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Abstract

Recent advancements in language models001
(LMs) have demonstrated strong capabilities in002
semantic understanding and contextual model-003
ing, which have flourished in generative speech004
enhancement (SE). However, many LM-based005
SE approaches primarily focus on semantic006
information, often neglecting the critical role007
of acoustic information, which leads to acous-008
tic inconsistency after enhancement and lim-009
ited generalization across diverse SE tasks. In010
this paper, we introduce LLaSE-G1, a LLaMA-011
based language model that incentivizes gener-012
alization capabilities for speech enhancement.013
LLaSE-G1 offers the following key contri-014
butions: First, to mitigate acoustic inconsis-015
tency, LLaSE employs continuous represen-016
tations from WavLM as input and predicts017
speech tokens from X-Codec2, maximizing018
acoustic preservation. Second, to promote gen-019
eralization capability, LLaSE-G1 introduces020
dual-channel inputs and outputs, unifying mul-021
tiple SE tasks without requiring task-specific022
IDs. Third, LLaSE-G1 outperforms prior task-023
specific discriminative and generative SE mod-024
els, demonstrating scaling effects at test time025
and emerging capabilities for unseen SE tasks.026
Additionally, we release our code and models027
to support further research in this area1.028

1 Introduction029

In recent years, large language models (LLMs)030

have made significant strides in natural language031

processing (NLP) (OpenAI, 2024), computer vi-032

sion (CV) (Tschannen et al., 2024; Chang et al.,033

2022), and speech processing (Wang et al., 2023a;034

Zhang et al., 2023b), driving the rapid develop-035

ment of artificial intelligence technologies. In the036

NLP domain, LLMs have redefined text genera-037

tion benchmarks through innovative pre-training038

and post-training paradigms, particularly excelling039

in few-shot and zero-shot learning scenarios. The040

1LLaSE-G1 Demos and Codes

Task Type Distortion Reference Signal

NS Noise, Reverb -
PLC Noise, Packet Loss Lossy Label

TSE Noise, Reverb,
Interfering Speech Enrolled Speech

AEC Noise, Reverb, Echo Echo Speech

SS Noise, Reverb,
Interfering Speech -

Table 1: Subtasks Definition in Speech Enhancement

impact of LLMs extends beyond unimodal textual 041

processing. In CV research, integrating LLMs with 042

visual models has sparked the rise of multimodal 043

learning frameworks, facilitating more efficient pro- 044

cessing of tasks such as image comprehension and 045

generation. Similarly, the convergence of modali- 046

ties is evident in the speech domain, where LLMs 047

have enhanced the naturalness and accuracy of 048

speech interaction systems. These advancements 049

not only highlight the power of LLMs within indi- 050

vidual domains but also underscore their potential 051

for multimodal tasks. 052

As a fundamental task in the field of speech 053

processing, speech enhancement (SE) aims to re- 054

move interference from noisy speech and separate 055

and reconstruct clean target speech. Depending 056

on the differences between the interfering speech 057

and the target speech, sub-tasks can be defined as 058

Noise Suppression (NS), Packet Loss Concealment 059

(PLC), Target Speaker Extraction (TSE), Acous- 060

tic Echo Cancellation (AEC), Speech Separation 061

(SS), and others, as detailed in Table 1. Neural SE 062

models can generally be categorized into two types: 063

discriminative (Zhao et al., 2024a,c) and genera- 064

tive (Wang et al., 2024). Deep learning-based dis- 065

criminative SE models learn a mapping between de- 066

graded speech and the corresponding clean speech 067

target. In contrast, generative SE models employ 068

language models or diffusion models to learn the 069

data distribution of the target speech. Notable re- 070
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cent models, including SELM (Wang et al., 2024),071

TSELM (Tang et al., 2024), and GenSE (Yao et al.,072

2025), leverage semantic understanding and contex-073

tual modeling capabilities, achieving competitive074

performance in speech enhancement tasks. While075

traditional discriminative SE models require care-076

fully designed architectures and task-specific loss077

functions, generative SE models offer a more flex-078

ible framework, enabling better scalability across079

different SE tasks.080

Despite surpassing traditional discriminative081

models in speech quality, generative SE models082

still face challenges in acoustic preservation and083

task generalization. Many generative SE models084

rely on discrete speech tokens—typically extracted085

from speech codecs—as inputs to facilitate lan-086

guage modeling. However, as speech is inherently087

a continuous signal, using discrete tokens, espe-088

cially semantic tokens, inevitably results in infor-089

mation loss (Yao et al., 2025), leading to acoustic090

inconsistencies after enhancement, such as changes091

in speaker timbre and intonation. Moreover, most092

generative models are focused on a single task,093

such as noise suppression, which limits their gener-094

alization across different SE tasks. Since SE tasks095

differ in their input, output, and underlying func-096

tions, it remains an open question whether LMs097

can serve as versatile, multi-task SE models.098

In this paper, we argue that, with appropriate099

design, a single language model can be a pow-100

erful and versatile SE model. To this end, we101

propose LLaSE-G1, a LLaMA-based language102

model that incentivizes generalization capabili-103

ties across various SE tasks. The architecture of104

LLaSE-G1 is simple yet effective, consisting of105

a WavLM (Chen et al., 2022) encoder for feature106

extraction, a LLaMA-based language model for107

token prediction, and an X-codec2 (Ye et al., 2025)108

decoder for waveform reconstruction. Specifically,109

to address the acoustic inconsistency caused by the110

information loss inherent in discrete tokens, we111

replace the discrete token inputs with continuous112

representations extracted from the WavLM encoder113

and predict speech tokens obtained from X-codec2.114

The WavLM encoder provides sufficient speech de-115

tails, and X-codec2 integrates semantic and acous-116

tic features into speech tokens, thus maximizing117

acoustic preservation. Additionally, to incentivize118

generalization, LLaSE-G1 utilizes dual-channel in-119

puts and outputs, unifying the degraded speech and120

optional reference signals and constraining all tasks121

under a cross-entropy loss function. Through exten-122

sive experiments, LLaSE-G1 demonstrates superior 123

performance on NS, PLC, TSE, and AEC bench- 124

marks. Furthermore, LLaSE-G1 exhibits emergent 125

capabilities for previously unseen SE tasks, such 126

as SS, and shows scaling effects at test time, where 127

performance improves with increased compute. 128

In summary, our paper makes several key contri- 129

butions: 130

• We propose LLaSE-G1, a LLaMA-based lan- 131

guage model that incentivizes generalization 132

capability for speech enhancement. 133

• We effectively address the acoustic incon- 134

sistency by leveraging both continuous and 135

discrete representations, and we design dual- 136

channel inputs and outputs, which unify var- 137

ious SE tasks without the need for task IDs. 138

Notably, AEC, PLC, and SS tasks are being 139

introduced to generative models for the first 140

time. 141

• LLaSE-G1 outperforms existing models on 142

several SE benchmarks and demonstrates scal- 143

ing effects during test time and emergent ca- 144

pabilities for unseen SE tasks. We release the 145

codes and checkpoints as open-source. 146

2 Related Work 147

Speech enhancement refers to the technology of re- 148

covering high-quality target speech from degraded 149

speech, which includes multiple subtasks (Wang 150

and Chen, 2018; Liu et al., 2022b). Traditional 151

speech enhancement, which relies on statistical 152

analysis and signal processing, often struggles with 153

generalization in dynamic scenarios. With the de- 154

velopment of deep learning, data-driven speech 155

enhancement has become the mainstream approach 156

and can be divided into two categories: discrim- 157

inative SE and generative SE (Lemercier et al., 158

2023). Discriminative SE models learn a mapping 159

between degraded speech and the corresponding 160

clean speech targets, including methods such as 161

time-frequency (T-F) masking (Williamson and 162

Wang, 2017) and time-domain approaches (Luo 163

and Mesgarani, 2018). In contrast, generative 164

models reconstruct the clean speech by learning 165

the data distribution of the target speech, such as 166

diffusion-based generative models (Zhang et al., 167

2023a; Richter et al., 2023). Recently, researchers 168

have also begun to explore the use of LMs to im- 169

prove generative speech enhancement (Wang et al., 170

2024; Yao et al., 2025). 171
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2.1 Discriminative Speech Enhancement172

Traditionally, speech enhancement encompasses173

tasks such as NS, PLC, TSE, AEC, and SS, with174

NS also requiring dereverberation. For different175

tasks, discriminative models often have different ar-176

chitectures. In NS tasks, most models are based on177

the convolutional encoder-decoder (CED) architec-178

ture. FRCRN (Zhao et al., 2024a) adds a frequency179

recurrent network to the CED architecture, achiev-180

ing excellent performance. In PLC tasks, Genera-181

tive Adversarial Networks (GANs) are commonly182

used. BS-PLCNet (Zhang et al., 2024) uses multi-183

task learning and multi discriminators, winning the184

latest PLC Challenge (Diener et al., 2024). In TSE185

tasks, the speaker embedding paradigm is widely186

adopted. TSE approaches usually use speaker ver-187

ification models (Desplanques et al., 2020; Wang188

et al., 2023b) to extract embeddings from enroll-189

ment audio and integrate into noise suppression190

networks. This approach has been successful in the191

personalized tracks of the Deep Noise Suppression192

challenges, as demonstrated by the TEA-PSE se-193

ries models (Ju et al., 2023, 2022). For AEC tasks,194

an important issue is how to deal with the delay es-195

timation and alignment between reference signals196

and microphone signals. DeepVQE (Indenbom197

et al., 2023a) utilizes attention-based delay estima-198

tion, employing fully neural networks to solve echo199

cancellation problems. For SS tasks, common mod-200

els such as TF-GridNet (Wang et al., 2023c) and201

Mossformer2 (Zhao et al., 2024b) can only handle202

a fixed number of speakers. SepTDA (Lee et al.,203

2024) introduces a transformer decoder-based at-204

tractor, capable of handling a dynamic number of205

speakers, but still requires specifying the maximum206

number of speakers.207

While these discriminative models have208

achieved excellent performance across various209

tasks, their generalization ability is limited210

by the availability of training data and model211

parameters (Welker et al., 2022). This can lead212

to performance degradation in unseen scenarios.213

Additionally, these models may introduce unde-214

sired speech distortion and phonetic inaccuracies215

to enhanced speech (Wang et al., 2020).216

2.2 Generative Speech Enhancement217

Early generative SE primarily relied on GANs and218

VAEs (Pascual et al., 2017; Fang et al., 2021). Al-219

though these approaches offered new perspectives,220

they still did not surpass the performance of dis-221

criminative models. In recent years, diffusion- 222

based generative models have been applied to 223

speech enhancement. CDiffusion (Lu et al., 2022) 224

defines the conditional diffusion process by incor- 225

porating noisy data into the diffusion process. Diff- 226

Sep (Scheibler et al., 2023) designs stochastic dif- 227

ferential equations (SDE) (Song et al., 2021). By 228

solving the corresponding reverse-time SDE, it is 229

possible to recover individual sources from the mix- 230

ture. Despite diffusion models achieving superior 231

speech quality over discriminative models in noise 232

suppression (NS) and source separation (SS), these 233

tasks were previously independent of each other, 234

requiring separate training of different models, and 235

proving difficult to generalize to other tasks. 236

Recently, researchers have begun to explore the 237

use of a joint framework, leveraging the capabilities 238

of generative models to integrate multiple enhance- 239

ment tasks into a single model. Nemo (Ku et al., 240

2024) and SpeechFlow (Liu et al.) pre-trained on 241

large-scale datasets and can be adapted to down- 242

stream tasks such as NS and TSE through fine- 243

tuning. AnyEnhance (Zhang et al., 2025) achieves 244

both NS and TSE without the need for fine-tuning. 245

It introduces a prompt guidance mechanism, en- 246

abling in-context learning capabilities. 247

With the rise of LMs in their ability to handle 248

multiple tasks, LMs have also been introduced into 249

speech enhancement. SELM (Wang et al., 2024) 250

employs a WavLM-based k-means tokenizer and 251

predicts clean tokens from noisy tokens, marking 252

the first introduction of LMs into the NS domain. 253

MaskSR (Li et al., 2024) uses a mask generation 254

model to simultaneously handle noise, reverbera- 255

tion, clipping, and bandwidth limitation. However, 256

existing unified enhancement models have not con- 257

sidered the echo cancellation task, which requires 258

reference audio input and the need to address delay 259

estimation and alignment issues. We suggest that 260

by leveraging the powerful modeling capabilities 261

of LMs, it is possible to develop a general speech 262

enhancement model that unifies NS, PLC, TSE, 263

AEC and SS. 264

3 LLaSE-G1 265

3.1 Overall Architecture 266

LLaSE-G1 is designed to incentivize generaliza- 267

tion across various SE tasks with a single LLaMA- 268

based LM (Grattafiori et al., 2024). As shown in 269

Figure 1, compared to previous specialist mod- 270

els such as FRCRN (Zhao et al., 2024a), TEA- 271
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PSE 3.0 (Ju et al., 2023), Align-ULCNet (Shetu272

et al., 2024b), mossformer2 (Zhao et al., 2024c)273

and BS-PLCNet (Zhang et al., 2024), LLaSE-G1274

greatly simplifies the model structure, keeping275

three main components: (1) a WavLM encoder,276

(2) a LLaMA-based LM and (3) an X-codec2 de-277

coder. Specifically, the WavLM encoder extracts278

continuous speech features from degraded speech.279

The LLaMA-based LM takes speech features as in-280

put and predicts discrete speech tokens extracted by281

X-codec2 in an autoregressive manner. Finally, the282

X-codec2 decoder reconstructs enhanced speech283

from predicted speech tokens.284

Formally, let: 1. Vertorize(X) =285

{x1, . . . , xN} be the WavLM encoder, which con-286

verts input degraded speech X into N speech287

features. 2. Vertorize(P ) = {p1, . . . , pT }288

be the WavLM encoder, which converts op-289

tional reference speech X into T speech fea-290

tures. 3. Tokenize(Y ) = {y1, . . . , yM} be291

the X-codec2 encoder, which converts an en-292

hanced speech Y into M speech tokens. 4.293

Detokenize({y1, . . . , yM}) = Ŷ be the X-codec2294

decoder, which reconstructs the waveform Ŷ295

from its token representations. As the down-296

sampling rate of WavLM is the same as that of297

X-codec2, N is equal to M . Given a dataset298

D = {(Xi, Pi, Yi)}Si=1, where Xi is the de-299

graded speech, Yi is the enhanced speech and Pi300

is the reference speech or empty if unavailable,301

we represent each pair (Xi, Pi, Yi) as a sequence302

(x1, . . . , xN , p1, . . . , pT , y1, . . . , yM ). Since the303

Xi and Pi are always given as input during training304

and inference, we pad Xi and Pi to the same length305

and the LM θ focuses on learning the conditional306

probability:307

P (x1, . . . , xN , p1, . . . , pT , y1, . . . , yM ; θ)

=

M∏
j=1

P (yj |x1 ⊙ p1, . . . , xj ⊙ pj ; θ),
(1)308

where ⊙ is the concatenation between x and p in309

the channel axis.310

3.2 Maximizing Acoustic Preservation311

As highlighted by WavChat (Ji et al., 2024), speech312

representations can be broadly categorized into313

two types: continuous and discrete representa-314

tions. Continuous representations, typically ex-315

tracted from self-supervised learning (SSL) models316

like HuBERT (Hsu et al., 2021) and WavLM (Chen317

et al., 2022), are considered lossless carriers for318

LLaMA

WavLM Encoder

Features

Xcodec2 Decoder

Tokens ...

...

Degraded Speech

Enhanced Speech

Reference Speech (optional)

...

🔥

❄ 

❄ 

...

Figure 1: Overall Architecture of LLaSE-G1. LLaSE-
G1 simplifies model architecture to support various SE
tasks.

speech, capturing intricate speech details. In con- 319

trast, discrete representations are derived from 320

speech codecs such as Encodec (Défossez et al., 321

2022) and DAC (Kumar et al., 2023), which, while 322

facilitating language modeling, are lossy due to the 323

information loss during quantization. To address 324

this, LLaSE-G1 adopts continuous representations 325

as input and predicts discrete representations, aim- 326

ing to maximize acoustic preservation throughout 327

the enhancement process. 328

For continuous speech representations, we uti- 329

lize WavLM as the extractor. WavLM is an SSL 330

model that combines a convolutional feature en- 331

coder with a transformer encoder. Pre-trained on 332

large-scale speech data, it excels across various 333

speech-processing tasks. Previous research (Baas 334

et al., 2023; Zhu et al., 2023) has shown that fea- 335

tures extracted from the 6th layer of WavLM con- 336

tain sufficient acoustic information for high-fidelity 337

speech reconstruction. Therefore, we leverage the 338

features from this layer as the input representations 339

for the language model. 340
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For discrete speech representations, we use X-341

Codec2 as the extractor. X-Codec2 is a recently342

developed speech codec that integrates semantic343

and acoustic features into a unified codebook, en-344

suring a 1D causal dependency. This design reflects345

the inherent left-to-right temporal structure of au-346

dio signals, while also preserving more acoustic347

information compared to traditional 1D semantic348

tokens. Consequently, we adopt the speech tokens349

extracted by X-Codec2 as the modeling target for350

the language model.351

3.3 Unifying Various SE tasks352

Although different speech enhancement tasks are353

applied in various scenarios, they share underly-354

ing commonalities, such as the need to determine355

which components should be removed from the356

noisy speech. To this end, LLaSE-G1 employs357

a dual-channel input and output framework that358

unifies several SE tasks within a single language359

model (LM). These tasks include NS, TSE, PLC,360

AEC, and SS.361

Systematically, NS, PLC, and SS require only362

the degraded speech as input, while TSE and AEC363

need both the degraded speech and an additional364

reference speech. In contrast to previous PLC mod-365

els, we do not use the lossy labels that indicate366

missing speech frames, thereby simplifying the367

data requirements.368

To unify the input representations, we introduce369

a dual-channel input: one channel for the degraded370

speech and the other for the optional reference371

speech. These representations are padded to the372

same length and concatenated along the channel373

dimension. Notably, if the reference speech is un-374

available, we set the second channel to zero.375

While NS, PLC, AEC, and TSE tasks output a376

single enhanced speech, we note that AEC requires377

the removal of information related to the reference378

speech, while TSE necessitates the preservation379

of reference speech information. To address this,380

we introduce a dual-channel output with two linear381

projection heads to unify the output representations.382

The first channel c1 predicts tokens related to ref-383

erence speech and the second channel c2 predicts384

tokens irrelevant to reference speech. With these385

designs, for tasks including NS, AEC, and PLC, we386

employ a single-supervision strategy LS through387

the cross-entropy loss between c0 and the tokens t0388

extracted from the clean signal: 389

LS = − 1

N

N∑
k=1

t
(k)
0 log

(
c
(k)
0

)
(2) 390

For the TSE task, we implement a dual-supervision 391

strategy LD with separate constraints for both out- 392

puts. The first output c0 handles interfering speaker, 393

while the second output c1 is dedicated to target 394

speaker extraction. The LD is formulated as: 395

LD = − 1

N

N∑
k=1

[t
(k)
0 log

(
c
(k)
0

)
+ t

(k)
1 log

(
c
(k)
1

)
]

(3) 396

Importantly, in LLaSE-G1, SS is treated as an un- 397

seen task throughout the entire training process. 398

4 Experiments and Results 399

4.1 Experimental Setup 400

Datasets. For the training data, we use 401

the Librispeech, HiFiTTS, and DNS Challenge 402

datasets (Reddy et al., 2020; Dubey et al., 2023), 403

along with internal datasets as original clean 404

speech, totalling approximately 5000 hours. Room 405

impulse responses (RIRs) are sourced from the 406

DNS Challenge datasets. The noise data contains 407

nearly 1000 hours, sourced from DEMAND, ESC- 408

50, DNS Challenge, AEC Challenge (Cutler et al., 409

2023), and internal datasets. 410

Data augmentation. We utilized dynamic data 411

augmentation during training. For the NS task, the 412

clean audio and noise are randomly selected and 413

mixed with a signal-to-noise Ratio (SNR) ranging 414

from [-5,20] dB. Both clean and noisy signals have 415

a 50% probability of adding reverberation. In the 416

PLC task, we use a two-state first-order Markov 417

chain to describe the packet loss status of the cur- 418

rent frame and the next frame. The transition and 419

hold probabilities for Markov states are selected be- 420

tween 0.05 and 0.95. We directly generate a binary 421

mask sequence and apply it to the clean speech. For 422

the AEC task, we randomly select a real echo sig- 423

nal and its corresponding reference signal from the 424

far-end single talk in the AEC Challenge dataset. 425

The signal-to-echo ratio (SER) ranges from -15 dB 426

to 15 dB. Noise is added with a 20% chance, and 427

the SNR is between -5 dB and 20 dB. For the Target 428

Speech Enhancement (TSE) task, we select a clean 429

speech segment and its corresponding auxiliary seg- 430

ment for the enrollment speech, while a different 431

speaker is chosen for the interference speech. There 432
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is a 5% probability that no interfering speaker is433

present. Target speech and interfering speech are434

mixed with an SNR ranging from [-15, 15] dB,435

with an additional 10% probability of adding extra436

noise.437

The audio length for each batch is 8 seconds. Be-438

fore being fed into the model, the audio is randomly439

truncated to a length between 4 and 8 seconds to440

ensure the model’s ability to generalize to different441

audio lengths. During training, the distribution of442

tasks (NS, PLC, AEC, and TSE) is evenly balanced.443

Within each batch, the data are of the same task444

type. Gradient accumulation is enabled to help the445

model adapt to multi-task learning, with parameter446

updates occurring every 20 steps.447

Model configuration. We use the open-source448

checkpoints of WavLM-large2 and X-codec23. The449

LLaMA-based LM comprises 16 LLaMA layers,450

each with 16 attention heads, a dropout rate of 0.1,451

a hidden size of 2048, and an intermediate size452

of 4096. The total number of parameters in the453

model is approximately 1.07 billion. More details454

are given in Appendix A.1.455

Baseline systems. We evaluate the performance456

of our LLaSE-G1 with several state-of-the-art457

(SOTA) models of each subtask, including the win-458

ners of the recent signal processing grand chal-459

lenges (Reddy et al., 2020; Dubey et al., 2023;460

Cutler et al., 2023; Diener et al., 2024, 2022) for461

each task. Details of the baseline system and test462

set for each subtask are provided in Appendix A.463

Evaluation Metrics. We use objective metrics464

to evaluate the performance of the baseline systems465

and our model. DNSMOS (Reddy et al., 2022)466

include speech quality (SIG), background noise467

quality (BAK), and overall quality (OVRL) of the468

audio. AECMOS (Purin et al., 2022) consists of469

echo annoyance MOS (EMOS) and other degra-470

dation MOS (DMOS). PLCMOS (Diener et al.,471

2023) is used to assess the quality of audio pro-472

cessed by PLC algorithms. All MOS scores range473

from 1 to 5, representing audio quality from low474

to high. SpeechBERTScore (SBS) (Saeki et al.,475

2024) is also employed to evaluate the semantic476

similarity between the enhanced audio and the ref-477

erence audio. Following (Zhang et al., 2025), we478

use HuBERT-base4 model to extract semantic fea-479

tures. For acoustic similarity, we calculate speaker480

similarity SimWB based on the WavLM-base-sv481

2WavLM-Large on Hugging Face
3X-codec2 on Hugging Face
4Hubert-base on Hugging Face

model5 to evaluate the performance. 482

Inference. For each task, we conduct single and 483

multiple inferences. For multiple inferences, we 484

infer 10 times and take the best result where the 485

model’s output is used as the input for the next 486

inference. For the PLC task, we only employ the 487

audio to be processed as input, without the lossy 488

label. For the TSE task, we keep the enrollment 489

audio unchanged during multiple inferences. For 490

the AEC task, we only use the reference audio 491

for the first inference, subsequent inferences are 492

treated as NS tasks. For the SS task, we employ 493

a two-stage inference strategy. First, we separate 494

one speaker from the mixed audio, and then use 495

the first separated speaker’s audio as a reference 496

for the second inference stage. 497

4.2 Experimental Results 498

4.2.1 Noise Suppression 499

Table 2 presents a comparison between the pro- 500

posed LLaSE-G1 and several SOTA discriminative 501

and generative models. The "With Reverb" column 502

represents the test set with reverberation, and the 503

"No Reverb" column is the one without. The results 504

indicate that generative NS models consistently out- 505

perform discriminative models, especially in rever- 506

berant conditions. With single inference, LLaSE- 507

G1 already surpassed most other systems. After 508

multiple inferences, its performance improves fur- 509

ther, achieving a SOTA result of 3.49 OVRL score 510

at the no_reverb test set and 3.42 OVRL score at 511

the with_reverb test set. 512

Table 2: DNSMOS scores on the Interspeech 2020 DNS
Challenge blind test set. "D" represents Discrimina-
tive and "G" represents Generative. LLaSE-G1single and
LLaSE-G1multi represent single inference and multiple
inference using LLaSE-G1, respectively.

Model Type With Reverb No Reverb

SIG BAK OVRL SIG BAK OVRL

Noisy - 1.76 1.50 1.39 3.39 2.62 2.48
Conv-TasNet D 2.42 2.71 2.01 3.09 3.34 3.00
DEMUCS D 2.86 3.90 2.55 3.58 4.15 3.35
FRCRN D 2.93 2.92 2.28 3.58 4.13 3.34
SELM G 3.16 3.58 2.70 3.51 4.10 3.26
MaskSR G 3.53 4.07 3.25 3.59 4.12 3.34
AnyEnhance G 3.50 4.04 3.20 3.64 4.18 3.42
GenSE G 3.49 3.73 3.19 3.65 4.18 3.43
LLaSE-G1single G 3.59 4.10 3.33 3.66 4.17 3.42
LLaSE-G1multi G 3.65 4.16 3.42 3.71 4.19 3.49

5WavLM-base-sv on Huggingface
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4.2.2 Packet Loss Concealment513

We compared LLaSE-G1 with the top-performing514

models (Zhang et al., 2024; Li et al., 2022; Liu515

et al., 2022a; Valin et al., 2022) from the most re-516

cent two challenges on the Interspeech 2022 PLC517

blind test set (Diener et al., 2022). It is impor-518

tant to note that LLaSE-G1 operates as a blind519

PLC without the need for lossy labels. This means520

LLaSE-G1 autonomously determines whether to521

perform PLC without prior knowledge of which522

frames experienced packet loss, making it a more523

challenging task and distinct from the models par-524

ticipating in the PLC Challenge.525

Table 3: DNSMOS OVRL and PLCMOS scores on
ICASSP 2022 PLC-challenge blind testet.

Model Type OVRL PLCMOS

Noisy - 2.56 2.90
KuaishouNet D - 4.27
LPCNet D 3.09 3.74
PLCNet D - 3.83
BS-PLCNet D 3.20 4.29
LLaSE-G1single G 3.03 3.68
LLaSE-G1multi G 3.27 4.30

The results in Table 3 demonstrate significant im-526

provement with our model through inference time527

scaling. Specifically, the multi-inference approach528

boosts both OVRL and PLCMOS scores, with529

OVRL increasing from 3.03 to 3.27 and PLCMOS530

rising from 3.68 to 4.30, highlighting its effective-531

ness. LLaSE-G1’s results on blind PLC surpassed532

those of other models using informed PLC, demon-533

strating the powerful content understanding and534

generation capabilities of LMs.535

4.2.3 Target Speaker Extraction536

We use the ICASSP 2023 DNS blind test537

set (Dubey et al., 2023) for the TSE task evalu-538

ation, which includes two tracks: the headset track539

and the speakerphone track.540

Table 4: pDNSMOS scores on ICASSP 2023 DNS-
challenge blind testet.

Model Type Track 1 Track 2

SIG BAK OVRL SIG BAK OVRL

Noisy - 4.15 2.37 2.71 4.05 2.16 2.50
TEA-PSE 3.0 D 4.12 4.05 3.65 3.99 3.95 3.49
NAPSE D 3.81 3.99 3.38 3.92 4.17 3.56
LLaSE-G1single G 4.21 3.99 3.72 4.08 3.84 3.55
LLaSE-G1multi G 4.20 3.97 3.70 4.11 3.86 3.58

As shown in Table 4, in both tracks, LLaSE-G1’s541

SIG MOS significantly outperformed other meth- 542

ods, indicating that LMs-based generative models 543

provide higher audio quality with less signal distor- 544

tion. The OVRL scores suggest that TEA-PSE 3.0 545

and NAPSE have advantages on headset and speak- 546

erphone devices, respectively. However, the pro- 547

posed LLaSE-G1 achieved the best performance 548

across both tracks, demonstrating superior device 549

generalization capabilities compared to discrimina- 550

tive models. 551

4.2.4 Acoustic Echo Cancellation 552

LLaSE-G1 is the first generative model to integrate 553

the AEC task into a unified framework. As shown 554

in Table 5, LLaSE-G1 demonstrates comparable 555

performance to the SOTA discriminative AEC ap- 556

proaches, showcasing the potential of LMs-based 557

generative models for the AEC task.

Table 5: AECMOS Echo (EMOS) and Degradation
(DMOS) scores on ICASSP 2023 AEC-challenge blind
test set."DT" represents double-talk, FEST means far-
end only and NEST means near-end only.

Model Type DT FEST NEST
EMOS DMOS EMOS DMOS

Align-CRUSE D 4.60 3.95 4.56 -
DeepVQE D 4.70 4.29 4.69 4.41
ULCNetAENR D 4.54 3.58 4.73 4.15
Align-ULCNet D 4.60 3.80 4.77 4.28
LLaSE-G1single G 4.42 3.82 4.64 3.66
LLaSE-G1multi G 4.52 3.91 4.65 3.50

558

4.2.5 Emergent Capabilities and Scaling 559

Effects at Test Time 560

Emergent capabilities. The SS task is not in- 561

cluded in the training data, we use it to test the 562

emergent capabilities of LLaSE-G1. When com- 563

pared to other discriminative methods, our LLaMA- 564

based LLaSE-G1 demonstrates significant emer- 565

gent capabilities. With multiple inferences, our 566

generative model outperforms discriminative meth- 567

ods in OVRL scores of 3.17 and 3.25 on test sets, 568

highlighting the potential of LLaSE-G1 to go be- 569

yond task-specific optimizations and adapt seam- 570

lessly to new tasks. 571

Inference-time scaling. As shown in Figure 2, 572

scaling the inference time improves model perfor- 573

mance across nearly all tasks. For the AEC and 574

TSE tasks, performance peaks after the second in- 575

ference, with EMOS improving from 4.42 to 4.52 576

and DMOS rising from 3.82 to 3.91. In contrast, 577

the PLC task shows a significant performance boost 578

7



(a) NS (b) PLC (c) AEC (d) TSE

Figure 2: Inference-time scaling results on different tasks

Table 6: DNSMOS scores on Libri2mix and
WSJ0_2MIX test set.

Model Type Libri2mix WSJ0_2MIX

SIG BAK OVRL SIG BAK OVRL
Noisy - 2.33 1.66 1.64 3.42 3.20 2.76
Sepformer D 3.33 3.88 3.02 3.43 3.96 3.14
Mossformer2 D 3.44 3.94 3.11 3.50 4.05 3.23
LLaSE-G1single G 3.48 3.83 3.11 3.52 3.92 3.19
LLaSE-G1multi G 3.50 3.90 3.17 3.55 3.97 3.25

with increased inference time, with PLCMOS ris-579

ing from 3.67 to 4.30 and OVRL improving from580

3.03 to 3.27, a gain of up to 25%. For the NS task,581

the OVRL score increases from 3.42 to 3.49 on582

the no_reverb dataset and from 3.33 to 3.42 on the583

with_reverb dataset. These results show that scal-584

ing test-time compute will initially improve perfor-585

mance, and decrease later due to the accumulation586

of acoustic distortion.587

4.2.6 Semantic and Speaker Similarity588

As shown in Table 7, we compare the semantic589

and speaker similarity between baseline systems590

and LLaSE-G1. Notably, TSE and AEC tasks are591

tested on the blind test sets where ground-truth592

speech is unavailable. So, we conduct evaluations593

of NS, PLC, and SS tasks. LLaSE-G1 outperforms594

generative SE models while getting slightly lower595

results in SBS, suggesting LLaSE-G1 effectively596

maintains speech content. Moreover, LLaSE-G1597

achieves the highest SimWB in the NS task and598

competitive SimWB in the PLC and SS tasks, show-599

ing superior acoustic preservation capability.600

4.2.7 Ablation Study601

We conduct an ablation study to evaluate the effec-602

tiveness of input representations, output represen-603

tations, and model backbone, choosing SELM as604

the baseline. As shown in Table 8, when replac-605

ing inputs and output with proposed continuous606

features and speech tokens, there is an obvious im-607

provement, revealing the effectiveness of acoustic608

Table 7: Semantic and speaker similarity results on
various tasks, using the same test sets from previous
subsections.

Task Model Type SBS SimWB

NS FRCRN D 0.85 0.980
AnyEnhance G 0.82 0.970
SELM G 0.72 0.965
GenSE G 0.78 0.974
LLaSE-G1 G 0.83 0.993

PLC BS-PLCNet D 0.95 0.999
LLaSE-G1 G 0.85 0.992

SS Sepformer D 0.85 0.980
Mossformer2 D 0.87 0.991
LLaSE-G1 G 0.82 0.988

preservation. Besides, there is no performance drop 609

when replacing the full attention Transformer with 610

casual attention LLaMA. Finally, adopting a multi- 611

inference strategy further boosts performance 612

Table 8: DNSMOS scores on DNS blind test set with-
out reverb. "D" represents Discrete tokens, and "C"
represents Continuous features. "S" represents Single
inference, and "M" represents Multiple inference.

Input LM Output Inference OVRL
Noisy - - - - 2.48
Baseline D Transformer HiFiGAN S 3.26

C Transformer HiFiGAN S 3.34
C LLaMA HiFiGAN S 3.35

Proposed C LLaMA X-codec2 S 3.43
C LLaMA X-codec2 M 3.49

5 Conclusion 613

In this study, we propose LLaSE-G1, a general 614

LLaMA-based framework to unify various speech 615

enhancement tasks. Specifically, we employ contin- 616

uous features as input and predict 1D speech tokens, 617

maximizing acoustic preservation. Additionally, 618

we design dual-channel inputs and outputs, unify- 619

ing multiple SE tasks. Extensive experiments show 620

that LLaSE-G1 achieves superior performance in 621

each benchmark, serving as a powerful foundation 622

model. Moreover, LLaSE-G1 demonstrates scaling 623

effects at test time and emerging capabilities for 624

unseen SE tasks. 625
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Limitations626

Although LLaSE-G1 demonstrates promising re-627

sults across diverse SE tasks, there are several limi-628

tations that can be addressed towards LLaSE-G2.629

First, LLaSE-G1 operates at a 16,000 Hz sampling630

rate due to WavLM and X-codec2. We plan to631

support full-band audio and super-resolution gener-632

ation in future research. Second, the training data633

and model size of LLaSE-G1 are relatively small as634

compared with that used in mainstream audio lan-635

gauge models for understanding and conversation636

tasks. Hence we would like to further scale up data637

and model size to boost performance in generative638

speech enhancement.639
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A Appendix for Experimental Set Up970

A.1 Model Configuration971

We use the open-source checkpoints of WavLM-972

large and X-codec2. The LLaMA-based LM com-973

prises 16 LLaMA layers, each with 16 attention974

heads, a dropout rate of 0.1, a hidden size of 2048,975

and an intermediate size of 4096. The total num-976

ber of parameters in the model is approximately977

1.07 billion, which includes all learnable weights978

and biases across all layers. The model has 2 in-979

put linear layers and 2 output linear layers. The980

input layer maps a 1024-dimensional vector to an-981

other 1024-dimensional vector, while the output982

layer transforms a 2048-dimensional vector into a983

65536-dimensional vector, which is the codebook984

size of Xcodec2.985

We trained the model for 100,000 steps using986

4 NVIDIA L40 GPUs, with a batch size of 6 per987

GPU and the AdamW optimizer. The learning rate988

is set to 1e-4.989

A.2 Test Sets990

NS: Interspeech 2020 DNS Challenge blind Test991

Set. (Reddy et al., 2020) It contains 600 clips (300992

synthetic and 300 real), with synthetic clips gener-993

ated using clean speech and noise not seen during994

training, and real clips crowdsourced in diverse995

noisy conditions.996

PLC: Interspeech 2022 PLC Challenge test set (Di-997

ener et al., 2022) This is a realistic evaluation998

dataset based on packet loss patterns from actual999

calls, providing a methodology for comparing dif-1000

ferent approaches and a new objective metric to1001

help researchers improve their techniques.1002

TSE: ICASSP 2023 DNS Challenge blind Test1003

Set (Dubey et al., 2023) The blind test set includes1004

two tracks Headset and Speakerphone with clips1005

featuring 10-30 seconds of enrollment speech, with1006

or without noise. It is used for final rankings and1007

evaluates both personalized and non-personalized1008

models using the Personalized ITU-T P.835 frame-1009

work.1010

AEC: ICASSP 2023 AEC Challenge blind Test1011

Set (Cutler et al., 2023) The blind test set in the1012

AEC Challenge consists of real-world data col-1013

lected from over 10,000 diverse audio devices and1014

environments. It is used to determine the final com-1015

petition winners. The dataset includes recordings1016

of both single-talk and double-talk scenarios, with1017

varying conditions like background noise, reverber-1018

ation, and device distortions.1019

SS: Libri2mix (Cosentino et al., 2020), WSJ0- 1020

2mix. These two test sets are commonly used in 1021

speech separation, which is mixed from librispeech 1022

and WSJ datasets. 1023

A.3 Baseline Systems 1024

NS: For discriminative systems, we choose Conv- 1025

TasNet (Luo and Mesgarani, 2019),DEMUCS 1026

(Défossez et al., 2019),FRCRN (Zhao et al., 1027

2024a) , which is recent SOTA models on noise 1028

suppression. For generative systems, we choose 1029

SELM (Wang et al., 2024), which introduce LM 1030

to speech enhancement, and GenSE (Yao et al., 1031

2025) and AnyEnhance (Zhang et al., 2025), 2 1032

newly released SOTA-level generative speech 1033

enhancement systems. 1034

PLC: we use BS-PLCNet (Zhang et al., 2024), 1035

Team Kuaishow (Li et al., 2022), which are the 1036

winners of the 2024 challenge and 2022 challenge 1037

respectively, and other systems in challenge like 1038

PLCNet (Liu et al., 2022a) and LPCNet (Valin 1039

et al., 2022) as our baseline systems. 1040

TSE: We compare our model with two baseline 1041

systems: TEA-PSE 3.0 (Ju et al., 2023), the winner 1042

of the challenge, and NAPSE (Yan et al., 2023), 1043

which placed second. 1044

AEC: For baseline comparison, we choose 1045

recent efficient and state-of-the-art systems as 1046

our baseline systems, including UCLNet, (Shetu 1047

et al., 2024a),AlignUCLNet (Shetu et al., 1048

2024b),AlignCruse (Indenbom et al., 2023b) and 1049

DeepVQE (Indenbom et al., 2023a), which is the 1050

state-of-the-art model in the AEC task. 1051

SS: We use SOTA discriminative speech separation 1052

systems such as Sepformer (Subakan et al., 2021) 1053

and Mossformer2 (Zhao et al., 2024c), which is 1054

the SOTA system on speech separation, as our SS 1055

baseline systems. 1056

1057
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