
R E S C I E N C E C
Replication / ML Reproducibility Challenge 2022

[Re] G-Mixup: Graph Data Augmentation for Graph
Classification
Ermin Omeragić1, ID and Vuk Đuranović1, ID
1University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, 1000 Ljubljana, Slovenia

Edited by
Koustuv Sinha,
Maurits Bleeker,

Samarth Bhargav

Received
04 February 2023

Published
20 July 2023

DOI
10.5281/zenodo.8173650

Reproducibility Summary

Scope of Reproducibility — This paper presents a novel augmentationmethodused for graph
classification tasks: G‐Mixup. Our goal is to reproduce eight claims that the authors
make in their paper. The first two claims relate to the properties of graphons estimated
fromgraphs, which are themain components of themethod. Claims three to eight relate
to the superior performance of the method compared to other augmentation strategies.

Methodology — To reproduce the results, we use the open‐source implementation of the
method provided by the authors, with a few modifications. We write from scratch all
the experiments and pipelines needed to defend the claims of the paper. Additionally,
we implement three out of four baseline augmentation methods that are compared to
the novel method. For one part of the experiments, we use a local computer and run the
experiments on a CPU, with a total of 31.7 CPU hours, while for other more demanding
experiments, we use a GPU‐accelerated machine for a total of 157.3 GPU hours.

Results — Due tomanymissing implementation details, wewere not able to reproduce all
of the original results. Some claims can be supported by our results, butmost results are
very vague. Even though thenewmethodoutperforms the baselines in certain scenarios,
we find that the superiority of the method is not as strong as presented in the original
paper.

What was easy — The novel augmentationmethod and its theoretical justification are pre‐
sented intuitively in the paper, and it was easy to grasp the main ideas of the paper.

What was difficult —While the codewith themethod implementationwas given, the repro‐
duction of all the results required much more code and details than what was provided
in the paper. This means that we had to make a lot of educated guesses about the exper‐
imental settings, choices of hyperparameters, and details about the models used.

Communication with original authors —We contacted the authors on two occasions. We first
inquired about the details of the graph estimation methods that they used and which
weren’t explained in the paper, to which they responded swiftly. On the second occasion,
we asked about the experimental settings and hyperparameter details, but we did not
receive a reply.

Copyright © 2023 E. Omeragić and V. Đuranović, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Ermin Omeragić (eo3031@student.uni-lj.si)
The authors have declared that no competing interests exist.
Code is available at https://github.com/eomeragic1/g-mixup-reproducibility. – SWH swh:1:dir:b3da6c4106727ef884219a1d04275a3306672c34.
Open peer review is available at https://openreview.net/forum?id=XxUIomN-ndH.

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 1

https://orcid.org/0009-0009-3960-522X
https://orcid.org/0009-0002-5084-348X
mailto:eo3031@student.uni-lj.si
https://github.com/eomeragic1/g-mixup-reproducibility
https://archive.softwareheritage.org/swh:1:dir:b3da6c4106727ef884219a1d04275a3306672c34/
https://openreview.net/forum?id=XxUIomN-ndH
https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

1 Introduction

Data augmentation, a process of artificially increasing the amount of data by generat‐
ing new data points from existing data, has been shown to improve the generalization
and robustness of neural networks. It is also present in graph analysis, where synthetic
graphs are generated to create more training data for improving the generalization of
graph classification models. However, all the prior methods operate on a within‐graph
level by altering the structure of an individual graph and do not capture between‐graph
information. In image recognition and natural language processing, Mixup has been
shown to improve performance by linearly interpolating continuous values of random
samples to generate more synthetic training data. This paper aims to adapt this method
to graph data.
A few problems occur when adapting Mixup to graph data: graph data is irregular and
not well‐aligned, and the graph topology between classes is divergent. The main as‐
sumption for G‐Mixup is that the graphs of one class are produced under the same gen‐
erator called graphon. A graphon [1] can be regarded as a probability matrix W, where
W(i,j) represents the probability of an edge between node i and j. Graphons are regular,
well‐aligned, and defined in Euclidean space, so they can be easily mixed to generate
new synthetic graphs from them. The main idea of G‐Mixup is to estimate graphons for
each of the classes in the training set, and generate new, unseen examples by mixing
the graphons of the random two classes and generating graphs from themixed graphon.

2 Scope of reproducibility

This report investigates the reproducibility of the original paper by Han et al. [2] and
aims to verify its main claims. The main claims, highlighted in the original paper, can
be summarized as follows:

• Claims relating to graphons

– Claim 1: The graphons of a different class of graphs in one dataset are dis‐
tinctly different

– Claim 2: The synthetic graphs are indeed the mixture of the original graphs

• Claims relating to G‐Mixup

– Claim 3: G‐Mixup can improve the performance of graph neural networks on
various datasets

– Claim 4: G‐Mixup can improve the generalization of graph neural networks
– Claim 5: G‐Mixup could stabilize the model training
– Claim 6: G‐Mixup improves the robustness of graph neural networks
– Claim 7: Using the average node number of all the original graphs is a better

choice for hyperparameter K in G‐Mixup
– Claim 8: G‐Mixup improves the performance of graph neural networks with
varying layers

3 Methodology

3.1 Model descriptions
The core component of G‐Mixup is the graph estimation method. The authors reported
in the paper that they tried several methods, including Stochastic Block Approximation

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 2

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

(SBA) [1], Largest gap (LG) [3], Smoothing‐and‐sorting (SAS) [4], Matrix Completion (MC)
[5] and Universal Singular Value Thresholding (USVT) [6]. The authors state that they
used the LG method in their experiments. However, in their codebase, we only found
the implementation of USVT. In our e‐mail correspondence, the authors confirmed that
they used the LG method and provided us with the repository where we could find the
method implementation.
The authors test the method with a few different GNN backbones that can be separated
into two categories. The first category consists of Graph Convolutional Network (GCN)
[7] and Graph Isomorphism Network (GIN) [8]. Even though the authors use the name
GCN throughout the paper, they added a hyperlink to a PyTorch Geometric (PyG) [9] ex‐
ample in which GCNII [10], an extension of the vanilla GCNmodel, is used. We assumed
that the authors copied the model implementation from this hyperlink, so we used the
GCNII model. The GCNII model uses 4 GCNII layers with ReLU activations followed by
global mean pooling and two linear layers. The GINmodel uses 5 GIN convolutional lay‐
ers with ReLU activations and batch normalization followed by two linear layers. GIN
was the only model whose implementation can be found in the authors’ GitHub reposi‐
tory. In the paper, they added a hyperlink to another GINmodel implementation in PyG.
Comparing these two implementations, there is only a slight difference in how batch
normalization is used. We decided to use the model implementation that we found in
the authors’ GitHub repository.
The second category of GNN backbones consists of graph poolingmethods. Specifically,
the authors use TopK Pooling (TopKPool) [11], Differentiable Pooling (DiffPool) [12] and
MinCut Pooling (MinCutPool) [13] backbones. The authors again provided a hyperlink
to PyG examples that implement these methods, so we assumed again that they used
this code for their implementation. For TopKPool, 3 Graph convolution layers and 3
TopK pooling layers were used, followed by 3 Linear layers. DiffPool and MincutPool
are more complex models, and the details about their implementation can be found in
our GitHub repository.
The authors also wanted to compare their method to other augmentation methods, so
they included the results of several baseline methods: DropNode [14], DropEdge [14],
Subgraph [15] and M‐Mixup [16]. In each epoch, DropNode and DropEdge pick graphs
from the dataset with probability ppick and then augment the graphs by removing nodes
or edges from the graph with probability pdrop. Subgraph also picks graphs from the
dataset in each epoch with probability ppick, and for each graph, it randomly selects a
node from the graph and takes an induced subgraph from the neighbourhood of that
node. The size of the neighbourhood and the resulting graph is controlled by the pa‐
rameter pdrop, which tells us how many nodes are going to be left out in the end from
the induced subgraph. M‐Mixup takes two random graphs from the dataset, creates em‐
beddings for each of them, and then interpolates those embeddings in the embedding
space. The authors did not provide implementations of these baselinemethods, nor did
they mention from where they obtained the results. We decided to implement DropN‐
ode, DropEdge and Subgraph ourselves, while we weren’t able to implement M‐Mixup
because of the lack of details in the original M‐Mixup paper and the deficit of any public
repository that implements it.

3.2 Datasets
The authors test their method on several datasets that can be directly imported from the
PyG TUDataset [17] repository: IMDB‐BINARY, IMDB‐MULTI, REDDIT‐BINARY, REDDIT‐
MULTI‐5K, and REDDIT‐MULTI‐12K. We provide details about the datasets below.

IMDB-BINARY — This is a movie collaboration dataset that consists of 1000 ego networks
of different actors/actresses who played roles inmovies in IMDB. The nodes in the graph
represent actors/actresses, and the link is formed if they performed in the same movie.

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 3

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

The graphs and their labels are derived from Action and Romance genres (binary clas‐
sification). The average number of nodes in the graphs is 19, and the average number
of edges is 93. The nodes and edges in this dataset do not have any features associated
with them.

IMDB-MULTI — This dataset is very similar to the IMDB‐BINARY dataset. It consists of 1500
graphs, and the labels are derived from 3 genres: Sci‐Fi, Romance and Action. The
average number of nodes is 13, and the average number of edges is 65. This dataset
does not have any node or edge features either.

REDDIT-BINARY — The graphs in this dataset correspond to online discussions on Reddit.
Nodes in the graph represent users, and edges are formed between nodes if one of the
users responded to another’s comment. There are two graph labels. One of them corre‐
sponds to a question/answer‐based community (r/iAmA and r/AskReddit) and the other
to a discussion‐based community (r/TrollXChromosomes and r/atheism). There are a
total of 2000 graphs in the dataset, with an average of 429 nodes and 497 edges.

REDDIT-MULTI-5K and REDDIT-MULTI-12K — Similar to REDDIT‐BINARY, these are balanced
datasets from five and eleven different subreddits, respectively. REDDIT‐MULTI‐5K con‐
sists of discussion threads fromr/worldnews, r/videos, r/AdviceAnimals, r/awwand r/mild‐
lyinteresting, where each graph in the dataset is labelled with their corresponding sub‐
reddit (5‐class classification). REDDIT‐MULTI‐12K consists of 11 different subreddits,
namely, r/AskReddit, r/AdviceAnimals, r/atheism, r/aww, r/IAmA, r/mildlyinteresting,
r/Showerthoughts, r/videos, r/todayilearned, r/worldnews, r/TrollXChromosomes. The
task for both datasets is to predict which subreddit a given discussion graph belongs to.
REDDIT‐MULTI‐5K consists of 5000 graphs with an average node count of 508 and an
average edge count of 594, while the REDDIT‐MULTI‐12K consists of 11929 graphs with
an average number of nodes of 391 and an average number of edges of 456.
Since none of the data sets has any node or edge features associated with it, the authors
preprocessed every dataset by adding custom node features to each graph. Namely, if
the max node degree in the dataset is lower than 2000, the node feature matrix will be
one hot encoded degree of each node (the feature vector of one nodewill be all 0’s except
in the column that corresponds to that node’s degree, where it will be 1). If themax node
degree is higher than 2000, each node will only have 1 feature, whose value will be the
normalised degree of that node. Normalization is carried out by calculating the mean
node degree and its standard deviation across the whole dataset.

3.3 Hyperparameters
The authors report that they’ve used the same hyperparameters across all experiments
to ensure a fair comparison, and we copied their hyperparameter setup. We use the
Adam optimizer, with an initial learning rate of 0.01, which is set to decrease by half
every 100 epochs. The authors do not mention how many epochs of training they per‐
formed, so we chose a number based on the graphs that were in the report that showed
300 epochs. We split the dataset into train/validation/test sets with 7:1:2 proportions.
The best test epoch is selected based on the accuracy of the model on the validation
set, and accuracy is reported on ten runs. For G‐Mixup, we generate 20%more training
graphs and use λ ∈ [0.1, 0.2] to mix up the graphons. The authors set the batch size to
128, and we follow that batch size for IMDB datasets, but due to lack of GPU VRAM, we
lower it to 32 for REDDIT datasets.
The authors fail to mention what hyperparameters they use for the baseline methods,
so we decided to pick them based on our intuition. We choose to augment 20% of the
graphs in the dataset in each epoch for DropEdge and DropNode, and 10% for Subgraph.

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 4

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

In each graph that was chosen for augmentation, we eliminate 10% of the edges/nodes
for DropEdge/DropNode and 15% of the nodes for Subgraph.
The authors do not report any hyperparameter search being performed in experiments
3 to 6, where G‐Mixup was compared to other baseline models. They do, however, test
how the method behaves while varying the hyperparameter K (Experiment 7), which
controls how many nodes will be generated in the synthetic graphs. In the Appendix,
they also test how the performance of G‐Mixup changes by varying themixup parameter
λ, but they do not draw any clear conclusions.

3.4 Experimental setup and code
The code with the implementation of the G‐Mixup method and graphon estimation is
available on the author’s GitHub repository1. However, in order to test the claims from
the paper, we had to write code for each experiment ourselves. Our project is also avail‐
able as a GitHub repository. Code for each of the experiments is available as a regu‐
lar python script inside the source folder (example: src/experiment1.py), and as self‐
explanatory Jupyter notebooks.
For experiments 1 and 2, due to the nature of the claims we do not use any specific mea‐
sure. We report on the outcome of the experiments and we make some observations
about the way experiments were set up in order to make a final statement about their
claims. For experiments 3‐8we use classification accuracy to compare resultswith those
from the original paper.

3.5 Computational requirements
We run the experiments on 3 different pieces of hardware. For ”lightweight” experi‐
ments, we use an Intel i5‐10600K CPU. For most of the experiments, we use NVIDIA
RTX 2070 SUPER GPU with 6GB of VRAM. For some parts of Experiment 3, this amount
of VRAM was not enough, so we used Google Colab Pro+ GPUs and the GPUs on the
National Supercomputing Network (both of which have 32GB VRAM). The details about
execution times can be viewed in Tables 3 and 4.

4 Results

Our results provide partial support for claimsmade by authors. While the results we got
from experiments gave us a confirmation that the synthetic graphs are indeed the mix‐
ture of the original graphs, some other claims are highly debatable. For claims relating
to the superiority of G‐Mixup over other data augmentation methods we were not able
to reproduce results from the paper.

4.1 Results reproducing original paper

Result 1: The graphons of a different class of graphs in one dataset are distinctly different —We
believe this claim is an overgeneralization. The authors provided a visualization of es‐
timated graphons for datasets used in the paper, which can be seen in Figure 1. While
the claim may be true for datasets IMDB‐BINARY and REDDIT‐BINARY, the same can
not be said for IMDB‐MULTI dataset. From the plots of estimated graphons, it is very
difficult to find differences between classes 1 and 2 for example. The problem with this
claim is that we can have a dataset in which classes are not that much different from
each other, so the claim doesn’t apply.

1https://github.com/ahxt/g‐mixup

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 5

https://github.com/ahxt/g-mixup
https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

Figure 1. Estimated graphons fromexperiment 1. Note thatweneeded tomanually update diagonal
entries to zeros ‐ something the original authors also did and did not report.

Additionally, the authors wrote that they used the average number of nodes in a dataset
for graphon estimation, but for REDDIT‐BINARY and IMDB‐MULTI they used different
sizes of graphons for visualization. This was done probably to highlight the differences
between classes – with a bigger size of the graphon the size of the cell representing each
node would get smaller and the plot would be blurry. Nevertheless, this modification is
notmentioned by the authors in the paper. To conclude, the experiment is reproducible,
but the claim doesn’t have strong foundations since graphons are highly dependent on
the nature of the dataset.

Result 2: The synthetic graphs are indeed the mixture of the original graphs — This is true. In
addition to what the authors did, we confirmed this claim by performing amodified ver‐
sion of the experiment. From REDDIT‐BINARY dataset we estimated graphons for Class
0 and Class 1 respectively. After that, we performed a G‐mixup with extracted graphons
to get a mixed graphon. Then, we generated 500 synthetic graphs using mixed graphon.
Finally, we estimated the graphon from synthetic graphs. From Figure 2 it is easy to
observe that the graphon estimated from synthetic graphs is indeed a mixture of two
original classes.

Figure 2. Class 0 and Class 1 are classes from the original dataset. Class 0 has two high‐degree
nodes, while Class 1 has only one high‐degree node. Graphon for Class 2, which was created in
a process of G‐Mixup of the previous two classes, actually has 1 high‐degree node and a dense
subgraph.

4.2 Results that differ from the original paper

Result 3: G-Mixup can improve the performance of graph neural networks on various datasets — –
We perform the same experiments and create the same table (without one of the base‐
line augmentation methods) as the authors did in the original paper. However, while
authors show that G‐Mixup gains 9 best performances among 10 reported accuracies,
our experiments show that it performs the best only on 3 occasions out of 10, as shown

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 6

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

Figure 3. The training/validation/test curves on IMDB‐BINARY, IMDB‐MULTI, REDDIT‐BINARYand
REDDIT‐MULTI‐5K with GCN as the backbone. The curves are depicted on ten runs.

in Table 1. We use the same methodology as the authors, i.e. different augmentation
methods adopt the same GNN architecture and the same training hyperparameters.

Model Methods IMDB‐B IMDB‐M REDD‐B REDD‐M5 REDD‐M12

GCN

vanilla 71.40±2.22 49.86±2.60 83.75±5.42 53.15±1.63 45.90±1.47
w/ DropEdge 71.70±2.42 48.26±2.90 72.10±2.19 47.15±1.36 36.40±1.57
w/ DropNode 72.05±3.36 49.33±2.27 72.95±2.11 43.51±2.96 31.84±1.39
w/ Subgraph 72.00±3.95 48.96±2.71 73.61±1.87 48.80±1.22 37.82±0.81
w/ G‐Mixup 71.90±2.92 49.66±2.56 84.80±4.10 51.39±2.10 46.01±1.29

GIN

vanilla 72.00±2.98 47.66±3.07 91.47±1.70 55.81±1.39 49.34±0.75
w/ DropEdge 71.20±3.16 45.63±2.19 85.37±2.89 49.03±1.63 41.18±1.57
w/ DropNode 70.30±3.63 46.20±2.44 81.17±2.73 46.85±1.57 38.93±1.14
w/ Subgraph 69.80±3.32 44.76±2.67 88.80±1.52 49.83±1.86 41.67±1.91
w/ G‐Mixup 70.45±3.94 49.53±2.59 90.45±1.54 55.59±1.45 48.81±1.17

Table 1. Performance comparisons of G‐Mixup with different GNNs on different datasets. The
metric is the classification accuracy along with standard error. Bolded are the augmentations
that received the highest mean accuracy on ten runs for that particular GNN architecture, similar
to what was done in the original paper.

Model Methods IMDB‐B IMDB‐M REDD‐B REDD‐M5

TopKPool

vanilla 70.65±3.19 49.33±2.57 88.60±2.05 49.93±1.41
w/ DropEdge 68.70±4.17 47.66±2.33 76.55±5.53 43.65±2.97
w/ DropNode 71.60±1.76 46.36±3.15 75.22±4.42 39.05±3.58
w/ Subgraph 69.40±4.73 45.53±4.96 78.93±4.54 45.24±4.29
w/ G‐Mixup 70.80±2.74 49.00±1.80 88.82±2.25 49.86±1.79

DiffPool

vanilla 72.15±2.04 49.10±1.89 91.90±2.11 55.71±0.70
w/ DropEdge 71.90±2.54 49.06±1.74 89.50±1.62 51.90±3.53
w/ DropNode 71.05±2.25 47.66±4.42 84.67±3.10 47.25±1.76
w/ Subgraph 70.15±3.54 47.76±1.30 90.15±1.28 51.11±2.49
w/ G‐Mixup 70.95±3.15 49.03±2.20 92.22±0.97 54.24±1.72

MincutPool

vanilla 71.55±2.67 48.63±2.58 84.87±4.02 48.57±4.23
w/ DropEdge 71.50±3.69 49.10±2.57 81.06±2.48 44.70±1.35
w/ DropNode 71.50±2.92 49.83±3.15 75.68±1.95 42.49±2.18
w/ Subgraph 71.05±3.02 48.43±2.82 76.55±3.34 40.33±3.11
w/ G‐Mixup 71.25±2.05 48.93±1.59 84.37±2.65 48.60±1.88

Table 2. Performance comparisons of G‐Mixup with different Pooling methods. The metric is clas‐
sification accuracy along with standard error. Bolded are the augmentations that received the
highest mean accuracy on ten runs for that particular Pooling method, similar to what was done
in the original paper.

Result 4: G-Mixup can improve the generalization of graph neural networks — The authors look
at the loss curves of GCN training and state that the test curves with G‐Mixup are con‐
sistently lower than the vanilla model. The loss curves of our experiments are shown
in Figure 3. We do not observe any notable differences between the two models. Fur‐
thermore, the test losses of the vanilla model may even be on average lower than the
G‐Mixup model.

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 7

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

Dataset Methods 10% 20% 30% 40% Avg. runtime
IMDB‐B vanilla 72.05±4.16 67.65±4.21 66.40±3.60 62.65±5.28 15.44 [s]

w/ DropEdge 70.00±3.77 68.00±4.52 67.25±4.42 59.75±4.11 36.38 [s]
w/ G‐Mixup 71.05±0.45 69.50±4.65 68.60±4.35 65.70±4.28 17.45 [s]

REDD‐B vanilla 81.35±5.55 77.10±5.31 74.56±3.86 72.07+‐3.94 75.24 [s]
w/ DropEdge 79.37±6.63 76.02±4.95 76.97±5.14 71.67±4.72 118.87 [s]
w/ G‐Mixup 78.65±3.80 76.85±2.94 73.85±3.71 72.25±2.69 99.83 [s]

Table 3. Label Corruption Robustness results. We invert the label of a certain percentage of nodes
and observe the results. The metric is the classification accuracy along with standard error.

Type Methods 10% 20% 30% 40% Avg. runtime

Removing
edges

vanilla 82.15±4.50 78.95±4.55 77.50±6.07 75.02±0.35 65.83 [s]
w/ DropEdge 81.60±5.21 80.40±5.44 77.75±4.68 75.40±3.67 111.60 [s]
w/ G‐Mixup 82.25±4.55 81.35±3.56 78.85±0.45 76.35±0.50 88.98 [s]

Adding
edges

vanilla 82.37±5.32 82.05±5.09 81.20±6.24 82.00±4.81 74.54 [s]
w/ DropEdge 79.75±6.93 81.02±6.82 80.50±4.93 79.15±3.80 121.82 [s]
w/ G‐Mixup 85.82±3.64 82.25±6.59 82.07±4.83 81.12±4.14 98.48 [s]

Table 4. Topology Corruption Robustness results. We add/remove a certain percentage of edges
and observe the results. The metric is the classification accuracy along with standard error.

Result 5 -G-Mixup could stabilize themodel training —Wedonot notice any notable and consis‐
tent decrease in the average standard deviation of the classification accuracy in Table 1
between the vanilla and G‐Mixup approach. We also do not notice that the loss curves of
the G‐Mixup approach are smoother than the vanilla method, hence we can not support
the authors’ claim.

4.3 Results partly supporting the authors’ claims

Result 6: G-Mixup improves the robustness of graph neural networks — The authors investigate
two kinds of robustness experiments, Label Corruption Robustness and Topology Corrup-
tion Robustness. We perform the same experiments and report the results in Tables 3 and
4. We can see that G‐Mixup does well when the topology changes, achieving the high‐
est accuracy in 7 out of 8 runs, which is in line with the authors’ results. The results
for Label Corruption are not that impressive, as it beats the Vanilla model in only 4 out
of 8 runs. For this experiment, we also add the average execution runtime needed to
augment the dataset and train it for 300 epochs.

Result 7: Using the average node number of all the original graphs is a better choice for hyperparam-
eter K in G-Mixup —While we get quite similar graphs in our experiments as the authors,
we would not say that the graphs support the claim. The graphs are shown in Figure
4. The difference between classification accuracy between the case where the average
number of nodes of original graphs is used for hyperparameter K and other cases on the
IMDB‐BINARY dataset is negligible, while on REDDIT‐BINARY it can even be seen that
it is one of the worse performing ones.

Figure 4. Influence of hyperparameter K
to test set classification accuracy

Figure 5. Performance of G‐Mixup with GNNs
with varying number of layers

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 8

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

Result 8: G-Mixup improves the performance of graph neural networks with varying layers — Our
graphs for this claim are shown in figure 5 and are quite different from the ones the
authors show in their paper. We do not see any drop in performance when increasing
the number of layers on IMDB‐BINARY, and all three approaches (Vanilla, DropEdge and
G‐Mixup) work equally well. On REDDIT‐BINARY, we can see that drop in performance,
and we can also see that G‐Mixup outperforms the other methods by a small margin.

5 Discussion

Our goal was to reproduce the experiments from the paper G-Mixup: Graph Data Aug-
mentation for Graph Classification and test the claims that the authors pointed out. While
we were able to perform all the experiments from the paper, it did require a lot of ad‐
ditional effort to write the necessary code. We were not able to reproduce some of the
results that support the claims from the original paper, as our results in some experi‐
ments notably differ from the authors’ findings. Regarding the method itself, we were
able to reproduce and confirm that synthetic graphs generated with G‐Mixup will pre‐
serve the key characteristics of both original classes. In contrast to that, we were not
able to prove the superiority of this data augmentation method, made in claims 3, 4,
and 5. All of the G‐Mixup results lie within the standard error of the Vanilla models,
which is in our opinion not enough to claim the supremacy of the method. One of the
reasons why we didn’t get the same results as the authors did may lie in the fact that we
didn’t have the correct information about the models and hyperparameters used in the
experiments, both for G‐Mixup and for other augmentation methods. The authors also
might have done some data preparation and processing that we were not aware of. We
showed, however, that G‐Mixup, on average, can improve the robustness of the GNN
models, which is useful when the labels or/and the topology of the graphs are noisy.

5.1 What was easy
The paper presented the novel augmentation method precisely, and the authors pro‐
vided the necessary code for the method implementation. It was also easy to grasp the
main ideas of the paper. It was very simple to verify or disprove a certain claim because
of the way the experiments were set up.

5.2 What was difficult
The biggest challenge for us was to recreate experiments as they were described in the
paper. We needed to write the code for each experiment ourselves, and on top of that,
we had tomake a lot of educated guesses about the experimental settings and choices of
hyperparameters. Additionally, some experiments required vast processing power and
a lot of working memory, so we had to perform those experiments on the Google Colab
Pro platform and rented virtual machines.

5.3 Communication with original authors
To reiterate, we contacted the authors on two occasions. The first time was very early in
the reproduction process whenwe asked about the details of the graph estimationmeth‐
ods that they used and which weren’t explained in the paper, to which they responded
swiftly. On the second occasion, we asked about the experimental settings and hyper‐
parameter details, but we did not receive a reply.

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 9

https://rescience.github.io/


[Re] G-Mixup: Graph Data Augmentation for Graph Classification

References

1. E. M. Airoldi, T. B. Costa, and S. H. Chan. “Stochastic blockmodel approximation of a graphon: Theory and
consistent estimation.” In: Advances in Neural Information Processing Systems 26 (2013).

2. X. Han, Z. Jiang, N. Liu, and X. Hu. “G-Mixup: Graph Data Augmentation for Graph Classification.” In: arXiv
preprint arXiv:2202.07179 (2022).

3. A. Channarond, J.-J. Daudin, and S. Robin. “Classification and estimation in the stochastic blockmodel based
on the empirical degrees.” In: Electronic Journal of Statistics 6 (2012), pp. 2574–2601.

4. S. Chan and E. Airoldi. “A consistent histogram estimator for exchangeable graph models.” In: International
Conference on Machine Learning. PMLR. 2014, pp. 208–216.

5. R. H. Keshavan, A. Montanari, and S. Oh. “Matrix completion from a few entries.” In: IEEE transactions on
information theory 56.6 (2010), pp. 2980–2998.

6. S. Chatterjee. “Matrix estimation by universal singular value thresholding.” In: The Annals of Statistics 43.1
(2015), pp. 177–214.

7. T. N. Kipf andM.Welling. “Semi-supervised classificationwith graph convolutional networks.” In: arXiv preprint
arXiv:1609.02907 (2016).

8. K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How powerful are graph neural networks?” In: arXiv preprint
arXiv:1810.00826 (2018).

9. M. Fey and J. E. Lenssen. “Fast graph representation learning with PyTorch Geometric.” In: arXiv preprint
arXiv:1903.02428 (2019).

10. M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. “Simple and deep graph convolutional networks.” In: International
Conference on Machine Learning. PMLR. 2020, pp. 1725–1735.

11. H. Gao and S. Ji. “Graph u-nets.” In: international conference on machine learning. PMLR. 2019, pp. 2083–
2092.

12. Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec. “Hierarchical graph representation learning
with differentiable pooling.” In: Advances in neural information processing systems 31 (2018).

13. F. M. Bianchi, D. Grattarola, and C. Alippi. “Spectral clustering with graph neural networks for graph pooling.”
In: International Conference on Machine Learning. PMLR. 2020, pp. 874–883.

14. Y. Rong, W. Huang, T. Xu, and J. Huang. “Dropedge: Towards deep graph convolutional networks on node
classification.” In: arXiv preprint arXiv:1907.10903 (2019).

15. Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. “Graph contrastive learning with augmentations.” In:
Advances in Neural Information Processing Systems 33 (2020), pp. 5812–5823.

16. Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi. “Mixup for node and graph classification.” In: Proceedings of
the Web Conference 2021. 2021, pp. 3663–3674.

17. C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, andM. Neumann. “Tudataset: A collection of benchmark
datasets for learning with graphs.” In: arXiv preprint arXiv:2007.08663 (2020).

ReScience C 9.2 (#1) – Omeragić and Đuranović 2023 10

https://rescience.github.io/

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	IMDB-BINARY
	IMDB-MULTI
	REDDIT-BINARY
	REDDIT-MULTI-5K and REDDIT-MULTI-12K

	Hyperparameters
	Experimental setup and code
	Computational requirements

	Results
	Results reproducing original paper
	Result 1: The graphons of a different class of graphs in one dataset are distinctly different
	Result 2: The synthetic graphs are indeed the mixture of the original graphs

	Results that differ from the original paper
	Result 3: G-Mixup can improve the performance of graph neural networks on various datasets
	Result 4: G-Mixup can improve the generalization of graph neural networks
	Result 5 - G-Mixup could stabilize the model training

	Results partly supporting the authors' claims
	Result 6: G-Mixup improves the robustness of graph neural networks
	Result 7: Using the average node number of all the original graphs is a better choice for hyperparameter K in G-Mixup
	Result 8: G-Mixup improves the performance of graph neural networks with varying layers


	Discussion
	What was easy
	What was difficult
	Communication with original authors


