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Abstract

Word embeddings, i.e., semantically meaning-001
ful vector representation of words, are largely002
influenced by the distributional hypothesis "You003
shall know a word by the company it keeps"004
(Harris, 1954), whereas modern prediction-005
based neural network embeddings rely on de-006
sign choices and hyperparameter optimisation.007
Word embeddings like Word2Vec (Mikolov008
et al., 2013a), GloVe (Pennington et al., 2014)009
etc. well capture the contextuality and real-010
world analogies but contemporary convolution-011
based image embeddings such as VGGNet012
(Simonyan and Zisserman, 2014), AlexNet013
(Krizhevsky et al., 2012), etc. do not capture014
contextual knowledge. The popular king-queen015
analogy does not hold true for most commonly016
used vision embeddings.017

In this paper, we introduce a pre-trained018
joint embedding (JE), named IMAGINATOR,019
trained on 21K distinct image objects level020
from 1M image+text pairs. JE is a way to021
encode multimodal data into a vector space022
where the text modality serves as the ground-023
ing key, which the complementary modality (in024
this case, the image) is anchored with. IMAGI-025
NATOR encapsulates three individual represen-026
tations: (i) object-object collocation, (ii) word-027
object collocation, and (iii) word-object corre-028
lation. These three ways capture complemen-029
tary aspects/knowledge of the two modalities030
which are further combined to obtain the final031
JEs. We evaluate pre-trained IMAGINATOR032
JEs on three distinct tasks: (i) image caption-033
ing, (ii) Image2Tweet (Jha et al., 2021), and034
(iii) text-based image retrieval. IMAGINATOR035
establishes a new standard on the aforemen-036
tioned downstream tasks by outperforming the037
current SoTA on all the selected tasks.038

Generated JEs are also intrinsically evaluated to039
assess how well they capture the contextuality040
and real-world analogies - based on word analo-041
gies and using corresponding images. IMAGI-042
NATOR will be made publicly available.043

1 Joint Modality and Contextuality 044

Word embeddings are learned representations such 045

that words with similar meanings are represented 046

similarly. Distribution-based compositional word 047

embeddings like Word2vec (Mikolov et al., 2013a) 048

and GloVe (Pennington et al., 2014) are popular in 049

modern NLP. These are used to extract the notion 050

of relatedness across different words, and capture 051

the overall semantic meaning of a text. Consider 052

the king-queen (Mikolov et al., 2013b) word vector 053

analogy (figure 1), which shows how good these 054

word embeddings are at capturing syntactic and 055

semantic regularities in language. 056

The notion of contextual similarity (i.e., words 057

occurring together) is used in learning the represen- 058

tations, because of which vector arithmetic like 059

King - Man + Woman = Queen are possi- 060

ble. See Fig. 1 (Mikolov et al., 2013b). Deriving 061

an analogous representation using images is a chal- 062

lenging task since the concept of relatedness among 063

images is not well-defined. Motivated by this argu- 064

ment, we propose creating JEs that can represent 065

real-world analogies, which can aid in solving sev- 066

eral multimodal tasks owing to their distributional 067

semantics. 068

Figure 1: CNN-based image embeddings are unable
to capture contextuality like existing word embeddings.
The king-queen vs. man-woman analogy has been pop-
ularized by (Mikolov et al., 2013b), whereas drawing a
similar analogy in image vector space is rather impossi-
ble. We argue joint embedding is the alternative.
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2 Contemporary Joint Embedding069

Methods070

Canonical Correlation Analysis (CCA)-based meth-071

ods use similarities to project two inputs onto a vec-072

tor space. CLIP (Radford et al., 2021) utilizes con-073

trastive pre-training and encodes aligned image and074

text embeddings with the help of text and visual075

modality encoders. Stanford’s Joint Embedding076

(Kolluru, 2019) uses VGG-19 (Simonyan and Zis-077

serman, 2014) and GLoVe (Pennington et al., 2014)078

to generate the image and text encodings using a079

triplet loss. (Chen et al., 2020) proposed UNITER,080

trained on a large dataset, which uses an image and081

text encoder and a transformer to generate the final082

embeddings. Jia et al. (2021) use a noisy dataset083

of 1 billion (image, alt-text) pairs and propose a084

dual architecture for aligning and generating the085

visual and textual embeddings. This architecture086

uses contrastive loss for learning. Tan and Bansal087

(2019) proposed a framework to create a relation088

between visual and language modalities. This ar-089

chitecture consists of three encoders, one object090

relation encoder, a language encoder and a cross-091

modal encoder. Compared to the aforementioned092

prior works- illustrated in appendix figure 10, the093

unique differentiating factor with IMAGINATOR094

is that we focus on the word-level grounding of095

images while prior works perform embedding gen-096

eration at the sentence level. Our belief is that this097

will help us learn rich relational features, i.e., fea-098

tures that are rich encapsulations of words and the099

corresponding objects they represent via images.100

3 - learning joint101

embeddings102

Off the shelf, word embeddings like Word2vec103

(Mikolov et al., 2013a) and GloVe (Pennington104

et al., 2014) are prevalently used in modern NLP.105

Furthermore, pre-trained language models such as106

BERT (Devlin et al., 2018), GPT (Radford and107

Narasimhan, 2018), etc. use such pre-trained word108

embeddings to tackle several downstream NLP109

tasks. The motivation behind creating IMAGINA-110

TOR is something kindred. Researchers can down-111

load pre-trained JEs and utilize them for any task112

they have in hand. Existing techniques have only113

explored JEs from the sentence-level perspective,114

which makes it less flexible to repurpose them for115

other tasks, but most importantly, demands a lot116

more data for the model to understand and derive117

meaningful relationships. We thus operate at the118

word level rather than sentence-level, to help im- 119

prove the "sharpness" of the data, with the hope 120

that this would, in turn, help synthesize higher rela- 121

tional features that can offer optimal performance 122

on downstream tasks. To that end, we make some 123

simple assumptions and posit arguments on their 124

choice as better alternatives. 125

3.1 Object vs. word - a unit hypothesis 126

The smallest meaningful unit of text is a word, 127

which we assume signifies a visual object embed- 128

ded in an image. Albeit, the common trend is to 129

train end-to-end network on sentence-level, but sys- 130

tem may not be able to learn fine grained contex- 131

tual relations like king-queen analogy. This design 132

choice also aligns with our motivation to generate 133

general-purpose JEs suited for a wide variety of 134

downstream tasks (c.f. section 6). 135

3.1.1 Number of Objects 136

The number of objects in available datasets like 137

Flickr30k (Young et al., 2014) and COCO (Lin 138

et al., 2014) is limited only to a few hundred. How- 139

ever, if we are interested to learn real-world analo- 140

gies like king-queen analogy we require far more 141

real-life objects to be detected by the system. De- 142

tic (Zhou et al., 2022), a recent object detection 143

technique, provides 21K object classes and thus, 144

seems the most pertinent. Results shown in table 8 145

indicate that an incremented in the number of ob- 146

jects leads to a corresponding increase the accuracy. 147

Table 1 compares the number of objects supported 148

among models popular in the research community. 149

Model No. of objects
YOLO X (Ge et al., 2021) 80
Inception V3 (Szegedy et al., 2016) 600
SWIN-L (Liu et al., 2021) 1000
OSCAR Plus (Zhang et al., 2021) 1843
Detic (Zhou et al., 2022) 21K

Table 1: Objects detection capabilities of popularly used
models.

3.2 Learning JE 150

Based on the unit hypothesis, we capture three 151

aspects of the input data while generating joint 152

embeddings: 153

• Object-object collocation: voo 154

• Word-object collocation: vwo 155

• Word-object correlation: vwor 156

More about each component and their embeddings 157

in the upcoming sections. 158
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Figure 2: (Top) Architecture for creating text embeddings and voo and vwo: the rows and columns in the collocation
matrix are the words from the text or objects detected from the images from dataset. Each cell of this matrix
represents the occurrence count of each row-column pair in the dataset. The two final vectors are generated using
PPMI and eigenvalue weighting over the vectors from collocation matrices. (Bottom) Architecture for learning
vwor: (left) the averaged VGG19 representation of a particular object across the whole dataset is passed; (right)
word2vec representation of the word (i.e., the name of the visual object; for e.g., horse in this case).

3.3 Learning voo and vwo159

Figure 2 (top) offers a visual summary of the pro-160

cess of generating object-object collocation embed-161

dings voo and word-object collocation embeddings162

vwo. voo and vwo are learned using an object col-163

location matrix, where objects refer to the entities164

detected using an object detection model. Object165

collocation matrix is a matrix where the rows and166

columns correspond to objects detected in our im-167

ages and each cell represents the co-occurrences of168

the respective two objects. We then take the rows169

and apply dimensionality reduction techniques like170

SVD along with Eigenvalue weighting, the vector171

obtained is then used as the embedding. This yields172

object-object collocation, which encodes how fre-173

quently a detected object co-appears with other174

detected objects in the dataset. On the other hand,175

word-object collocation is built using the objects176

from object detection on images and the words177

from the associated text given in the datasets. This178

might seem similar to object-object collocation at179

first glance, but a major difference is that the value180

in each cell represents the number of image cap-181

tions having the corresponding object and word182

pair. With this collocation matrix, we get infor-183

mation on how frequently every object co-appears 184

with other words in the dataset. 185

3.4 Learning vwor 186

Figure 2 (bottom) unpacks the process of generat- 187

ing the word-object correlation embeddings vwor. 188

vwor is learnt using a different approach when com- 189

pared with the other two embeddings. Collocation 190

can be defined using the co-occurance of two enti- 191

ties but correlation calls for a deeper understanding 192

of the two entities. Therefore, we get joint embed- 193

dings for word-object correlation using word and 194

object vectors. 195

We generate object embeddings by passing all 196

detected crops of the object from the dataset to 197

VGG19 (Simonyan and Zisserman, 2014). An av- 198

erage of these embeddings across all instances give 199

us the final embedding for the object encoded as a 200

mean representation. The word embeddings are ac- 201

quired by creating a word-word collocation matrix 202

for the text in the dataset, kindred to the afore- 203

mentioned collocation matrices, where each cell 204

represents the number of co-occurrences of the cor- 205

responding word pair. 206

To obtain the final joint embedding from these 207
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(a) (b)

(c) (d)

Figure 3: The IMAGINATOR JE vector space captures real-world analogies well. These examples are taken from
similar word examples and these depicted distances are vector space euclidean distances.

two vectors, we project the object embedding in the208

word embedding space instead of projecting both209

embeddings in a common space (Kolluru, 2019;210

Radford et al., 2021). The motivation behind this211

is to maintain the contextuality captured in word212

embeddings and thus enforce the object embed-213

dings to learn the correlations. Once they learn214

a correlated vector space, we get the JEs from a215

weighted average of the projected word and object216

embedding. We perform experiments to compare217

several projection methods (such as CCA (Thomp-218

son, 2000), Kernel CCA (Hardoon et al., 2004),219

Deep CCA (Andrew et al., 2013) etc.) and loss220

functions (InfoNCE (Oord et al., 2018), contrastive221

loss (Hadsell et al., 2006), and triplet loss (Schroff222

et al., 2015)). Emperically, we find that orthog-223

onal projection and triplet loss give the best JE224

results. We believe CCA overfits on our data while225

orthogonal projection (Artetxe et al., 2018) uses the226

features based on the dataset size. Please refer to227

table 8 in Appendix for more on these experiments228

and their results.229

4 Lessons learnt from NLP230

Word embeddings are learnt in two major ways:231

(i) classical count based methods, and (ii) neural232

network based prediction methods. Levy et al.233

(2015) argue that the performance gains of neu-234

ral network based word embeddings are due to 235

certain system design choices and hyperparame- 236

ter optimizations, rather than the embedding algo- 237

rithms themselves. Furthermore, they show that 238

these modifications can be transferred to traditional 239

distributional models, yielding similar gains. In 240

contrast to prior reports, they show mostly local or 241

insignificant performance differences between the 242

methods, with no global advantage to any single 243

approach over the others. Therefore, we remain 244

grounded to count-based distributional semantics 245

methods. Raw counts or normalized counts are not 246

useful, rather we choose alternatives like PMI and 247

SVD. 248

4.1 PPMI and Context Distribution 249

Smoothing 250

The PPMI (Positive Pointwise Mutual Information) 251

between a word and its context is well known to be 252

an effective association measure in the word simi- 253

larity literature. (Levy et al., 2015) show that the 254

skip-gram with negative-sampling training method 255

(SGNS) is implicitly factorizing a word-context ma- 256

trix whose cell values are essentially shifted PMI. 257

Following their analysis, we present two variations 258

of the PMI (and implicitly PPMI) association met- 259

ric, which we adopt from SGNS. In this section, w 260

and c represent the word and context matrix. 261
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Shifted PMI. The shift caused by 1 < k (the262

number of negative samples in the optimization263

(w, c): PMI(w, c) − log(k)) can be applied to264

distributional methods through shifted PPMI (Levy265

and Goldberg, 2014):266

The k here, firstly, estimates negative sample267

distribution and secondly, acts as a prior on the268

probability of an occurrence of (w, c) in the corpus269

vs. a negative sample. Shifted PPMI captures the270

latter, i.e, the prior aspect of k.271

SPPMI(w, c) = max(PMI(w, c)− log(k), 0)
(1)272

Context Distribution Smoothing (CDS).273

Word2Vec (Mikolov et al., 2013a) samples274

negative samples according to a smoothed unigram275

distribution. This smoothing variation has an276

analog when calculating PMI directly:277

PMIα(w, c) = log
P̂ (w, c)

P̂ (w).P̂α(c)
(2)278

279

PMIα(c) =
#(c)α

Σc#(c)α
(3)280

By enlarging the probability of sampling a rare281

context (since P̂α(c) > P̂ (c) when c is infrequent),282

CDS reduces the PMI of (w, c) for a rare context c283

– thus removing PMI’s bias towards rare words.284

4.2 SVD and Eigenvalue Weighting (eig)285

Word and context vectors derived using SVD of286

collocation matrices can be represented by:287

WSV D = Ud · Σd CSV D = Vd (4)288

However, in this case, CSV D is orthonormal while289

WSV D is not. Factorization achieved by SGN is290

much more symmetric and a similar symmetry can291

be derived using the following factorization:292

W = Ud ·
√
Σd C = Vd ·

√
Σd (5)293

Levy et al. (2015) states that while it is not theo-294

retically clear why a symmetric approach performs295

better for semantic tasks, it works empirically.296

For our vector-deriving implementation, we use297

this as a dimensionality reduction technique. It298

is similar to SVD but instead of the usual repre-299

sentation: W = U.Σd and C = Vd, eigenvalue300

weighting uses W = U.Σ0.5
d and C = Vd. To sum-301

marize, after creating the collocation matrix, we302

derive vectors by initially applying SPPMI with303

CGS. This is followed by the SVD of the matrices304

with eigenvalue weighting.305

5 Merging voo, vwo, and vwor 306

The three vectors can be merged using approaches 307

such as concatenation, averaging or autoencoding 308

(figure 4). Autoencoder is a pertinent research topic 309

where merging of a number of vectors is learnt 310

automatically by a trained model. This approach 311

considers learning the embeddings by considering 312

complementary information from it’s source em- 313

beddings. In the interest of simplifying this aspect 314

of our design, for our experiments, we use weighted 315

average to combine the embeddings. The weights 316

are decided in an experimental fashion. The best 317

weights we found are 10, 10, and 80 for voo, vwo, 318

and vwor respectively. 319

Figure 4: Merging the three representational vectors -
voo, vwo, and vwor

6 Intrinsic evaluation of IMAGINATOR 320

To be able to make vector arithmetic like King - 321

Man + Woman = Queen in a generated word 322

vector space is well known as the intrinsic evalua- 323

tion paradigm. Contemporary image embeddings 324

are devoid of contextuality, whereas text embed- 325

dings are much more meaningful, as shown in fig- 326

ure 1. With joint embeddings, we aim to add a 327

contextual component to improve the semantic rich- 328

ness of the joint embeddings vector space. We use 329

two kinds of intrinsic evaluation setup to evaluate 330

IMAGINATOR: (i) word analogy, and (ii) similar 331

object analogy. Word contextuality is evaluated 332

using different word analogy methods while image 333

contextuality is evaluated using a similarity metric 334

between images of objects that are alike. 335

6.1 Word Analogies 336

We adopt the process and all the 10 datasets men- 337

tioned in (Jastrzebski et al., 2017) to evaluate 338

IMAGINATOR against word analogy using three 339

intrinsic evaluation tasks: (i) word similarity, (ii) 340

word analogy, and (iii) word categorization. The 341

word embeddings for given similar words from 342

datasets of all three tasks are computed. We use 343

average euclidean distance to derive the final re- 344

sults, as shown in table 2 for embeddings from 345

GloVe (Pennington et al., 2014), CLIP (Radford 346
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Figure 5: Image captioning using IMAGINATOR.

Dataset GloVe CLIP SJE ALIGN Ours

WS353 (Finkelstein et al., 2001) 2.65 0.35 0.19 0.09 0.14
MTurk (Halawi et al., 2012) 1.99 0.29 0.28 0.09 0.20
RG65 (Rubenstein et al., 1965) 0.75 0.38 0.20 0.14 0.13
RW (Pilehvar et al., 2018) 0.96 0.19 0.17 0.10 0.25
SimLex999 (Hill et al., 2015) 2.31 0.18 0.22 0.14 0.12
MEN (Bruni et al., 2014) 0.51 0.22 0.13 0.12 0.11
Google Analogy (Mikolov et al., 2013a) 2.09 0.18 0.12 0.09 0.15
MSR Analogy (Mikolov et al., 2013b) 0.63 0.30 0.09 0.11 0.22
SemEval2012 (Jurgens et al., 2012) 1.2 0.21 0.32 0.13 0.26
BLESS (Baroni and Lenci, 2011) 2.77 0.22 0.19 0.12 0.11

Average 1.5 0.25 0.19 0.12 0.16

Table 2: Results (average euclidean distance) for intrin-
sic valuation of our JEs based on notable word analogy
methods. Lower is better.

Dataset SJE CLIP ALIGN IMAGINATOR

Flickr 30K 0.8 0.4 0.2 0.06
MS COCO 0.9 1.3 0.7 0.2
Google CC 0.2 0.4 0.2 0.08
Visual Genome 1.1 1.4 0.9 0.1

Average 0.75 0.88 0.5 0.11

Table 3: Results (average pairwise euclidean distance)
for instrinsic valuation of our JEs based on object simi-
larity on objects from multiple datasets. Lower is better.

et al., 2021), ALIGN (Jia et al., 2021), and IMAGI-347

NATOR.348

While SJE is competitive and ALIGN is better349

on word similarity compared to IMAGINATOR,350

but IMAGINATOR is significantly better on im-351

age object similarity/analogy, detailed in the next352

section.353

6.2 Image Similarity354

We use the Caltech 101 (Li et al., 2022) dataset355

objects for this evaluation. Figure 3 shows several356

examples of the relation between projected joint357

embeddings of these objects. Analogy-making on358

images is relatively challenging. Our hypothesis is359

vectors of the same/similar objects must be nearby360

in the IMAGINATOR vector space. We take out list361

of similar objects from the the Caltech 101 dataset,362

apply VGG19 and then orthogonally (Artetxe et al.,363

2018) project those objects to IMAGINATOR vec- 364

tor space. Then we calculate the pairwise-euclidean 365

distance between such vectors and average them for 366

the entire dataset. Table 4 offers a summary with 367

the relative upside of IMAGINATOR compared 368

to all the existing alternatives VGG19, SJE, CLIP, 369

and ALIGN respectively listed next to each score. 370

Furthermore, table 3 shows the performance on 371

existing vision embedding techniques and IMAGI- 372

NATOR on other similar datasets. 373

VGG19 SJE CLIP ALIGN IMAGINATOR

5.6 (97% ↑) 1.9 (93% ↑) 1.5 (91% ↑) 0.92 (86% ↑) 0.13

Table 4: Results (average pairwise euclidean distance)
for intrinsic valuation of our JEs based on object simi-
larity on the Caltech 101 dataset. Lower is better.

7 IMAGINATOR for - Image Captioning 374

and Image2tweet 375

The downstream vision-language (VL) tasks cho- 376

sen to test our pre-trained JEs are: (i) image cap- 377

tioning, (ii) Image2Tweet, and (iii) text-based im- 378

age retrieval. 379

7.1 Image Captioning 380

Image captioning is a common multimodal task 381

which involves the generation of a textual descrip- 382

tion for an image. Describing the contents of an 383

image requires visual understanding at an object 384

level. We use JEs from IMAGINATOR to gener- 385

ate captions on datasets such as Flickr30k (Young 386

et al., 2014) and COCO (Lin et al., 2014). 387

For an input image, we start by obtaining an 388

image embedding using VGG19 (Simonyan and 389

Zisserman, 2014), which is then orthogonally pro- 390

jected in IMAGINATOR embedding space. We 391

use the JE of the image to find k nearest objects 392

in the vector space. For our experiments we used 393

k = 10, giving us 10 objects associated with the 394
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(a)
IMAGINATOR: A kitchen with a sink, stove, oven, and beers.
Gold Caption: A commercial stainless kitchen with a pot of

food cooking.
OSCAR: a kitchen with a lot of pots and pans in it.

(b)
IMAGINATOR: A vocalist, drummer, and a guitarist sings a

tune.
Gold Caption:A musical band are by their instruments most

likely playing a song .
OSCAR: A man on a stage with a guitar and a keyboard.

Figure 6: Examples of some image captioning outputs generated by IMAGINATOR along with the original caption
and the caption generated by OSCAR (Li et al., 2020). For more examples please refer the supplementary file.

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 7: Image retrieved for the query - "several climbers climbing rock together" - it is evident that ALBEF (Li
et al., 2021) wrongly emphasized on "rock together", whereas XVLM (Zeng et al., 2021) is unable to comprehend
plurality in the query here, while BERTIMAGINATOR can do the job well.

input image. These objects are then passed to395

a sequence-to-sequence module, namely, the T5396

transformer (Bhatia, 2021), which generates the397

final caption. We use a pre-trained T5 model, fine-398

tuned on Flickr30k and COCO. Figure 5 describes399

the captioning pipeline while Figure 6 shows some400

output examples. IMAGINATOR surpasses the401

current SoTA by 3.1 BLEU (Flickr30K) and 1.4402

BLEU (COCO), as shown in Table 5. We also eval-403

uated our captions using BERTScore and achieved404

0.87 on Flickr30k and 0.88 on COCO, there is no405

BERTScore reported in UVLP (Zhou et al., 2020)406

and OSCAR (Li et al., 2020).

Method Flickr30K COCO

UVLP (Zhou et al., 2020) 30.1 (SoTA) -
OSCAR (Li et al., 2020) - 41.7 (SoTA)
SJE + k nearest objects + T5 30.5 35.6
CLIP + k nearest objects + T5 31.3 36.3
IMAGINATOR + k nearest objects + T5 33.2 43.1

Table 5: Comparison of different modelling approaches
in image captioning.

407

7.2 Image2Tweet408

Image2Tweet (Jha et al., 2021) is a task which409

is a notch above traditional image captioning in410

terms of complexity. Given an input image, the411

task involves generating a tweet like a human news412

reporter. Figure 24 shows some examples from the413

dataset. 414

The tweet is generated using a method similar to 415

image captioning. The joint embedding of the input 416

image is used to find the k nearest neighbouring 417

embeddings in the projections space. These neigh- 418

bours are then used to generate the tweet using a 419

sequence-to-sequence model. 420

The results are based on the CIDEr metric (c.f. 421

table 6). We found that using other datasets 422

for training SoTA models fails miserably, indicat- 423

ing that Image2Tweet is a fairly complex prob- 424

lem. However, IMAGINATOR performs reason- 425

ably well on the task and surpasses comparable 426

contemporary SoTA captioning methods UVLP 427

(Zhou et al., 2020) and OSCAR (Li et al., 2020). 428

Method CIDEr

Baseline of Image2tweet (Jha et al., 2021) 0.0003
UVLP (Zhou et al., 2020) [SoTA on Flickr] 0.003
OSCAR (Li et al., 2020) [SoTA on COCO] 0.004
CLIP (Radford et al., 2021) 0.006
Stanford joint embedding (Kolluru, 2019) 0.007
5 ensemble (Luo et al., 2018) 0.0090
IMAGINATOR + k nearest objects + T5 0.0095

Table 6: Performance of various multi-modal models in
the Image2Tweet shared task.
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Figure 8: BERTIMAGINATOR - Training approach for Image Retrieval. The cosine similarity is used to train.
Training happens in batches and similarity between corresponding image-sentence pair is maximised while for other
pairs it is minimized.

7.3 Text-based Image retrieval429

The fundamental question that we are seeking an430

answer to is whether using IMAGINATOR word-431

object level embeddings we can achieve compo-432

sitionally and achieve a vector representation for433

sentence-image level. For example, by passing on434

word vectors in a sequence to a language model we435

can obtain a sentence-level vector representation.436

To verify the compositionality of joint modality437

embeddings, we tested our approach on the task of438

text-based image retrieval on the Flickr30K dataset439

(Young et al., 2014). The main challenge of this440

task is to find out the appropriate content in the441

visual space while the input is in the text space.442

Another reason for introducing compositionality is443

that each word is usually associated with multiple444

images. Hence, there is a need for us to learn a sin-445

gle image representation for a given text. Though446

we explore contrastive methods in section 8, to447

solve the above-mentioned challenges, we intro-448

duce an approach using BERT and evaluate it on449

text-based image retrieval.450

Method R@1 R@5 R@10

ALBEF (Li et al., 2021) 85.6 97.5 98.9
XVLM (Zeng et al., 2021) 86.1 97.3 98.7
BERTIMAGINATOR 89.48 98.1 99.2

Table 7: Results for image retrieval: Recall@{1, 5, 10}
Score for Flickr30K (Young et al., 2014).

7.3.1 Compositionality of Joint Embeddings -451

BERTIMAGINATOR452

BERT is arguably the most successful modelling453

architectures in NLP. It accepts token embed-454

dings as input and produces contextualized em-455

beddings as output. In contrast, we propose456

BERTIMAGINATOR, which is trained to take im- 457

age+text as input and output a compositional vector 458

representation for both modalities. 459

We utilize BERT (Devlin et al., 2018) and CLIP 460

(Radford et al., 2021) as our backbones to generate 461

JEs. Instead of feeding the BERT model tokenized 462

words obtained via a tokenizer, we use IMAGINA- 463

TOR (c.f. section 3.4) word-object embeddings as 464

input to the model. We process necessary tokeniza- 465

tion, position encoding, and segment embeddings 466

accordingly, per the BERT architecture. 467

We utilize CLIP (Radford et al., 2021) for gen- 468

erating another JE using an image-sentence pair 469

by obtaining the image and text embeddings from 470

CLIP encoders and concatenating them. We re- 471

fer to this as the sentence JE. Both these em- 472

beddings, viz., the sentence JE and projected 473

BERTIMAGINATOR, are projected to a common 474

space using orthogonal projection (Artetxe et al., 475

2018), on which we compute our loss. Figure 8 476

visually depicts our training process while table 7 477

shows BERTIMAGINATOR outperforming SoTA 478

information retrieval (IR) baselines, namely AL- 479

BEF (Li et al., 2021) and XLVM (Zeng et al., 2021) 480

on Recall@{1, 5, 10}. 481

8 Conclusion and Takeaways 482

We proposed a new pre-trained joint embedding 483

IMAGNIATOR. Our major contribution is on 484

adopting count-based methods for joint modality, 485

echoing the philosophy from Levy et al. (2015). 486

IMAGINATOR outperformed SoTA on three tasks: 487

(i) image captioning, (ii) Image2Tweet, and (iii) 488

text-based image retrieval. We present an in-depth 489

intrinsic evaluation along with a new architecture 490

BERTIMAGINATOR. In the future, we would like 491

to explore other multimodal tasks such as VQA. 492
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Discussion and Limitations493

While IMAGINATOR pushes the boundaries of the494

state-of-the-art in tasks that involve language and495

vision joint modelling, there are some limitations.496

Object Detection - Limited Number of Classes497

IMAGINATOR utilizes the atomic units of multi-498

modal data – individual words for text representa-499

tion and individual objects for image representa-500

tion. Typically, the number of unique words (i.e.,501

the vocabulary) is quite large in a given text rela-502

tive to the number of objects in images. As such,503

IMAGINATOR being a joint learning technique is504

bottlenecked by the capabilities of existing object505

detection techniques since they only typically deal506

with a limited repertoire of objects (c.f. table 1).507

To enhance the richness and expressivity of JEs,508

object detection models that can identify the wide509

gamut of objects in the world would be critical.510

Contrastive Learning511

Contrastive learning is a task-independent tech-512

nique that focuses in learning the similarity and513

differences between samples in a dataset. The ob-514

jective here is to learn an embedding space where515

similar inputs, say samples belonging to the same516

class (c.f. figure 9), are embedded as similar rep-517

resentations while samples from dissimilar classes518

are separated in the embedding space. Despite519

IMAGINATOR performing well in several tasks,520

our object representation can be improved signif-521

icantly from simply being an average of image522

embeddings. Instead, contrastive learning can help523

learn better vectors that capture the relations be-524

tween images and their objects.525

Figure 9: Same object class (horse) with different visu-
als.

Vision Transformer and Positional Encoding526

A Vision Transformer (ViT) is a transformer that is527

targeted at vision processing tasks, such as object528

recognition and is much more robust than CNNs.529

It divides an image into fixed-size patches, embeds530

each of them, and includes a positional embedding531

along with the patch embedding as an input to the 532

transformer encoder. In our case, if we could draw 533

meaningful cross-modal connections between sec- 534

tions of text and the corresponding parts of images, 535

a significant performance uptick can be potentially 536

reached. This can be implemented using the vari- 537

ous positional encoding schemes in ViT. 538
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Frequently Asked Questions (FAQs)755

1. Doesn’t averaging individual object embeddings (or even word embeddings) result in a noisy object756

embedding?757

Ans. Yes, averaging individual embeddings is a limitation of this work and a future avenue of758

exploration. On the other hand, concatenation is computationally expensive. However, empirically, we759

found that averaging gave better results than concatenation. We would like to explore autoencoding760

and contrastive learning in the future as mitigation methods.761

2. Why does orthogonal projection work better than CCA-based methods?762

Ans. Orthogonal projection is a discriminative method that attempts to find out the discriminative763

projection for two vector spaces aligned to a unified dimension. On the other hand, CCA tries to learn764

relations among two vector spaces. While orthogonal projection offers competitive performance with a765

limited number of classes, CCA is undoubtedly more powerful when the number of classes is higher.766

In our case, since we only have 21K objects, orthogonal projection yielded better results.767

3. Instead of directly learning a caption generation model based on the learned joint embedding, this768

paper projects VGG-19 embeddings orthogonally in the learned joint embedding space, using it to769

find the k nearest objects in the vector space, and then passes these objects through T5 for caption770

generation. What is the motivation behind this approach?771

Ans. Image object detection is a separate task altogether, and we are not trying to solve that problem772

here. Given an image, we first get its VGG-19 embedding and then project it to IMAGINATOR space773

since VGG-19 and IMAGINATOR have disparate embedding spaces and need to be aligned. A by-774

product of this approach is that it also helps affirm that IMAGINATOR performs well, otherwise it might775

raise doubts that the performance gain is happening due to T5 efficiency rather than IMAGINATOR.776

Lastly, we would like to draw the attention of readers that the proposed captioning architecture is very777

simple and still outperforms SoTA.778

4. Did you consider experimenting with ResNet or Fast-RCNN?779

Ans. We performed experiments using ResNet, but the results were poor. One plausible explanation780

is the fact that higher embedding dimensions lead to a performance drop.781

5. Why was the Detic the baseline architecture of choice for IMAGINATOR?782

Ans. The presumption of this work is to leverage the legacy of the NLP-centric count-based vec-783

torification methods for joint modality. Therefore, maximizing the number of objects will give us a784

denser matrix to calculate the so-called collocation. In the future, we plan to seek methods that can785

detect more than 21K objects, and strongly believe that will have a positive effect on the learned joint786

embedding space.787
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Appendix 788

What is the value-addition of this work given Joint Embeddings have been explored in various ways 789

for the past few years? 790

Learning joint embeddings has been a topic that has received immense interest from the multimodal AI 791

community over the past decade (Chen et al., 2020; Jia et al., 2021; Tan and Bansal, 2019). A concise 792

survey on this topic has been presented in Wang et al. (2022), which offers an extensive treatment of both 793

early (i.e., input-level), mid (i.e., feature-level), and late (i.e., decision-level) fusion methods, depicted 794

visually in figure 10. Learning joint embeddings using early-fusion methods (like the one we adopted 795

in our work) essentially enables identifying cross-correlations between various modalities (such as text, 796

images, video, audio, spatial/point-cloud information, etc.) early on in the learning process. As such, the 797

resultant vector representations typically lead to top-notch performance in most downstream tasks. On 798

the other hand, a vast majority of work focuses on feature fusion where modalities are first individually 799

processed and then projected to a common vector space to draw correlations using variety of projection 800

methods like CCA (Thompson, 2000), Deep CCA (Andrew et al., 2013), etc. 801

As mentioned in Section 2, IMAGINATOR’s novelty is associated with the word-level grounding 802

of objects using traditional count-based approaches, an NLP tradition that was prevalent before the 803

neural era. This is a significant detour from recent work in learning joint embeddings that uses deep 804

learning-based techniques, which suffer from a lack of control or ease of interpretation owing to their 805

inherent black-box nature. As such, this design decision has allowed us to learn rich features that 806

are collocation-based representations of visual objects that are grounded in words which represent the 807

object’s moniker(s). The collocation-based contextual word vectorization is primarily influenced by the 808

distributional hypothesis "You shall know a word by the company it keeps" (Firth, 1957). Intrigued by 809

how such a collocation-based method can aid visual contextual learning, we sought to testify its utility 810

in learning joint emebddings. However, the ability of count-based joint embedding techniques can be 811

severely limited due to the insufficient number of objects detected, which led to us overcoming this issue 812

by using statistical correlational methods inspired by NLP (Levy et al. (2015). We plan to further scale 813

this technique by first enabling detection of additional (>20K) visual objects, hypothesizing that this 814

learning paradigm can lead to even richer representations. 815

Figure 10: Notable recent work related to vision-language pre-training. Taken from Wang et al. (2022).
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Rolodex of additional experiments carried out for the optimal generation of voo, vwo, and vwor816

Table 8 expands on section 3.3 and 3.4 and shows a comparison of different embedding methods,817

dataset combinations, number of objects, loss functions, and projection methods with performance on the818

captioning task. We consider normalized count, PMI, PPMI, and Factorized PPMI for vector building and819

SVD and Eigenvalue factorization for dimensionality reduction. For dataset, we combine multiple datasets820

with an increase in the number of objects in each of the combined datasets. We consider Flickr30K, COCO,821

and Conceptual Captions (CC). For projection, we consider Orthogonal Projection, CCA, regularized822

CCA, and Deep CCA for our experiments. From Table 8, we can see that with an increase in the number823

of objects, the captioning score also correspondingly increases.824

Embedding method Dataset No. of objects Loss function Projection method
Performance

Flickr30K COCO

Normalized count Flickr30K 1000 Triplet loss Orthogonal 32.1 29.3
Flickr30K + COCO 1080 Triplet loss Orthogonal 32.4 33.7

PMI Flickr30K + COCO 17000 Triplet Loss - 33.4 34.8
PPMI Flickr30K + COCO 17000 Triplet Loss - 33.9 35.4
Factorized PPMI Flickr30K + COCO 17000 Triplet Loss - 34.1 37.9
Factorized PPMI + SVD Flickr30K + COCO 17000 Triplet Loss - 32.4 36.2
Factorized
PPMI
+
Eigen
Value
Factorization

Flickr30K 1000 Triplet Loss
CCA 30.2 32.2

Regularized CCA 30.9 33.9
Deep CCA 30.5 33.2

Flickr30K + COCO 1080 Triplet loss Orthogonal 31.9 35.7
Flickr30K + COCO 17000 Triplet loss Regularized CCA 33.2 40.1
Flickr30K + COCO 17000 Triplet loss Deep CCA 33.8 38.1

Table 8: Results on image captioning datasets (Flickr30K, COCO, and Conceptual Captions) for different embedding
methods, datasets, loss functions, and projection methods.
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Intrinsic evaluation of IMAGINATOR 825

The goal behind intrinsic evaluation is to understand how well the embeddings adhere to the contextuality 826

constraint. Building upon section 6, we consider standard relational terms - king, queen, boy, woman 827

and performed an intrinsic evaluation on them to identify the relationships between these terms. We 828

project the joint embeddings of the image and check the Euclidean distance among them; the lower the 829

distance between similar terms, the better the contextuality. Figure 11 shows additional intrinsic evaluation 830

examples. 831

(a) (b)

(c) (d)

(e) (f)

Figure 11: Examples for intrinsic evaluation of our JEs based on word analogies and image similarity.

15



Examples of image captioning - IMAGINATOR vs. Gold Caption vs. OSCAR (SoTA)832

(a) IMAGINATOR: A bedroom with
bedspreads, pillows, and a nightstand.
Gold Caption: the - bedroom stone
cottage can sleep people.
OSCAR: A bedroom with a bed,
dresser, and nightstand.

(b) IMAGINATOR: A group of peo-
ple are singing and clapping while a
group of musicians are performing.
Gold Caption: A band is playing in
front of an audience and the singer is
wearing an orange shirt.
OSCAR: A man holding a baseball bat
in front of a crowd.

(c) IMAGINATOR: Photograph of a
tall tower with steeples.
Gold Caption: sandcastle beach on
bright sky.
OSCAR: A castle made of sand with
a clock tower in the background.

(d) IMAGINATOR: A photo of a con-
sole.
Gold Caption: The player staring in-
tently at a computer screen.
OSCAR: A man sitting in front of a
flat screen TV.

(e) IMAGINATOR: A group of peo-
ple playing ping-pong together.
Gold Caption: Young girls line up
across each other and a ping-pong ta-
ble in a gymnasium while a few boys
plan on a table further back.
OSCAR: A group of children playing
a game of ping pong.

(f) IMAGINATOR: "girls" and "boys"
at a venue.
Gold Caption: party in the park under
cherry blossoms.
OSCAR: A group of people sitting
around a park with pink flowers.

(g) IMAGINATOR: A young woman
and man rowing a boat.
Gold Caption: A man and woman are
on a gray and white rowboat.
OSCAR: Group of people on a small
boat in the water.

(h) IMAGINATOR: A kitchen with
cabinets, cabinets, and a dishwasher.
Gold Caption: A kitchen with
wooden cabinets and black appliances
OSCAR: A kitchen with a sink, dish-
washer, stove and refrigerator.

(i) IMAGINATOR: Chefs cooking
with a stover and other cookware in
a laboratory.
Gold Caption: Two chefs in a restau-
rant kitchen preparing food .
OSCAR: Two men in a commercial
kitchen preparing food.

Figure 12: Examples of some image captioning outputs generated by IMAGINATOR along with the original caption
and the caption generated by OSCAR (Li et al., 2020) for each respective image

16



Examples of image retrieval - IMAGINATOR vs. SoTA: (i) ALBEF (Li et al., 2021), and (ii) 833

XVLM (Zeng et al., 2021) 834

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 13: Image retrieved for the query: "Two little children, one boy and one girl laughing".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 14: Image retrieved for the query: "A dog is running in the sand".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 15: Image retrieved for the query: "Bride and groom walking side by side".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 16: Image retrieved for the query: "Redhead woman in pig- tails and glasses sewing on a sewing machine".
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(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 17: Image retrieved for the query: "Smiling boy in white shirt and blue jeans in front of rock wall with man
in overalls behind him".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 18: Image retrieved for the query: "Two Asian or Spanish people, a woman and a man, sitting together in
front of a glass window as cars pass".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 19: Image retrieved for the query: "A little boy plays with a Nintendo GameCube controller inside a
McDonald’s".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 20: Image retrieved for the query: "A blonde woman wearing glasses and a gray sweatshirt is cutting
something with scissors".
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(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 21: Image retrieved for the query: "A person wearing skis looking at framed pictures set up in the snow".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 22: Image retrieved for the query: "A very young girl playing with a bubble-blowing wand , holding a bottle
of bubble solution and walking through a park or field".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al., 2021) (c) rank 1 image BERTIMAGINATOR

Figure 23: Image retrieved for the query: "A woman in an outdoor marketplace, wearing a large cone-shaped hat,
standing behind two large baskets containing loaves of bread".
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Image2Tweet examples - Gold vs. 5 ensemble SoTA (Lu et al., 2018) vs.BERTIMAGINATOR835

Image2tweet is a particularly hard problem to solve. It can involve social engineering, web information836

scraping, face recognition, etc. The results in table 6 show the current status of the problem and it needs837

substantial research work to develop a solution. Figure 24 shows additional Image2Tweet examples which838

indicate the quality of text generated given the image. Compared with the novel information present in the839

image, shows the amount of complexity associated with the task.840

(a) Gold Caption: Should you wear a
mask to protect yourself from coronavirus?
#Coronavirus #COVID19
5 ensemble (Luo et al., 2018): a group of
surgeons prepare for surgery.
IMAGINATOR: people wearing masks
during the pandemic.

(b) Gold Caption: Donald Trump’s India
visit will be beneficial for both the coun-
tries.
5 ensemble (Luo et al., 2018): politician
shakes hands with politician during a bilat-
eral meeting.
IMAGINATOR: Two men are handshak-
ing with an Indian flag in the background.

(c) Gold Caption: I am here to play cricket
not gimmick - @PrithviShaw to press.
5 ensemble (Luo et al., 2018): cricket
player during a press conference.
IMAGINATOR: A man in a press confer-
ence.

(d) Gold Caption: JEE (Main) begins to-
day - students are following protocols -
queue, social distancing, masks.
5 ensemble (Luo et al., 2018): students
wearing face masks during a protest.
IMAGINATOR: young girls wearing
masks in a queue.

(e) Gold Caption: Country needs so many
doctors than politicians - pandemic realiza-
tion.
5 ensemble (Luo et al., 2018): person, left,
and person, right, are both members of the
team.
IMAGINATOR: Two doctors with face
shields.

(f) Gold Caption: 5G tech is picking up
pace and expectations are high, but rollout
is still years away in India.
5 ensemble (Luo et al., 2018): the logo on
a background of a blue sky with clouds.
IMAGINATOR: 5G logo.

(g) Gold Caption: SC refuses to entertain
plea against Madras HC order on Patanjali’s
use of ’Coronil’.
5 ensemble (Luo et al., 2018): a gothic
buildiing.
IMAGINATOR: supreme court of India
building.

(h) Gold Caption: No rugby for world
champion as South Africa maintains ban.
5 ensemble (Luo et al., 2018): rugby
player looks dejected after defeat
IMAGINATOR: A scene of a rugby match
with three players visible.

(i) Gold Caption: I love India, but In-
dians don’t like me.
5 ensemble (Luo et al., 2018): politi-
cian addresses a crowd of supporters.
IMAGINATOR: An angry politician
delivering a speech.

(j) Gold Caption: Indian prime minister
addressing to the nation in his own man ki
baat.
5 ensemble (Luo et al., 2018): politician
making a speech at a function.
IMAGINATOR: Modi is delivering a
speech on camera.

(k) Gold Caption: Kamala Harris bring-
ing energy, dollars and more to Joe Biden’s
campaign.
5 ensemble (Luo et al., 2018): politician
gives a speech during the second day.
IMAGINATOR: Harris making promises.

(l) Gold Caption: US Presidential elec-
tion: Hillary-Tulsi spat scorches Demo-
cratic Party.
5 ensemble (Luo et al., 2018): Two politi-
cians are debating.
IMAGINATOR: Hillary Clinton and an-
other woman in white dress.

Figure 24: Additional examples of Image2Tweet task - gold vs. 5 ensemble SoTA (Li et al., 2020)
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