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Abstract

A transformer is merely a stack of learned data–to–data maps—yet those maps
can hide rich algorithms. We train a linear, attention-only transformer on millions
of masked-block completion tasks: each prompt is a masked low-rank matrix
whose missing block may be (i) a scalar prediction target or (ii) an unseen kernel
slice for Nyström extrapolation. The model sees only input–output pairs and a
mean-squared loss; it is given no normal equations, no handcrafted iterations, and
no hint that the tasks are related. Surprisingly, after training, algebraic unrolling
reveals the same parameter-free update rule across all three resource regimes (full
visibility, bandwidth-limited heads, rank-limited attention). We prove that this
rule achieves second-order convergence on full-batch problems, cuts distributed
iteration complexity, and remains accurate with compute-limited attention. Thus, a
transformer trained solely to patch missing blocks implicitly discovers a unified,
resource-adaptive iterative solver spanning prediction, estimation, and Nyström
extrapolation—highlighting a powerful capability of in-context learning.

1 Introduction

Models trained on next-token prediction achieve strong performance across various NLP tasks,
including question answering, summarization, and translation (Radford et al., 2019). This multitask
capability suggests an intriguing possibility: within structured mathematical contexts transformers
might implicitly learn generalizable numerical algorithms solely through next-token prediction.

Next-token prediction can naturally be viewed as a form of matrix completion—inferring missing en-
tries by exploiting dependencies in observed data. Prior work extensively explores matrix completion
under computational constraints, such as distributed data access Chen et al. (2020), limited communi-
cation bandwidth Ma and Chen (2020), and low-rank recovery from partial observations Candès and
Recht (2009); Candès and Tao (2010); Davenport and Romberg (2016). This raises a natural question:
how do transformers implicitly handle such computational constraints to perform multitask learning?

Can a neural network invent a numerical algorithm simply by learning to fill in missing data?

Transformers excel at in-context learning (ICL), adapting to new tasks from a short prompt of ex-
amples Brown et al. (2020); Xie et al. (2021), and ICL serves as a simple subdomain to investigate
the representational and learning properties of transformers. Recent studies suggest that for trans-
formers trained on ICL tasks, the computations encoded by the weights resemble gradient-based
methods Akyürek et al. (2022); Von Oswald et al. (2023); Ahn et al. (2023), typically in single-task
scenarios. However, this analogy is limited: gradient descent operates explicitly in parameter space,
whereas transformers perform data-to-data transformations without direct access or updates to
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parameters. Additionally, much of the exploratory focus in such work has been on the complexity of
the regression task, while keeping the computational regime fixed. Thus, it remains unclear whether
transformers implicitly develop distinct, unified numerical algorithms suited to diverse tasks and
resource constraints.

Masked-block Completion and Architectural Masks: To probe this question, we train a linear
transformer on masked-block completion tasks that hide one block of a low-rank matrix mirroring
the classical Nyström completion problem. The transformer’s task is to infer these missing blocks
based solely on observable data and a mean-squared error objective—without explicit guidance about
the underlying parameters or relationships between tasks. We impose three distinct architectural
visibility constraints on transformers, each reflecting practical computational limitations common
in large-scale optimization: centralized (full visibility), distributed (restricted communication), and
computation-limited (restricted complexity via low-dimensional attention). Each regime employs the
same underlying transformer architecture, differing only minimally in their attention masks.

Emergence of a Unified Algorithm: Remarkably, despite training independently under these distinct
computational constraints, we find that transformers implicitly uncover the same concise, two-line
iterative update rule. This unified algorithm, termed EAGLE, emerges consistently across con-
straints, exhibiting strong theoretical and empirical properties: it achieves second-order convergence
on full-batch problems, matches classical methods in centralized settings, significantly reduces
communication complexity in distributed settings and remains accurate under compute constraints.

Summary of Contributions. The main contributions of this work are
• Unified masked-block completion benchmark: A single training framework integrating multiple
prediction or inference tasks into a unified interface.
• Resource-aware transformer architectures: Transformer-based models naturally adapt to central-
ized, distributed, and computation-limited environments through simple architectural constraints.
• Implicit numerical algorithm discovery: Transformers implicitly discover a unified, efficient numer-
ical solver, EAGLE, that achieves second-order convergence on full-batch problems and consistently
matches or outperforms classical methods across completion, extrapolation, and estimation tasks
under varying resource constraints. Our theoretical results uniformly apply across all these tasks,
highlighting the broad applicability of the discovered algorithm.

These findings position transformers trained on block completion as powerful tools for uncovering
numerical algorithms, offering a promising route toward developing adaptive, data-driven solvers.

2 Related Work

We focus on literature most pertinent to viewing transformers as fixed data-to-data transforms whose
forward pass exposes emergent algorithms.

Implicit algorithm learning. Transformers have been shown to recover 1st- and 2nd-order methods
for least squares, dual GD for optimal transport, and TD updates for RL (Von Oswald et al., 2023;
Ahn et al., 2023; Daneshmand, 2024; Wang et al., 2025; Fu et al., 2024; Giannou et al., 2023).
Weight-level circuit studies reverse-engineer copy-and-addition “induction heads” (Olah et al., 2022;
Nanda, 2023), but are still confined to token-manipulation algorithms. RNNs and MLPs display
related behavior (Siegelmann and Sontag, 1992; Tong and Pehlevan, 2024), yet attention yields
depth-aligned, easily inspected updates (Garg et al., 2023). Most prior work is therefore limited to
first-order rules and a single, centralized computational regime.

Task vs. regime. Earlier in-context studies (Akyürek et al., 2022; Bai et al., 2023; Min et al., 2021)
vary the regression task—sampling while the hardware regime stays fixed. We take the opposite view:
we fix one low-rank matrix-completion task and show that the same transformer discovers a rule that
adapts automatically as compute, memory, or communication budgets are tightened.

Data-space vs. parameter-space. Prior analyses interpret the forward pass of a transformer trained
on an ICL task as updating an underlying hidden parameter for some model of the training data
relationships. However, in reality, a transformer is a data-to-data map, with no explicit supervision
of underlying model of parameters, which is the viewpoint we adopt. Weight-level ‘circuit’ studies
(Olah et al., 2022; Nanda, 2023) of trained transformers also take this view, but are focused on
tasks like copying or addition; we instead are focused on numerical linear algebra tasks in varying
computational settings.

2



Per-machine routing(A) (B) (B’)

Figure 1: Architectural regimes studied in this work. (A) Computation-limited: a single-head attention-
only transformer whose query, key , value & projections are restricted to a low-rank embedding of dimension
k = r ≪ n, i.e., an explicit bottleneck that reduces the per-layer cost from Θ(n2d) to Θ(n r d); Unconstrained.
The embedding dimension is set to k = n+ n′. (B) Distributed: a multi-head transformer in which each head
operates on data stored on a separate machine; the heads run local attention and their outputs are aggregated.
(B′) Per-machine routing: detailed view of the distributed setting showing how each machine µ forms its local
projection Pµ

k and contributes to the next-layer representation Zk+1.

In-context regression limits. Theoretical lenses that view in-context learning as linear regression
(Akyürek et al., 2022; Bai et al., 2023) recover gradient-descent dynamics with

√
κ dependence on the

condition number. Vladymyrov et al. (2024) show that, with suitable parametrization, preconditioning
yields second-order dynamics and log κ convergence. We show that transformer training naturally
converges to such parametrizations in practice, with this behavior robust to bandwidth and memory
constraints. Theoretically, we prove that the recovered EAGLE method enjoys favorable guarantees
across all studied settings, and further validate these empirically.

Links to classical numerical algorithms. Structurally, the recovered EAGLE iterations bear intimate
relationship to the Newton-Schulz method for inverting positive matrices (Higham, 1997), but extend
this to solve non-positive linear systems. In the centralised and sketched settings, this underlying
relationship lends EAGLE a second-order convergence rate, with iteration complexity depending only
logarithmically on the condition number. This is particularly interesting since usual implementations
of Nyström approximations for kernel methods all focus on Krylov-based solvers (Williams and
Seeger, 2001; Halko et al., 2011; Gittens and Mahoney, 2016), and EAGLE may lend new approaches
to the same.

Distributed and sketched solvers. Block-CG, communication-avoiding Krylov (Demmel et al., 2013;
Hoefler et al., 2019) and sketch-and-solve techniques (Clarkson and Woodruff, 2017; Woodruff,
2014) dominate practice but remain first-order, and have net communication requirements scaling
with the (joint) covariance of the data. We characterise the distributed EAGLE performance in terms
of a ‘data diversity index’ α, and find significantly smaller communication (and iteration) complexity
when α−1 is much smaller that this joint condition number.

3 Method

We explain how data are generated and encoded, how architectural constraints enforce three resource
regimes, and how we extract an explicit numerical solver from trained weights.

Block Completion Setup. We generate a low-rank matrix task by first drawing a matrix of the form

X =

[
A C

B D

]
∈ R(d+d′)×(n+n′), rank(X) = rank(A), (1)

and then feeding the transformer a prompt matrix Z0 in which the lower-right grey block D is masked,
i.e., set to zero. Given the visible blocks A,B,C, the model must reconstruct D with low ℓ2 error.
This single prompt template generalizes Nyström extrapolation and scalar regression (Appx. B). We
train on both exact samples and noisy variants obtained by adding Gaussian noise with variance
σ2 ∈ {0, 10−2}, so the low-rank assumption is approximate but realistic. Note that the Nyström
approximation is the minimum-rank completion that matches observed entries, even if X is full rank.

Data generation. We construct rank-s matrices X ∈ R(d+d′)×(n+n′) by sampling R1 ∈ R(d+d′)×s

and R2 ∈ R(n+n′)×s, each with rows drawn i.i.d. from N (0,Σ), and setting X = R1R
⊤
2 /
√
s. To
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control the difficulty of the problem, we choose Σ to be diagonal with entries Σii = αi, where α < 1,
inducing strong anisotropy. We use the following parameters throughout: n = d = 18, n′ = d′ = 2,
s = 10 and α = 0.7. When applicable, we add Gaussian noise of variance 0.01 to X .

Linear-attention transformer. We employ the linear-attention variant of transformers (Ahn et al.,
2023; Von Oswald et al., 2023; Wang et al., 2025). Each layer ℓ applies multi-head attention with a

residual skip connection, to transform Z0 =

[
A C
B 0

]
to Zℓ :=

[
Aℓ Cℓ

Bℓ Dℓ

]
via the iterative structure

Zℓ+1 = Zℓ +
∑

h∈[1:H]

Attnhℓ (Zℓ), Attnh
ℓ (Z) =

(
ZWh

Q,ℓ(ZWh
K,ℓ)

⊤ ⊙Mh
ℓ

)
ZWh

V,ℓW
h⊤
P,ℓ , (1)

where WQ,WK ,WV ,WP ∈ Rn×k are query, key, value, and projection matrices, and the fixed
mask Mh

ℓ =
[
1(d+d′)1

⊤
d 0(d+d′)×d′

]
blocks the flow of information from the incomplete (Cℓ, Dℓ)

column in Zℓ towards the visible column. Models are trained to minimize mean-squared error on D;
training details are in §B.2. A schematic of the architecture appears in Fig. 1(A).

Computational Regimes via Architectural Constraints. We study three distinct computational
regimes—unconstrained (or centralized), computation-limited (low-dimensional attention), and
distributed (restricted memory per machine)—each encoded into the architecture through explicit
attention and dimensionality constraints. Figure 1 summarizes these architectural regimes.

Unconstrained. No visibility or dimension constraints are imposed; each token attends to all others.
We set the embedding dimension k = n+ n′.

Computation-Limited. To emulate memory- or latency-bounded hardware we enforce a low-rank
attention constraint: the query and key matrices have embedding size k = r ≪ n, and the value and
projection size r + n′ (we use r = 5 ≈ n/4; see Fig. 1A). This bottleneck compresses the input and
cuts the per-layer cost of recovered algorithms from Θ(nd2) to Θ(ndr). (See §B.3 for details).

Distributed Computation. The prompt Z0 distributes X across M machines through a block structure

Z0 =
[
· · · Xµ Xµ+1 · · ·

]
∈ R(d+d′)×M(n+n′), where Xµ =

[
Aµ C

Bµ D

]
, µ ∈ [1 : M ]

Each head is assigned to a machine µ, and all but the µth block in its query, key matrices are zeroed,
enforcing local self-attention. Each µ then ‘transmits’ information to others through the value,
projection matrices, and incoming transmissions are summed to generate Zℓ+1. The full algebraic
form, matrix partitioning and communication setups are provided in §B.4.

Algorithm extraction. We generate explicit algorithms from a trained transformer by progressively
simplifying its weights until a concrete update rule emerges. The steps taken are (also see §B.5):
• Weight quantization. Cluster coefficients and sparsify by dropping the values below ≤ τ . We then
evaluate the performance with simplified weights to confirm no loss in performance.
• Matrix Property Tests. Check whether resulting weight matrices are random, sparse, or low-rank.
• Scaling Laws. Identify how the transformer scales weight matrices layer-by-layer.

(A) Update: Identical for all regimes (B) Fusion: Lightweight Communications
Algorithm 1: Emergent Algorithm for Global Low-rank Estimation (EAGLE). Left: the numerical kernel
UPDATE runs unchanged on every machine. Right: the outer loop calls UPDATE, and in the distributed regime
(M>1), it averages the resulting query updates (C′) and outputs (D′). M = 1 in the unconstrained and
computation-limited settings. In the former, S = In, while in the latter, S ∈ R(d+d′)×r is composed of random
orthogonal rows. The values η, γ are global constants (see below for their values).
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layer U×104 D×104 C-L×104

0 0.00 0.00 0.00
1 2.36 0.62 0.01
2 5.27 1.40 0.02
3 3.70 1.28 0.13
4 2.16 1.32 0.14

Table 1: Differences across iterations be-
tween transformer and extracted algorithm
(squared Frobenius norm divided by size of
Z) in the unconstrained (U), distributed (D),
and compute-limited (C-L) settings. Mean
times 104 across 10 seeds is reported.

In the unconstrained and compute-limited settings, an ar-
chitecture with one head per layer suffices to achieve com-
petitive performance, while in the distributed setting, we
use one head per machine. After these simplifications ev-
ery regime collapses to the same two-line, parameter-free
update rule (Eq. 2 in § 4), providing a direct algorithmic
interpretation of the transformer’s in-context computation.

4 Emergent Algorithm

One method, three resource regimes. Across all three
architectural constraints, the trained 4-layer transformer
achieves a 10–50 times reduction in test MSE (Fig. 3 a).
Moreover, algebraic interpretation of the learned weights
shows it implements the same two-line scaling transformation across constraints. Algorithm 1
visualises the result, which we call EAGLE (Emergent Algorithm for Global Low-rank Estimation).
The blue UPDATE box is identical in all scenarios and across all machines, while the outer grey look
captures the information fusion in the distributed setting (i.e., if M > 1). The matrix S in UPDATE is
an orthogonal sketching matrix (see below). Table 1 shows that this extracted algorithm reproduces
the exact layer-wise activations of the transformer to within 6 · 10−4 error, demonstrating its fidelity.
We now discuss how this algorithm is derived in the three settings, focusing on the noiseless case.
However, our findings remain valid under modest data noise (σ2 = 0.01, see §C.1). Moreover, §D
shows how Algorithm 1 can be adopted for parameter estimation.

Unconstrained setting. Because token updates are not restricted, the weight patterns are the cleanest
to interpret here, and will re-appear in the distributed and compute-limited regimes.

• Emergent weight structure. During the extraction procedure we progressively pruned attention
heads and quantised weights while tracking validation loss. Remarkably, one head per layer is
already sufficient: pruning from eight to a single head has little effect on test MSE. After pruning, the
weight products WQ,ℓW

⊤
K,ℓ and WV,ℓW

⊤
P,ℓ collapse to (almost) diagonal matrices.

WQK,ℓ := WQ,ℓW
⊤
K,ℓ ≈ diag

(
α1
ℓIn, 0n′

)
, WV P,ℓ := WV,ℓW

⊤
P,ℓ ≈ diag

(
α2
ℓIn, α

3
ℓIn′

)
,

where only the three scalars α1,2,3
ℓ vary from layer to layer. Figure 2 (left) visualises a typical pair;

layer-wise statistics across 10 seeds are reported in §C.2. This near-block-diagonal structure lets us
algebraically reduce the transformer’s forward step to the update shown in Fig. 1.
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Figure 2: Block structure of WQK,ℓ (top) and WV P,ℓ (bottom) learned in the three regimes. Example shown
for (n, d, d′, n′) = (18, 18, 2, 2); distributed run uses M = 3 workers with per-worker n = 6, and all of
the {Wµ

V P }µ=1,2,3 are collated together with each of the three block-wise rows corresponding to one head,
while omitting all (null) non-µ blocks in Wµ

QK . Off-diagonal blocks appear only in Wµ
V P,ℓs, and are identical

suggesting structure of messaging. Statistics over 10 seeds are in §C.2.
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• From weights to UPDATE. The additive steps in UPDATE are due to the residual connection. Further,
the diagonal forms of WQK,ℓ and WV P,ℓ imply that (see §C.3), the attention block acts as

Attnℓ(Zℓ) =

[
α1
ℓα

2
ℓAℓA

⊤
ℓAℓ α1

ℓα
3
ℓAℓA

⊤
ℓCℓ

α1
ℓα

2
ℓBℓA

⊤
ℓAℓ α1

ℓα
3
ℓBℓA

⊤
ℓCℓ

]
. (2)

The form of the iterative update in Alg. 1 with M = 1, S = In is then immediate.
• Rationale for Weights. Further, the values α1,2,3

ℓ see two persistent structural effects: throughout,
α1
ℓα

2
ℓ ≈ η∥Aℓ∥−2

2 , and α1
ℓα

3
ℓ ≈ γ∥Aℓ∥−2

2 , where ∥Aℓ∥2 is the spectral norm of Aℓ (i.e., largest
singular value, tuned to the largest such value typically seen in a training batch), and γ, η are the
constants η ≈ 1 and γ ≈ 1.9. Thus, the scale of these weights is determined by ∥Aℓ∥−2, which is
used in a fixed way by the method. Figure 5 shows that α1

ℓα
2
ℓ∥Aℓ∥2 is constant across layers.

• Understanding the method. Note that the transformation A 7→ (I − ρηAA⊤)A contracts large
singular values of A more than small singular values. The net effect of this repeated action on
Aℓ is that for large ℓ, all initially nonzero singular values of Aℓ converge to one another, i.e., the
matrix A becomes well-conditioned (see Fig. 3). This aspect of the method is reminiscent of the
Newton-Schulz method for matrix inversion (Schulz, 1933; Ben-Israel, 1965; Higham, 2008; Fu et al.,
2024). The overall structure of the iterations can then be seen as a ‘continuous conditioning update’
for Aℓ. The iterations for Cℓ, Dℓ are reminiscent of gradient descent, adapted to the varying Aℓ.
• Relation to prior work. Von Oswald et al. (2023) dubbed the same update “GD++” in the scalar
case (d′=n′=1) and interpreted it as pre-conditioned gradient descent. In our opinion, there are
two deficiencies in this viewing of the method. Firstly, gradient based methods implicitly assume
that one is optimising a parameter (i.e., searching for a W such that B ≈ WA, and imputing
D ≈WC), whereas the transformer has not been supervised in a manner that reveals the existence
of an underlying parameter. In other words, a gradient descent type interpretation is not a behavioural
(in the sense of Willems (1991)) description of the recovered method. Secondly, our analysis shows
that unlike gradient descent, the recovered method is closer to a Newton–Schulz conditioning loop
wrapped around direct prediction. For these reasons, we refer to it as the EAGLE method in the rest
of the paper. §C.4 contrasts the two viewpoints in detail.

Distributed setting. Following the unconstrained setting, we train with a single head per machine.

• Communication Structure As detailed in §3, for each head, the block structure of the (n+ n′)×
M(n+ n′) value-projection matrix Wµ

V P,ℓ governs what machine µ sends to other machines. Fig. 2
(middle) reveals two striking regularities in this matrix.

– Within-machine blocks. Every diagonal block equals diag(α1
ℓIn, α

2
ℓIn′)—exactly the same

form as in the unconstrained model, with the same pair (α1
ℓ , α

2
ℓ ) across all machines.

– Across-machine blocks. Off-diagonal blocks are diag(0n, α2
ℓIn′): i.e. only the incomplete

columns (Cℓ, Dℓ) are transmitted, and with the very same factor α2
ℓ as the within machine blocks.

• Resulting algorithm. Since Wµ
QK,ℓ and the local block of Wµ

V P,ℓ have the same structure as the un-
constrained setting, each machine executes the same local iteration as in the UPDATE method. Further,
via the off-diagonal blocks in Wµ

V P,ℓ, each machine transmits only the O(n′(d+ d′)) entries of its
update to Cℓ, Dℓ, captured in the C ′, D′ outputs in Alg. 1. Since attention heads are simply added, ev-
ery machine averages its received blocks, leading to Cℓ+1 = M−1

∑
µ C

′µ, Dℓ+1 = M−1
∑

µ D
′µ.

The shared columns are thus identical across all µ at all ℓ, recovering Alg. 1 with S = In and M > 1.
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Figure 3: The trained transformer solves matrix completion with a unified algorithm over all three computational
settings. The evolution of key quantities throughout the transformer layers illustrate the remarkable similarity
between the latent algorithms. Mean across 10 training seeds is reported.
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WQK, WVP, random orthonormal
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Figure 4: The computation-limited transformer implements
pseudo-random sketching. The figure matches the candidate
sketch matrices across all layers against common sketch charac-
teristics (randomness, clustered eigenvalues). Left: Distribution
of eigenvalues. Right: Distribution of coefficients.
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Figure 5: The transformer learns to nor-
malize the batch-maximum spectral norm
of Aℓ observed during training. The plot
reports α1

ℓα
2
ℓ maxb∈[B] ∥A(b)

ℓ ∥2, where the
maximum is taken over each batch.

• Communication cost. Under the star topology in Alg. 1, each machine communicates O
(
(d+d′)n′)

floats per round; for scalar prediction (d′ = n′ = 1) this is the advertised 2d-float message. Notably,
the transformer recovers this sparse pattern without any explicit communication constraint. Exploring
how stronger topological or bandwidth limits shape the learned algorithm is an open problem.

Computation-limited setting. Here the query, key, value and projection matrices are rank-
constrained: WQ,ℓ,WK,ℓ ∈ R(d+d′)×r and WV,ℓ,WP,ℓ ∈ R(d+d′)×(r+n′) with r ≪ n. Similar
low-rank constraints commonly arise when attention head dimensions are smaller than the trans-
former’s overall embedding size.

• Emergent weight structure. Again, only one head per layer is needed. The (n + n′) × (n + n′)
matrices WQK,ℓ and WV P,ℓ share three universal properties (Fig. 2)

– Block-diagonal form. Both are block-diagonal; the cross blocks (n× n′) and (n′ × n) vanish
as in the unconstrained regime. The (n′ × n′) block of WV P,ℓ is a scaled identity, exactly as before.

– Rank-r top left block. The leading n× n block of each matrix has numerical rank r (< n) and
the two blocks are similar up to a sign when rescaled to spectral norm 1 (relative difference: 0.28).

– Random sketch spectrum. The eigenvalues and entry distribution of the top-left block match
those of SS⊤ where S is a random n× r orthogonal matrix (Fig. 4).
• Sketching interpretation. The transformer therefore materializes an orthogonal row sketch S ∈
Rn×r within the ‘top left’ blocks of its WQK and WV P matrices. This sketch acts upon the columns
within the (Aℓ, Bℓ) blocks of the state Zℓ, and the output of the attention block is structured as

Attnℓ(Z) =

[
α1(AS)(AS)⊤(AS)S⊤ α2(AS)(AS)⊤C
α1(BS)(AS)⊤(AS)S⊤ α2(BS)(AS)⊤C

]
, (3)

where α1, α2 are constants depending on ∥A∥−2. In other words, the update first computes the
sketches AS,BS ∈ Rd×r of the ‘complete’ columns, and then proceeds with the update as in the
unconstrained case, lifting them back to n× d by the terminal S⊤. Setting M = 1 and S = Sℓ in
Algorithm 1 recovers the exact layer dynamics.
• What the sketch buys. Under the sketch, Ãℓ = AS ∈ Rd×r is only r columns wide, reducing the
per-layer flop count from O(n2d) to O(nrd). Although this sketched update causes the iteration
complexity of the method to increase, the overall hope is that the lower per-iteration cost may give a
better total runtime. This aligns with the original motivation in Vaswani et al. (2017), where low-rank
constraints on WQ,ℓ, WK,ℓ, WV,ℓ, and WP,ℓ were explicitly introduced for computational efficiency.

5 Evaluation of EAGLE

Having identified the EAGLE update underlying the transformer weights, we move on to studying
how well the extracted algorithm performs in the three regimes, both theoretically and empirically.
All ablations are deferred to §E, while theoretical proofs appear in §F. Unless stated otherwise, all
numerical evaluations in this section use data sizes n = d = 240 and n′ = d′ = 2, condition number
κ(A) = 102, rank(A) = 240, average performance across 50 runs is reported.
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EAGLE Gradient Descent Conjugate Gradient SVD-based
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Figure 6: EAGLE shows second order convergence in the unconstrained regime. It extends to low-rank
completion and scales logarithmically with the condition number κ.

5.1 Unconstrained (centralized) setting

Second-order convergence guarantee. We discuss the theoretical convergence properties of
EAGLE in the centralized case. Let κ(M) denote the condition number of a matrix M .

Theorem 1. For any X , let D̂∗ be the Nyström estimate for D and κ = κ(A0). If η = 1/3, γ = 1,
then under EAGLE with S = In,M = 1, for any ε > 0, there exists

L = O
(
log κ+ log log(ε−1

√
d′∥W∗∥F ∥C∥F )

)
such that ∀ℓ ≥ L, ∥DL − D̂⋆∥F ≤ ε, where W∗ = BA(AA⊤)† is the Nyström parameter (§B.1).
Mechanism. We show Thm. 1 in §F.1 by arguing that each iteration shrinks κℓ := κ(Aℓ) by at least a
constant factor, and that once κℓ ≤ 2, then κℓ − 1 decays supergeometrically. The error is controlled
by developing a telescoping series with terms decaying with (κℓ − 1). The log log(ε−1) dependence
in L, i.e., the quadratic rate, is related to the quadratic decay in κℓ − 1, which in turn arises since the
EAGLE iterations for Aℓ bear a strong relationship to the classical Newton-Schulz method (Higham,
2008, Ch. 5,7). We note that a simple ∥Dℓ −Dℓ−1∥F <τ stopping rule suffices in practice.

Positioning vs. classics. Direct inversion via QR-decomposition or SVD costs O(minn2d, d2n) once,
independent of κ. Krylov methods such as the Conjugate Gradient method (CG, Hestenes and Stiefel,
1952) and gradient descent (GD) need κ log(ε−1) and κ2 log(ε−1) iterations and O(nd) time per-
iteration to compute matrix–vector products. By contrast, EAGLE achieves quadratic convergence
with iteration counts scaling only with log(κ), albeit with min(n2d, d2n) cost per iteration.

Empirical protocol. To evaluate the empirical performance of the recovered algorithm, we bench-
mark EAGLE against a SVD-based solver (torch.linalg.lstsq), the Conjugate Gradient method
and gradient descent (GD) on synthetic A∈Rn×n (see Appx. E.1 for details). In particular, we study

1. Error vs. wall-clock time. Visually confirms the second-order convergence predicted by Theorem 1.
2. κ-sweep. Time to reach ε=10−20 for κ∈{102, . . . , 105}; visualises the log κ vs.

√
κ gap.

3. Rank-deficient check. Time to reach ϵ = 10−20 highlights robustness to rank-deficiency.

Figure 6 presents (1)–(3); further experiments including extended size sweeps are in §E.3.

Take-away. The transformer-extracted update converges quadratically with only a log κ penalty—
∼ 100× fewer iterations than CG at κ=104—while retaining O(min(nd2, dn2))-per-iteration cost.
This positions EAGLE in a previously unexplored region of the speed–accuracy trade-off: an iterative
solver that matches SVD-based performance up to a log factor.

5.2 Distributed setting

Diversity drives the rate. Besides the local condition numbers κµ=κ(Aµ), convergence depends
on how distinct the column spaces on different workers are. We capture this via:
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(d) ᾱ = 0.01

Figure 7: In the distributed setting, EAGLE shows significant improvements in iteration count. The dotted line
indicates the iteration where the error reaches 6; as the theory suggest, the convergence depends linearly on α.

Definition 1. (Diversity index) Normalise ∥Aµ∥2 = 1 and let Pµ ∈ Rd×d be a projection onto the
column space of Aµ. The diversity index of {Aµ}Mµ=1 is defined as

α := min
∥v∥=1

v∈
⋃

µ col−space(Aµ)

M−1
∑

µ∈[1:M ]

∥Pµv∥ 22 ∈ (0, 1].

A large overlap in subspaces captured by distinct machines Aµ yields a large α, with perfect overlap
inducing α = 1, while orthogonal subspaces induce small α. This diversity index α captures the
convergence scale of distributed EAGLE via the following result shown in §F.2.
Theorem 2. Let κmax = maxµ κ

µ. In the noiseless case, i.e., when ∃W∗ such that [B D] =
W∗ [A C], then under EAGLE with η = 1/3, γ = 1, S = In, M ∈ N, for any ε > 0, there exists

L = O(log(κmax + α−1 log(
√
d′∥C∥F ∥W∗∥F /ε))

such that ∀ℓ ≥ L, ∥DL −D∥F ≤ ε.
Mechanism. After log κmax iterations, every local Aµ

ℓ has near-unit singular spectrum. Subsequent
progress is controlled by the condition number of the average energy matrix Ēℓ = M−1

∑
µ A

µ
ℓA

µ⊤
ℓ ,

which tends to α−1. Second-order convergence re-emerges when α = 1. Let us note that α−1 is
always smaller than κ(Ē0) and may be much smaller than the same.

Baselines. Our main interest is in comparing with distributed baselines that operate with O(d) units
of communication per round—any more, and we may simply share the data across all machines into
one central server. For this reason, QR/SVD decompositions and the Conjugate Gradient method
are unavailable, which leaves gradient descent (GD) as the main competitor. GD and EAGLE have
identical communication costs, transmitting O((d+ d′)n′) floats per iteration. However, the iteration
complexity of GD scales with κ(Ē0), which is always greater than α−1, and may be much larger. As
a result, EAGLE has a strong advantage in practical strongly communication-limited scenarios.

EAGLE Distributed Gradient Descent
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Figure 8: Iteration complexity of dis-
tributed EAGLE is independent of the
number of workers M .

Empirical protocol. We vary the two rate-determining param-
eters M and α,, and report error against iteration in Figs. 8,7:

1. M -sweep. M=1, 3, 5, 8 workers among which a fixed
set of data is split (d = n = 1000, κmax = 103, α ≈ 1).

2. α-sweep. Four synthetic datasets, κmax = 103, M =
3; cross-machine left-subspace alignment is tuned yielding
varying α centered around 4 means ᾱ ∈ {1, 0.83, 0.35, 0.01}.
Take-away. Distributed EAGLE generally converges at first
order and its iteration count grows linearly with α−1 as data
overlap increases (Fig. 7). Further, for controlled α, the result-
ing iteration complexity is independent of the number of work-
ers M (Fig. 8). This confirms our theoretical result. In contrast,
gradient based methods require 10–100× more rounds. Exper-
iments on “best-of-both” hybrid (EAGLE until A stabilizes, then GD) are detailed in §E.2.

5.3 Computation-limited sketching

Sketch-aware iterations. We now turn to iterations driven by the sketched columns Ãℓ :=
S⊤
ℓ A, B̃ℓ := S⊤

ℓ B via the i.i.d. orthogonal sketches Sℓ ∈ Rn×r (r ≪ n). The isotropicity
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of the sketch ensures that the singular-spectrum of A is conditioned in roughly the same as the
centralized setting (§5.1), up to a slowdown of a ≈ r/n factor.

Baselines & Protocol. The standard competitor is Stochastic Gradient Descent (SGD): GD run on
an r-column sketch. It shares the n/r spectral slowdown but keeps its native κ2 dependence. For
efficiency, our implementation of the resource-constraint EAGLE uses random row sampling matrices
as S. We vary the rank, the single rate-controlling parameter r:

1. r-rank sweep. We vary the rank r∈{n/8, n/4, n/2, n} in Figure 17.
2. Per-iteration cost. The per-iteration wall-clock time decreases with sketch size: 21, 16, 7 and 5
milliseconds for s = 240, 120, 60 and 30, respectively.

Take-away. Iteration count grows linearly with n/r, while time per iteration falls up to 7×. Against
SGD, the method reaches ε=10−2 roughly 2.5× faster for s = n/4, demonstrating that sketching
plus the second-order update can lead to significant runtime improvements.

5.4 Evaluation on non-synthetic data

We evaluate the unconstrained EAGLE variant on seven low-rank matrices from the SuiteSparse
Matrix Collection Davis and Hu (2011) spanning 1–100 million coefficients. For each matrix of rank
r, rows and columns are permuted such that the top-right r×r block A is full-rank. For compatability
with existing CUDA solvers, we reduce the block matrices B,D to a single row, yielding a setting
akin to the linear system wA = B.

We benchmark EAGLE against three GPU-accelerated baselines implemented in
cupyx.scipy.sparse.linalg: an SVD solver, conjugate gradients on the normal equa-
tions (CG; Hestenes and Stiefel, 1952), and LSMR (Fong and Saunders, 2011). We run each
iterative solver until a residual of 10−3∥B∥2F is reached. Table 2 lists wall-clock times in seconds.
First, we observe that EAGLE consistently outperforms the SVD-based solver despite its nominal
log κ overhead; we attribute this to its heavy use of efficient, massively parallel matrix–matrix
multiplication. Second, EAGLE is competitive with sparse iterative methods—beating LSMR
on every matrix and CG on all but one—highlighting EAGLE’s practical strength for large,
ill-conditioned linear systems. §E.4 corroborates both results for varying residual tolerances.

Task EAGLE SVD CG LSMR
Maragal_4/Maragal_4 0.625 0.849 1.55 2.34
Maragal_5/Maragal_5 0.632 1.40 1.75 1.40
Meszaros/pf2177 3.43 4.23 1.75 3.51
HB/dwt_1007 0.640 0.902 4.65 9.73
HB/bcsstm13 0.697 0.955 3.17 1.16
Priebel/162bit 0.847 2.35 16.7 57.1
Schulthess/N_pid 0.675 1.15 1.27 1.96

average rank 1.14 2.29 2.86 3.71

Table 2: Runtime in seconds of different numerical solvers on real-world matrix data. EAGLE is a strong
competitor for solving linear systems.

6 Conclusions

We view transformers as fixed data-to-data transforms whose forward pass exposes emergent algo-
rithms. We fix one low-rank matrix-completion task and explore various regimes. Our proposed
rule, EAGLE is a transformer-induced method that emerges as a unifying algorithm in centralized,
distributed and sketching regimes, achieving second-order convergence with only log κ (where κ is
the condition number), α−1 (distributed data diversity) or n/r (sketch) slow-downs. Empirically, it
outperforms Conjugate Gradient and Gradient Descent by 1–2 orders-of-magnitude in both iteration
complexity and net communication, and matches the behaviour of QR-based solvers up to log terms.

Limitations. Numeric stability beyond κ>108 is untested. Second, we show one pre-training recipe
that yields EAGLE; extensions to non-linear regimes that do so are open.
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A Related Work

Neural networks as implicit algorithm learners. Large models can emerge classical iterative
procedures when trained on synthetic tasks. For transformers this spans gradient descent for least
squares (Von Oswald et al., 2023; Ahn et al., 2023), dual gradient descent for optimal transport
(Daneshmand, 2024), and temporal–difference planning in RL (Wang et al., 2025). RNNs and MLPs
exhibit similar behavior (Siegelmann and Sontag, 1992; Tong and Pehlevan, 2024), though attention
yields depth-aligned, inspection-friendly updates (Garg et al., 2023). Gap. All of these works uncover
first-order rules tied to a single regime. Our advance. EAGLE is the first second-order update that
generalizes unchanged across centralized, distributed, and sketched settings.

Data transformers vs. parameter updates. Unlike classical solvers that iterate in parameter space,
a transformer’s computation is purely data-to-data: weights stay fixed at inference time, and all
state lives inside the forward activations. Prior analyses of in-context learning focus on mapping this
data flow to gradient descent on hidden parameters (Akyürek et al., 2022; Von Oswald et al., 2023).
EAGLE shows a stronger result—an explicit, second-order data-space projector that converges
quadratically without ever touching model parameters. This clarifies that algorithmic power can
emerge without an internal parameter update loop.

In-context learning as regression—rates and limits. Theoretical analyses cast in-context learning
as linear regression on prompt examples (Akyürek et al., 2022; Bai et al., 2023; Min et al., 2021).
Transformers so far reproduce gradient descent or SGD, yielding linear rates and the usual

√
κ

condition-number dependence. Our advance. We extract an emergent Newton–Schulz-style update
with quadratic convergence and log κ dependence that remains numerically stable under three
disparate resource constraints.

Classical second-order solvers, Nyström, and low-rank approximation. Newton–Schulz iterations
deliver quadratic convergence for matrix inversion (Higham, 1997) but require explicit matrix products
and have not been analyzed in noisy, data-dependent regimes. Nyström methods scale kernel learning
and matrix completion (Williams and Seeger, 2001; Halko et al., 2011; Gittens and Mahoney, 2016);
state-of-the-art variants use QR or Krylov subspace solvers (Saad, 2003; Musco and Musco, 2017).
Gap. These algorithms are hand-designed for fixed settings and degrade to first-order (

√
κ) rates

when run under communication or memory limits. Our advance. The transformer learns the
same Newton–Schulz-type projector that attains Nyström accuracy in only log κ steps and adapts
automatically to distributed or sketched execution.

Distributed and sketched solvers. Block-CG, communication-optimal Krylov methods (Demmel
et al., 2013; Hoefler et al., 2019) and randomized sketch-and-solve techniques (Clarkson and Woodruff,
2017; Woodruff, 2014) are the de-facto choices at scale, yet remain first-order and

√
κ-limited. We

introduce a diversity index α that predicts our distributed rate and achieves provably fewer rounds
when worker subspaces overlap (α−1≪

√
κ).

Meta-learning across tasks. Transformers pretrained on heterogeneous corpora behave as meta
learners (Min et al., 2021; Bai et al., 2023; Naim and Asher, 2025); prior work, however, stops at
behavioral observation. EAGLE offers a mechanistic account: pre-training can imprint a single
algorithm that flexes with compute, memory, and communication budgets.

Scope. This survey is necessarily selective; we focus on works most relevant to the data-space,
second-order perspective. A broader taxonomy of numerical solvers and in-context phenomena is
beyond our scope but complementary to the questions addressed here.

Positioning. To our knowledge this is the first demonstration that pre-training alone can induce one
second-order, matrix-completion rule that (i) bridges centralized, distributed, and sketch regimes,
(ii) admits tight non-asymptotic guarantees, and (iii) out-iterates classical Krylov baselines and cuts
communication under typical ML-scale conditioning.
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B Methodological Details

B.1 Nyström Approximation

The Nyström approximation of a block matrix X =

[
A C

B D

]
with missing block D is the matrix

X̂∗ =

[
A C

B D̂∗

]
,

where
D̂∗ := BA(AA⊤)†C.

Here, Z† is the Moore-Penrose pseudoinverse of Z. Note that this approximation ensures that the
rank of the approximate X̂∗ is the same as the rank of A—in this way, the Nystrom approximation
reduces both the rank of X , as well as the Frobenius norm of the error. The latter property can be
seen from the fact that the approximation just amounts to a joint execution of ordinary least squares.
Indeed, if we treat the ith row of B, Bi as a ‘response variable’ and the jth column of C, ci as a
query point, then

(D̂∗)ij = BiA(AA⊤)†cj

is precisely the estimate when one regreeses the data (A,Bi) onto cj . For this reason, we may also
interpret the method as computing the estimation parameters

W∗ := BA(AA⊤)† ∈ Rd′×d,

and then computing the estimate
D̂∗ = W∗C,

much as in ordinary linear regression. This value W∗ will appear later in our theoretical analyses.

We note that the approximation above is defined whether the matrix X is noise-corrupted or not.
In the presence of noise, it inherits many of the statistical properties of linear regression when we
assume that the noise is restricted to the ‘response variables’ B,D. As a special case, if the rank
of X is equal to that of [A C] , then in fact it holds that [B D] = W∗ [A C] , i.e., the Nyström
approximation is exact. We will sometimes refer to this as the ‘noiseless’ case.

B.2 Training specifications

The transformer is trained using the Adam optimizer with a constant learning rate of 0.001 and
a batch size of 1024 for 20,000 iterations. To stabilize training, gradient clipping with a 2-norm
threshold of 0.1 is applied at each step. At every iteration, a new batch is independently sampled
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as detailed in Section 3, ensuring that the model never sees the same data twice during training
or inference. The block masking pattern remains fixed throughout. We observe occasional spikes
in the training loss (Figure 9) and interpret those as occasional failures of the learned solver to
converge, typically occurring when ∥A∥2 attains untypically large values. We recall that, under our
data sampling procedure, ∥A∥2 is random and unbounded, allowing for such outlier cases.

B.3 Runtime of attention map

Recall that the dominant computational cost in a transformer layer arises from the attention mecha-
nism:

Attn(Z) =
(
ZWQ(ZWK)⊤ ⊙M

)
ZWV W

⊤
P ,

where Z ∈ R(d+d′)×(n+n′) is the input matrix and WQ,WK ,WV ,WP ∈ Rn×k are learned projec-
tion matrices. Assuming that the size of the submatrix D remains constant, we have d′ = Θ(1) and
n′ = Θ(1).

The computation of ZWQ, ZWK , and ZWV requires Θ(ndk) time. The inner product and masking
operation (ZWQ)(ZWK)⊤ ⊙M incurs a cost of Θ(d2k), and the subsequent multiplication with
ZWV W

⊤
P requires an additional Θ(d2k + ndk). Thus, the total time complexity of the attention

computation is Θ(d2k + ndk).

For the unconstrained case k = n, this yields a cost of Θ(nd2 + dn2). Therefore, selecting k < n
can significantly reduce computational overhead.

Of course, in our recovered algorithms, we can ‘precompute’ WQW
⊤
K and WV W

⊤
P , and these are

further scaled versions of block-identity matrices, and so the computation of ZWQ etc. can be
avoided. This reduces the cost to O(d2k), which for the unconstrained setting of k = n works out to
O(d2n).

In the sketched versions of the iterations, these matrices become nontrivial again, and their multipli-
cation must be incorporated into the accounting of the costs of the recovered algorithm. Of course, in
this regime, k = r ≪ n, so the domainting cost is O(ndr).

B.4 Details on setup for distributed setting

We design the transformer to emulate a distributed algorithm by constraining the attention mechanism.
Specifically, the query, key, and value matrices are restricted to data local to a single machine, and
due to symmetry across machines, a single set of transformation is shared across all attention heads.
At every layer, the input data is partitioned as:

Zk =
[
· · · Xµ

k Xµ+1
k · · ·

]
∈ R(d+d′)×M(n+n′), where Xµ

k =

[
Aµ

k Ck

Bµ
k Dk

]
, µ ∈ [1 : M ]

with blocks Aµ ∈ Rn×d and Bµ ∈ Rn′×d distributed across machines, while the shared blocks
C ∈ Rn×d′

and D ∈ Rn′×d′
are replicated identically in each Xµ. This setup reflects common

scenarios where the missing block D is significantly smaller than the full matrix A, often remaining
constant in size (e.g., d′ = n′ = 1 in regression), making the distributed partitioning both efficient
and natural.

The projection matrix after attention is unconstrained, enabling unrestricted communication between
heads and implicitly modeling a fully connected communication topology. This architectural design
encourages local, machine-specific computation in the attention mechanism, while allowing for global
coordination in the projection step. Empirically, we find that the model leverages this flexibility
efficiently: although capable of learning full data sharing, it consistently limits itself to communication
scaling with O(|D|) bits.

We find that transposing the per-machine data Xµ is necessary in the distributed setup. That is, we
give the transformer inputs Zk =

[
· · · Xµ,⊤

k Xµ+1,⊤
k · · ·

]
and train it on the mean-squared

error to D⊤.
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Figure 11: Transformer weights by layer, averaged over 10 training runs. The top panels display the
weight products WQK,ℓ, and the bottom panels show WV P,ℓ. Prior to averaging, sign ambiguities
were resolved by aligning the dominant coefficients: large entries in WQK,ℓ were set to be positive,
and those in WV P,ℓ to be negative.

B.5 Details on algorithm extraction

We derive closed-form iterative updates from the trained transformer weights WQK,ℓ and WV P,ℓ. This
involves thresholding and clustering the weight matrices in both the unconstrained and distributed
settings:

• The sparsification threshold τ is set dynamically as τ = 1.5 · ∥W∥1/#elements, accounting
for varying scales across weight matrices. The constant 1.5 is selected empirically and is
not further tuned.

• The number of quantization levels is determined by analyzing the mean prediction error
induced by weight sparsification (see Figure 10). To maintain performance comparable to
the original transformer, we cluster WQK,ℓ into 2 values and WV P,ℓ into 3.

In the compute-limited setting, a sketch matrix is extracted and its structural properties analyzed
(see Section 4). Parameter choices for the update steps are abstracted through empirically observed
scaling laws. Specifically, we identify α1α2 ≈ 1/∥A∥22, as supported by results in the main text.
Furthermore, we approximate α1α3 ≈ 1.92 · α1α3, where the resulting squared prediction error is
3.5× 10−4 (averaged over 10 training runs), remaining below the baseline error of approximately
1× 10−3.
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Figure 12: Comparison of learned model weights without noise vs. with modest data noise on a
representative training run. The top row shows WQK,ℓ and the bottom row shows WV P,ℓ.

C Emergent Algorithm

C.1 Transformer behaviour under data noise

In this section, we demonstrate that the emergent behavior identified in Section 4 remains robust
under moderate data noise with variance σ2 = 0.01.

Figure 12 compares the learned weights of a representative transformer trained on noiseless data and
on data corrupted with noise. Additionally, Figure 13 reports key diagnostic quantities across layers.
In both analyses, the observed behavior closely aligns with that of the noiseless case, indicating
stability of the learned algorithm under modest perturbations.

C.2 Transformer behaviour across training runs

We show that the emergent behavior identified in Section 4 is robust across training runs with varying
sources of randomness, including initialization and training data. Figure 11 displays transformer
weights averaged over 10 independent runs, reproducing the characteristic patterns reported in
Section 4. Additionally, the sketching sub-matrix in the compute-limited setting is, on average, close
to the identity, further supporting out interpretation as a random orthonormal sketch.

C.3 From weights to updates

We derive the blockwise update rule implied by the abstracted weight parametrization

WQK,ℓ =

[
α1I 0
0 0

]
and WV P,ℓ =

[
α2I 0
0 α3I

]
unconstrained distributed compute-limited
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Figure 13: The trained transformer solves matrix completion (modest noise, σ2 = 0.01) with a unified
algorithm over all three computational settings. The evolution of key quantities throughout the transformer layers
illustrate the remarkable similarity between the latent algorithms. Mean across 10 training seeds is reported.
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and show that it recovers the update structure presented in Section 4 for the unconstrained setting.
Recall that the layer representation takes the block form

Zℓ =

[
Aℓ Cℓ

Bℓ Dℓ

]
and a single-head transformer layer performs the update

Zℓ+1 = Zℓ +
(
ZℓWQK,ℓZ

⊤
ℓ ⊙Mℓ

)
Zℓ WV P,ℓ. (4)

Substituting the block structure into the attention term yields

ZℓWQK,ℓZ
⊤
ℓ =

[
α1AℓA

⊤
ℓ ·

α1BℓA
⊤
ℓ ·

]
where the entries marked · are not needed due to masking. Applying the attention mask,

ZℓWQK,ℓZ
⊤
ℓ ⊙Mℓ =

[
α1AℓA

⊤
ℓ 0

α1BℓA
⊤
ℓ 0

]
Further, we compute

ZWV P,ℓ =

[
α2Aℓ α3Cℓ

α2Bℓ α3Dℓ

]
.

Multiplying these terms and adding to Zℓ, we obtain the update:

Zℓ+1 = Zℓ +

[
α1α2AℓA

⊤
ℓ Aℓ α1α3AℓA

⊤
ℓ Cℓ

α1α2BℓA
⊤
ℓ Aℓ α1α3BℓA

⊤
ℓ Cℓ

]
.

This clean separation of updates across the blocks Aℓ, Bℓ, Cℓ, and Dℓ a posteriori motivates the
choice of block decomposition of Zℓ used in our notation throughout the model layers.

C.4 Interpreting the emergent algorithm

Prior work interprets EAGLE as gradient descent with preconditioning (Von Oswald et al., 2023; Ahn
et al., 2023; Vladymyrov et al., 2024). In particular, these works frame the method as comprising two
distinct phases: a preconditioning step involving only the updates to A and B (this is achieved by
setting γ = 0), followed by a single gradient descent step using the data (Aℓ, Bℓ, C0).

Even under a parametric view (treating iterations as gradient steps in parameter space), this inter-
pretation fails to match the trained transformer’s behavior. The model does not explicitly separate
conditioning and update phases; instead, it interleaves them continuously throughout the computation.
Rather than implementing classical preconditioning followed by gradient descent, the learned proce-
dure functions as a continuous conditioning mechanism that shapes the dynamics of the optimization
process at every layer.

Moreover, this prior viewpoint underemphasizes the internal structure and complexity of the condi-
tioning dynamics themselves. In fact, the iteration bears a close resemblance to the Newton–Schultz
method for matrix inversion, suggesting a fundamentally different mechanism at play.

To make this connection explicit, consider the unconstrained version of the iteration (M = 1, S = I).
Assume ∥A∥2 = 1, and set η = 1, γ = 3, as in the statement of Theorem 1. Then, re-normalize
Āℓ = Aℓ/∥Aℓ∥2 at every iteration. The update to the iterates Āℓ in this setup can then be expressed
in the compact form

Āℓ+1 =
1

2
(3I − ĀℓĀ

⊤
ℓ )Āℓ,

which is exactly the Newton–Schultz iteration for approximate matrix inversion, as presented in
(Higham, 2008, Section 5.3). This reformulation reveals that the driving force behind the iteration is
more accurately characterized as implicit matrix inversion rather than traditional gradient descent
updates.
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Figure 14: Convergence of EAGLE adapted to
the estimation problem: unconstrained setting,
with parameters n = d = 240, n′ = d′ = 2,
κ(A) = 100. Mean over 50 runs is reported.
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Figure 16: Learned transformer weights in the estimation setting. The transformer architecture is
modified and a bias term is introduced: Zℓ+1 = Zℓ +

(
(ZℓWQK,ℓ + WB,ℓ)Z

⊤
ℓ ⊙Mℓ

)
Zℓ WV P,ℓ

where WB ∈ Rn×d is a rank-2 bias term whose first n− 1 rows are identical by design.

D Parameter Estimation

Beyond the standard prediction task in which the hidden block D is to be recovered, one may also be
interested in estimating the matrix W ⋆ = BA(AA⊤)†. In the least-squares variant of our Nyström
formulation—where D reduces to a scalar 1 × 1 block—this corresponds to solving the classical
least-squares problem. While it is straightforward to recover W ⋆ by setting C = I in EAGLE
(Algorithm 1), so that the prediction becomes BA(AA⊤)†C = BA(AA⊤)† = W ⋆, this approach is
inefficient in terms of memory and runtime. It is thus natural to ask whether the estimation task can
be achieved more efficiently, with reduced overhead.

To investigate this question, we consider an adapted transformer architecture trained on a matrix
completion problem posed as

Z =

[
A⊤ B⊤

? 0

]
,

where the transformer is tasked with filling the missing block “?” with W ⋆ = BA(AA⊤)†. We
find that a minor architectural modification is necessary to achieve competitive performance on this
estimation task. Specifically, we introduce two biases to the query transformation. The first bias is
applied when updating the first n tokens, and the second is applied when updating the last n′ tokens.
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We train a transformer on the least-squares setting (i.e., with D ∈ R1×1) and extract the learned
weights, shown in Figure 16. This leads to a modified estimation version of EAGLE, defined by the
following iterative updates:

Aℓ+1 = A− ηρℓAℓA
⊤
ℓ Aℓ,

Bℓ+1 = B − ηρℓBℓA
⊤
ℓ Aℓ,

Wℓ+1 = Wℓ − γρℓ(WℓAℓ −Bℓ)A
⊤
ℓ .

These updates can be adapted to all computational settings considered in the main body. Importantly,
this iteration is theoretically equivalent to the original EAGLE algorithm in the sense that WkC = Dk,
where Wk evolves according to the update rule above and Dk evolves according to EAGLE. This
equivalence can be formally shown by expanding the recursive updates and applying a telescoping
argument, as in the proof in § F.

Figure 14 provides empirical evidence that the proposed estimation iteration (with the same parameter
setup ρℓ = 1/(3∥Aℓ∥22), η = 1, γ = 3) converges as expected and recovers the same second order
convergence as EAGLE.

E Further Details on Evaluation of EAGLE

E.1 Details on the implementation of baselines

We provide additional implementation details for the baseline methods used in comparison with
EAGLE. All three implementations compute an approximation of X⋆ = BA† and return D ≈ X⋆C.

Exact closed-form baseline (np.linalg.lstsq) This native numpy impementation of the a least-
squares solver is base on a highly optimized LAPACK routine. It determines solution to the over/under-
determined linear system minX ∥XA−B∥2F . The closed-form minimiser is X⋆ = BA(AA⊤)†. It
returns D = X⋆C.

Gradient Descent. We minimize the reconstruction loss

f(X) = 1
2

m∑
i=1

∥XA−B∥2F .

Parameters. The learning rate is set to ηℓ = 1/(σ2
max(A)), ensuring monotonic decrease of f .

Spectral norms are estimated via two power iterations, which incur negligible memory and runtime
overhead. To avoid instabilities caused by near-singular matrices, we add a fixed ridge penalty
λ = 10−3 when A is low-rank, modifying the gradient as G← G+ λX . When A is full rank, we
use λ = 0.

Iteration and Variants. The method extends naturally to distributed or stochastic data acess variants.
Each worker computes either exact or column-sketched gradients (Ãi

ℓ is the data on worker i with
subsampled columns) which are aggregated on a central node, followed by a synchronous gradient
step (ηk = 1/maxi(σ

2
max(Ã

i
k))). This yields the following iterative updates:

Gk =

m∑
i=1

(XkÃ
i
k − B̃i

k)Ã
i,⊤
k + λXk (gradient + ridge)

Xk+1 = Xℓ −
ηk
m

Gk (synchronous update)

Training stops when the iterate Xℓ reaches a predefined tolerance or after a fixed maximum number
of iterations.

Conjugate Gradient Method. We implement the Conjugate Gradient (CG) method to solve the
normal equations arising in Nyström estimation. The objective is to find X minimizing the empirical
loss 1

2

∑m
i=1 ∥XA−B∥2F . We define the Gram matrix G = AA⊤ and the right-hand side B = BA⊤,

and solve the system XG = B using CG.
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Iterations. The standard CG updates are as follows:

Rk = B −XkG, if k = 0 : P0 = R0, rr0 = ⟨R0, R0⟩

αk = rrk/⟨Pk, PkG⟩, Xk+1 = Xk + αkPk

Rk+1 = Rk − αkPkG, rrk+1 = ⟨Rk+1, Rk+1⟩

βk = rrk+1/rrk, Pk+1 = Rk+1 + βkPk

The algorithm halts when ∥XkC −Xk−1C∥F falls below a pre-specified tolerance or after a fixed
number of iterations.

Limitations. The CG method is not directly suited for distributed or stochastic settings. In distributed
environments, computing G and B requires sharing all local data across machines, incurring com-
munication costs that exceed the desired O(d) complexity. In stochastic settings, CG requires a
consistent system matrix at every iteration to guarantee convergence, which is not available when data
is sampled independently at each step. Empirically, CG under stochastic updates exhibits unstable
and non-convergent behavior.

E.2 Accelerated EAGLE for distributed setting

In the distributed setting, convergence is impeded by low data diversity, characterized by α ≪ 1.
Recall that the continuous conditioning performed by EAGLE operates exclusively on per-machine
data. As a result, the condition number of the global matrix A is lower bounded by α−1, even if the
data on each individual machine is perfectly conditioned.

Once this bottleneck is reached, further updates to Aµ—the most computationally intensive com-
ponent of EAGLE—cease to be effective. This motivates the question of whether runtime can be
reduced by terminating updates to Aµ and Bµ once per-machine conditioning has converged.

To this end, we implement an accelerated version of EAGLE for the distributed setting. At each
iteration, we evaluate the criterion minµ ∥I −Aµ,⊤

ℓ Aµ
ℓ ∥2F < 10−10, and halt updates to Aµ and Bµ

for all µ once this threshold is satisfied. This condition ensures that per-machine data is sufficiently
well-conditioned.

Figure 15 reports the runtime performance of this accelerated variant. As expected, the modified
version achieves faster execution compared to standard EAGLE. We note that the number of iterations
required remains unchanged; the acceleration only affects wall-clock efficiency. The theoretical
guaranteed of the accelerated EAGLE remain unchanged as we ensure that κ(Aµ

ℓ ) = 1 (to machine
precision) before freezing the updates to Aµ and Bµ.

E.3 Ablations for EAGLE

Data distribution. We perform ablations on various real-world data settings. As in the main body,
we place ourselvels in the setting n = d = 240, n′ = d′ = 2 and r = 240.

SVD construction. Sample Aij , Bij orthogonal and set Z = AΣB⊤/
√
r with Σ diagonal with

entries log-uniform in [1e− 2, 1]. This is the reference distribution in the simulation part.

Gaussian. Sample Aij , Bij ∼ N (0, 1) and set Z = AB⊤/
√
r. Gaussian data is a widely made

modeling assumption, and this is the distribution the transformer was trained on.
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Figure 17: In the stochastic data access regime—a variant of the compute-limited setting—EAGLE outperforms
SGD in wall-clock time for sketch sizes r ≥ n/4.
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Figure 18: Performance with different data distribution, n = d = 240, n′ = d′ = 2, rank 240.
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Figure 19: Performance on larger problems, n = d = 1920, n′ = d′ = 2.
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Figure 20: Performance with i.i.d. Gaussian noise (standard deviation σ = 0.01) in the unconstrained
(left), distributed (center) and stochastic data access (right) settings.
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Figure 21: Best performance of EAGLE in 200 iterations as the step sizes are varied. Left: γ and η
are both scaled by a common factor. Right: γ is scaled by

√
ratio while η is scaled by 1/

√
ratio such

that γ/η is scaled by ratio.

Student–tν factors. Sample Aij , Bij ∼ tν/
√

ν/(ν − 2) for ν = 4 and set Z = AB⊤/
√
r. Heavy-

tailed entries create sporadic outliers, checking that the solver is stable beyond sub-Gaussian data.

Correlated Gaussian factors. Draw each column of A and B from N (0,Σ) with Σij = ρ|i−j|

(ρ = 0.8). Strong row/column correlations are typical in spatio-temporal panels and challenge
methods assuming independent observations.

Sparse Rademacher factors. With sparsity p = 0.1, take Aij = sijξij/
√
p where ξij ∼ Bernoulli(p),

sij ∈ {±1} (analogous for B), then Z = AB⊤/
√
r. Entry-wise sparsity yields highly coherent

singular vectors—a worst-case regime for many theoretical guarantees.

Block / clustered factors. Assign each of the d rows to one of k clusters (k = 5), A ∈ {0, 1}d×k is
one-hot, and B ∈ Rn×k holds cluster centroids; set Z = AB⊤/

√
k. Produces piece-wise-constant

structure seen in recommender systems, violating global incoherence yet preserving low rank.

Larger systems. We increase the size of the data matrix X to n = d = 1920 and n′ = d′ = 2;
results are shown in Figure 19. These experiments further reveal that the Conjugate Gradient method
does not converge reliably when applied to low-rank matrices. As a result, its performance is omitted
from the main results in the low-rank setting.

Data noise. To assess robustness to noise, we add moderate i.i.d. Gaussian noise to the matrix
X and evaluate EAGLE in all three computational settings; results are presented in Figure 20. We
observe that EAGLE exhibits the same form of implicit regularization during early iterations that
is well-documented for gradient descent. Across all settings, EAGLE with early stopping achieves
performance comparable to gradient descent, recovering regularized solutions that are more stable
than the Nyström solution Additionally, we note that the addition of Gaussian noise to X inadvertently
improves the conditioning of the matrix A, effectively reducing κ(A).

Sensitivity to step sizes. To evaluate the sensitivity of EAGLE to the choice of step sizes, we con-
duct a series of controlled experiments in the unconstrained setting, using a small-scale configuration
with n = d = 15, n′ = d′ = 2, and rank 15.

First, we scale both step sizes γ and η by a common factor, as shown in Figure 21 (left). This setup
models scenarios in which the estimate of the scaling parameter ρℓ = 1/∥Aℓ∥22 is inaccurate. The
results indicate that scaling γ and η jointly by a factor in the range [0.2, 2] has minimal effect on
performance.

Second, we vary the ratio γ/η to test the algorithm’s robustness to discrepancies between these two
parameters, as illustrated in Figure 21 (right). We find that EAGLE remains stable over a wide range
of ratios; specifically, varying γ/η within [0.2, 2] has little impact on overall performance.

E.4 Evaluation on SuiteSparse Matrix Collection data

Table 3 summarizes the characteristics of all evaluation tasks. Moreover, figure 22 gives the runtime
of common linear solvers on real-world data as a function of the target residual. We observe three
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Task Size Nonzeros rank conditioning

Maragal_4/Maragal_4 1964 × 1034 1.3 % 801 1.38× 107

Maragal_5/Maragal_5 4654 × 3320 0.6 % 2147 1.22× 106

Meszaros/pf2177 9728 × 10178 0.031% 9662 2.19× 103

HB/dwt_1007 1007 × 1007 0.85% 1000 2.97× 103

HB/bcsstm13 2003 × 2003 0.53% 1241 2.70× 104

Priebel/162bit 3606 × 3597 0.29% 3460 1.68× 104

Schulthess/N_pid 3625 × 3923 0.057% 2048 2.47× 102

Table 3: Relevant characteristics for each SuiteSparse Matrix Collection task.
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Figure 22: Runtime of linear solvers on real-world data as a function of the target residual ϵ∥B∥2F .

trends. First, EAGLE outperforms the SVD-based solver even when very high accuracies are required.
Second, as the theory suggests, the runtime of gradient-based methods out scales that of EAGLE
when very high accuracies are required. Finally, we observe a tradeoff where gradient based solvers
can outperform EAGLE for large, sparse and well-conditioned systems such as Meszaros/pf2177.

F Theoretical Analyses

F.1 Analysis of the Unconstrained or Centralized Iteration

We begin by analysing the behaviour of Algorithm 1 in the ‘centralized’ setting of S = In,M = 1.
For simplicity, let us set ηℓ = η∥Aℓ∥−2

2 , and γℓ = γ∥Aℓ∥−2
2 —we will incorporate the specific
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structure of η, γ later. Then we can write the iterations as

Aℓ+1 = Aℓ(I − ηℓA
⊤
ℓ Aℓ), (5)

Bℓ+1 = Bℓ(I − ηℓA
⊤
ℓ Aℓ),

Cℓ+1 = (I − γℓAℓA
⊤
ℓ )Cℓ,

Dℓ+1 = Dℓ + γℓBℓA
⊤
ℓ Cℓ.

Of course, we set A0, B0, C0 to be the observed blocks of the input matrix X , and D0 = 0.

Useful Definitions. We will analyze these iterations through the follow two objects
Definition 2. For ℓ ≥ 0, define the ‘signal energy’ Eℓ, and the ‘signal correlation’ Vℓ as

Eℓ := AℓA
⊤
ℓ ∈ Rd×d and Vℓ := BℓA

⊤
ℓ ∈ Rd′×d.

We further note the critical relationship that

B0 = W∗A0 =⇒ V0 = W∗E0),

where W∗ is the Nyström parameter for the data matrix X (see §B.1. An immediate consequence of
the iterations above is the following dynamics.
Lemma 3. Under the iterations of (5), we have the following dynamics

Eℓ+1 = Eℓ(I − ηℓEℓ)2 (6)

Vℓ+1 = Vℓ(I − ηℓEℓ)2

Cℓ+1 = (I − γℓEℓ)Cℓ

Dℓ+1 = Dℓ + γℓVℓCℓ,

where I is the d× d identity matrix.

Proof. The Dℓ, Cℓ iterations follow immediately by definition. For the former iterations, first observe
that

Vℓ+1 = Bℓ+1A
⊤
ℓ+1 = Bℓ(I − ηℓA

⊤
ℓ Aℓ)(I − ηℓA

⊤
ℓ Aℓ)A

⊤
ℓ

= Bℓ(I − ηℓAℓA
⊤
ℓ )(A

⊤
ℓ − ηℓA

⊤
ℓ AℓA

⊤
ℓ )

= Bℓ(I − ηℓAℓA
⊤
ℓ )A

⊤
ℓ (I − ηℓAℓA

⊤
ℓ )

= BℓA
⊤
ℓ (I − ηℓAℓA

⊤
ℓ )(I − ηℓAℓA

⊤
ℓ )

= Vℓ(I − ηℓEℓ)2,

where the first few inequalities arise by multiplying A⊤
ℓ from the right, and then factoring it out by

the left, and the final is by definition. Similarly,

Eℓ+1 = Aℓ+1A
⊤
ℓ+1 = Aℓ(I − ηℓA

⊤
ℓ Aℓ)(I − ηℓA

⊤
ℓ Aℓ)A

⊤
ℓ

= AℓA
⊤
ℓ (I − ηℓAℓA

⊤
ℓ )

2

= Eℓ(I − ηℓEℓ)2,

where we reuse this transfer of A⊤
ℓ from the right to the left, and then use the definition of Eℓ.

Note from the above expression that for any ℓ′ > ℓ, Eℓ′ is a polynomial in Eℓ. As a result, Eℓ and Eℓ′
commute for all pairs (ℓ, ℓ′).

Telescoping the Error. For the sake of conciseness in the further expressions, we further introduce
the following notation.
Definition 3. Define Mℓ :=

∏
l<ℓ(I − ηlEl)2 and N⊤

ℓ :=
∏

l<ℓ(I − γlEl), where we use the
convention that ∏

l<ℓ

Ul = U1U2 · · ·Uℓ−1,

and M0 = N0 = I .
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By Lemma 3, we have Eℓ = E0Mℓ and Vℓ = V0Mℓ. Further, Cℓ = NℓC0.3

This leads to the following estimate of the value of Dℓ.

Lemma 4. Let W∗ be the Nyström regression parameter for the data (A,B). For any ℓ ≥ 0, we have

Dℓ = W∗(I −Nℓ)C0.

Proof. Since D0 = 0, we have

Dℓ =
∑
l<ℓ

γlVlCl = V0

(∑
l<ℓ

γlMlNl

)
C0

= W∗E0

(∑
l<ℓ

γlMlNl

)
C0 = W∗

(∑
l<ℓ

γlE0MlNl

)
C0

= W∗

(∑
l<ℓ

γlElNl

)
C0,

where we used the definition of Mℓ. But now, using the definition of Nℓ, notice that for any l,

N⊤
l+1 = N⊤

l (I − γlEl) ⇐⇒ Nl+1 = Nl − γlElNl ⇐⇒ γlElNl = Nl −Nl+1.

Consequently, we can write

Dℓ = W∗

(∑
l<ℓ

(Nl −Nl+1)

)
C0 = W∗(I −Nℓ)C0.

Recall that D̂∗ = W∗C0, meaning that the error Dℓ − D̂∗ is W∗NℓC0. Thus, this lemma captures a
basic fact: as the size of the matrix Nℓ decays, the output Dℓ gets closer to the target output D̂∗. Thus,
our main focus is to characterize the decay of this matrix. We shall show this by arguing that the
matrices Eℓ quickly become well-conditioned through the course of the iterations, and consequently
Nℓ decays quickly.

Before proceeding, note that in general, E0 may have zero eigenvalues, which are left unchanged by
the main dynamics (see below), meaning that I−Nℓ may even asymptotically have a large eigenvalue
corresponding to vectors in the kernel of E0. However, we observe that W∗ = V0E†0 , and thus any
energy in C0 that lies in the kernel of E0 is irrelevant to the prediction D̂∗. As such, it is equivalent
for us to analyse the two-norm of the matrix Ñℓ := (I − P0)Nℓ, where P0 projects onto the kernel
of E0. Instead of this notational complication, we will henceforth just assume that E0 is full rank (i.e.,
all of its eigenvalues are nonzero), and mention where changes need to be made to handle the general
case.

Conditioning of Eℓ. Let us then begin with some notation: for a positive (semi-)definite symmetric
matrixM, we let λi(M) denote its ith largest eigenvalue, λ(M) denote its largest eigenvalue, and
λ(M) denote its smallest (nonzero) eigenvalue. Notice that λ(·) = λ1(·), and λ(M) = λr(M),
where r is the rank ofM (we will work with full rankM, but be cognizant of rank sensitivity). Let
vi(M) denote the corresponding eigenvector. We further introduce the notation

λi
ℓ = λi(Eℓ), λℓ = λ(Eℓ), and λℓ = λ(Eℓ).

Our first observation is that the iterations leave the eigenstructure of Eℓ undisturbed.

Lemma 5. Suppose that v is an eigenvector of E0. Then it is also an eigenvector of Eℓ for any ℓ > 0.
Further, if v ∈ ker(E0) then v ∈ ker(Eℓ).

3Note that the order of multiplication is flipped here, which follows notationally since we defined the
transpose N⊤

ℓ above. Of course, all the El commute, so this is not very important in this case, but this subtle
distinction will matter more in subsequent analysis.
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Proof. We have En0 v = λnv. But note that Eℓ is some polynomial in E0, i.e., for some finite number of
coefficients αn, Eℓv =

∑
n≥0 αnEn0 v = (

∑
n≥0 αnλ

n)v, and the claim follows. Crucially, observe
that since Eℓ = MℓE0, we have α0 = 0, and so if E0v = 0, then Eℓv = 0 as well.

Since the eigenstructure of E0 is preserved, we can begin to study the behaviour of its eigenvalues in
a simplified way. The critical relationship for our analysis is the following iterative structure on the
largest and smallest (nonzero) eigenvalues of Eℓ.

Lemma 6. Suppose that ∀ℓ, ηℓ ≤ λ
−1

ℓ /3. Then for all ℓ,

λℓ+1 = (1− ηℓλℓ)
2λℓ and λℓ+1 = (1− ηℓλℓ)

2λℓ.

Proof. Suppose u1, u2 are two eigenvectors of E0, with positive eigenvalues µ0, ν0. Since u1, u2

are also eigenvectors of Eℓ, denote the eigenvalues for the latter as µℓ, νℓ. Note that these remain
nonnegative. Indeed, by multiplying the dynamics for Eℓ+1 by, say, u1, we have

µℓ+1u
1 = Eℓ+1u

1 = Eℓ(I − ηℓEℓ)2u1 = (1− ηℓµℓ)
2µℓ,

and similarly for νℓ. We will first inductively show that if µ0 > ν0 ⇐⇒ µℓ > νℓ for all ℓ. In other
words, not only are the eigenvectors of E0 stable under the iterations, but also the ordering of the
eigenvalues.

We thus note that the claim follows directly from this result. Indeed, let v1 be the eigenvector
corresponding to λ0. Then we see that it remains eigenvector corresponding to λℓ for all ℓ. But then
using our observation above with u1 = v1, we get the result for λℓ+1. A similar argument works
for λℓ+1. Note that nothing per se demands that these eigenvalues have unit multiplicity, and the
argument is completely insensitive to this.

To see the ordering claim on µℓ, νℓ, then, we observe that

µℓ+1 − νℓ+1 = (1− ηℓµℓ)
2µℓ − (1− ηℓνℓ)

2νℓ

= (µℓ − νℓ)− 2η(µ2
ℓ − ν2ℓ ) + η2(µ3

ℓ − ν3ℓ )

= (µℓ − νℓ)
(
1− 2ηℓ(µℓ + νℓ) + η2ℓ (µ

2
ℓ + ν2ℓ + µℓνℓ)

)
.

Now, if the term multiplying (µℓ − νℓ) is nonnegative, then the claim follows. To see when this
occurs, let us set ηℓ = ηλ

−1

ℓ , and pull λ
−1

within the brackets. We are left with an expression of the
form

(1− 2η(x+ y) + η2(x2 + y2 + xy)),

where (x, y) ∈ (0, 1). For η ≤ 2/3, the minimum over this range occurs when x = y = 1, and takes
the value

1− 4η + 3η2.

It is a triviality to show that this function is nonnegative for η ≤ 1/3, and so we are done.

With this in hand, we will argue that λℓ → λℓ at a quadratic convergence rate after an initial burn-in
period. Of course, this is equivalent to saying that κℓ := λℓ/λℓ → 1. Notice that this κℓ is precisely
the condition number of Eℓ (which in turn is the square of the condition number of Aℓ mentioned in
our discussion in §5).

Lemma 7. Define κℓ = λℓ/λℓ, and θℓ = κℓ − 1. If ηℓ ≤ λ
−1

/3, then θℓ+1 ≤ θℓ exp(−5ηℓλℓ/3).
Further, if ηℓλℓ = 1/3, then θℓ+1 ≤ 3θ2ℓ/4.

Proof. For the sake of succinctness, let us write ηℓ = η, λℓ = λ, λℓ = λ, θℓ = θ, and θℓ+1 = θ+.
Then, using the previous lemma, we can write

κℓ+1 = θ+ + 1 = (θ + 1)

(
1− ηλ

1− ηλ

)2

.

But notice that

1− ηλ

1− ηλ
= 1 + η

λ− λ

1− ηλ
= 1− η

λ(1− 1/(θ + 1))

1− ηλ/(θ + 1)
= 1− θηλ

θ + 1− ηλ
.
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Thus,

θ+ + 1 = (θ + 1)

(
1− 2

θηλ

(θ + 1− ηλ)
+

θ2η2λ
2

(θ + 1− ηλ)2

)

= θ + 1− θ
ηλ

1− ηλ

(
2− θηλ

(θ + 1− ηλ)

)
.

But the bracketed term is nonincreasing in ηλ (in the negative term, the numerator increases and the
denominator decreases with this value), and so

2− θηλ

θ + 1− ηλ
≥ 2− θ

3θ + 3− 1
=

5θ + 4

3θ + 2
≥ 5

3
.

Thus, we have

θℓ+1 ≤ θℓ − θℓ ·
5/3ηℓλℓ

1− ηℓλℓ

=⇒ θℓ+1 ≤ θℓ exp

(
− 5ηℓλℓ/3

1− ηℓλℓ

)
≤ θℓ exp(−ηℓλℓ).

On the other hand (going back to the notation that suppresses ℓ), if we set ηλ = L, then since

1− ηλ

1− ηλ
=

1− L

(θ + 1− L)/(θ + 1)
,

we find by doing the long multiplication that

(θ+ + 1) =
(θ + 1)3(1− L)2

(θ + 1− L)2

⇐⇒ θ+ =
θ(1− 4L+ 3L2) + θ2(2− 6L+ 3L2) + θ3(1− L)2

(θ + 1− L)2
.

Setting L = ηℓλℓ = 1/3, the linear term in θ vanishes, and we end up with

θ+ =
θ2/3 + 4θ3/9

(θ + 2/3)2
= θ2 · 4θ + 3

(3θ + 2)2
≤ 3θ2

4
.

The statement of this Lemma has shown two decay modes of θℓ = (κℓ − 1). Firstly, as long as
ηℓ ≤ λ

−1

ℓ /3, this quantity decays at least at a linear rate. Further, if ηℓ is set to exactly λ
−1

ℓ /3, then
once θℓ dips below 1, which occurs after about 3 log(θ0)/5 iterations, we can exploit the quadratic
bound in θ to recover a stronger convergence rate. Together, this yields the following convergence
behaviour for κℓ.
Lemma 8. Let κℓ := λℓ/λℓ. If for all ℓ, ηℓλ = 1/3, then κℓ − 1 ≤ ε for all

ℓ ≥ L = 2 + ⌈(3/5) log(κ0)⌉+ ⌈log2(log(4/3ε))⌉.

Proof. First using the geometric decay in Lemma 7, we know that θℓ ≤ (κ0 − 1) exp(−5(ℓ− 1)/3).
Set ℓ0 = 2 + 3/5 log(κ0 − 1). Then for ℓ ≥ ℓ0, we have θℓ0 ≤ 1/e. Further, for iterations beyond
this ℓ0, the supergeometric decay θℓ+1 ≤ 3θ2ℓ/4 in Lemma 7 implies that

3θℓ+1/4 ≤ (3θℓ/4)
2 ⇐⇒ Tℓ+1 ≤ 2Tℓ,

where Tℓ := log(3θℓ/4). Thus,

Tℓ ≤ 2ℓ−ℓ0Tℓ0 ≤ −2ℓ−ℓ0 =⇒ θℓ ≤ 4/3 exp(−2ℓ−ℓ0).

Setting this < ε gives the claim.

We again note that this κℓ is the square of the condition number of Aℓ - however, this distinction is
easily accommodated due to the logarithmic dependence on it - the only change is that the 3/5 above
increases to 6/5.

Back to Nℓ. The conditioning of Eℓ yields a direct control on the behaviour of Nℓ, as encapsulated
below. We note that if E0 is not full rank, the statement holds for Ñℓ = (I − P0)Nℓ, where P0

projects onto the kernel of E0.
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Lemma 9. For all ℓ, ∥Nℓ∥2 ≤ exp(−
∑

l<ℓ γlλl. Further, if ∀ℓ, ηℓ = λ
−1

/3 and γℓ = λ
−1

, then
∥Nℓ∥2 ≤ ε for all ℓ ≥ L+ 1, where

L = 2 + ⌈3/5 log(κ0)⌉+ ⌈log2(log 4/3ε))⌉.

Proof. Since Nl+1 = (I − γlEl)Nl, we immediately have

∥Nℓ∥2 ≤
∏
l<ℓ

∥I − γlEl∥2.

But note that ∥I − γlEl∥2 = (1 − γlλl). Thus, we immediately have ∥Nℓ∥ ≤
∏
(1 − γlλl) ≤

exp(
∑

l<ℓ γlλl). Further, recall from Lemma 8 that if ηℓ = λ
−1

/3 for all ℓ, then λℓ ≥ λℓ/(1 + ε)

for all ℓ ≥ L. But then, if ηℓ = λ
−1

, we have

1− ηℓλ ≤ 1− λ/λ ≤ ε/(1 + ε) ≤ ε,

yielding the claimed bound on ∥Nℓ∥2.

Finishing the Error Control. With all the pieces in place, we conclude the main argument.

Proof of Theorem 1. By Lemma 4, we have Dℓ − D̂∗ = W∗NℓC0, and consequently,

∥Dℓ − D̂∗∥F ≤ ∥W∗Nℓ∥F ∥C0∥F ≤
√

rank(W∗Nℓ)∥W∗Nℓ∥2∥C0∥F .

But, since W∗Nℓ ∈ Rd′×d, the rank about is at most d′. Finally, ∥W∗Nℓ∥2 ≤ ∥Nℓ∥2∥W∗∥2.
Thus, the claim follows as soon as ∥Nℓ∥2 ≤ ε/(

√
d′∥W∗∥2∥C0∥F ), for which we may invoke

Lemma 9.

Again, recall that for the purposes of error, if E0 were not full rank, then we could instead replace Nℓ

by Ñℓ in all statements above, and thus the claim also extends to this situation.

Comment on Rates η, γ. Going back to the notation of Algorithm 1, we reparametrise γℓ = ρℓ =

λ
−1

ℓ = ∥Aℓ∥−2
2 , and ηℓ = ρℓ/3. It is worth discussing briefly how we may go about estimating this

ρℓ.

A simple observation in this setting is that if we assume that we know λ0 = ∥E0∥0 = ∥A∥22 to begin
with, then it is a simple matter to compute the subsequent values of λℓ, since if we set ηℓ, γℓ as per
the above, this is directly computed iteratively via

λℓ+1 = λℓ(1− 1/3)2 = 4λℓ/9.

In fact, under this assumption, we may avoid further numerical stability issues by first recaling
A to have 2-norm 1, and subsequently simply rescaling the matrices up Aℓ, Bℓ by 3/2 after each
update to maintain the invariant λℓ = λ0—the behaviour of Nℓ remains the same, and convergence
rates are only driven by the conditioning of Aℓ. So, equivalently, the question we must concern
ourselves with is finding ∥A∥2. Of course, this is quite cheap, since we can compute this simply
by power iteration, which involves only matrix-vector products rather than matrix-matrix products.
Nevertheless, note that power iteration is only linearly convergent (i.e., the number of iterations
needed to find a ε-approximation of the top eigenvalue is Θ(log(1/ε)), so in full generality, this
procedure would destroy the second order convergence.

In our simulations of §5, we indeed implemented these iterations by carrying out power iteration.
Note that practically, then, the method essentially retains its second order behaviour despite this
approximation. One aspect of this lies in the fact that even if we underestimate the top eigenvalue
by a small amount, and so undertune η, γ by a slight amount, the second order bound of Lemma 8
decays gracefully, and so retains practical resilience. Of course, characterising exactly how loose this
can be requires more precise analysis, which we leave for future work.
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F.2 Distributed Analysis

Beginning again with Algorithm 1, with S = In,M > 1, we need to analyse the iterations

∀µ,Aµ
ℓ+1 = Aµ

ℓ (I − ηµℓ A
µ,⊤
ℓ Aµ

ℓ ), (7)

∀µ,Bµ
ℓ+1 = Bµ

ℓ (I − ηµℓ A
µ,⊤
ℓ Aµ

ℓ ),

Cℓ+1 = Cℓ −
1

m

∑
µ

γℓA
µ
ℓA

µ,⊤
ℓ Cℓ,

Dℓ+1 = Dℓ +
1

m

∑
µ

γℓB
µ
ℓ A

µ,⊤
ℓ Cℓ.

We note that here we have set γℓ to be constant across all machines, and nominally it is not pegged
to ∥Aµ

ℓ ∥
−2
2 , which could vary across machines. However, we will analyze this method under the

normalization assumption that
∀µ, ∥Aµ

0∥2 = 1.

In this setting, we will show that the choices ηµℓ = ∥Aµ
ℓ ∥

−2
2 /3 are also the same for each machine,

and then set γℓ = 3ηµℓ (which in turn is also the same for every machine). Thus, in the setting we
analyze, the iterations above are faitful to the structure of Algorithm 1.

Note, of course, that this distributed data computes the Nyström approximation of[
A C
B D

]
,

where C,D are as in the iteration, while

A =
[
A1 A2 · · · Am

]
, B =

[
B1 B2 · · · Bm

]
.

We will work in the noise-free regime, wherein there exists a matrix W∗ such that

[B D] = W∗ [A C] ,

and C ∈ column-span(A). Of course, this W∗ also equals the Nyström parameter for this matrix
(§B.1). The second condition ensures that the rank of this matrix is the same as that of A, and is
needed to ensure that we can actually infer W∗ in the directions constituted by the columns of C
(without which one cannot recover D).

Per-machine and Global Signal Energies. We being with defining the energy and correlation
matrices in analogy to the previous section. As before, Aµ

0 = Aµ, Bµ
0 = Bµ, C0 = C,D0 = 0.

Definition 4. We define the per-machine objects

Eµℓ := Aµ
ℓA

µ,⊤
ℓ and Vµ

ℓ := Bµ
ℓ A

µ,⊤
ℓ ,

and the per-machine values
λ
µ

ℓ = λ1(Eµℓ ), λ
µ
ℓ = λr(µ)(Eµℓ ),

where r(µ) is the rank of Eµ0 . Further, we define the global signal energy

Eℓ :=
1

m

∑
Eµℓ .

Note that by our assumption, ∥Eµ0 ∥2 = 1 for all µ. Further, the behaviour of Eµℓ ,V
µ
ℓ is identical to

that in the centralised case, i.e.,
Lemma 10. For all µ, ℓ,

Eµℓ+1 = Eµℓ (I − ηµℓ E
µ
ℓ )

2 and Vµ
ℓ+1 = Vµ

ℓ (I − ηµℓ E
µ
ℓ )

2.

As a consequence, for every ℓ, µ, it holds that

Vµ
ℓ = W∗Eµℓ .

Finally, for any ℓ,
Cℓ+1 = (I − γℓEℓ)Cℓ
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Proof. The iterations for Eµℓ+1,V
µ
ℓ+1 follow identically to the proof of Lemma 3. For the second

claim, notice that we have
Bµ = W∗A

µ =⇒ Vµ
0 = W∗Eµ0

by multiplying by Aµ,⊤ on both sides. Then the claimed invariance follows inductively.

Finally, noting that Eµℓ = Aµ
ℓA

µ,⊤
ℓ , we immediately have

Cℓ+1 =

(
I − γℓ ·

1

m

∑
µ

Eµℓ

)
Cℓ = (I − γℓEℓ)Cℓ

In analogy with the centralized case, this leads us to define the following matrices.
Definition 5. We define

Mµ
ℓ =

∏
l<ℓ

(I − ηµℓ E
µ
ℓ )

2 and N⊤
ℓ :=

∏
l<ℓ

(I − γℓEℓ),

where again
∏

is interpreted as multiplication from the right, and Mµ
0 = N0 = Id.

Succinctly, then, we can write Eµℓ = Eµ0 M
µ
ℓ and Cℓ = NℓC0.

Telescoping the Error. This notation allows us to set up the following analogue of Lemma 4.
Lemma 11. Under the distributed iterations without noise, it holds for all ℓ that

Dℓ = W∗(I −Nℓ)C0.

Proof. Observe that

Dℓ =
∑
l<ℓ

γl ·
∑
µ

Vµ
l

m
Cl.

Now, Vµ
l = W∗Eµl , and so

1

m

∑
µ

Vµ
l = W∗ ·

1

m

∑
µ

Eµl = W∗E l.

Thus, we have

Dℓ = W∗

(∑
l<ℓ

γlE lNl

)
C0.

But
Nl+1 = (I − γlEl)Nl ⇐⇒ γlE lNl = Nl −Nl+1,

and so the term in the brackets telescopes to N0 −Nℓ = I −Nℓ.

Conditioning. Of course, again, D = W∗C = W∗(I)C0. So, to gain error control, we only need to
argue (as before) that ∥Nℓ∥2 vanishes quickly with ℓ. As before, this relies strongly on the condition
number of Eℓ. We note, again, that we will simply assume that E0 is full-rank, since rank-deficiency
is rendered moot in this case by the fact that C lies in the column span of A (and hence, is orthogonal
to the kernel of E0). However, the individual Eµ0 may not be full rank, and so the distinction between
λ(Eµ) and the smallest eigenvalue of Eµ (which is usually 0) should not be forgotten, although it will
not matter very much for our expressions.

To begin with, we note that since the per-machine Aµ, Bµ iterations are identical to the central case,
the corresponding Eµ are conditioned at the same quadratic rate we saw previously. We formally
state this below.
Lemma 12. For all ℓ, set ηµℓ := (λ

µ

ℓ )
−1/3, and define κµ

ℓ = λ
µ

ℓ /λ
µ
ℓ .

If ℓ ≥ L(ε) := 2 + ⌈3/5 log(max
µ

κµ
0 )⌉+ ⌈log2(log(4/3ε))⌉, then max

µ
κµ
ℓ ≤ 1 + ε.

Proof. Apply Lemma 8.
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Of course, Eℓ, as an average, will not have the same conditioning behaviour. In fact, this is strongly
sensitive to the diversity index α from Definition 1, as captured below.

Lemma 13. Suppose that λµ
0 is constant across machines, and for all µ, ℓ, ηµℓ = (λ

µ

ℓ )
−1/3. Define

κℓ = λ(Eℓ)/λ(Eℓ).

If ℓ ≥ L(ε), then κℓ ≤
1 + ε

α
,

where L(ε) is the expression in Lemma 12. Further, for the same range of ℓ, for all µ,

λ(Eℓ) ≥
λ
µ

ℓ · α
1 + ε

.

Proof. Firstly, by Weyl’s inequality, notice that

λ(Eℓ) ≤
1

m

∑
µ

λ(Eµℓ ).

Further, recall that λ(Eµ0 ) = 1 for all µ, and we set ηµℓ = (λ
µ

ℓ )
−1/3. Thus, each of these λ

µ

ℓ s are
infact identical (and equal to (4/9)ℓ). Thus,

∀µ, λ(Eℓ) ≤ λ
µ

ℓ .

Now, let Pµ be the projection onto the column space of Aµ. Then we note that for any vector v,

v⊤Eµℓ v = (Pµv)⊤Eµℓ (P
µv).

Indeed, any component in v orthogonal to the column space must lie in the kernel of Eµ0 = AµAµ,⊤,
and we know that this kernel is invariant across the iterations. Further, note that since Pµv lies in this
column space, it is orthogonal to any eigenvector of Eµℓ with zero eigenvalue, and so we can then
conclude that

(Pµv)⊤Eµℓ (P
µv) ≥ λµ

ℓ ∥P
µv∥22.

But then, if ℓ ≥ L(ε), then for any unit vector v, we have (for any µ in the last inequalities) that

v⊤Eℓv =
1

m

∑
µ

v⊤Eµℓ v

≥ 1

m

∑
µ

λµ
ℓ ∥P

µv∥22 =
1

m

∑
µ

λ
µ

ℓ

(1 + κµ
ℓ )
∥Pµv∥22

≥ λ
µ

ℓ

1 + ε

1

m

∑
µ

∥Pµv∥22

≥ λ
µ

ℓ

1 + ε
· α,

where we used the equality of the λ
µ

ℓ , the fact that κµ
ℓ ≤ 1 + ε, and finally the definition of α. Since

v is a unit vector, we conclude that any Rayleigh quotient of Eℓ is so lower bound, ergo

∀µ, λ(Eℓ) ≥
λ
µ

ℓ

1 + ε
· α.

Putting this together with the upper bound on λ(Eℓ), we immediately conclude that

κℓ ≤
1 + ε

α
.

At a high level, α−1 is the limiting condition number of the Eℓs, where deviation from perfect
conditioning occurs only due to how the various Eµℓ energise distinct subspaces for large µ. We
note that this dependence is tight—if all the Eµ share the top eigenvector, then the upper bound on
λ(Eℓ) is exact, while the lowest nonzero eigenvector of Eℓ is precisely the direction that achieves the
minimum in the definition of the diversity index.

Concluding the argument. With this in hand, we can argue the decay of Nℓ, and so attain error
control.
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Proof of Theorem 2. Recall that D − D̂ℓ = W∗NℓC0. We again assume that λ
µ

0 = 1 for all µ, and
that ηµℓ = (λ

µ

ℓ )
−1/3. We set γℓ = (λ

µ

ℓ )
−1 ≤ λ(Eℓ)−1. Then, as before, we have (restricted to the

appropriate subspace if E0 is not full rank)

∥I − ηℓEℓ∥2 ≤ (1− 1/κℓ) ≤ exp(−1/κℓ).

By Lemma 13, for ℓ ≥ L(1), we have κℓ ≤ 2/α, and so

∥Nℓ∥ ≤ exp(−
ℓ∑

l=L(1)

1/κℓ) ≤ exp(−α(ℓ− L(1))/2),

which is smaller than ιε if
ℓ ≥ L(1) +

2

α
log

1

ιε
.

Of course, L(1) = 3+ ⌈3/5 log(maxµ κ
µ
0 )⌉, and setting ι so small that error to ε follows in the same

way as the proof of Theorem 1 concludes the argument.

Comment on Rates. We note that, in the distributed setting, within-machine computation is typically
much cheaper than across-machine communication. As a result, the protocol we have analyzed above,
wherein each machine begins with the same value of λ

µ

0 , is cheap to follow by using power-iteration at
each machine. Given this choice, the value λ

µ

ℓ is simply equal to (4/9)ℓ for every machine, and setting
the learning rate ηµℓ = ρµℓ /3 for ρµℓ = (9/4)ℓ is trivial, and does not require any communication.
We also note that setting γℓ = ρµℓ in each machine, and then averaging the results of the updates
together is sufficient, since ρµℓ is constant across all machines. Thus, we recover exactly the structure
presented in Algorithm 1, with γ = 1, η = 1/3. Note, again, that for the sake of stability, instead
of working with decaying Aℓ and exploding ηℓ, γℓ, we can again rescale each Aµ

ℓ , B
µ
ℓ by 3/2 after

updates.

In general, if this normalization is not carried out, the machines may actually set their values for γℓ
as distinct γµ

ℓ s. The net effect would be that we need to analyze a slightly different version of Eℓ that
is sensitive to inter-machine variations in γµ

ℓ , which in turn would rely on how strongly λ
µ

0 varies
across machines. We leave the study of such scenarios to future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: [NA]
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The simulations and transformer training is lightweight and easy to implement.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
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Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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