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ABSTRACT
Deep learning models achieve state-of-the art results in pre-
dicting blood glucose trajectories, with a wide range of ar-
chitectures being proposed. However, the adaptation of such
models in clinical practice is slow, largely due to the lack
of uncertainty quantification of provided predictions. In this
work, we propose to model the future glucose trajectory con-
ditioned on the past as an infinite mixture of basis distribu-
tions (i.e., Gaussian, Laplace, etc.). This change allows us to
learn the uncertainty and predict more accurately in the cases
when the trajectory has a heterogeneous or multi-modal dis-
tribution. To estimate the parameters of the predictive distri-
bution, we utilize the Transformer architecture. We empiri-
cally demonstrate the superiority of our method over existing
state-of-the-art techniques both in terms of accuracy and un-
certainty on the synthetic and benchmark glucose data sets.

Index Terms— wearable devices, time series, calibration,
probabilistic modeling

1. INTRODUCTION

Prediction of blood glucose values in patients with diabetes
is an active area of research [1]. From a clinical standpoint,
accurate forecasting of glucose levels can help patients take
proactive actions and prevent severe complications such as
hypoglycemia or diabetic coma [2, 3]. From the methodolog-
ical perspective, the highly non-linear and non-stationary na-
ture of the glucose profiles makes accurate predictions dif-
ficult. To the best of our knowledge, most current methods
produce point-wise predictions without quantifying their un-
certainty, which limits clinical applicability. A predicted glu-
cose increase may prompt the patient to take extra insulin,
which may lead to dangerous hypoglycemia if the prediction
is wrong. Complementing predictions with uncertainty quan-
tification will help to minimize these risks.

Since existing approaches primarily focus on maximizing
the accuracy of the predictions (rather than quantifying un-
certainty), they focus on minimizing the mean squared error
(MSE) between the predictions and the observed data [4, 5, 6,
7, 8, 9, 10, 11, 12]. MSE loss implicitly corresponds to mod-
eling future trajectory as a function of the past plus a homo-
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Fig. 1: Predicted densities on a test sample for synthetic data
set (top) and glucose data (bottom).

geneous Gaussian noise. If the assumed model is correct, this
approach leads to the best predictions, and confidence inter-
vals can be constructed by inferring the corresponding noise
variance. However, a homogeneous Gaussian noise assump-
tion is typically violated in practice, making the correspond-
ing predictions and confidence intervals unreliable.

Here we propose a new framework for modeling future
glucose trajectories using an infinite mixture model (IMM).
Such formulation allows us to capture a variety of non-
Gaussian output distributions, e.g., multi-modal, skewed. We
estimate the parameters of the IMM using the Transformer
architecture. While IMM has an infinite number of parame-
ters, we introduce an approximation step to fit the distribution
implicitly. Specifically, we inject randomness into the com-
putation of the network outputs and treat each output as a
realization from one of the mixture components.

To validate the capabilities of the proposed model, we
consider two data sets: 1) synthetic data set 2) publicly avail-
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able continuous glucose monitor (CGM) data set [11]. We
achieve state-of-the-art results for both. Figure 1 shows a
sample of predicted curves together with the visualization of
predictive distribution, demonstrating the superiority of our
method in terms of the robustness of uncertainty estimates to
deviations from the Gaussian assumption.

2. RELATED WORK

Traditional machine learning. ARIMA is a well-known
model for time series data and is commonly used with CGM
data [4, 5, 7, 8]. ARIMA is a non-linear auto-regressive ap-
proach that extends the standard AR model to handle non-
stationarity by integrating the previous trends. Another popu-
lar model for glucose predictions is random forest [6, 9, 10].
The model splits the data into random subsamples, fitting a
single prediction tree for each. The average of the ensemble
of individual trees is used for prediction. The model is typi-
cally applied recursively by producing a single prediction at a
time, but multi-output extensions are also available.
Deep learning. As time-series resemble data from the nat-
ural language processing field, there has been an interest in
applying deep learning for multi-output time-series forecast-
ing. Some existing state-of-the-art approaches for glucose
prediction are PolySeqMO [11] and the RNN-based model
[12]. PolySeqMo models the predicted curve with a poly-
nomial expansion and uses an RNN to learn the coefficients.
The RNN approach of [12] improves PolySeqMO by moving
away from the polynomial expansion and building upon the
approach taken in [13], providing personalized predictions,
proposing attention for longer inputs, and introducing robust
training scheme for the model. Recently, the Temporal Fusion
Transformer (TFT) has shown promising results on a variety
of time series data sets [14]. The model is formulated using
quantile regression and allows for uncertainty quantification.
Uncertainty estimation. The infinite mixture model (IMM)
has been previously studied in [15, 16, 17]. These approaches
rely on MCMC sampling from the posterior distribution,
with latent variables explicitly being sampled from specified
prior. In contrast, we estimate the IMM parameters implicitly
by injecting latent variables (noise) into the network. This
change allows us to translate the sampling problem into the
maximum-likelihood optimization, where the only additional
cost we pay is several stochastic forward passes through the
network. Since full MCMC sampling is costly to implement
and diagnose for high-dimensional data sets, our approach
yields a significant computational advantage.

Stochastic neural networks have been investigate by [18]
and [19]. [18] explore a connection between a stochastic
neural network with a dropout and L2 regularization and the
Gaussian process. Specifically, they show that the dropout
imposes a distribution on the weights of the neural network,
which can then be optimized as a variational approximation
to the Gaussian kernel parameters. Their derivations can be

seen as a special case of our model if we take the basis distri-
bution to be Gaussian, impose L2 constraint on the weights,
and implement the latent variables as a dropout.

3. PROPOSED MODEL

3.1. Notation and background

The blood glucose prediction can be viewed as a time series
forecasting problem. Let xi = (xij)

t
j=1 be a sequence of

glucose values of length t with i = {1, . . . , n} being the sam-
ple index. Denote the consecutive future glucose values as
yi = (yij)

T
i=1, so that (xi1, . . . , xit, yi1, . . . , yiT ) forms an

equally-spaced time sequence of CGM readings. Each such
sequence corresponds to a unique patient in the data set. The
goal is to estimate y given history x.

To achieve this goal, previous works (Section 2) focus on
building a predictive model fθ : Rt → RT with parame-
ters θ. These models usually rely on the parametric assump-
tion y ∼ N (fθ(x), σ

2I), which is equivalent to the additive
Gaussian assumption on the residuals. While this assump-
tion is sometimes explicit [13], it is often implicit through the
choice of the loss function. When the true predictive distribu-
tion, p(y|x), is far from the Gaussian, such models are clearly
misspecified. Subsequently, both predictions and uncertainty
estimates of such models become unreliable.

3.2. The Infinite Mixture Model

We first consider univariate prediction and denote the scalar
response variable as y. We introduce latent (hidden) variables
z ∼ q, where q is some distribution that allows fast sampling.
Provided we have sampled z from q, we assume that the base
distribution assumption holds conditionally on z:

y|x, z ∼ p(y; s(x, z)),

where s is a vector of the sufficient statistics for a distribu-
tion p, e.g., mean and variance for Gaussian. Marginalizing
over z, we get the full predictive distribution expressed as an
infinite mixture model (IMM):

p(y|x) =
∫
p(y; s(x, z))q(z)dz

We propose to estimate the sufficient statistics s with a neural
network model ŝ := fθ(x|z). To approximate the intractable
predictive distribution, we use Monte Carlo integration. That
is, we sample k latent zj independently from q, and average
over k stochastic passes through the network:

zj ∼ q, ŝj = fθ(x|zj), p(y|x) ≈ 1

k

k∑
j=1

p(y; ŝj).

The latent distribution, q, can be implemented by adding a
random noise or concatenating a latent noise vector to the in-
put vector, x. Alternatively, the latent distribution may be em-
bedded in the network structure through the Bernoulli dropout



layers. The choice of the base distribution, p, ultimately de-
pends on the specifics of the problem. While the Gaussian
base distribution is a good starting point due to its theoretical
properties [15], Laplace base distribution may be preferable
when modeling highly asymmetric distributions [20].

To generalize from the univariate case to the multi-output
forecasting problem, we model the multivariate predictive
distribution p(y|x) by specifying univariate IMM models as
above for each output and combining them using an appropri-
ate copula dependence function (e.g., independence copula,
Gaussian copula etc.). Since, by Sklar’s theorem, any multi-
variate distribution can be decomposed into its marginals and
a dependence function, our specification remains expressive
[21]. The copula function parameters can then also be esti-
mated using the neural network. In practice, we found that
the independence copula, corresponding to the independence
across time assumption, was sufficient.

3.3. Measuring the Quality of Predictive Distribution Fit

Likelihood. To assess the quality of estimated predictive dis-
tributions, we compute log-likelihoods for each method on
the test data, where a higher value indicates a better fit.

For existing models (Section 2), the additive Gaussian
assumption on the noise leads to the predictive distribution
y|x ∼ N (fθ(x), σ

2I). Since such models do not explicitly
estimate the variance, σ2, during fitting, we estimate it using
MLE and compute the average log-likelihood as:

σ̂2
MLE =

1

Tn

n∑
i=1

(yi − fθ(xi))
T (yi − fθ(xi)),

1

n
logL(θ) = −T

2
− T

2
log(2πσ̂2

MLE).

For our model, we approximate the average log-likelihood
on the test data set based on the MC draws. That is, we esti-
mate the average log-likelihood as:

zij ∼ q, sij = fθ(xi|zij),

1

n
logL(θ) =

1

n

n∑
i=1

log
1

k

k∑
j=1

p(yi; ŝij).

Calibration. To further assess the quality of our predictive
distribution on the benchmark CGM data set, we propose
to evaluate model calibration. We focus on the quality of
the estimated marginal distributions for each predicted time
point. Given n input sequences, our approach produces ap-
proximate predictive distributions based on the MC draws,
{p̂(yi|xi)}ni=1. Based on our copula formulation for mul-
tivariate output, we also have direct access to the marginal
distributions, {[p̂(yij |xi)]

T
j=1}ni=1, each of which is mod-

eled as an IMM. Thus, we can derive approximate marginal

Model IMM Gaussian

APE 28.63 32.68
RMSE 0.1355 0.1415

Log-likelihood -0.65 -4.21

Table 1: APE, RMSE, and likelihood computed on the test
set for synthetic data.

cumulative density functions (CDF) as:

F̂ (yij |xi) =
1

k

k∑
i=1

F (yij ; ŝij),

where F is the CDF of the chosen univariate base distribution.
To judge the calibration of our model (how close are the

estimated confidence intervals to nominal coverage) via a di-
agnostic plot, we utilize the approach described in [22]. We
select a set of ηjl ∈ [0, 1] for each j ∈ {1, . . . , T} and a
pre-specified mesh l ∈ {1, . . . , L}, and calculate

η̂jl =
1

n

n∑
i=1

1{F̂ (yij |xi) < ηjl}

Thus, we obtain a set of points {(η̂jl, ηjl)}j for each l ∈
{1, . . . , L}, where η̂jl are empirical frequencies and ηjl are
expected (true) frequencies. Ideally, in the case of perfect
calibration, we have that η̂jl = ηjl.

3.4. Estimation

Transformer Architecture. The Transformer model [23]
consists of a series of attention heads and fully connected
layers. To overcome the computational cost of modeling
longer prediction intervals, we use a modification of the
Transformer architecture that introduces convolutional layers
in-between attention blocks and is able to provide multi-
output predictions in a single pass [24]. We use the model to
predict the parameters of each of the marginal IMM’s, where
we consider each stochastic pass through the model to be an
MC draw.
Feature Embedding. As outlined in Section 4.1, the CGM
data usually only contains glucose readings together with the
timestamps. It is reasonable to assume that each subject ad-
heres to a daily schedule that affects his or her blood glucose
levels. Therefore, we utilize time features to enhance our pre-
dictions. Also, we add positional and subject encoding.

4. PERFORMANCE EVALUATION

4.1. Data

Synthetic. We consider a sample of 2000 time series for train-
ing, 100 for validation, and 100 for testing. We generate the
data using a mixture of Gaussian Processes. Each series has
the same range of values in the time interval [−4, 0), but in
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Fig. 2: Calibration curves depicting {(η̂jl, ηjl)}j for l =
{1, . . . , 12} for proposed model on the benchmark CGM data.
Perfect calibration would be represented by the 45◦ line.

Model Full Event Hypo Hyper Likelihood

ARIMA 9.85 / 17.65 8.91 / 19.86 19.94 / 14.53 8.51 / 22.17 -14.93
RF:Rec 9.04 / 17.15 8.97 / 20.36 18.84 / 12.43 8.68 / 23.41 -14.58
RF:MO 10.22 / 18.27 8.61 / 19.90 21.64 / 17.36 7.99 / 21.58 -15.34

PolySeqMO 8.55 / 15.68 8.27 / 18.81 22.86 / 21.87 6.77 / 18.30 -15.61
RNN 8.17 / 15.67 8.29 / 19.37 18.72 / 16.26 6.99 / 19.22 -13.50
TFT 7.80 / 15.78 8.03 / 18.23 16.23 / 14.62 6.87 / 18.98 –

Our: IMM 7.78 / 15.40 7.89 / 17.85 15.75 / 14.03 7.08 / 19.58 -2.67
Our: Gaussian 7.82 / 14.73 7.93 / 18.62 18.28 / 13.55 6.81 / 18.94 -12.82

Table 2: APE/RMSE for 60-minute prediction window
(Full), hypoglycemia, hyperglycemia, and event (hypo-or hy-
perglycemia), and model log-likelihood on test data.

the interval [0, 3] takes one of two trajectories: increase or
decrease. The resulting distribution has a varying number of
modes: one mode on the interval [−4, 0) and two modes on
[0, 3]. The training curves are depicted in grey in Figure 1.
Benchmark CGM. We use a publicly available CGM data
set [11], which contains information on glucose levels of 38
subjects tracked continuously throughout multiple disjoint in-
tervals with the measurement frequency of 5 minutes. Similar
to [12], we remove periods of drastic fluctuations where the
subsequent CGM readings change by more than 40 mg/dL.
To be compatible with the analysis in [12], we do not utilize
any interpolation techniques for the missing data. The result-
ing data consists of 399, 302 observations, with an average of
30 (uninterrupted) sequences per subject of length between
200 and 400 observations. We split the data by sequences
into the train, validation, and test sets in 20 : 1 : 1 proportion.

4.2. Model Implementation

We implement our method in PyTorch [25], and use a single
NVIDIA RTX 2080 Ti GPU for all experiments. For ab-
lation purposes, we train the model using (i) proposed loss
corresponding to the IMM; (ii) mean squared error (MSE)
corresponding to the Gaussian assumption. For IMM, we
implement the latent variables by introducing the dropout
and assuming independence across time. The full model im-

plementation is available at https://github.com/mrsergazinov/
gluformer. For the synthetic data, we set the encoder length
to 4 and the prediction to 2. For the glucose data, we set the
encoder length to 180 (36 hours) and the prediction length to
12 (1 hour).

4.3. Results

We measure prediction accuracy using root mean squared er-
ror (RMSE) and average percentage error (APE) across pre-
diction intervals. We report the final APE and RMSE as me-
dians of the individual prediction errors across samples. We
measure the quality of fit as in Section 3.3.
Synthetic. We compare the proposed IMM to the same archi-
tecture trained with the Gaussian assumption. We report our
results in Table 1 and plot a sample of predictions in Figure 1,
displaying the predicted densities for the two models. The
proposed IMM is more accurate and correctly captures the
multi-modality in the predicted densities across time points,
providing a better probabilistic fit to the data.
Benchmark CGM. We report both the error on the full data
set as well as errors for the periods of hypo- and hyper-
glycemia [26]. We define a period of hypoglycemia if the
glucose level drops below 70 mg/dL in the forecast window
and a period of hyperglycemia if the glucose level rises above
180 mg/dL. We also measure the model’s accuracy during
the incidence of either of the events. Table 2 summarize the
results on the benchmark CGM data for the 60 minutes pre-
diction window. The proposed IMM outperforms the others
3 out of 4 times in APE and 2 out of 4 times in RMSE. In
particular, IMM achieves state-of-the-art 7.78 APE for the
most difficult 60 minute forecast. Table 2 also reports av-
erage likelihoods on test data for all methods, except TFT
for which it is not available. Our model achieves 6× better
average log-likelihood than the previous methods. We believe
this to be indicative of the fact that the true predictive distri-
bution of y|x is not similar to Gaussian (likely multi-modal).
We report our calibration plots for each of the 12 prediction
points in the future (the longest prediction length) in Fig-
ure 2. When plotted, a perfectly calibrated model should
correspond to a straight line. We find that the model observed
confidence levels are close to the expected levels for all the
points, highlighting the model’s excellent performance.

5. CONCLUSION

We propose a novel approach to quantify uncertainty in multi-
output time series predictions based on the infinite mixture
model. We utilize an efficient Transformer architecture for es-
timation. When applied to public CGM data, our model out-
performs existing approaches (ARIMA random forest, RNN,
and Transformer) in terms of the achieved log-likelihood on
the test data and provides competitive accuracy for various
forecast horizons and dangerous event scenarios.

https://github.com/mrsergazinov/gluformer
https://github.com/mrsergazinov/gluformer
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