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Abstract

The emergence of vision-language models, such
as CLIP, has spurred a significant research ef-
fort towards their application for downstream su-
pervised learning tasks. Although some previ-
ous studies have explored the unsupervised fine-
tuning of CLIP, they often rely on prior knowl-
edge in the form of class names associated with
ground truth labels. This paper explores a realis-
tic unsupervised fine-tuning scenario, considering
the presence of out-of-distribution samples from
unknown classes within the unlabeled data. In
particular, we focus on simultaneously enhancing
out-of-distribution detection and the recognition
of instances associated with known classes.

To tackle this problem, we present a simple, ef-
ficient, and effective approach called Universal
Entropy Optimization (UEO). UEO leverages
sample-level confidence to approximately min-
imize the conditional entropy of confident in-
stances and maximize the marginal entropy of
less confident instances. Apart from optimizing
the textual prompt, UEO incorporates optimiza-
tion of channel-wise affine transformations within
the visual branch of CLIP. Extensive experiments
across 15 domains and 4 different types of prior
knowledge validate the effectiveness of UEO com-
pared to baseline methods. The code is at https:
//github.com/tim-learn/UEO.

1. Introduction

Vision-language models (VLMs) (Radford et al., 2021; Li
et al., 2022a; Jia et al., 2021; Li et al., 2022c) pre-trained
on web-scale image-text pairs have exhibited robust zero-
shot prediction capabilities, which have recently attracted
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increasing attention from the research community. As an
example, Contrastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) leverages a contrastive objective to
obtain a modality-agnostic embedding space in which the
paired images and texts are pulled closer and unpaired im-
ages and texts are pushed apart. Then zero-shot classifica-
tion is performed by matching the embeddings of test images
and prompt-based textual descriptions (e.g., “a photo of a
[CLASS]” and ““a picture of a [CLASS]”), merely requiring
the names of all the semantic classes in downstream tasks.

Apart from the extensive research dedicated to the pre-
training stage, numerous studies (Zhou et al., 2022b; Zhang
et al., 2022b; Bahng et al., 2022) have concentrated on
adapting VLMs to specific downstream tasks by using task-
specific labeled data. This fine-tuning paradigm empowers
VLMs to bridge both data and task gaps, leading to improved
performance in recognition tasks. In addition to multi-class
classification, these pioneering strategies have also been
harnessed in a spectrum of computer vision tasks, including
ordinal regression (Li et al., 2022b), point cloud under-
standing (Zhang et al., 2022a), and dense prediction (Rao
et al., 2022). When considering fine-tuning setups, most
efforts have primarily revolved around fully supervised and
few-shot supervised learning scenarios. To pursue annota-
tion efficiency and scalability, several recent studies (Huang
et al., 2022; Shu et al., 2022; Tanwisuth et al., 2023) have
delved into the realm of unsupervised fine-tuning, remark-
ably achieving performance on par with few-shot supervised
approaches. However, they still demand a priori knowledge
of class names associated with ground truth labels, limiting
their applicability in diverse real-world scenarios.

To circumvent the limitation, this paper explores a novel fine-
tuning setup, termed Unsupervised Universal Fine-Tuning
(U2-FT) with CLIP, wherein the predefined list of class
names may partially overlap with the ground truth label
space of unlabeled training data. To illustrate, as depicted
in Fig. 1, consider an unlabeled data set [C2] comprising
samples from three classes (i.e., ‘dog’, ‘cat’, and ‘panda’).
However, the provided predefined list of class names might
be imprecise, containing four classes (i.e., ‘fox’, ‘dog’,
‘cat’, ‘pig’). Generally, U2-FT requires the fine-tuned model
to demonstrate superior performance to the original CLIP
in two aspects, namely, recognizing samples from classes
within the predefined list (‘dog’ and ‘cat’), as well as identi-
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Figure 1. The basic setup of Unsupervised Universal Fine-Tuning (U2-FT). During the training phase, U?-FT fine-tunes the pre-trained
CLIP with unlabeled in-the-wild training data according to an imprecise predefined list of class names (where ‘fox’ may be absent in C1
and ‘panda’ may be included in C2). Note that, a training-independent data set containing both known classes and unknown classes
(OOD) in the test phase is employed to evaluate performance in both generalization and OOD detection.

fying samples from classes not present in that list (‘panda’),
commonly referred to as out-of-distribution (OOD) samples.
Given the potential scarcity of OOD samples [C1], U2-FT
evaluates both generalization and OOD detection through
a new test data set encompassing both OOD samples and
samples from classes within the predefined list. Typically,
U2-FT poses two primary technical challenges for designing
fine-tuning strategies: (1) fitting the entire data with CLIP
will deteriorate the ability to detect OOD samples due to the
potential presence of OOD samples, and (2) matching the
label distribution of unlabeled data with the pre-defined one
can be risky due to the potential absence of certain classes.

We propose to address the challenges by presenting a
parameter-efficient approach termed Universal Entropy Op-
timization (UEO). UEO aims to minimize non-OOD sam-
ples’ information entropy while maximizing the OOD sam-
ples’ entropy. Since we do not know which samples are
OOD, UEO readily utilizes the confidence of unlabeled
data in CLIP as sample-level weight. To avoid the potential
risks associated with OOD sample exposure through entropy
maximization, UEO employs a reverse weighting strategy
to aggregate the predictions first, before subsequently max-
imizing the marginal entropy. Besides, UEO takes into
account the optimization of channel-wise affine transforma-
tions in the image encoder of CLIP, in addition to the textual
prompt, to ensure parameter efficiency. Overall, UEO is
remarkably simple, requiring alterations to only a few lines
of code. Our contributions are summarized as follows: (1).
We introduce a new unsupervised fine-tuning setup with
CLIP that requires minimal prior knowledge of the label
space for unlabeled data. (2). The proposed UEO devises a
new parameter-efficient strategy and elegantly incorporates

the sample-level confidence during entropy optimization.
(3). Extensive experiments demonstrate that UEO surpasses
existing unsupervised methods in improving both general-
ization and OOD detection performance.

2. Related Work
2.1. Prompt Tuning of CLIP

Recent efforts have been devoted to exploring transfer learn-
ing with VLMs (Chen et al., 2023; Wang et al., 2023b)
to enhance their capacity to generalize to specific down-
stream tasks (Zhang et al., 2024). Prompt tuning (Lester
et al., 2021), initially devised for adapting language mod-
els, optimizes the text embedding space while leaving the
foundational model parameters unchanged. This technique
has gained significant interest in fine-tuning VLMs (e.g.,
CLIP) for vision tasks (Zhou et al., 2022a;b; Zhu et al.,
2023) owing to its parameter-efficient nature. For example,
CoOp (Zhou et al., 2022b) employs prompt tuning within
the language branch of CLIP by utilizing a limited amount
of labeled data, while VPT (Bahng et al., 2022) introduces
visual prompts by modifying the pixels of images. To offer
greater versatility, both UPT (Zang et al., 2022) and MaPLE
(Khattak et al., 2023) propose to optimize prompts within
both the vision and language branches.

Depending on the availability of annotations during the
learning process, current fine-tuning setups fall within three
main categories: fully supervised transfer (Rao et al., 2022;
Bahng et al., 2022; Wortsman et al., 2022), few-shot super-
vised transfer (Zhou et al., 2022b;a; Zhang et al., 2022b;
Wang et al., 2023c), and unsupervised transfer (Huang
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et al., 2022; Shu et al., 2022; Li et al., 2023; Tanwisuth
et al., 2023). Unlike the other two transfer setups that de-
pend on labeled downstream data, unsupervised transfer
only harnesses unlabelled downstream data for fine-tuning
CLIP. This paradigm sounds more challenging but also more
promising and efficient for adapting CLIP, as it does not
require costly annotation efforts and can better capture the
underlying data distribution. Note that, this paper extends
the scope of existing unsupervised transfer methods by as-
suming that not all unlabeled data belongs to classes within
a predefined list.

2.2. OOD Detection of CLIP

Out-of-distribution (OOD) detection (Yang et al., 2021) fo-
cuses on identifying instances or examples unrelated to the
in-distribution task, which is critical for the real-world de-
ployment of machine learning models. However, exploring
CLIP for OOD detection remains an interesting but rela-
tively recent research topic, with only a handful of previous
efforts within this field (Fort et al., 2021; Esmaeilpour et al.,
2022; Ming et al., 2022; Wang et al., 2023a). Unlike (Fort
et al., 2021; Esmaeilpour et al., 2022), which rely on prior
information on OOD samples, MCM (Ming et al., 2022) of-
fers a training-free OOD detection approach that measures
the similarities between visual features with textual con-
cepts. Besides, a recent study (Liao et al., 2023) fine-tunes
CLIP using labeled data to improve both generalization
and OOD detection performance, even incorporating novel
words from WordNet. Two concurrent studies (Ming & Li,
2024; Miyai et al., 2023) investigate the performance of fine-
tuned CLIP after few-shot in-distribution (ID) classification.
In contrast, UEO enhances the OOD detection performance
of CLIP using only unlabeled data, without any additional
information apart from a predefined list of class names.

2.3. Unsupervised Model Adaptation

Unsupervised model adaptation (a.k.a., source-free domain
adaptation) (Liang et al., 2020; Li et al., 2020; Huang et al.,
2021; Kundu et al., 2022) has emerged as a popular re-
search topic in transfer learning, intending to transfer a
well-trained model from a labeled source domain to an un-
labeled but related target domain. As classified in a recent
survey paper (Liang et al., 2023), unsupervised model adap-
tation methods can be broadly categorized into four popular
schemes: pseudo-labeling, consistency training, clustering-
based training, and source distribution estimation. However,
these methods typically require a closely related source
domain to train the source model, limiting their practical
applicability in real-world scenarios. Conversely, by em-
ploying CLIP, we effortlessly acquire a high-quality source
model with the help of class names from the target task.

While most research in unsupervised model adaptation has

focused on closed-set scenarios, a few studies (Liang et al.,
2021; Feng et al., 2021; Qu et al., 2023) have also investi-
gated open-set model adaptation, which deals with target
tasks that contain additional classes not present in the source
task. In such cases, these novel classes are treated as a
distinct ‘unknown’ category, and their accuracy is evalu-
ated accordingly. Nonetheless, existing model adaptation
techniques are always tailored to address a single category
shift scenario, specifically, open-set transfer (Kundu et al.,
2020; Feng et al., 2021; Liang et al., 2021; Qu et al., 2023)
or closed-set transfer (Liang et al., 2020; Li et al., 2020;
Huang et al., 2021; Liang et al., 2022). To the best of our
knowledge, DANCE (Saito et al., 2020) is currently the only
domain adaptation method that can handle different types of
category shift scenarios (i.e., closed-set (Zhang et al., 2021),
partial-set (Cao et al., 2018), open-set, and open-partial-set
(You et al., 2019)) without prior knowledge of the specific
scenario. Building upon the universal domain adaptation
concept of DANCE, this paper presents the problem of
unsupervised universal fine-tuning, which adapts CLIP to
unlabeled training data with the presence of an imprecise
predefined list of class names. Notably, we employ OOD
detection to distinguish between known classes and OOD
classes, thereby avoiding the need for sensitivity thresholds.

3. Unsupervised Universal Fine-Tuning
3.1. Preliminary

In this paper, we employ CLIP (Radford et al., 2021) as a
representative VLM for unsupervised universal fine-tuning
throughout this paper since it is a pioneering work that
has led to significant advancements in various computer
vision tasks. For the sake of simplicity, we focus on the
image classification task. Typically, the CLIP model adopts
a straightforward dual-stream architecture with an image
encoder, denoted as g;(-), and a text encoder, denoted as
gr(-). Each encoder processes input data from the corre-
sponding modality. In its pre-training phase, CLIP leverages
a self-supervised contrastive objective to learn image-text
correspondences from noisy image-text pairs sourced from
the Internet. As a result, the features of paired images and
texts are close to each other in the shared embedding space.

To facilitate zero-shot prediction in downstream tasks, CLIP
generates a prompt (e.g., “a photo of a [CLASS]”) for each
class by replacing the [CLASS] token with the name of
the corresponding class. This technique aims to reduce the
gap between the text distribution of the pre-training dataset
and that of the target downstream task. Then, we get the
text embedding of each class encoded by the text encoder
{Tc}cczl, where C' denotes the number of classes in the
target task. For making predictions, we compare the image
embedding I, = g;(x) of an input image x against a set of
text embeddings {Tc}g’;1 and obtain the probability that x
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Figure 2. OS and HOS scores (Bucci et al., 2020) of different methods with the change of threshold under open-partial category shift on
the Cl domain of OfficeHome (Venkateswara et al., 2017) are shown in (a-b). The relationship between AUC and the maximum HOS

score is depicted in (c) for four different domains.

belongs to class c using a softmax operation:

pe(z) = ply = c|z) = gxp(S(Iw T.)/7) 7
2 i—1 exp(S(Ie;, Ti)/7)
where S(+, -) denotes the cosine similarity metric between
embeddings, and the temperature parameter 7 is set to 0.01
by default. Note that the accuracy of zero-shot inference
is highly dependent on the quality of the candidate class
names {y1, ..., yc} selected for the prediction task.

ey

In addition to its impressive zero-shot classification capabili-
ties, CLIP has also demonstrated remarkable performance in
zero-shot OOD detection as reported in (Ming et al., 2022;
Wang et al., 2023a). For the sake of simplicity, we adopt the
maximum softmax probability score as,

S(z) = méixpc(:v). )

Due to the strong zero-shot classification ability, ID samples
will be matched to one of the textual descriptions in the
candidate list with a high score, and vice versa. Formally,
a standard OOD detection function can be expressed as:

@) = {ID S(z) > A

= , where \ is a chosen thresh-
00D S(z) <A

old so that a high fraction of ID data is above the threshold
in real-world applications. For samples that are catego-
rized as ID, we easily obtain the class prediction through

9 = arg max. p.(z).

3.2. Problem Setting

With a predetermined name list of known classes, denoted as
{y1,...,yc}, the objective of Unsupervised Universal Fine-
Tuning (U2-FT) is to facilitate the adaptation of CLIP to
unlabeled data X, in the wild. U2-FT is primarily designed
to enhance the performance of CLIP in two key aspects: (1)
accurately classifying samples affiliated with the ‘known’
classes from the aforementioned list (ID generalization)
and (2) effectively identifying samples beyond these des-
ignated classes (OOD detection). To better understand the

wildness of unlabeled data, we denote the label space of
the predefined list as L,,, and the label space of the unla-
beled data as L,,. Prior unsupervised fine-tuning methods
(Huang et al., 2022; Tanwisuth et al., 2023) only consider
the closed-set category shift scenario (i.e., L,, = L,). How-
ever, three other prevalent category shift scenarios exist:
partial-set (L,, C L), open-set (L, C L,), and open-
partial (L, N L, # 0,L, ¢ L,.L, ¢ L,). Due to the
unlabeled nature of downstream data, we may not know in
advance which of these scenarios will occur. Hence, we
adhere to the notion of ‘universal’ as introduced in the pio-
neering work of DANCE (Saito et al., 2020), delving into
the universal adaptation of CLIP to wild unlabeled data.

Evaluation. Generally, we evaluate the recognition perfor-
mance after unsupervised fine-tuning across four distinct
category shift scenarios. Unlike DANCE (Saito et al., 2020),
which assesses accuracies using training unlabeled data, we
opt for an independent test set comprising both ID and OOD
samples. This choice is motivated by the fact that, in scenar-
ios involving closed-set and partial-set category shifts, the
absence of OOD samples in the test set makes it unfeasible
to assess the performance of OOD detection. Furthermore,
DANCE treats all OOD samples as an extra ‘unknown’ class
and calculates the accuracy averaged over all classes (i.e.,
OS score) (Panareda Busto & Gall, 2017; Saito et al., 2018).
Meanwhile, numerous open-set domain adaptation methods
embrace the HOS score (Bucci et al., 2020; Fu et al., 2020),
replacing the simple average with the harmonic mean.

Both OS and HOS scores necessitate the accuracy of the ‘un-
known’ class, which highly relies on the selected threshold
A. As an alternative approach, we align with the prevalent
practice in the field of OOD detection (Yang et al., 2021;
2023) and incorporate another widely accepted metric: the
area under the receiver operating characteristic curve (AUC).
This metric is complemented by the assessment of per-class
accuracy for ID samples within the test set. In Fig. 2(a-b),
we first illustrate the sensitivity of OS and HOS scores of
different methods as the threshold varies. Clearly, the high-
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est OS score is consistently achieved when no samples are
classified as OOD. The variation in HOS score differs across
different methods and is notably affected by the threshold.
In addition, as depicted in Fig. 2(c), the examination reveals
a positive linear correlation between the AUC score and the
maximum HOS score, indicating the superiority of the AUC
score for open-set evaluation.

3.3. Universal Entropy Optimization (UEQ)

To adapt CLIP to the unlabeled data, we consider using
Shannon entropy as the optimization objective function. The
idea is to minimize the entropy of the model’s prediction
for each instance, making them closer to one of these proto-
types in the feature space. However, when the training data
contains OOD samples, entropy minimization may have the
unintended effect of weakening the model’s ability to reject
them. Ideally, OOD samples should exhibit dissimilarity to
any of the classes in the predefined list, thereby we can use
entropy maximization instead to make the model produce
approximately uniform predictions. Nevertheless, this ap-
proach becomes infeasible in unsupervised fine-tuning due
to the lack of knowledge about which samples are OOD.

Previous studies (Ming et al., 2022; Wang et al., 2023a) have
shown that using the maximum softmax probability score
in Eq. (2) for CLIP can achieve impressive performance
in OOD detection. Inspired by this, we treat such scores
as sample-level weights w(z) to approximately achieve en-
tropy minimization and maximization at the same time. For-
mally, the unified objective of entropy optimization becomes

L= Y B@HE) - Y Sw@)HpE), 6

zEB: zEB:

where B; denotes a mini-batch of X, H(p(z)) =
— Zle pe(x) log p.(x) denotes the Shannon entropy of
p(x), and ®(-) represents a monotonically decreasing func-
tion, such as ®(w) = 1/w. The normalized weight within

a mini-batch is defined as w(z) = Ew(qux)’ which empha-

sizes confident samples during entropy minimization. In
contrast, the normalized weight before entropy maximiza-
tion is denoted as ®(w(x)) = %, which places

emphasis on potential OOD samples.

The combination of two weighted entropy terms in Eq. (3)
may be optimal when the weights within a mini-batch ex-
hibit significant diversity. If no OOD samples are present
in the mini-batch, the second entropy term would deterio-
rate the adaptation process by increasing the entropy of a
difficult sample belonging to one of the targeted classes. To
mitigate these potential risks, we apply entropy maximiza-
tion over the average prediction of all the OOD samples and

obtain the following objective,

£= Y @@)Hp() - Hp), @
r€EB;

where p = > 5 ®(w(x))p(z) is the weighted average
of predictions for each sample within the mini-batch ;.
Intuitively, the objective in Eq. (3) resembles the mutual
information maximization loss (Liang et al., 2020), which
can also be decomposed into two entropy terms. When
all the samples within a mini-batch share the same weight,
namely, w(z) = ®(w(z)) = m, where || B|| denotes the
batch size, the objective exactly degrades to the information
maximization loss. This indicates that even if no OOD
samples exist in the unlabeled data, optimizing the second
term in Eq. (4) can still be beneficial.

Parameter efficiency. During the unsupervised adapta-
tion process, we employ a parameter-efficient fine-tuning
paradigm (Lialin et al., 2023) for foundation models,
wherein only a small number of parameters instead of the
entire model are modified during the fine-tuning process. In
particular, we follow CoOp (Zhou et al., 2022b) by optimiz-
ing the textual prompt, namely the learnable word vectors
{[Vi]}*, in the textual sentence “[V1], [Val, ..., [Vim],
[CLASS]”, where m denotes the length of textual prompt.
Several prior studies (Bahng et al., 2022; Zang et al., 2022;
Khattak et al., 2023) have demonstrated that the integration
of visual prompts enhances the few-shot labeled adaptation
of CLIP. However, it is worth noting that these methods are
exclusively suitable for transformer-based visual branches.
Instead, we draw inspiration from TENT (Wang et al., 2021)
and introduce an approach to optimize the affine parame-
ters within the normalization layers of the image branch,
complementing the optimization of the textual prompt.

4. Experiments
4.1. Setup

Datasets. We employ four popular domain adaptation
datasets, i.e., Office (Saenko et al., 2010) that com-
prises 3 domains of 31 object categories, OfficeHome
(Venkateswara et al., 2017) that encompasses 65 categories
across 4 domains, VisDA-C (Peng et al., 2017) that includes
2 distant domains of 12 classes, and DomainNet (DN) (Peng
et al., 2019) that contains 345 classes distributed in 6 styles.

Protocols & Evaluations. U%-FT assesses both the gen-
eralization performance of known classes and the OOD
detection capability towards samples from OOD classes, as
described in Section 3.2. For each category shift, we deter-
mine the label space of the training unlabeled data based on
the specific shift and select all the data from these classes.
The detailed data splits about known classes and unknown
classes can be found in Appendix F. It is worth noting that
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Table 1. Results (%) on different domains under the closed-set category shift (ResNet-50). [Best/ best values.]

O | Tasks Office OfficeHome VisDA-C DomainNet Average

3 | Methods ACC AUC HAA |ACC AUC HAA |ACC AUC HAA|ACC AUC HAA|ACC AUC HAA
X \CLIP (Radford et al., 2021) \ 732 828 717 \ 732 75.0 74.0 \ 88.9 81.6 85.1 \ 473 66.5 53.0 \ 649 740 67.8
— | EntMin (Wang et al., 2021) 733 82.8 77.7|732 75.1 74.0(89.0 819 853|464 659 513|646 739 672
2 | InfoMax (Liang etal., 2020) |78.6 823 80.3 |76.0 75.7 75.8 |91.8 812 862 |50.6 67.0 55.6 |68.5 743 70.0
£ | DANCE (Saito et al., 2020) 74.8 832 788|745 759 751|925 821 869|472 654 51.6|66.0 740 68.0
¥ | UPL (Huang et al., 2022) 76.8 824 794|756 757 75.6(89.0 819 853 |50.1 673 556|674 745 69.6
% POUF (Tanwisuth et al., 2023) | 76.2 83.0 79.4 | 754 763 75.8 |92.1 839 87.8|49.9 663 548 |67.6 746 69.7
= |UEO 77.6 835 804|762 749 755 |91.1 844 87.6|50.8 673 558|683 749 70.2
4+ | EntMin (Wang et al., 2021) 737 829 78.0|73.8 75.6 74.6|90.3 827 863 |46.7 66.1 515|651 742 67.6
z | InfoMax (Liang et al., 2020) | 79.2 82.5 80.8 |77.0 75.8 76.3 |92.6 814 86.6|52.0 663 56.8 |69.5 74.1 70.8
§ DANCE (Saito et al., 2020) 746 832 78.6|750 76.1 755|902 847 873 |48.1 657 523|662 745 68.4
€| UPL (Huang et al., 2022) 77.0 83.0 79.8 1760 76.5 76.1 |89.0 81.7 852 |51.0 675 56.6 |67.9 749 703
E POUF (Tanwisuth et al., 2023) | 76.7 83.3 79.8 | 76.1 76.4 762 |92.3 84.1 88.0|50.5 657 554 |68.1 745 70.2
“ |UEO 78.1 84.1 809 | 768 75.6 76.1 922 84.6 882|519 672 57.0|69.1 75.1 711

Table 2. Results (%) on different domains under the partial-set category shift (ResNet-50).

© | Tasks Office OfficeHome VisDA-C DomainNet Average

3 | Methods ACC AUC HAA |ACC AUC HAA |ACC AUC HAA|ACC AUC HAA|ACC AUC HAA
X \CLIP (Radford et al., 2021) \ 732 828 777 \ 732 75.0 74.0 \ 88.9 81.6 85.1 \ 473 66.5 53.0 \ 649 740 67.8
— | EntMin (Wang et al., 2021) 733 82.8 77.7|73.1 75.1 74.0|89.0 81.8 852|464 659 513|646 738 67.1
2 | InfoMax (Liang et al., 2020) |75.6 832 79.2|753 755 753 |87.8 798 83.6|50.6 67.0 556 |67.1 742 693
£ | DANCE (Saito et al., 2020) 740 82.8 782|744 76.1 75.1 |86.7 741 79.8 |484 659 525|655 73.1 673
| UPL (Huang et al., 2022) 743 83.1 784|737 749 742 (89.0 81.7 852 |49.7 673 554|663 744 69.0
5 POUF (Tanwisuth et al., 2023) | 75.1 83.0 78.8 | 74.8 76.1 75.4 |88.3 783 83.0|49.9 665 548 |66.7 739 68.8
= |UEO 75.8 829 792|759 759 758 |89.0 822 855 |50.8 673 558 |67.6 747 69.8
+ | EntMin (Wang et al., 2021) 73.5 82.8 779 |73.7 754 744 189.7 81.8 85.6 |46.7 66.1 51.5]650 740 67.4
Z | InfoMax (Liang et al., 2020) | 76.7 83.6 80.0 | 76.3 754 75.8 |88.7 79.4 83.7 |51.7 664 56.7|68.2 740 70.0
§ DANCE (Saito et al., 2020) 73.6 827 779|743 755 748 |87.6 79.6 834|485 658 52.6|656 73.6 67.7
€| UPL (Huang et al., 2022) 746 834 787|742 75.6 748 (89.2 819 854 |50.7 674 564|669 747 69.6
‘% | POUF (Tanwisuth et al., 2023) | 752 83.2 79.0 | 75.8 764 76.0 | 89.8 80.9 85.1 |50.3 66.1 554|674 742 69.6
% |UEO 76.4 834 79.7 1766 763 76.4 |90.0 829 863 |51.8 672 57.0|684 75.0 70.6

the test set is kept unchanged across different category shift
scenarios. We use the per-class accuracy metric as ACC for
the generalization performance and measure the AUC score
for OOD detection (maximum softmax probability as the
confidence). Moreover, we denote the harmonic mean of
ACC and AUC as HAA, i.e., HAA = 2386000 HAA
provides a high score only if the approach performs well in

both generalization and OOD detection.

Baseline methods. We conduct a comparative analysis of
UEO against several unsupervised fine-tuning methods, in-
cluding UPL (Huang et al., 2022) and POUF (Tanwisuth
et al., 2023), as well as the robust zero-shot inference base-
line, CLIP (Radford et al., 2021). Besides, we present the
results of one modified domain adaptation method, DANCE
(Saenko et al., 2010), and two model adaptation methods
(i.e., Entropy Minimization (EntMin) (Wang et al., 2021)
and Mutual Information Maximization (InfoMax) (Liang
et al., 2020)). In DANCE, the source loss is omitted, and
we set the trade-off before two target losses as 0.1.

Implementation details. For all experiments, we utilize the
pre-trained ResNet-50 and ViT-B/16 models provided by the
official CLIP repository (Radford et al., 2021). The epoch
number is set to 50 for small-size datasets (i.e., Office and
OfficeHome) and 5 for large-size datasets (i.e., VisDA-C
and DomainNet), and the learned model in the last epoch
is chosen for a fair evaluation. During training, we use an
SGD optimizer with an initial learning rate of 1e-4 for both
encoders, except for EntMin, which uses a learning rate
of le-5. We also employ a cosine scheduler to gradually
decrease the learning rate. The parameters optimized in all
methods include the prompt of the text encoder and affine
parameters in the normalization layers (i.e., BatchNorm in
ResNet-50 and LayerNorm in ViT-B/16) of the visual en-
coder. The context length of the prompt is fixed at 4 and
takes the default initialization “a photo of a”. We repro-
duce all methods’ loss functions using the hyperparameters
provided in their respective papers with the experimental
results averaged over two different seeds.
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Table 3. Results (%) on different domains under the open-set category shift (ResNet-50).

O | Tasks Office OfficeHome VisDA-C DomainNet Average

3 | Methods ACC AUC HAA |ACC AUC HAA |ACC AUC HAA|ACC AUC HAA|ACC AUC HAA
x | CLIP (Radford etal., 2021) | 73.3 828 77.7[73.1 750 73.9 |89 816 851|473 66.5 53.0|649 740 67.8
— | EntMin (Wang et al., 2021) 733 828 778|732 751 74.0 889 81.6 85.1 463 658 51.2|64.6 73.8 67.1
% | InfoMax (Liang et al., 2020) | 783 803 792 |75.6 74.6 75.0 |91.2 73.8 814|505 663 553|682 723 688
£ | DANCE (Saito et al., 2020) 748 825 784 |73.6 755 744|895 756 819|403 614 443|626 712 64.1
| UPL (Huang et al., 2022) 76.5 819 79.0 | 758 759 758 |89.0 81.8 853|503 674 558|675 745 69.7
€ | POUF (Tanwisuth et al., 2023) | 76.5 82.6 79.4 | 749 75.5 75.1 |91.0 78.4 84.1 |49.9 66.1 54.6 |67.3 735 69.0
= |UEO 78.1 82.7 803|760 747 753|913 79.2 84.8 |50.8 67.6 56.0 | 684 741 69.8
+ | EntMin (Wang et al., 2021) 737 828 779|738 754 745 (89.8 81.6 855|465 66.0 514|650 739 674
z | InfoMax (Liang et al., 2020) | 78.8 809 79.8 |77.0 744 756|925 775 843|519 658 56.5|69.4 727 70.0
§ DANCE (Saito et al., 2020) 745 827 784|745 756 750|614 552 579 472 65.1 514|618 70.1 639
€| UPL (Huang et al., 2022) 76.7 823 793|760 76.7 76.3 |89.1 81.8 853 |51.2 674 56.7|68.0 748 702
E POUF (Tanwisuth et al., 2023) | 77.0 82.8 79.7 | 75.8 754 75.6 |91.8 78.7 84.6 |50.1 65.1 549|679 732 69.4
“ |UEO 779 829 80.3|768 750 759 |92.6 812 86.5|51.9 674 572|692 744 70.7

Table 4. Results (%) on different domains under the open-partial-set category shift (ResNet-50).

O | Tasks Office OfficeHome VisDA-C DomainNet Average

3 | Methods ACC AUC HAA |ACC AUC HAA |ACC AUC HAA|ACC AUC HAA|ACC AUC HAA
x | CLIP (Radford etal., 2021) | 73.2 828 77.7 732 750 73.9 | 889 816 851|473 66.5 53.0|649 740 67.8
— | EntMin (Wang et al., 2021) 732 827 777|731 751 739|889 81.4 850|463 658 512|645 73.7 67.1
% |InfoMax (Liang et al., 2020) |76.3 81.6 78.8 | 75.4 74.5 748 |84.4 67.6 749|506 664 554|669 71.8 67.9
£ | DANCE (Saito et al., 2020) 742 829 783|745 752 74.8 858 741 794|479 652 519|653 72.6 67.0
¥ | UPL (Huang et al., 2022) 7477 825 784|747 751 74.8 |89.3 82.0 855 |50.0 67.3 556 |66.8 744 69.3
5 POUF (Tanwisuth et al., 2023) | 75.3 82.5 78.7 | 749 76.0 754 190.6 72.2 80.0 | 49.8 66.1 54.6 |67.0 72.8 684
= |UEO 76.4 832 79.6 | 756 754 755|875 747 80.5|50.7 67.6 559|674 73.7 69.1
+ | EntMin (Wang et al., 2021) 734 827 718|737 753 744 |89.1 80.5 88.1 |46.6 66.0 514|649 73.7 67.7
Z |InfoMax (Liang et al., 2020) | 77.2 81.5 79.2 |76.5 73.9 75.1 [90.6 74.6 84.8 |51.9 66.0 56.6 | 68.7 723 69.8
§ DANCE (Saito et al., 2020) 735 825 778|746 752 74.8 | 885 748 885|482 656 523|657 728 682
€| UPL (Huang et al., 2022) 753 825 787|749 758 753 |89.8 825 88.1|51.0 675 56.6 | 674 747 702
‘G | POUF (Tanwisuth et al., 2023) | 75.4 82.4 787|756 758 757|916 745 87.1 505 656 553 |67.7 72.9 69.7
“ |UEO 772 832 80.1|765 756 76.0 920 812 88.0|51.9 674 57.1|689 746 70.9

4.2. Experimental Results

In Table 1~4, we evaluate UEO for four distinct category
shift scenarios (i.e., closed-set, partial-set, open-set, and
open-partial-set) of U2-FT, and also reproduce the base-
line methods for fair comparisons. The first column “OPT”
denotes the optimized parameter space, where “+ NormLay-
ers” represents optimizing not only the textual prompt but
also the affine parameters in normalization layers.

Results under closed-set category shift (Table 1). By
solely optimizing the textual prompt, UEO achieves the best
average results and outperforms all other methods in terms
of HAA on 2 out of 4 datasets. All the methods benefit from
the incorporation of optimizing the normalization layers,
while UEO still obtains the best HAA value, increasing from
70.2% to 71.1%. In particular, UEO obtains the second-best
average scores in ACC and AUC, indicating a good balance
between generalization and OOD detection.

Results under partial-set category shift (Table 2). Under

both optimization scenarios, UEO achieves the best average
results and consistently ranks within the top two among all
the methods in terms of HAA. Upon careful examination of
the values in both ACC and AUC, it is evident that UEO con-
sistently achieves the best performance across both metrics.
Furthermore, the benefits of incorporating normalization
layers are once again confirmed for all the methods.

Results under open-set category shift (Table 3). For the
open-set category shift where the training data contains
OOD samples, UEO achieves the best average results under
both optimization scenarios. Although UPL also performs
well in rejecting OOD samples, it falls short in generalizing
to known classes. For instance, on the DomainNet dataset
and the optimization of both text prompt and visual normal-
ization layers, UEO achieves a better ACC score of 51.9%
with the same AUC score of 67.4%.

Results under open-partial-set category shift (Table 4).
While UEO slightly outperforms UPL when optimizing the
textual prompt alone, it surpasses UPL when incorporat-
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Table 5. Results (%) on the DomainNet dataset under four different category shifts (ViT-B/16, + NormLayers).

Tasks closed-set partial-set open-set open-partial-set Average
Methods ACC AUC HAA |ACC AUC HAA |ACC AUC HAA|ACC AUC HAA|ACC AUC HAA
CLIP (Radford etal., 2021) | 582 72.6 63.0 | 582 726 63.0 | 582 72.6 63.0|582 726 63.0|582 726 63.0
EntMin (Wang etal., 2021) | 56.0 71.6 59.3 | 56.0 71.7 593 | 557 713 59.0 | 558 714 59.1[559 715 59.2
InfoMax (Liang et al., 2020) | 62.2 71.0 653 | 622 709 652 | 623 706 651 |62.1 705 649 | 622 70.7 65.1
DANCE (Saito etal., 2020) | 57.9 720 60.6 | 579 720 60.6 | 579 713 603|578 716 604|579 717 605
UPL (Huang et al., 2022) 615 728 656|612 730 655|617 729 658|614 730 656|614 729 656
POUF (Tanwisuth et al., 2023) | 60.9 71.1 644 | 614 71.6 649 | 61.0 70.8 643 |61.1 708 644 |61.1 711 645
UEO 620 725 657|619 725 656|621 730 66.0 | 620 729 658 | 62.0 727 65.8
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Figure 3. Different optimization designs on (Sk) in DomainNet and (Re) in OfficeHome, (open-partial-set, ResNet-50).
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Figure 4. Results of different hyperparameters on (Sk) in DomainNet (open-partial-set, ResNet-50).

ing normalization layers, achieving the highest HAA value
under the open-partial-set category shift. Typically, UEO
consistently strikes a good balance between generalization
and OOD detection, enhancing generalization performance
without compromising its ability to detect OOD samples.

4.3. Analysis

ViT backbone. We further adopt the ViT-B/16 backbone
(Radford et al., 2021) as the pre-trained model and report
the results in Table 5. We observe that UEO achieves the
best results of HAA on the DomainNet dataset under all four
settings. In particular, UEO demonstrates superior OOD
detection ability compared to InfoMax, while also achieving
better generalization performance compared to UPL.

Optimization designs. We investigate the performance of
UEO and the baseline method (POUF (Tanwisuth et al.,
2023)) under different optimization strategies. To validate
the stability of the training process, we selected 6 combi-
nations of textual prompt (P), BatchNorm (BN), and bias
(BIAS) as the test range, according to (Zaken et al., 2022).

The results depicted in Fig. 3 demonstrate that UEO is stable
and outperforms POUF in various cases. The optimization
of the vision encoder leads to better performance, indicating
that UEO can benefit from a larger parameter space.

Hyperparameter sensitivity. Even UEO does not require
hyperparameter tuning, we present the results of UEO under
varying trade-offs (0.2, 0.5, 1.0, 2.0, 5.0) in the loss function
and batch size (32, 48, 64, 96, 128) during training in Fig. 4.
The results demonstrate that UEO remains stable across
changes in the trade-off. Although UEO(O) can achieve
better detection ability with a larger trade-off, its classifi-
cation accuracy drops significantly. Additionally, UEO is
not sensitive to changes in batch size. In contrast, POUF
requires a larger batch size to estimate the distribution and
performs poorly on smaller batches. Therefore, UEO does
not suffer from trivial hyperparameter selection.

Different choices of ®(-) and prompt initialization. Ta-
ble 6 contain the results of different monotonically decreas-
ing function designs of ®(-) in Eq. (4) and textual prompt
initialization under the open-partial-set category shift. We
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Table 6. Different choices of ®(-) and prompt initialization on (Sk) in DomainNet (open-partial-set, ResNet-50).

(a) Weight function (b) Prompt initialization
D (w) ACC AUC Prompt initialization | ACC (CLIP) AUC (CLIP) | ACC (UEO) AUC (UEO)
1/w 539 66.1 ‘a photo of a’ 49.1 65.1 54.0 (+4.9) 66.1 (+1.0)

1/w 54.1 664 ‘a photo of many’ 47.9 65.0 52.9 (+5.0) 66.3 (+1.3)
(1/w)2 537 659 ‘a sketch of a’ 52.2 65.4 54.5 (+2.3) 65.9 (+0.5)
1—w 539 664 ‘a painting of a’ 50.3 65.5 54.0 (+3.7) 65.7 (+0.2)
vi—w 542 663 ‘this is a photo of a’ 49.3 64.9 532 (+3.9) 66.1 (+1.2)
(1- w)2 539 66.2 ‘this is a picture of a’ 49.2 67.4 543 (+5.1) 659 (-1.5)

find that UEO achieves nearly consistent performance under
various function designs. As for prompt initialization, the
different designs obtain similar results with the choice (“a
photo of a”), achieving better performance for both general-
ization and OOD detection.

5. Conclusion

In this paper, we introduce a novel unsupervised univer-
sal fine-tuning (U2-FT) setting for CLIP, which does not
rely on prior knowledge about the unlabeled data in the
downstream domain. In addition to assessing the general-
ization ability to identify samples from the known classes,
UZ-FT also considers improving the detection of OOD sam-
ples after fine-tuning. We propose Universal Entropy Opti-
mization (UEO), which employs sample-level confidence to
approximately minimize the entropy of ID samples and max-
imize the entropy of OOD samples. UEO is a simple and
parameter-efficient approach that updates only a small num-
ber of parameters and does not require any hyper-parameters
in the objective. Extensive results show that UEO always
outperforms existing methods across various category shift
scenarios. We believe that the introduced U2-FT setting
is an interesting and important contribution to the field of
transfer learning with VLMs and has the potential to attract
significant attention.

Limitation. While we have successfully validated the ef-
fectiveness of UEO for image classification, we have not
yet studied its application to dense prediction tasks such as
segmentation and detection.
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A.

To

Pseudo code

facilitate a better understanding of our problem setup and proposed method (UEO), we provide the pseudocode below.

Throughout this paper, we utilize two different scores, namely ACC and AUC, calculated in Line 15 and Line 17, respectively,
to evaluate all methods under the U2-FT framework.

Algorithm 1 Universal Entropy Optimization (UEO) for Unsupervised Universal Fine-Tuning (U2-FT)

1: # The training stage
2: Input: The pre-trained CLIP, unlabeled data X; associated with the label set L, the name list of known classes
LP = {ylv' . 'ayc}'
3: for epoch = 1,2,...do
4:  foriteration =1,2,...do
5: Sample a mini-batch B; from X}.
6: Forward B; to the original CLIP to obtain the weights w(z) = S(x) using Eq. (2).
7: Forward B; to CLIP to obtain the predictions {p(x)} using Eq. (1).
8: Update the parameters of CLIP through the gradient of £ in Eq. (4).
9:  end for
10: end for
11: # The testing stage
12: Input: The adapted CLIP, evaluation data X, associated with the label set L., the name list of known classes
Lp = {ylv' . 'ayc}'
13: Split X, into two sets, X! associated with L. N L, and X2 associated with L, \ L.
14: Forward X, to the adapted CLIP to obtain the predictions {p(z)} using Eq. (1).
15: Calculate the per-class accuracy (ACC) over X! based on the argmax operation.
16: Obtain the scores S(z) for both X! and X2 using Eq. (2).
17: Calculate the AUC score to measure the ability of OOD detection.
B. Analysis beyond open-partial-set category shift

In

addition to the primary task analyzed under the open-partial-set category shift in the main text, we also present the results

under the closed-set one in Fig. 5, Fig. 6, and Table 7, respectively.
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Figure 5. Different optimization designs on (Sk) in DomainNet and (Re) in OfficeHome, (closed-set, ResNet-50).
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Figure 6. Results of different hyperparameters on (Sk) in DomainNet (closed-set, ResNet-50).
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Table 7. Different choices of ®(-) and prompt initialization on (Sk) in DomainNet (closed-set, ResNet-50).

(a) Weight function (b) Prompt initialization
D(w) ACC AUC Prompt initialization ‘ ACC (CLIP) AUC (CLIP) ‘ ACC(UEO) AUC (UEO)
l/w 543 65.9 ‘a photo of a’ 49.1 65.1 54.4 (+5.3) 65.9 (+0.8)
l/w 542  66.0 ‘a photo of many’ 47.9 65.0 53.1 (+5.2) 66.1 (+1.1)
(1/w)2 53.6 65.7 ‘a sketch of a’ 52.2 65.4 54.6 (+2.4) 65.8 (+0.4)
1—w 542 65.9 ‘a painting of a’ 50.3 65.5 53.9 (+3.6) 66.0 (+0.5)
1—w 541 66.0 ‘this is a photo of a’ 49.3 64.9 53.0 (+3.7) 65.8 (+0.9)
(1 — w)2 54.1 66.0 ‘this is a picture of a’ 49.2 64.6 54.2 (+5.0) 65.9 (+1.3)

C. Results under the conventional fine-tuning

Following the setting of POUF (Tanwisuth et al., 2023), we evaluate the effectiveness of UEO under a conventional closed-set
setting, which considers all categories as known classes. From Table 8, UEO improves the global accuracy on DomainNet
from 57.6% to 61.1% and outperforms all baseline methods.

Table 8. Accuracy (%) under conventional fine-tuning on DomainNet.

Backbones ‘ ResNet-50 ‘ ViT-B/16

Methods | C1 In Pa Qu Re Sk |Avg.|Cl In Pa Qu Re Sk |Avg
CLIP (Radford et al., 2021) 54.8 40.9 546 6.0 77.7 49.2|147.2|71.0 47.6 66.2 13.9 83.7 63.5|57.6
UPL (Huang et al., 2022) 58.1 45.8 56.6 11.1 79.6 52.8|50.7|72.4 539 66.8 19.9 84.8 65.8|60.6
POUF (Tanwisuth et al., 2023) | 58.9 45.8 58.1 9.6 76.6 50.7|50.0|72.3 53.3 69.8 18.0 83.3 65.3|60.3
UEO 59.7 46.6 59.2 11.8 78.9 53.8|51.7|73.5 54.2 69.2 18.9 84.5 66.4|61.1

D. Results on general classification datasets

To validate the effectiveness of the proposed method (UEO), we additionally utilize two widely recognized classification
datasets (i.e., ImageNet, and Food101) and present the results under four category shifts in Table 9. The detailed label split
is shown in Table 11. In the ImageNet dataset, it is clear to find that UPL and UEO perform better than other methods, and
UEO achieves the best score in ACC. In the Food101 dataset, UEO outperforms nearly all counterparts in both ACC and
AUC, achieving the highest HAA value.

E. Fine-tuning Beyond CLIP

We further investigate the effectiveness of UEO using a well-trained visual classifier like that in the source-free domain
adaptation topic (Liang et al., 2020; Huang et al., 2021). In particular, we train a classification model following (Liang et al.,
2020) using the labeled data in the source domain, then provide it to the unlabeled data in the wild. We employ two transfer
tasks in Office and OfficeHome and show the results of UEO and other methods in Table 10. It could be easily found that
UEO outperforms all counterparts in both metrics, achieving a strong result in terms of HAA for each category shift.

F. Information of data split for different shifts

In this section, we present specific information about L, (the target class of interest), L,, (the label set of the training data),
and L. (the label set of the evaluation data) for all datasets.
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Table 9. Results (%) on the ImageNet and Food101 datasets under four category shifts (ResNet-50, + NormLayers).

Tasks closed-set partial-set open-set open-partial-set Average

ImageNet ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA
CLIP (Radford et al., 2021) 638 73.8 684 | 638 738 684 638 738 684|638 738 684|638 738 684
EntMin (Wang et al., 2021) 640 735 684 | 641 738 68.6 | 639 731 682|638 733 682|639 734 683
InfoMax (Liang et al., 2020) 663 71.8 689 | 654 734 692|651 645 648 | 653 683 668 | 655 695 674
DANCE (Saito et al., 2020) 647 728 685 | 643 733 685|649 721 683 | 644 726 683|646 727 684
UPL (Huang et al., 2022) 65.6 73.6 694 | 652 739 692|658 735 694|656 729 69.1|655 735 69.3
POUF (Tanwisuth et al., 2023) | 65.7 72.0 68.7 | 652 72.8 688 | 657 71.0 683 | 658 71.7 68.6 | 656 719 68.6
UEO 659 730 693 | 653 742 694 | 659 724 69.0 | 659 732 693|657 732 692
Tasks closed-set partial-set open-set open-partial-set Average

FooD101 ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA
CLIP (Radford et al., 2021) 79.7 716 78.6 | 79.7 71.6 78.6 | 79.7 77.6 786 | 79.7 776 786 | 797 71.6 78.6
EntMin (Wang et al., 2021) 80.1 77.6 788 | 799 776 787 |80.0 772 785|799 771 785 |80.0 774 78.6
InfoMax (Liang et al., 2020) 825 77.1 79.7 | 82.1 777 799 | 826 765 794 | 823 76.0 79.0 | 824 76.8 795
DANCE (Saito et al., 2020) 81.0 774 792 | 804 774 789 |804 763 783 |80.0 762 780|804 768 78.6
UPL (Huang et al., 2022) 80.2 777 789 |80.6 773 789 | 803 780 79.1 |81.2 784 79.8|80.6 77.8 792
POUF (Tanwisuth et al., 2023) | 81.5 77.6 79.5 | 81.1 77.6 793 | 815 772 793|813 772 792|813 774 793
UEO 824 779 80.1 | 819 779 79.8 |83 774 79.8 |81 7777 799 |82 777 799

Table 10. Results (%) using a well-trained visual model under four different category shifts (ResNet-50, + NormLayers).

Tasks closed-set partial-set open-set open-partial-set Average

Office (D—A) ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA
CLIP (Radford et al., 2021) 652 71.8 683|652 71.8 683|652 71.8 683|652 71.8 683|652 71.8 683
EntMin (Wang et al., 2021) 643 720 68.0 | 649 728 686 | 632 69.8 663|639 705 67.0 | 641 713 675
InfoMax (Liang et al., 2020) 71.8 77.1 744 | 70.1 745 722 | 722 742 732|694 70.8 70.1 | 709 742 725
DANCE (Saito et al., 2020) 650 725 685|669 735 70.0 | 658 732 693|648 71.8 68.1 | 656 727 69.0
UPL (Huang et al., 2022) 69.7 73.8 T1.7 | 677 722 699 [ 699 740 719 |68.1 700 69.0 | 688 725 70.6
POUF (Tanwisuth et al., 2023) | 69.9 75.7 727 | 689 73.7 712 |70.1 742 72.1 | 685 71.7 70.1 | 69.4 738 1715
UEO 71.6 755 73,5 |71.1 749 73.0 |71.6 750 733|702 741 721|711 749 73.0
Tasks closed-set partial-set open-set open-partial-set Average

OfficeHome (Pr—Ar) ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA | ACC AUC HAA
CLIP (Radford et al., 2021) 546 645 59.1 | 545 645 59.1 | 546 645 59.1 | 545 645 59.1 | 546 645 59.1
EntMin (Wang et al., 2021) 525 643 57.8 | 532 644 582 | 515 626 565|521 624 56.8 |523 634 573
InfoMax (Liang et al., 2020) 579 654 614|569 655 609 | 572 638 603|571 636 60.2|573 645 60.7
DANCE (Saito et al., 2020) 539 652 59.0 | 542 650 59.1 |532 627 575|540 647 589|538 644 58.6
UPL (Huang et al., 2022) 570 653 609 | 55.6 658 603|562 657 606|554 649 598 |56.1 654 604
POUF (Tanwisuth et al., 2023) | 57.1 64.6 60.6 | 56.1 64.6 60.0 | 572 63.6 60.2 | 564 634 59.7 | 56.7 64.0 60.2
UEO 583 663 62.0 | 582 662 619 | 579 649 612|582 647 613|581 655 616
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Table 11. Detailed information about four category shifts in the training stage and evaluation stage.

Datasets Category Shifts L, L. L,
closed-set [0,25) [0,31) [0,25)
partial-set [0,25) [0,31) [0,15)

Office open-set [0,25)  [0,31) [0,28)
open-partial-set [0,25) [0, 31) [0,15) U [25,28)
closed-set [0,50) [0,65) [0,50)
partial-set [0,50)  [0,65) [0,35)

OfficeHome 0 -set 0,50) [0,65)  [0,60)
open-partial-set [0,50)  [0,65) [0,35) U [50,60)
closed-set [0,8) [0,12) [0,8)

AL partial-set [0, 8) [0,12) [0, 6)

VisDA-C open-set [0,8) [0,12) [0,10)
open-partial-set [0, 8) [0,12) [0,6) U [8,10)
closed-set [0,300) [0,345) [0,300)

. partial-set [0,300) [0,345)  [0,250)

DomamNet o set 0,300) [0,345) [0,330)
open-partial-set  [0,300) [0,345) [0,250) U [300, 330)
closed-set [0,600) [0,1000) [0,600)
partial-set [0,600) [0,1000) [0,400)

ImageNet  en-set (0,600) [0,1000) [0, 800)
open-partial-set  [0,600) [0,1000) [0,400) U [600,800)
closed-set [0,60) [0,101) [0,60)
partial-set [0,60) [0,101) [0,40)

FoodlO1 - en-set 0,60) [0,101) [0,80)
open-partial-set [0,60) [0,101)  [0,40) U [60, 80)
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