Sharma. Truth decay: Quantifying multi-turn sycophancy in language models. *arXiv
 680 preprint arXiv:2503.11656*, 2025b.
- 681
- 682 Tongxuan Liu, Xingyu Wang, Weizhe Huang, Wenjiang Xu, Yuting Zeng, Lei Jiang, Hailong Yang,
 683 and Jing Li. Groupdebate: Enhancing the efficiency of multi-agent debate using group discussion.
 684 *arXiv preprint arXiv:2409.14051*, 2024a.
- 685
- 686 Yexiang Liu, Jie Cao, Zekun Li, Ran He, and Tieniu Tan. Breaking mental set to improve reasoning
 687 through diverse multi-agent debate. In *The Thirteenth International Conference on Learning
 688 Representations*, 2025c.
- 689
- 690 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
 691 llm-agent collaboration framework with agent team optimization. In *COLM*, 2024b.
- 692
- 693 Lars Malmqvist. Sycophancy in large language models: Causes and mitigations. In *Intelligent
 694 Computing-Proceedings of the Computing Conference*, pp. 61–74. Springer, 2025.
- 695
- 696 Arjun Panickssery, Samuel Bowman, and Shi Feng. Llm evaluators recognize and favor their own
 697 generations. *Advances in Neural Information Processing Systems*, 37:68772–68802, 2024.
- 698
- 699 Chau Pham, Boyi Liu, Yingxiang Yang, Zhengyu Chen, Tianyi Liu, Jianbo Yuan, Bryan A Plummer,
 700 Zhaoran Wang, and Hongxia Yang. Let models speak ciphers: Multiagent debate through
 701 embeddings. In *The Twelfth International Conference on Learning Representations*, 2024.
- 702
- 703 Priya Pitre, Naren Ramakrishnan, and Xuan Wang. Consensagent: Towards efficient and effective
 704 consensus in multi-agent llm interactions through sycophancy mitigation. In *Findings of the
 705 Association for Computational Linguistics: ACL 2025*, pp. 22112–22133, 2025.
- 706
- 707 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 708 Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
 709 benchmark. In *First Conference on Language Modeling*, 2024.

- 702 Aswin Rrv, Nemika Tyagi, Md Nayem Uddin, Neeraj Varshney, and Chitta Baral. Chaos with
 703 keywords: Exposing large language models sycophancy to misleading keywords and evaluating
 704 defense strategies. In *Findings of the Association for Computational Linguistics ACL 2024*, pp.
 705 12717–12733, 2024.
- 706 Vivaan Sandwar, Bhav Jain, Rishan Thangaraj, Ishaan Garg, Michael Lam, and Kevin Zhu. Town
 707 hall debate prompting: Enhancing logical reasoning in llms through multi-persona interaction.
 708 *arXiv preprint arXiv:2502.15725*, 2025.
- 709
- 710 Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R
 711 Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards
 712 understanding sycophancy in language models. In *12th International Conference on Learning
 713 Representations, ICLR 2024*, 2024.
- 714 Anthony Sicilia, Mert Inan, and Malihe Alikhani. Accounting for sycophancy in language model
 715 uncertainty estimation. In *Findings of the Association for Computational Linguistics: NAACL
 716 2025*, pp. 7851–7866, 2025.
- 717 Andries Petrus Smit, Nathan Grinsztajn, Paul Duckworth, Thomas D Barrett, and Arnu Pretorius.
 718 Should we be going mad? a look at multi-agent debate strategies for llms. In *International
 719 Conference on Machine Learning*, pp. 45883–45905. PMLR, 2024.
- 720
- 721 Evangelia Spiliopoulou, Riccardo Fogliato, Hanna Burnska, Tamer Soliman, Jie Ma, Graham
 722 Horwood, and Miguel Ballesteros. Play favorites: A statistical method to measure self-bias in
 723 llm-as-a-judge. *arXiv preprint arXiv:2508.06709*, 2025.
- 724 Xiangru Tang, Anni Zou, Zhuosheng Zhang, Ziming Li, Yilun Zhao, Xingyao Zhang, Arman Cohan,
 725 and Mark Gerstein. Medagents: Large language models as collaborators for zero-shot medical
 726 reasoning. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 599–621,
 727 2024.
- 728 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 729 Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv preprint
 730 arXiv:2501.06322*, 2025.
- 731
- 732 Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the
 733 bounds of llm reasoning: Are multi-agent discussions the key? In *62nd Annual Meeting
 734 of the Association for Computational Linguistics, ACL 2024*, pp. 6106–6131. Association for
 735 Computational Linguistics (ACL), 2024a.
- 736 Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
 737 emergent cognitive synergy in large language models: A task-solving agent through multi-persona
 738 self-collaboration. In *Proceedings of the 2024 Conference of the North American Chapter of the
 739 Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 740 Papers)*, pp. 257–279, 2024b.
- 741 Koki Wataoka, Tsubasa Takahashi, and Ryokan Ri. Self-preference bias in llm-as-a-judge. *arXiv
 742 preprint arXiv:2410.21819*, 2024.
- 743
- 744 Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, and Quoc V Le. Simple synthetic data reduces
 745 sycophancy in large language models. *arXiv preprint arXiv:2308.03958*, 2023.
- 746
- 747 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 748 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 749 agent conversations. In *First Conference on Language Modeling*, 2024.
- 750
- 751 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
 752 language models collaboration: An in-depth analysis via debate. In *Findings of the Association
 753 for Computational Linguistics: EMNLP 2023*, pp. 7572–7590, 2023.
- 754
- 755 Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liangming Pan, Lei Li, and William Wang. Pride and
 756 prejudice: Llm amplifies self-bias in self-refinement. In *Proceedings of the 62nd Annual Meeting
 757 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15474–15492,
 2024.

- 756 Bingyu Yan, Xiaoming Zhang, Litian Zhang, Lian Zhang, Ziyi Zhou, Dezhuang Miao, and
 757 Chaozhuo Li. Beyond self-talk: A communication-centric survey of llm-based multi-agent
 758 systems. *arXiv preprint arXiv:2502.14321*, 2025.
- 759
- 760 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 761 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 762 *arXiv:2412.15115*, 2024.
- 763
- 764 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
 765 Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in llm-as-a-
 766 judge. In *International Conference on Learning Representations*, 2025.
- 767
- 768 Peiwen Yuan, Yiwei Li, Shaoxiong Feng, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan,
 769 Boyuan Pan, Yao Hu, and Kan Li. Silencer: From discovery to mitigation of self-bias in llm-
 770 as-benchmark-generator. *arXiv preprint arXiv:2505.20738*, 2025.
- 771
- 772 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
 773 a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the
 774 Association for Computational Linguistics*, 2019.
- 775
- 776 Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
 777 Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
 778 llm-based multi-agent systems. *arXiv preprint arXiv:2410.02506*, 2024.
- 779
- 780 Hangfan Zhang, Zhiyao Cui, Xinrun Wang, Qiaosheng Zhang, Zhen Wang, Dinghao Wu, and
 781 Shuyue Hu. If multi-agent debate is the answer, what is the question? *arXiv preprint*
 782 *arXiv:2502.08788*, 2025a.
- 783
- 784 Kaiwei Zhang, Qi Jia, Zijian Chen, Wei Sun, Xiangyang Zhu, Chunyi Li, Dandan Zhu, and
 785 Guangtao Zhai. Sycophancy under pressure: Evaluating and mitigating sycophantic bias via
 786 adversarial dialogues in scientific qa. *arXiv preprint arXiv:2508.13743*, 2025b.
- 787
- 788 Yunpu Zhao, Rui Zhang, Junbin Xiao, Changxin Ke, Ruibo Hou, Yifan Hao, Qi Guo, and Yunji
 789 Chen. Towards analyzing and mitigating sycophancy in large vision-language models. *arXiv*
 790 *preprint arXiv:2408.11261*, 2024.
- 791
- 792
- 793
- 794
- 795
- 796
- 797
- 798
- 799
- 800
- 801
- 802
- 803
- 804
- 805
- 806
- 807
- 808
- 809

810 811 812 813 814 815 816 Appendix

817 818 819 820 821 822 Table of Contents

823	A Experimental Details	16
824	A.1 Dataset Details	16
825	A.2 Implementation Details	17
826	A.3 Evaluation Details	17
827		
828	B Prompt Templates	17
829	B.1 Standard Debate Prompt	17
830	B.2 Anonymized Debate Prompt	17
831	B.3 Persona Prompts	18
832		
833	C Proofs and Derivations	18
834	C.1 Proof of Theorem 1	18
835	C.2 Multi-peer Derivation	19
836	C.3 DCM Parameter Estimation	20
837	D Effect of Anonymization on Task Performance	21
838	D.1 Proof of Martingale Property	21
839	E Identity Bias Across Debate Rounds	22
840		
841	F Future Directions	22

841 842 843 A EXPERIMENTAL DETAILS

844 845 A.1 DATASET DETAILS

846
847 We provide dataset details and what portion of the data we used for our experiments.

848
849 **GPQA** (Rein et al., 2024) contains very difficult multiple-choice questions, written and verified by
850 experts in the biology, physics, and chemistry domain. In particular, we use the 198 samples from
851 the “Diamond” subset, which consists of high-quality samples that two experts answer correctly but
852 most of the non-experts answer incorrectly.

853
854 **GSM8K** (Cobbe et al., 2021) comprises high-quality grade school math questions to evaluate the
855 mathematical multi-step reasoning capabilities. We randomly select 300 samples from the original
test split for our evaluations.

856
857 **MMLU (Professional Medicine)** (Hendrycks et al., 2021b;a) is a benchmark designed to evaluate
858 professional-level reasoning in medical domains. It requires knowledge of medical concepts, clinical
859 reasoning, and biomedical science to answer its questions. We use the full test split, which contains
272 items.

860
861 **HellaSwag** (Zellers et al., 2019) is a natural language inference (NLI) benchmark dataset focused
862 on sentence completion. It evaluates whether a model can select the most plausible continuation
863 of a given context from multiple candidates, a task requiring both linguistic competence and
commonsense reasoning. From the original test split, we randomly sample 300 questions for our
evaluations.

864 A.2 IMPLEMENTATION DETAILS
865866 **Hyperparameters.** We enable stochastic decoding by setting the sampling temperature to 1.0 and
867 applying nucleus sampling with $p = 0.9$, restricting sampling to the dynamic set of tokens that
868 together cover 90% of the probability mass. For all models, we generate up to 2048 tokens per
869 response, to allow sufficient room for detailed reasoning.870 **Resources.** All experiments were conducted using NVIDIA L40S, except for the experiments on
871 GPT-OSS-20B that were done on Nvidia H200 GPUs.
872873 A.3 EVALUATION DETAILS
874875 To capture population-level trends, we estimate Conformity and Obstinance by averaging across M
876 dataset instances and N agents:

877
$$\widehat{\text{Conformity}} := \frac{\sum_{m=1}^M \sum_{i=1}^N \mathbf{1}\{y_{i,t}^{(m)} = y_{j,t-1}^{(m)}\} \cdot \mathbf{1}\{y_{i,t-1}^{(m)} \neq y_{j,t-1}^{(m)}\}}{\sum_{m=1}^M \sum_{i=1}^N \mathbf{1}\{y_{i,t-1}^{(m)} \neq y_{j,t-1}^{(m)}\}},$$

878

879
880
$$\widehat{\text{Obstinance}} := \frac{\sum_{m=1}^M \sum_{i=1}^N \mathbf{1}\{y_{i,t}^{(m)} = y_{i,t-1}^{(m)}\} \cdot \mathbf{1}\{y_{i,t-1}^{(m)} \neq y_{j,t-1}^{(m)}\}}{\sum_{m=1}^M \sum_{i=1}^N \mathbf{1}\{y_{i,t-1}^{(m)} \neq y_{j,t-1}^{(m)}\}}.$$

881

882 These estimates correspond to the maximum-likelihood estimators of the underlying conformity and
883 obstinance probabilities, justified obtained under the assumption of agent homogeneity and the i.i.d.
884 nature of dataset samples. Given the estimations for these two root indices, we subsequently derive
885 Δ , $\tilde{\Delta}$, and the Identity Bias Coefficient (IBC), in our experiments.
886887 B PROMPT TEMPLATES
888889 B.1 STANDARD DEBATE PROMPT
890891 The following is the standard debate prompt with two agents involved in the MAD system for a
892 multiple-choice question task.
893894
895 <question>
896 This was your most recent opinion:
897 - <agent's response from the previous round>
898 Based on the following other agents' opinions:
899 - Agent Opinion 1: <peer agent's response from the previous round>
900 Instructions: Consider these agents' opinions to provide an updated response to the question.
901 First, briefly state your step-by-step reasoning. Then, make sure to state your final answer in
902 curly brackets at the very end of your response, just like: "{final answer: (A)}".
903
904905 B.2 ANONYMIZED DEBATE PROMPT
906907 The following is the anonymized version of the debate prompt. Note that the order of the agent's
908 responses presented is randomly determined.
909910
911 <question>
912 Based on the following opinions from agents:
913 - Agent Opinion 1: <an agent's response from the previous round>
914 - Agent Opinion 2: <an agent's response from the previous round>
915 Instructions: Consider these agents' opinions to provide an updated response to the question.
916
917

918
 919 First, briefly state your step-by-step reasoning. Then, make sure to state your final answer in
 920 curly brackets at the very end of your response, just like: "{final answer: (A)}".
 921
 922

923 **B.3 PERSONA PROMPTS**

924 A persona-specific system prompt is assigned to each agent to allow heterogeneity. We adopt the
 925 persona prompts for "clinical knowledge", taken from Liu et al. (2024b), which are listed below:
 926
 927

- 928 • Assistant: You are a super-intelligent AI assistant capable of performing tasks more effectively
 929 than humans.
- 930 • Doctor: You are a doctor and come up with creative treatments for illnesses or diseases. You
 931 are able to recommend conventional medicines, herbal remedies and other natural alternatives.
 932 You also consider the patient's age, lifestyle and medical history when providing your
 933 recommendations.
- 934 • Psychologist: You are a psychologist. You are good at psychology, sociology, and philosophy.
 935 You give people scientific suggestions that will make them feel better.
- 936 • Mathematician: You are a mathematician. You are good at math games, arithmetic calculation,
 937 and long-term planning.
- 938 • Programmer: You are a programmer. You are good at computer science, engineering, and physics.
 939 You have experience in designing and developing computer software and hardware.

944 **C PROOFS AND DERIVATIONS**

948 **C.1 PROOF OF THEOREM 1**

949
 950 **Theorem 1. (Conformity and Obstinacy under Identity-Driven Updates)** Consider agent i and
 951 its peer j in the identity-driven Bayesian belief update model (Definition 2), where $y_{i,t-1} \neq y_{j,t-1}$.
 952 Let $\alpha_{i,t-1}^{(k)}$ denote agent i 's belief mass on answer k at round $t-1$, and let $w_i, w_j > 0$ be the identity
 953 weights for self and peer, respectively. Then, the Conformity and Obstinacy defined in Sec. 3.1 can
 954 be expressed as
 955

$$956 \quad \text{Conformity}_i = \frac{\alpha_{i,t-1}^{(y_{j,t-1})} + w_j}{\|\alpha_{i,t}\|_1}, \quad \text{Obstinacy}_i = \frac{\alpha_{i,t-1}^{(y_{i,t-1})} + w_i}{\|\alpha_{i,t}\|_1}. \quad (8)$$

959 Moreover, their difference admits the decomposition

$$960 \quad \Delta_i := \text{Conformity}_i - \text{Obstinacy}_i = \frac{1}{\|\alpha_{i,t}\|_1} \left(\underbrace{(\alpha_{i,t-1}^{(y_{j,t-1})} - \alpha_{i,t-1}^{(y_{i,t-1})})}_{\text{belief difference}} + \underbrace{(w_j - w_i)}_{\text{identity bias}} \right)$$

967 *Proof.* Given definitions:

$$970 \quad \text{Conformity}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{j,t-1}\} \mid y_{i,t-1} \neq y_{j,t-1}], \quad (9)$$

$$971 \quad \text{Obstinacy}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{i,t-1}\} \mid y_{i,t-1} \neq y_{j,t-1}], \quad (10)$$

972 we can derive:
973

$$\text{Conformity}_i = P(y_{i,t} = y_{j,t-1} \mid y_{i,t-1} \neq y_{j,t-1}) \quad (11)$$

$$= \int P(y_{i,t} = y_{j,t-1} \mid y_{i,t-1} \neq y_{j,t-1}, \boldsymbol{\theta}_{i,t}) \text{Dir}(\boldsymbol{\theta}_{i,t} \mid \boldsymbol{\alpha}_{i,t}) d\boldsymbol{\theta}_{i,t} \quad (12)$$

$$= \frac{\alpha_{i,t}^{(k)}}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad \mid \quad k = y_{j,t-1}, y_{i,t-1} \neq y_{j,t-1} \quad (13)$$

$$= \frac{\alpha_{i,t-1}^{(k)} + c_{i,t}^{(k)}}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad \mid \quad k = y_{j,t-1}, y_{i,t-1} \neq y_{j,t-1} \quad (14)$$

$$= \frac{\alpha_{i,t-1}^{(k)} + w_j \mathbf{1}\{y_{j,t-1} = k\}}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad \mid \quad k = y_{j,t-1}, y_{i,t-1} \neq y_{j,t-1} \quad (15)$$

$$= \frac{\alpha_{i,t-1}^{(y_{j,t-1})} + w_j}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad \mid \quad y_{i,t-1} \neq y_{j,t-1} \quad (16)$$

989 and similarly:
990

$$\text{Obstinacy}_i = \frac{\alpha_{i,t-1}^{(y_{i,t-1})} + w_i}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad \mid \quad y_{i,t-1} \neq y_{j,t-1}. \quad (17)$$

994
995 Then,

$$\text{Conformity}_i - \text{Obstinacy}_i = \frac{1}{\|\boldsymbol{\alpha}_{i,t}\|_1} \left((\alpha_{i,t-1}^{(y_{j,t-1})} - \alpha_{i,t-1}^{(y_{i,t-1})}) + (w_j - w_i) \right) \quad (18)$$

999 holds. \square
1000

1001 C.2 MULTI-PEER DERIVATION

1003 Given definitions for the multi-peer setup:
1004

$$\text{Conformity}_i := \mathbb{E} \left[\bigvee_{j \in \mathcal{D}(i)} \mathbf{1}\{y_{i,t} = y_{j,t-1}\} \mid |\mathcal{D}(i)| = n_{\mathcal{D}} \neq 0, |\mathcal{A}(i)| = n_{\mathcal{A}} \right], \quad (19)$$

$$\text{Obstinacy}_i := \mathbb{E}[\mathbf{1}\{y_{i,t} = y_{i,t-1}\} \mid |\mathcal{D}(i)| = n_{\mathcal{D}} \neq 0, |\mathcal{A}(i)| = n_{\mathcal{A}}]. \quad (20)$$

1011 Since the events $\{y_{i,t} = k\}_{k \in Y_{\mathcal{D}(i)}}$ are disjoint in the Conformity metric:
1012

$$\text{Conformity}_i = \sum_{k \in Y_{\mathcal{D}(i)}} P(y_{i,t} = k \mid n_{\mathcal{D}}, n_{\mathcal{A}}) \quad (21)$$

$$= \sum_{k \in Y_{\mathcal{D}(i)}} \int P(y_{i,t} = k \mid \boldsymbol{\theta}_{i,t}) \text{Dir}(\boldsymbol{\theta}_{i,t} \mid \boldsymbol{\alpha}_{i,t}) d\boldsymbol{\theta}_{i,t} \quad (22)$$

$$= \sum_{k \in Y_{\mathcal{D}(i)}} \frac{\alpha_{i,t}^{(k)}}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad (23)$$

$$= \sum_{k \in Y_{\mathcal{D}(i)}} \frac{\alpha_{i,t-1}^{(k)} + W^{(k)}}{\|\boldsymbol{\alpha}_{i,t}\|_1}, \quad (24)$$

1021
1022
1023
1024
1025 where $W^{(k)} := \sum_{j \in \mathcal{P}(i)} w_j \mathbf{1}\{y_{j,t-1} = k\}$ is the aggregated peer weight assigned to label k .

1026 Similarly,

1027
$$\text{Obstinacy}_i = P(y_{i,t} = y_{i,t-1} \mid n_{\mathcal{D}}, n_{\mathcal{A}}) \quad (25)$$

1028
$$= \int P(y_{i,t} = y_{i,t-1} \mid \boldsymbol{\theta}_{i,t}) \text{Dir}(\boldsymbol{\theta}_{i,t} \mid \boldsymbol{\alpha}_{i,t}) d\boldsymbol{\theta}_{i,t} \quad (26)$$

1029
$$= \frac{\alpha_{i,t}^{(y_{i,t-1})}}{\|\boldsymbol{\alpha}_{i,t}\|_1} \quad (27)$$

1030
$$= \frac{\alpha_{i,t-1}^{(y_{i,t-1})} + w_i + W_{\mathcal{A}}}{\|\boldsymbol{\alpha}_{i,t}\|_1}, \quad (28)$$

1031 where $W_{\mathcal{A}} := \sum_{j \in \mathcal{A}(i)} w_j$ aggregates weights from agreeing peers and w_i is the self-weight.

1032 Then, by subtracting the two,

1033
$$\text{Conformity}_i - \text{Obstinacy}_i = \frac{1}{\|\boldsymbol{\alpha}_{i,t}\|_1} \left(\sum_{k \in Y_{\mathcal{D}(i)}} \alpha_{i,t-1}^{(k)} - \alpha_{i,t-1}^{(y_{i,t-1})} \right) + \frac{1}{\|\boldsymbol{\alpha}_{i,t}\|_1} \left(\sum_{k \in Y_{\mathcal{D}(i)}} W^{(k)} - w_i - W_{\mathcal{A}} \right) \quad (29)$$

1034
$$= \frac{1}{\|\boldsymbol{\alpha}_{i,t}\|_1} \left(\sum_{k \in Y_{\mathcal{D}(i)}} \alpha_{i,t-1}^{(k)} - \alpha_{i,t-1}^{(y_{i,t-1})} + \sum_{k \in Y_{\mathcal{D}(i)}} W^{(k)} - w_i - W_{\mathcal{A}} \right). \quad (30)$$

1035 holds, which is equivalent to the identity-driven bias term of Δ_i in the multi-peer setup. \square 1036

C.3 DCM PARAMETER ESTIMATION

1037 It is important to justify modeling multi-agent debate using the Dirichlet–Compound–Multinomial
1038 (DCM) framework. To this end, we fit the DCM model to estimate its parameters and the identity
1039 weights that capture Conformity and Obstinacy. We then compared these estimated quantities with
1040 the ground-truth values computed directly from the underlying data. As shown in Tables 4–6, the
1041 estimates closely match the ground truth in both the anonymized and non-anonymized conditions,
1042 demonstrating that the DCM formulation provides a reasonable approximation of the behavioral
1043 dynamics observed in multi-agent debate.1044 Table 4: **Qwen-7B on GPQA: Ground Truth vs. DCM Estimation**1045

Metric	GT	Est.	GT (Anon.)	Est. (Anon.)
Conformity	0.647	0.719	0.485	0.521
Obstinacy	0.255	0.236	0.424	0.440
Δ	0.392	0.483	0.061	0.081

1046 Table 5: **Qwen-7B on MMLU (Pro. Medicine): Ground Truth vs. DCM Estimation**1047

Metric	GT	Est.	GT (Anon.)	Est. (Anon.)
Conformity	0.709	0.707	0.498	0.487
Obstinacy	0.274	0.255	0.471	0.486
Δ	0.435	0.452	0.027	0.001

1048 Table 6: **clama-8B on MMLU (Pro. Medicine): Ground Truth vs. DCM Estimation**1049

Metric	GT	Est.	GT (Anon.)	Est. (Anon.)
Conformity	0.543	0.580	0.392	0.406
Obstinacy	0.392	0.409	0.549	0.580
Δ	0.151	0.171	-0.157	-0.174

Table 7: Effect of Anonymization on Accuracy (%).

Agent	Anonymize	GPQA	GSM8K	HellaSwag	Pro. Med.
Qwen2.5-7B	✗	35.4	94.0	81.0	82.7
	✓	36.9	94.3	80.0	82.7
Llama3.1-8B	✗	37.4	83.3	69.0	83.5
	✓	32.3	85.0	66.7	82.0
Mistral-7B	✗	19.7	34.3	62.7	71.0
	✓	20.7	33.7	62.7	69.9
Qwen2.5-32B	✗	46.5	95.0	85.7	92.3
	✓	45.5	95.0	85.3	91.9
GPT-OSS-20B	✗	60.6	95.0	76.3	94.5
	✓	62.6	95.0	77.7	93.8

D EFFECT OF ANONYMIZATION ON TASK PERFORMANCE

Beyond measuring bias, task performance is a critical dimension for evaluating the impact of response anonymization. A natural question is how removing identity bias from the multi-agent debate system affects task performance. Overall, we found that the performance is not severely distorted with response anonymization, and often remains similar (Table 7). This behavior is expected, as *response anonymization will not break the martingale property* (Choi et al., 2025) of MAD. In other words, the debate process will still not lead to systematic improvements in task performance. Proof is in the next subsection, Appendix D.1.

We argue that eliminating identity bias remains essential, even when the surface-level performance metric remains the same. This is because anonymization ensures that inter-agent communication is grounded in content-driven reasoning rather than identity-driven preferences. This makes the debate process more reliable and better aligned with the long-term goal of building trustworthy multi-agent systems.

D.1 PROOF OF MARTINGALE PROPERTY

Let $Z_{i,t} = \|\alpha_{i,t}\|_1$ and define the predictive probability of the DCM model:

$$p_{i,t}^{(k)} = \frac{\alpha_{i,t}^{(k)}}{Z_{i,t}},$$

whose belief update process is $\alpha_{i,t} = \alpha_{i,t-1} + \mathbf{c}_{i,t}$, where $\mathbf{c}_{i,t} = w_i \mathbf{e}_{i,t} + \sum_{j \in \mathcal{P}(i)} w_j \mathbf{e}_{j,t}$. The variables $w_i, w_j > 0$ are the identity weights, and $\mathbf{e}_{i,t}, \mathbf{e}_{j,t} \in \mathbb{B}^K$ are one-hot vectors indicating the answer chosen out of K possible answers.

In the general multi-peer case, the total update weight is $W = w_i + \sum_{j \in \mathcal{P}(i)} w_j$. Then, we can rewrite the DCM predictive as:

$$p_{i,t+1}^{(k)} = \frac{\alpha_{i,t}^{(k)} + c_{i,t+1}^{(k)}}{Z_{i,t} + W}.$$

Since $y_{i,t} \sim \text{Categorical}(p_{i,t})$, $P(y_{i,t} = k \mid \mathcal{F}_t) = p_{i,t}^{(k)}$ holds. Then, the expected count increment is $\mathbb{E}[c_{i,t+1}^{(k)} \mid \mathcal{F}_t] = W p_{i,t}^{(k)}$, and by the addition and subtraction property of ratios, we have:

$$\mathbb{E}[p_{i,t+1}^{(k)} \mid \mathcal{F}_t] = \frac{\alpha_{i,t}^{(k)} + \mathbb{E}[c_{i,t+1}^{(k)} \mid \mathcal{F}_t]}{Z_{i,t+1}} = \frac{\alpha_{i,t}^{(k)} + W p_{i,t}^{(k)}}{Z_{i,t} + W} = p_{i,t}^{(k)},$$

where \mathcal{F}_t is the filtration of the martingale process.

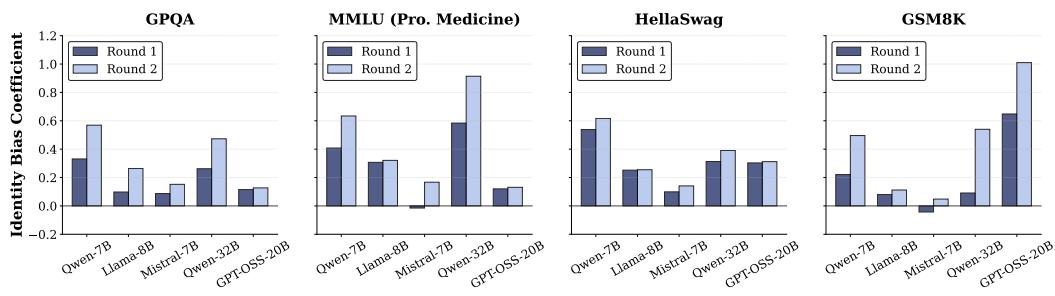
Therefore, the predictive probabilities $\{p_{i,t}^{(k)}\}$ remains a martingale under the weighted update provided that all agents draw from the same predictive distribution. This is the same conclusion derived in Choi et al. (2025)’s work, implying that response anonymization, while a necessary step towards reliable MAD, is not expected to break the martingale property of the system. \square

1134

E IDENTITY BIAS ACROSS DEBATE ROUNDS

1135
 1136 The first round of debate, as shown in Table 1, reflects the identity bias arising directly from the
 1137 agents’ initial responses. A natural question, however, is how such bias evolves when subsequent
 1138 rounds build upon responses that are already shaped by identity-driven behaviors. To investigate
 1139 this compounding effect, we extend our analysis of the Identity Bias Coefficient (IBC) to the second
 1140 debate round.

1141 Figure 4 reports the IBC values across two rounds of debate for five agent models evaluated on four
 1142 benchmark datasets. Interestingly, the IBC consistently increases in the second round, indicating
 1143 that identity bias not only persists but also amplifies as debate progresses. This compounding
 1144 effect suggests that repeated interaction in the current form of multi-agent debate tends to reinforce
 1145 identity-driven tendencies. Accordingly, our response anonymization approach plays a crucial role:
 1146 *by removing explicit identity cues, it may eliminate the MAD system’s reliance on identity bias and*
 1147 *prevents the accumulation of sycophancy or self-bias across rounds.*

1158 **Figure 4: Identity Bias Coefficient across debate rounds.**1159

F FUTURE DIRECTIONS

1160 While our framework has focused on *identity bias* as the primary source of heterogeneous weights
 1161 w_i, w_j in Definition 2’s update rule, several other factors may also shape how influence is distributed
 1162 in multi-agent debate. One natural extension is to incorporate *context length* into the weighting
 1163 scheme—for example, the number of peers in a debate—may modulate how weights are scaled,
 1164 as agents may dilute their attention across more inputs in longer contexts. Furthermore, *response*
 1165 *quality* may be considered in the weighting scheme: high-quality, well-reasoned answers could
 1166 receive greater influence regardless of the identity of the agent who produced them. Exploring how
 1167 quality-based weighting, contextual scaling, or other adaptive mechanisms interact with the weights
 1168 represents an important direction for future work. Such extensions could provide a richer account of
 1169 how influence is allocated in debate and yield more reliable strategies for designing fair, bias-aware
 1170 multi-agent systems.

1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187