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ABSTRACT

This paper explores leveraging the Clifford algebra’s expressive power for E(n)-
equivariant diffusion models. We utilize the geometric products between Clifford
multivectors and the rich geometric information encoded in Clifford subspaces
in Clifford Diffusion Models (CDMs). We extend the diffusion process beyond
just Clifford one-vectors to incorporate all higher-grade multivector subspaces.
The data is embedded in grade-k subspaces, allowing us to apply latent diffusion
across complete multivectors. This enables CDMs to capture the joint distribution
across different subspaces of the algebra, incorporating richer geometric informa-
tion through higher-order features. We provide empirical results for unconditional
molecular generation on the QM9 dataset, showing that CDMs provide a promis-
ing avenue for generative modeling.

1 INTRODUCTION

Deep generative models have revolutionized molecular science, enabling significant progress in
molecular design and drug discovery (Abramson et al. (2024); Bose et al. (2024); Yim et al. (2023);
Watson et al. (2023)). Learning the structure of molecules, these AI models help accelerate drug dis-
covery by replacing costly lab experiments and help streamline the process of designing new drugs
or proteins.

Since molecules exist in 3-dimensional space, thus the group of 3D symmetries E(3), including
translations, rotations, and reflections, determine how they transform. To ensure physical validity,
generative models for molecular design must respect these symmetries, so that a molecule and any
of its symmetric transformations are equally likely according to the learned distribution pθ, i.e., pθ
is invariant to E(3) (Xu et al. (2022)). Most recent work addresses this requirement using generative
models with denoising neural networks composed of layers that are equivariant to the orthogonal
group O(3), generated by rotations and reflections, e.g., equivariant graph neural network (EGNN)
layers (Satorras et al. (2021)), which enable the O(3) invariance of the learned distributions (Gar-
cia Satorras et al. (2021); Hoogeboom et al. (2022); Song et al. (2024)). However, these methods
typically focus only on scalar and scaled euclidean vector representations, limiting their ability to
capture richer geometric structures inherent in molecular systems.

Clifford Group Equivariant Neural Networks (CGENNs) (Ruhe et al. (2023a)) establish neural net-
works operating on the Clifford algebra’s rich geometric representations (called multivectors) while
maintaining O(n)- or SO(n)-equivariance (Liu et al. (2024a); Brandstetter et al. (2022); Brehmer
et al. (2023); Zhdanov et al. (2024); Spinner et al. (2024); Ruhe et al. (2023b)). To improve their
efficiency, lightweight variants of CGENNs have been introduced (Liu et al. (2024b)), which make
them suitable for large-scale applications.

In this work, we extend diffusion processes into grade-k subspaces, moving beyond conventional
vector representations. By harnessing multivector structures, our model captures diverse higher-
order geometric features of molecular systems by learning on Clifford subspaces. This design en-
ables parallel latent diffusion across distinct Clifford subspaces, facilitating richer symmetry encod-
ing. We demonstrate the efficacy of our approach in unconditional molecular generation tasks on
the QM9 dataset, achieving favorable performance compared to existing methods.
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Figure 1: During sampling of Clifford all-grade diffusion models, subspace features are initialized
from a Gaussian distribution, and CGENNs are used as the denoising model ϕθ for each subspaces.
At time step zero, the molecular structure is readout by projecting a one-vector from Clifford space.

Related Work Equivariant Diffusion Models (EDMs) (Hoogeboom et al., 2022) leverage E(3)
symmetries using EGNN as backbone (Satorras et al., 2021) and denoising diffusion models (Ho
et al., 2020) to unconditionally generate molecules, atom positions as well as atom types by treating
both as continuous variables. Prior to these, works like (Gebauer et al., 2019; Simonovsky & Ko-
modakis, 2018; Simm et al., 2021) have shown that incorporating symmetries helps generalization
for molecular generation. Bekkers et al. (2024) and Vadgama et al. (2025) use SE(3) equivariant
graph backbone and use preconditioned diffusion models (Karras et al., 2022) to improve sampling
efficiency. GeoLDMs (Xu et al., 2023) perform latent diffusion with E(3) symmetries in the latent
space. Recent works have focused on a unified representation of discrete and continuous features.
Vignac et al. (2023) generates both molecular graphs and 3D atomic arrangements, while in joint
diffusion 2D-3D model, JODO (Huang et al., 2023) and flow matching model for generation, FLow-
Mol (Dunn & Koes, 2024), produces complete molecules with atom types, charges, bonds, and 3D
coordinates. For the scope of this work, we focus only on using atom positions and atom types
as continuous variables and only compare with methods that do so for unconditional generation of
molecules.

2 BACKGROUND

2.1 E(3) EQUIVARIANT DIFFUSION MODELS

E(3) Equivariant Diffusion Models (EDMs) are generative models that learn to transform a simple
Gaussian distribution into learned molecular coordinate distribution and atomic type distribution
using Denoising Diffusion Probabilistic Models (Ho et al. (2020)).Given a data sample x1, during
the forward process, the distribution of Gaussian-corrupted sample xt at timestep t is defined with
noise schedule βt:

q(xt|x1) = N (xt|
√
ᾱtx1, (1− ᾱt)I),

where ᾱt =
∏t

s=1(1 − βs). The model predicts the noise ϵt added to the data during this process
and is trained to minimize the denoising loss:

Ldenoise = Et∼U,x1∼q(x),ϵ∼N (0,I)

[
∥ϕθ(xt(x1), t)− ϵ∥2

]
,

where U the uniform distribution across predefined time-step range and q(x1) represents the data
distribution, ϕθ the neural network that predicts noise. To make the learned distribution pθ invariant
to E(3), the noise ϵ and data sample x1 are zero-centered to their mass point. In addition, the network
ϕθ needs to be equivariant to O(3) transformations (Xu et al. (2022)). Once trained, the model
generates samples by reversing the forward process, starting from Gaussian noise and iteratively
applying the learned denoising steps.

2.2 CLIFFORD GROUP EQUIVARIANT NEURAL NETWORKS

CGENNs are a class of neural networks that operate on multivectors, rather than traditional scalars
or vectors. Built on the mathematical foundation of Clifford (geometric) algebra, CGENNs leverage
its rich geometric properties to model complex relationships in 3D space, making them well suited

2



Published as a workshop paper at FPI workshop at ICLR 2025

for tasks like molecular modeling. The Clifford algebra, denoted as Cl(V, q), is defined over an
n-dimensional vector space V paired with a quadratic form q : V → R. In this work, we stick
to V := R3 and use for q the standard positive definite Euclidean norm, related to the ordinary
Euclidean scalar product. For simplicitly, we write Cl(R3). In this case, the algebra provides a
unified framework to represent scalars, vectors, and higher-dimensional geometric objects, such as
bivectors (oriented planes) and trivectors (oriented volumes). The fundamental operation in Clifford
algebra is the geometric product, which allows vectors to be combined to form higher-grade objects.
A multivector is a general element of Clifford algebra, expressed as a direct sum of components
from different grades, i.e., for v ∈ Cl(R3): v = a0v

(0) + a1v
(1) + a2v

(2) + a3v
(3), where v(m)

corresponds to the grade-m component, and ai ∈ R are scalar coefficients.

3 METHODS

In this section, we introduce two approaches for extending diffusion models to the Clifford k-grade
spaces. First, we demonstrate how diffusion models can be applied to 1-grade subspaces. Second,
inspired by Xu et al. (2023), we describe how to perform diffusion across all k-grade subspaces of
multivectors in a latent embedding, allowing the model to learn and sample the joint distribution of
all grades of multivectors in Clifford space.

3.1 CLIFFORD GROUP EQUIVARIANT ONE-VECTOR DIFFUSION MODELS

Consider a molecular graph G = {X,H}, where X represents the atomic coordinates in R3.
In Clifford 1-vector diffusion models, we first embed X into the Clifford algebra Cl(R3) as a 1-
vector, denoted as XCl. Since the grade-one subspace Cl(1)(R3) of Cl(R3) is isomorphic to R3,
this embedding corresponds to a direct identification: each atomic coordinate xi ∈ R3 is mapped to
a 1-vector in Cl(1)(R3), while all higher-grade components (e.g., scalars, bivectors, and trivectors)
are set to zero. This ensures that the representation remains consistent with the standard Euclidean
vector space while leveraging the algebraic structure of the Clifford space1.

During the forward process, noise is progressively added to the grade-one component of the Clifford
space. The distribution of the intermediate sample XCl

t at time step t follows:

p(XCl
t | XCl) = N (XCl

t ;
√
ᾱtX

Cl, (1− ᾱt)I).

For the backward process, we adopt the Clifford-EGNN introduced in (Liu et al., 2024b) as the
denoising model ϕθ. This model estimates the noise added to the grade-one components at each time
step. The overall diffusion framework follows a structure similar to EDMs, where EDMs employ
EGNNs (Satorras et al. (2021)) as denoising models. However, in our approach, X is treated as a
multivector, allowing Clifford-EGNN to better capture geometric structures during denoising. Other
details of the diffusion process on atomic type features closely follow EDMs.

3.2 CLIFFORD GROUP EQUIVARIANT ALL-GRADE DIFFUSION MODELS

In Clifford One-Vector Diffusion Models, we treat the Cartesian coordinates X as one-vectors in
Clifford space, which is equivalent to viewing X as vectors in Euclidean space. Inspired by Xu et al.
(2023), we extend this approach to Clifford All-grade Diffusion Models, where the diffusion process
occurs across all Clifford subspaces. To facilitate this, we introduce a latent encoder E , which lifts
X into Clifford space and enriches each sample with geometrically informed features. This enables
the diffusion process to leverage higher-order geometric information encoded in different grades of
the Clifford algebra. By incorporating these latent geometric features, we aim to assess whether
such enrichment provides any significant advantage over traditional diffusion models that operate
solely in Euclidean space.

To obtain higher-order features, we employ a Clifford-EGNN as an encoder E . This encoder takes
the initial XCl as input and outputs latent multivectors Z with all grades filled with meaningful
geometric features. To preserve the geometric layout of the data sample, we replace the grade-
1 part of Z with X . Consequently, the encoder is responsible for producing only the other grades

1We refer Clifford space to any product of Clifford algebras: Cl(R3)k
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components of the multivector. During the forward process, we add Gaussian noise to each subspace
of the multivector. Therefore, the distribution of Z(m)

t remains Gaussian:

p
(
Z

(m)
t | Z(m)

)
= N

(
Z

(m)
t ;

√
ᾱtZ

(m), (1− ᾱt)I
)
,

with m ∈ {0, 1, 2, 3}. This means that we add noise independently to each of the Clifford subspaces.
The joint distribution p

(
Zt | Z

)
then is given by:

p
(
Zt | Z

)
=

3∏
m=0

p
(
Z

(m)
t | Z(m)

)
.

During the backward process, the denoising model ϕθ learns to output and approximation of the
noise ϵ in Clifford space, i.e. ϵ ∈ Cl(R3). Thus, both the diffusion (forward) and denoising (back-
ward) steps are fully carried out in Clifford space, leveraging the enriched geometric features at
multiple grades.

4 EXPERIMENTS

In this section, we present empirical results for unconditional molecular generation on the QM9
dataset (Ramakrishnan et al., 2014). QM9 consists of 3D molecular structures, where each atom is
annotated with its atomic type and charge. We evaluate our generation samples on atomic stability
percentage of generated atoms that satisfy the correct valency, molecular stability percentage of
molecules in which all constituent atoms are stable, uniqueness number of unique samples generated
as well as validity percentage of valid samples as defined by RdKit.

Models Atom Stability (%) Mol Stability (%) Validity (%) Valid & Unique (%)

GDM-AUG 97.6 71.6 90.4 89.5
EDM (Hoogeboom et al. (2022)) 98.7± 0.1 82.0± 0.4 91.9± 0.5 83.3± 0.6
GeoLDM (Xu et al. (2023)) 98.9± 0.1 89.4± 0.5 93.8± 0.4 92.7± 0.5
PΘNITA (Bekkers et al. (2024)) 98.9 87.8 - -
MUDiff†(Hua et al. (2024)) 98.8± 0.2 89.9± 1.1 95.3± 1.5 94.4± 0.5
END† (Cornet et al. (2024)) 98.9± 0.2 89.1± 0.1 94.8± 1.5 87.8± 0.4
EquiFM† (Song et al. (2024)) 98.9± 0.1 88.3± 0.3 94.7± 0.4 93.5± 0.3
Rapidash† (Vadgama et al. (2025)) 99.38± 0.02 92.91± 0.41 98.12± .003 95.35± .003

CDM (one-vector) 98.9± 0.0 89.6± 0.2 96.0± 0.3 95.8± 0.3
CDM (all-grade) 99.0± 0.2 89.7± 1.4 96.4± 1.0 96.3± 1.0

Data 99.00 95.20 97.8 97.8

Table 1: Results for unconditional generation task on QM9 dataset. † represents works that have a
different generative model than the rest.

We compare our proposed models, CDMs2 with Graph Diffusion Models without symmetries (GDM
-AUG), E(3) equivariant diffusion models EDMs, (Hoogeboom et al., 2022), latent diffusion models,
GeoLDMs (Xu et al., 2023), MuDiff (Hua et al., 2024), END (Cornet et al., 2024), EquiFM (Song
et al., 2024), and Rapidash (Vadgama et al., 2025). During evaluation, 10000 samples are generated
from each models to evaluate the standard metrics. From Table 1, we can see that our CDMs perform
competitively across all evaluated metrics compared to baseline models, which validate our models’
effectiveness. CDMs with all-grade diffusion in general generate molecules with higher quality. This
result indicates strong potential of applying generative models on other grades in Clifford algebra.
All CDMs results are calculated based on three runs with different seeds.

5 CONCLUSION

We introduce Clifford Group Equivariant Diffusion Models (CDMs), a diffusion framework op-
erating in Clifford grade-k (sub)spaces for unconditional molecular generation. Among the two
variants, Clifford one-vector diffusion effectively captures molecular geometry while maintaining

2To ensure a fair comparison, our CDMs have equal or less parameter counts compared to baseline models.
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a direct correspondence with the Euclidean space. To compare with Xu et al. (2023), we explored
Clifford all-grade diffusion, where a geometric encoder maps molecular structures into a latent Clif-
ford representation, initializing latent Clifford features – scalars, bivectors, and trivectors before
diffusion. While its effectiveness compared to Clifford one-vector diffusion remains under evalua-
tion, we believe encoding higher-order geometric structures could enhance generative modeling in
more complex scenarios.
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