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Abstract

Despite the success of large-scale empirical risk minimization (ERM) at achieving1

high accuracy across a variety of machine learning tasks, fair ERM is hindered by2

the incompatibility of fairness constraints with stochastic optimization. In this pa-3

per, we propose the fair empirical risk minimization via exponential Rényi mutual4

information (FERMI) framework. FERMI is built on a stochastic estimator for ex-5

ponential Rényi mutual information (ERMI), an information divergence measuring6

the degree of the dependence of predictions on sensitive attributes. Theoretically,7

we show that ERMI upper bounds existing popular fairness violation metrics, thus8

controlling ERMI provides guarantees on other commonly used violations, such as9

L1. We derive an unbiased estimator for ERMI, which we use to derive the FERMI10

algorithm. We prove that FERMI converges for demographic parity, equalized11

odds, and equal opportunity notions of fairness in stochastic optimization. Em-12

pirically, we show that FERMI is amenable to large-scale problems with multiple13

(non-binary) sensitive attributes and non-binary targets. Extensive experiments14

show that FERMI achieves the most favorable tradeoffs between fairness violation15

and test accuracy across all tested setups compared with state-of-the-art baselines16

for demographic parity, equalized odds, equal opportunity. These benefits are17

especially significant for non-binary classification with large sensitive sets and18

small batch sizes, showcasing the effectiveness of the FERMI objective and the19

developed stochastic algorithm for solving it.20

1 Introduction21

Ensuring that decisions made using machine learning algorithms are fair to different subgroups is22

of utmost importance. Without any mitigation strategy, machine learning algorithms may result in23

discrimination against certain subgroups based on sensitive attributes, such as gender or race, even if24

such discrimination is absent in the training data (Datta et al., 2015; Sweeney, 2013; Bolukbasi et al.,25

2016; Angwin et al., 2016; Calmon et al., 2017b; Feldman et al., 2015; Hardt et al., 2016; Fish et al.,26

2016; Woodworth et al., 2017; Zafar et al., 2017; Bechavod & Ligett, 2017; Kearns et al., 2018).27

Algorithmic fairness literature aims to remedy such discrimination issues.28

A machine learning algorithm satisfies the demographic parity fairness notion, if the predicted target29

is independent of the sensitive attributes (Dwork et al., 2012). Promoting demographic parity can30

lead to poor performance, especially if the true outcome is not independent of the sensitive attributes.31

To remedy this, Hardt et al. (2016) proposed equalized odds to ensure that the predicted target is32

conditionally independent of the sensitive attributes given the true label. A further relaxed version of33

this notion is equal opportunity which is satisfied if predicted target is conditionally independent of34

sensitive attributes given that the true label is in an advantaged class (Hardt et al., 2016). The inherent35

assumption in such conditional notions is that the true labels are fair. These notions suffer from a36

potential amplification of the inherent discrimination that may exist in the training data. Tackling37

such bias is beyond the scope of this work; cf. Kilbertus et al. (2020) and Bechavod et al. (2019).38
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Reference NB NB NB Fairness notion Beyond Stoch. alg. Converg.
target attrib. code dp eod eop logistic (unbiased⇤⇤) (stoch.)

FERMI (this work) 3 3 3 3 3 3 3 3 (3) 3 (3)
(Cho et al., 2020b) 3 3 3 3 3 7 3 3 (7) 7
(Cho et al., 2020a) 3 3 7 3 3 7 3 3 (3) 7
(Baharlouei et al., 2020) 3 3 3 3 3 3 3 7 3 (7)
(Rezaei et al., 2020) 7 7 7 3 3 7 7 7 7
(Jiang et al., 2020)⇤ 7 3 7 3 7 7 7 7 7
(Mary et al., 2019) 3 3 3 3 3 7 3 3 (7) 7
(Donini et al., 2018) 7 3 7 7 3 7 3 7 7
(Zhang et al., 2018) 3 3 7 3 3 7 3 3 (7) 7

Table 1: Comparison of state-of-the-art in-processing methods. NB = non-binary, dp = demographic parity,
eod = equalized odds, eop = equal opportunity. While satisfying eod guarantees satisfying eop, an eod algorithm
does not necessarily achieve a favorable tradeoff between performance and fairness violation in eop; we only
credit those works that provide/implement algorithms for a given fairness notion. FERMI is the only method
compatible with stochastic optimization and guaranteed convergence. The only existing baselines for non-binary
classification with non-binary sensitive attributes are (Mary et al., 2019; Baharlouei et al., 2020; Cho et al.,
2020b) (NB code). ⇤We refer to the in-processing method of (Jiang et al., 2020), not their post-processing
method. ⇤⇤We use the term “unbiased” to refer to unbiased estimation in statistical sense; it is not to be confused
with bias in the fairness sense, for which we use the term discrimination.

Measuring fairness violation. In practice, the learner only has access to finite samples and cannot39

verify demographic parity, equalized odds, or equal opportunity. This has led the machine learning40

community to define several fairness violation metrics that quantify the degree of (conditional)41

independence between random variables, e.g., L1 distance (Dwork et al., 2012; Hardt et al., 2016),42

mutual information (Kamishima et al., 2011; Rezaei et al., 2020; Steinberg et al., 2020; Zhang43

et al., 2018; Cho et al., 2020a), Pearson correlation (Zafar et al., 2017), false positive/negative rates44

(Bechavod & Ligett, 2017), Hilbert Schmidt independence criterion (HSIC) (Pérez-Suay et al., 2017),45

Rényi correlation (Mary et al., 2019; Baharlouei et al., 2020; Grari et al., 2019, 2020), and exponential46

Rényi mutual information (ERMI) (Mary et al., 2019). In this paper, we focus on three variants of47

ERMI specialized to demographic parity, equalized odds, and equal opportunity. We prove that ERMI48

provides an upper bound on the rest of the above existing notions of fairness violation. Consequently,49

a model trained to reduce ERMI will also provide guarantees on these other fairness violations.50

We also develop a stochastic estimator for ERMI that is compatible with large-scale stochastic51

optimization, and use it as a regularizer in within ERM, and call it FERMI. We theoretically show52

that FERMI is convergent, and empirically demonstrate that it outperforms all other state-of-the-art53

baselines, including (Mary et al., 2019) which solves the same objective as FERMI.54

Related work & contributions. Fairness-promoting machine learning algorithms can be categorized55

in three main classes: pre-processing, post-processing, and in-processing methods. Pre-processing56

algorithms (Feldman et al., 2015; Zemel et al., 2013; Calmon et al., 2017b) transform the biased57

data features to a new space in which the labels and sensitive attributes are statistically independent.58

This transform is oblivious to the training procedure. Post-processing approaches (Hardt et al., 2016;59

Pleiss et al., 2017) mitigate the discrimination of the classifier by altering the the final decision.60

In-processing approaches focus on the training procedure and impose the notions of fairness as61

constraints or regularization terms in the training procedure. Several regularization-based methods62

are proposed in the literature to promote fairness in decision-trees (Kamiran et al., 2010; Raff et al.,63

2018; Aghaei et al., 2019), support vector machines (Donini et al., 2018), neural networks (Grari64

et al., 2020; Cho et al., 2020b), or (logistic) regression models (Zafar et al., 2017; Berk et al., 2017;65

Taskesen et al., 2020; Chzhen & Schreuder, 2020; Baharlouei et al., 2020; Jiang et al., 2020; Grari66

et al., 2019). While in-processing approaches generally give rise to better tradeoffs between fairness67

violation and performance, existing approaches are mostly incompatible with large-scale stochastic68

optimization. This paper addresses this problem. See below for a summary of our contributions and69

Table 1 for a summary of the main differences between FERMI and existing in-processing methods.70

1. We analyze a notion of fairness violation called ERMI. We show that ERMI is a stronger notion of71

fairness violation than all existing notions. Therefore, a model that ensures small ERMI violation72

is guaranteed to have small fairness violation with respect to all other notions as well.73

2. We formulate an empirical objective, called FERMI objective, for using ERMI as a regularizer74

with empirical risk minimization. We propose a solver for FERMI, which is the first stochastic75

in-processing fairness algorithm with guaranteed convergence. The existing stochastic fairness76
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algorithms by Zhang et al. (2018); Mary et al. (2019); Cho et al. (2020a,b) are not guaranteed to77

converge.78

3. We demonstrate through extensive numerical experiments that FERMI achieves superior fair-79

ness-accuracy tradeoff curves against all comparable baselines, even when fairness violation is80

measured in terms of commonly used L1 (for demographic parity, equalized odds, and equal81

opportunity). In particular, the performance gap is very large when minibatch size is small (as is82

practically necessary for large-scale problems), and the number of sensitive attributes is large.83

2 Fairness notions: demographic parity, equalized odds, equal opportunity84

In this section, we state a notion of fairness that generalizes demographic parity, equalized odds,85

and equal opportunity fairness definitions (the three notions considered in this paper). This will be86

convenient for presenting our theoretical results. Consider a learner who trains a model to make87

a prediction, bY , e.g., whether or not to extend a loan, supported on Y which can be discrete or88

continuous. The prediction is made using a set of features, X, e.g., financial history features. We89

assume that there is a set of discrete sensitive attributes, S, e.g., race and sex, supported on S,90

associated with each sample. Further, let A ✓ Y denote an advantaged outcome class, e.g., the91

outcome where a loan is extended.92

Definition 1 ((Z,Z)-fairness). Given a random variable Z, let Z be a subset of values that Z can93

take. We say that a learning machine satisfies (Z,Z)-fairness if for every z 2 Z, bY is conditionally94

independent of S given Z = z, i.e. 8by 2 Y, s 2 S, z 2 Z, pbY ,S|Z(by, s|z) = pbY |Z(by|z)pS|Z(s|z).95

(Z,Z)-fairness includes the popular demographic parity, equalized odds, and equal opportunity96

notions of fairness as special cases:97

1. (Z,Z)-fairness recovers demographic parity (Dwork et al., 2012) if Z = 0 and Z = {0}. In this98

case, conditioning on Z has no effect, and hence (0, {0}) fairness is equivalent to the independence99

between bY and S (see Definition 6, Appendix A).100

2. (Z,Z)-fairness recovers equalized odds (Hardt et al., 2016) if Z = Y and Z = Y. In this case,101

Z 2 Z is trivially satisfied. Hence, conditioning on Z is equivalent to conditioning on Y, which102

recovers the equalized odds notion of fairness, i.e., conditional independence of bY and S given Y103

(see Definition 7, Appendix A).104

3. (Z,Z)-fairness recovers equal opportunity (Hardt et al., 2016) if Z = Y and Z = A. This is also105

similar to the previous case with Y replaced with A (see Definition 8, Appendix A).106

Note that verifying (Z,Z)-fairness requires having access to the joint distribution of random variables107

(Z, bY , S). This joint distribution is unavailable to the learner in the context of machine learning, and108

hence the learner would resort to empirical estimation of the amount of violation of independence,109

measured through some divergence. See (Williamson & Menon, 2019) for a related discussion.110

3 Measuring fairness violation using exponential Rényi mutual information111

Most existing fairness violations can be viewed as a (conditional) f -divergence between the joint112

distribution of sensitive attributes and predicted targets, pbY ,S|Z , and the Kronecker proudct of the113

marginals, pbY |Z ⌦ pS|Z . In this section, we focus on ERMI and show that several existing fairness114

violations are upper bounded by ERMI. For brevity, we present all definitions and results (Z,Z).115

Definition 2 (ERMI – exponential Rényi mutual information). We define the exponential Rényi116

mutual information between bY and S given Z 2 Z as117

DR(bY ;S|Z 2 Z) := EZ,bY ,S

(
pbY ,S|Z(

bY , S|Z)

pbY |Z(
bY |Z)pS|Z(S|Z)

�����Z 2 Z
)

� 1. (ERMI)

In Appendix B, we unravel the definition for the special cases of interest corresponding to demo-118

graphic parity, equalied odds, and equal opportunity. We also discuss that ERMI is the �2-divergence119

(which is an f -divergence) between the joint distribution, pbY ,S|Z , and the Kronecker product of120

marginals, pbY |Z ⌦ pS|Z (Calmon et al., 2017a). In particular, ERMI is non-negative, and zero if121

and only if (Z,Z)-fairness is satisfied. In the context of algorithmic fairness, ERMI was first used122

by Mary et al. (2019) as a regularizer. We will provide a new stochastic solver/estimator for ERMI,123

which theoretically converges and empirically outperforms the one by Mary et al. (2019).124
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Definition 3 (Rényi mutual information (Rényi, 1961)). Let the Rényi mutual information of order125

↵ > 1 between random variables bY and S given Z 2 Z be defined as:126

I↵(bY ;S|Z 2 Z) :=
1

↵� 1
log

 
EZ,bY ,S

8
<

:

 
pbY ,S|Z(

bY , S|Z)

pbY |Z(
bY |Z)pS|Z(S|Z)

!↵�1
������
Z 2 Z

9
=

;

!
, (RMI)

which generalizes Shannon mutual information127

I1(bY ;S|Z 2 Z) := EZ,bY ,S

(
log

 
pbY ,S|Z(

bY , S|Z)

pbY |Z(
bY |Z)pS|Z(S|Z)

!�����Z 2 Z
)
, (MI)

and recovers it as lim↵!1+ I↵(bY ;S|Z 2 Z) = I1(bY ;S|Z 2 Z).128

Note that I↵(bY ;S|Z 2 Z) � 0 with equality if and only if (Z,Z)-fairness is satisfied.129

Theorem 1 (ERMI is stronger than Shannon mutual information). We have130

0  I1(bY ;S|Z 2 Z)  I2(bY ;S|Z 2 Z)  eI2(
bY ;S|Z2Z) � 1 = DR(bY ;S|Z 2 Z). (1)

131
All proofs are relegated to the appendix. Theorem 1 establishes that ERMI is a stronger measure of132

fairness violation in the sense that driving it to zero would also bound the Shannon mutual information,133

which is used for promoting fairness in recent literature (Cho et al., 2020a). It also shows that ERMI134

is exponentially related to the Rényi mutual information of order 2.135

Definition 4 (Rényi correlation (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959)). Let F and G136

be the set of measurable functions such that for random variables bY and S, EbY {f(
bY ; z)} =137

ES {g(S; z)} = 0, EbY {f(
bY ; z)2} = ES

�
g(S; z)2

 
= 1, for all z 2 Z. Rényi correlation is:138

⇢R(bY , S|Z 2 Z) := sup
f,g2F⇥G

EZ,bY ,S

n
f(bY ;Z)g(S;Z)

���Z 2 Z
o
. (RC)

139

Rényi correlation generalizes Pearson correlation,140

⇢(bY , S|Z 2 Z) := EZ

8
<

:
EbY ,S{bY S|Z}

q
EbY {bY 2|Z}ES{S2|Z}

������
Z 2 Z

9
=

; , (PC)

141
to capture nonlinear dependencies between the random variables by finding functions of random142

variables that maximize the Pearson correlation coefficient between the random variables. In fact,143

it is true that ⇢R(bY , S|Z 2 Z) � 0 with equality if and only if (Z,Z)-fairness is satisfied. Rényi144

correlation has gained popularity as a measure of fairness violation (Mary et al., 2019; Baharlouei145

et al., 2020; Grari et al., 2020). Rényi correlation is also upper bounded by ERMI. The following146

result has already been shown by Mary et al. (2019) and we present it for completeness.147

Theorem 2 (ERMI is stronger than Rényi correlation). We have148

0  |⇢(bY , S|Z 2 Z)|  ⇢R(bY , S|Z 2 Z)  DR(bY ;S|Z 2 Z), (2)

and if |S| = 2, DR(bY ;S|Z 2 Z) = ⇢R(bY , S|Z 2 Z).149

Definition 5 (Lq fairness violation). We define the Lq fairness violation for q � 1 by:150

Lq(bY , S|Z 2 Z) := EZ

( Z

by2Y0

X

s2S0

���pbY ,S|Z(by, s|Z)� pbY |Z(by|Z)pS|Z(s|Z)
���
q
dy

! 1
q
�����Z 2 Z

)
.

(Lq)

Note that Lq(bY , S|Z 2 Z) = 0 if and only if (Z,Z)-fairness is satisfied. In particular, L1 fairness151

violation recovers demographic parity violation (Kearns et al., 2018, Definition 2.1) if we let Z = {0}152

and Z = 0. It also recovers equal opportunity violation (Hardt et al., 2016) if Z = A and Z = Y .153

Theorem 3 (ERMI is stronger than L1 fairness violation). Let bY be a discrete or continuous random154

variable, and S be a discrete random variable supported on a finite set. Then for any q � 1,155

0  Lq(bY , S|Z 2 Z) 
q

DR(bY , S|Z 2 Z). (3)

156
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The above theorem says that if a method controls ERMI value for imposing fairness, then L1157

violation is controlled. In particular, the variant of ERMI that is specialized to demographic parity158

also controls L1 demographic parity violation (Kearns et al., 2018). The variant of ERMI that is159

specialized to equal opportunity also controls the L1 equal opportunity violation (Hardt et al., 2016).160

While our algorithm uses ERMI as a regularizer, in our experiments, we measure fairness violation161

through the more commonly used L1 violation. Despite this, we show that our approach leads to162

better tradeoff curves between fairness violation and performance.163

Remark. The bounds in Theorems 1-3 are not tight in general, but this is not of practical concern.164

They show that bounding ERMI is sufficient because any model that achieves small ERMI is165

guaranteed to satisfy any other fairness violation. This makes ERMI an effective regularizer for166

promoting fairness. In fact, in Sec. 5, we see that the proposed algorithm, FERMI, achieves the best167

tradeoffs between fairness violation and performance across state-of-the-art baselines.168

4 FERMI: fair empirical risk minimization through ERMI regularization169

Our goal is to train a model that balances fairness and accuracy objectives. To this end, we introduce170

fair risk minimization through exponential Rényi mutual information framework defined below:1171

min
✓

n
FRMI(✓) := EX,Y,S

�
`
�
X, Y ;✓

� 
+ �DR

�bY (X;✓);S
�o

, (FRMI obj.)

where ` denotes the loss function, such as L2 loss or cross entropy loss; � > 0 is a scalar balancing172

the accuracy versus fairness objectives; DR

�bY (X;✓);S
�

is the notion of ERMI given in Eq. (ERMI)173

particularized to demographic parity (see Eq. (5)); and bY (X;✓) is the output of the learned model174

(e.g., the output of a classification or a regression task, or the cluster number in a clustering task).175

While bY (X;✓) inherently depends on X and ✓, in the rest of this paper, we sometimes leave the176

dependence of bY on X and/or ✓ implicit for brevity of notation. Notice that we have also left the177

dependence of the loss on the predicted outcome bY implicit.178

In practice, the true joint distribution of (X, S, Y, bY ) is unknown and we only have N samples at179

our disposal, making it impossible to solve FRMI. Let {xi, si, yi, byi(xi;✓)}i2[N ] denote the features,180

sensitive attributes, targets, and the predictions of the model parameterized by ✓ for these samples.181

Mary et al. (2019) considered the same objective Eq. (FRMI obj.), and tried to empirically solve it182

through a kernel approximation. We propose a completely different approach to solving this problem:183

fair empirical risk minimization via exponential Rényi mutual information (FERMI). FERMI results184

in a provably convergent algorithm, and empirically outperforms the algorithm by Mary et al. (2019).185

It is straightforward to derive an unbiased estimate for EX,Y,S

�
`
�
X, Y ;✓

� 
through the empirical186

risk, e.g., 1
|B|

P
i2B `

�
xi, yi;✓

�
where B ✓ [N ] is a random minibatch of data points. However,187

estimating DR(bY , S) in the objective function in Eq. (FRMI obj.) is more difficult. In what follows,188

we present our approach to deriving an unbiased stochastic estimator of DR(bY , S) given a random189

batch of data points B. The following theorem is the key tool we use to obtain an unbiased estimator:190

Theorem 4. For discrete random variables bY = bY (X;✓) and S where bY 2 [m], S 2 [k], we have191

DR(bY ;S) = max
W2Rk⇥m

n
� Tr(WPbyW

T ) + 2Tr(WPby,sP
�1/2
s )� 1

o
, (4)

where Pby = diag(pbY (1), . . . , pbY (m)), Ps = diag(pS(1), . . . , pS(k)), and192

Pby,s =

0

B@

pbY ,S(1, 1) . . . pbY ,S(1, k)
.
.
.

. . .
.
.
.

pbY ,S(m, 1) . . . pbY ,S(m, k)

1

CA .

Let bY, byi 2 {0, 1}m and S, si 2 {0, 1}k be the one-hot encodings of bY , byi and S, si, respectively.193

Then, the above theorem implies that we can compute an unbiased estimate of Eq. (FRMI obj.):194

1In this section, we present all results in the context of Z = 0 and Z = {0} (demographic parity), leaving off
all conditional expectations for clarity of presentation. The results are readily generalized for general (Z,Z) by
using DR(bY , S|Z 2 Z) in Eq. (FRMI obj.)); we have used the resulting algorithms for empirical experiments.
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Lemma 1 (Unbiased estimator of ERMI). Let (X, S, Y, bY (X;✓)) be a random draw from PX,S,Y,bY .195

Further, let196

 (X, S, Y, bY ;✓,W ) := �Tr(W bY(X;✓) bYT (X;✓)WT ) + 2Tr(W bY(X;✓)STP�1/2
s )� 1.

197
Then, maxW2Rk⇥m  (X, S, Y, bY ;✓,W ) is an unbiased estimator of ERMI in Eq. (FRMI obj.), i.e.,198

EX,S,Y

n
max

W2Rk⇥m
 (X, S, Y, bY ;✓,W )

o
= DR(bY (X;✓);S).

199 The stochastic estimator,  (X, S, Y, bY ;✓,W ), in Lemma 1 requires the knowledge of Ps, and200

computation of P�1/2
s . This can be estimated with high fidelity (for small to moderate sensitive set)201

through a single initial pass over the entire dataset in practice. Hence, we consider it to be known.202

Now, we are equipped to state the empirical objective function that we solve in this paper:203

min
✓

max
W2Rk⇥m

8
<

:FERMI(✓,W ) :=
1

N

X

i2[N ]

[`(xi, yi;✓) + � i(✓,W )]

9
=

; , (FERMI obj.)

where204

 i(✓,W ) := �Tr(W byi(xi;✓)byT
i (xi;✓)W

T ) + 2Tr(W byi(xi;✓)s
T
i P

�1/2
s )� 1.

In particular, Lemma 1 says that, for any N, Eq. (FERMI obj.) (and its gradients) is an unbiased and205

consistent estimator of the Eq. (FRMI obj.) objective function (and its gradients) by an empirical206

average over the minibatch. This is in contrast to the density estimation methods used by Mary et al.207

(2019) and Baharlouei et al. (2020), which are biased but consistent. We will see in the experiments208

that the unbiased estimator empirically offers large performance improvements.209

This observations leads us to deriving a stochastic algorithm, presented in Algorithm 1, which is210

guaranteed to converge for any batch size 1  |B|  N since the stochastic gradients are unbiased.

Algorithm 1 (FERMI Algorithm). Two-Time Scale SGDA for solving FERMI objective
1: Input: ✓0

2 Rd✓ , W
0
2 W ⇢ Rk⇥m, step-sizes (⌘✓, ⌘w), mini-batch B ✓ [N ], fairness

parameter � � 0, iteration number R.

2: for t = 0, 1, . . . , R do
3: Draw a mini-batch B of data points {(xi, si, yi)}i2B

4: Set ✓t+1
 ✓t

�
⌘✓

|B|
P

i2B [r✓`(xi, yi;✓t) + �r✓ i(✓t
,W

t)].

5: Set W t+1
 ⇧W

⇣
W

t + 2�⌘w

|B|
P

i2B

h
�W byi(xi;✓t)byT

i (xi;✓t) + P
�1/2
s sibyT

i (xi;✓t)
i⌘

6: end for
7: Pick t̂ uniformly at random from {1, . . . , R}.

8: Return: ✓t̂
.

211

Theorem 5. (Informal statement) Algorithm 1 converges to the set of ✏-first order stationary points212

of the Eq. (FERMI obj.) objective in O( 1
✏4 ) iterations (stochastic gradient evaluations).213

The formal statement of this theorem can be found in Theorem 10 in Appendix D. A faster convergence214

rate of O( 1
✏3 ) could be obtained by using the (more complicated) SREDA method of Luo et al. (2020)215

instead of SGDA to solve FERMI objective. We omit the details here. In the next section, we216

numerically evaluate the performance FERMI algorithm in several numerical experiments.217

5 Numerical experiments218

5.1 Binary classification and binary sensitive attribute219

For our first set of experiments, we evaluate the fairness-accuracy tradeoffs of FERMI in binary220

classification problems with a binary sensitive attribute. This is a common setup, so we are able to221

compare against many existing baseline methods (Zafar et al., 2017; Feldman et al., 2015; Kamishima222

et al., 2011; Jiang et al., 2020; Hardt et al., 2016; Baharlouei et al., 2020; Rezaei et al., 2020; Donini223

et al., 2018; Cho et al., 2020b). We run experiments on three data sets: Adult, German Credit, and224

COMPAS. To implement FERMI, we train a logistic regression model (same model for all baselines)225

with an ERMI regularizer. Details about the datasets and experiments can be found in Appendix E.226
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Figure 1: Binary classification with binary sensitive attribute using logistic regression. Tradeoff of fairness
violation vs. test error for state-of-the-art fair classifiers on German Credit, Adult, and COMPAS datasets.
FERMI offers the best fairness vs. accuracy tradeoff curve in all experiments against all baselines. Rezaei et al.
(2020) only allow for a single output and do not yield a tradeoff curve. Further, the algorithms by Mary et al.
(2019) and Baharlouei et al. (2020) are equivalent in this binary setting and shown by the red curve. FERMI,
Mary et al. (2019) and Baharlouei et al. (2020) try to empirically solve the same risk function Eq. (FRMI
obj.). However, the empirical formulation used by FERMI, Eq. (FERMI obj.) and its solver result in a better
performance even-though we are using a full-batch for all baselines in this experiment.

In Fig. 1, we report the fairness violation vs. test error, for three notions of fairness: demographic227

parity, equalized odds, and equal opportunity. We have only included in-processing methods, which228

outperform pre-processing and post-processing methods. Complete experimental results are included229

in the appendix. We measure fairness violation through conditional demographic parity L1 violation230

(Definition 9), conditional equal opportunity L1 violation (Definition 10) and its generalization,231

conditional equalized odds violation. As can be seen, FERMI offers a fairness-accuracy tradeoff232

curve that dominates all existing state-of-the-art baselines in each experiment and with respect to233

each notion of fairness. This demonstrates the efficacy of having a strong regularizer such as ERMI:234

by enforcing small ERMI violation, our model simultaneously achieves small fairness violation with235

respect to these other notions which are upper bounded by ERMI.236

It is noteworthy that the empirical objective function of Mary et al. (2019) and Baharlouei et al.237

(2020) is exactly the same in this setting, and their algorithms also coincide to the red curve in238

Fig. 1.2 Additionally, like FERMI, they are trying to empirically solve Eq. (FRMI obj.), albeit239

using different estimation techniques, i.e., their empirical objective is different from Eq. (FERMI240

obj.). This demonstrates the effectiveness of our empirical formulation (FERMI obj.) – which is241

both unbiased and consistent whereas theirs is biased. It also shows the effectiveness of our solver242

(Algorithm 1) even-though we are using all baselines in full batch mode in this experiment. In the243

following experiments, we will demonstrate that using smaller batch sizes results in much more244

pronounced advantages of FERMI over these baselines.245

2Exponential Rényi mutual information is equal to Rényi correlation for binary targets and/or binary sensitive
attributes (see Theorem 2), which is the setting of all experiments in Sec. 5.1.
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Figure 2: Comparison between FERMI, Mary et al. (2019), Baharlouei et al. (2020), and Cho et al. (2020b) on
Communities dataset. (Mary et al., 2019) outperforms (Baharlouei et al., 2020; Cho et al., 2020b), which we
believe could be attributed to the effectiveness of ERMI as a regularizer. FERMI outperforms Mary et al. (2019),
which we attribute to our empirical formulation of ERMI and the effectiveness of its solver, given that we try to
empirically solve the same risk function with different formulations.

5.2 Non-binary fair classification with a non-binary sensitive attribute246

Next, we consider a non-binary classification problem with non-binary sensitive set. In this case, we247

consider the Communities and Crime dataset, which has 18 binary sensitive attributes in total, and we248

pick a subset of 1, 2, 3, . . . , 18 sensitive attributes out of those for our experiments, which corresponds249

to |S| 2 {2, 4, 8, . . . , 218}. We discretize the target into three classes {high,medium, low}. The only250

baselines that we are aware of that can handle non-binary classification with non-binary sensitive251

attributes are (Mary et al., 2019), (Baharlouei et al., 2020), (Cho et al., 2020b), (Cho et al., 2020a),252

and (Zhang et al., 2018). We used the publicly available implementations of (Baharlouei et al., 2020)253

and (Cho et al., 2020b) and extended their binary classification algorithms to the non-binary setting.254

The results are presented in Fig. 2, where we use conditional demographic parity L1 violation255

(Definition 9) and conditional equal opportunity L1 violation (Definition 10) as the fairness violation256

notions for the two experiments. For all baselines, test error increases as the number of sensitive257

attributes increases. As can be seen, compared to the baselines, FERMI offers the most favorable test258

error vs. fairness violation tradeoffs, particularly as the number of sensitive attributes increases and259

for the more stringent fairness violation levels, e.g., 0.02.260

5.3 Domain generalization through FERMI261

In our last experiment, our goal is to showcase the efficacy of FERMI in stochastic optimization with262

neural network approximation. For this experiment, we consider the Color MNIST dataset (Li &263

Vasconcelos, 2019), where all 60,000 training MNIST digits are colored with different colors drawn264

from a class conditional Gaussian distribution with variance � around a certain average color for265

each digit, while the test set remains black and white. Li & Vasconcelos (2019) show that as � ! 0,266

a convolutional network model overfits significantly to each digit’s color on the training set, and267

achieves vanishing training accuracy. However, the learned representation does not generalize to the268

regular black and white test set, in absence of the spurious correlation between digits and color.269

Conceptually, the goal of the classifier in this problem is to achieve high classification accuracy with270

predictions that are independent of the color of the digit. We view color as the sensitive attribute271

in this experiment, and apply fairness baselines for the demographic parity notion of fairness. One272

would expect that by promoting such independence through a fairness regularizer generalization273

would improve (i.e. lower test error on the black and white test set), at the cost of increased training274

error (on the colored training set). We compare against Mary et al. (2019), Baharlouei et al. (2020),275

and Cho et al. (2020b) as baselines in this experiment.276

The results of this experiment are as illustrated in Fig. 3. The details about the dataset and experimental277

setup is provided in Appendix E. In the left panel, we see that with no regularization (� = 0); the278

test error is around 80%. As � increases, all methods achieve smaller test error while training error279

increases. We also observe that FERMI offers the best test error in this setup. In the right panel,280

we observe that decreasing the batch size results in significantly worse generalization for all three281
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Figure 3: Domain generalization on Color MNIST (Li & Vasconcelos, 2019) using in-process fair algorithms
for demographic parity. Left panel: The dashed line is the training error and the solid line is test error. As �
increases, fairness regularization results in a learned representation that is less dependent on color; hence training
error increases while test error decreases (all algorithms reach a plateau around � = 8). We use |B| = 512 for
all baselines. Right panel: We plot test error vs. batch size using an optimized value of � for each algorithm
selected via a validation set. The performance of all baselines drops 10-20% as batch size becomes small
whereas FERMI is relatively insensitive to batch size.

baselines considered (due to their biased estimators for the regularizer). However, the impact is much282

less on FERMI. In particular, the performance gap between FERMI and other baselines is more than283

20% for |B| = 64. Finally, FERMI with minibatch size |B| = 64 still outperforms all other baselines284

with |B| > 1, 000. Finally, notice that the test error achieved by FERMI when � = 0 is ⇠ 30%, as285

compared to more than 50% obtained using REPAIR (Li & Vasconcelos, 2019) for �  0.05.286

6 Discussion & concluding remarks287

In this paper, we studied three variants of a notion of fairness violation, called exponential Rényi288

mutual information (ERMI), developed for demographic parity, equalized odds, and equal opportunity289

notions of fairness. We showed that ERMI is a strong fairness violation divergence providing upper290

bound guarantees on other popular violation divergences, namely Shannon mutual information,291

Rényi mutual information (Theorem 1), Pearson correlation, Rényi correlation (Theorem 2) , and Lq292

distance violation (Theorem 3).293

We derived an unbiased estimator for ERMI (Lemma 1), based on which we formulated an empirical294

objective (FERMI obj.) for solving fair empirical risk minimization with ERMI regularization295

to balance performance and fairness. We provided a stochastic algorithm for solving FERMI296

(Algorithm 1) and proved its convergence (Theorem 5); for non-binary sensitive attributes, non-binary297

target variables, regardless of the batch size. From an experimental perspective, we showed that298

FERMI leads to better fairness-accuracy tradeoffs than all of the state-of-the-art baselines on a wide299

variety of binary and non-binary classification tasks (for demographic parity, equalized odds, and300

equal opportunity). We also showed that these benefits are particularly significant when the number of301

sensitive attributes grows or the batch size is small. In particular, we observed that FERMI consistently302

outperforms Mary et al. (2019) (which tries to empirically solve the same objective Eq. (FRMI obj.))303

by up to 20% when the batch size is small, suggesting that the unbiasedness of the FERMI estimator304

is essential in achieving good empirical performance.305

There are several possible explanations for the superior empirical performance of FERMI compared306

to baselines. One possible reason is that the objective function Eq. (FERMI obj.) is easier to optimize307

than the objectives of competing in-processing methods: ERMI is smooth; and in the discrete case, is308

equal to the trace of a matrix (see Theorem 7; appendix), which is easy to compute. Contrast this with309

the larger computational overhead of Rényi correlation used by Baharlouei et al. (2020), for example,310

which requires finding the second singular value of a matrix. Furthermore, the sample complexity of311

estimating Rényi mutual information of order 2 (and consequently that of ERMI) scales as ⇥(
p
|S|)312

as compared to Shannon mutual information which scales as ⇥(|S|/ log |S|) (Acharya et al., 2014).313

Moreover, the fact that ERMI is a stronger fairness violation seems to imply that FERMI would314

generalize well to other fairness notions, a hypothesis that is supported by our experimental results.315

Together, these facts suggest that ERMI serves as an efficient and easily optimizable proxy for these316

other fairness notions, making Eq. (FERMI obj.) a good surrogate objective to optimize for all three317

notions of fairness considered (demographic parity, equalized odds, and equal opportunity). We leave318

it as future work to rigorously understand which of these (or other) factors are most responsible for319

the favorable performance tradeoffs observed from FERMI.320
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