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Abstract

Word embeddings, i.e., semantically meaning-
ful vector representation of words, are largely
influenced by the distributional hypothesis "You
shall know a word by the company it keeps"
(Harris, 1954), whereas modern prediction-
based neural network embeddings rely on de-
sign choices and hyperparameter optimisation.
Word embeddings like Word2Vec (Mikolov
et al., 2013a), GloVe (Pennington et al., 2014)
etc. well capture the contextuality and real-
world analogies but contemporary convolution-
based image embeddings such as VGGNet
(Simonyan and Zisserman, 2014), AlexNet
(Krizhevsky et al., 2012), etc. do not capture
contextual knowledge. The popular king-queen
analogy does not hold true for most commonly
used vision embeddings.

In this paper, we introduce a pre-trained
joint embedding (JE), named IMAGINATOR,
trained on 21K distinct image objects level
from 1M image+text pairs. JE is a way to
encode multimodal data into a vector space
where the text modality serves as the ground-
ing key, which the complementary modality (in
this case, the image) is anchored with. IMAGI-
NATOR encapsulates three individual represen-
tations: (i) object-object collocation, (ii) word-
object collocation, and (iii) word-object corre-
lation. These three ways capture complemen-
tary aspects/knowledge of the two modalities
which are further combined to obtain the final
JEs. We evaluate pre-trained IMAGINATOR
JEs on three distinct tasks: (i) image caption-
ing, (ii) Image2Tweet (Jha et al., 2021), and
(iii) text-based image retrieval. IMAGINATOR
establishes a new standard on the aforemen-
tioned downstream tasks by outperforming the
current SoTA on all the selected tasks.

Generated JEs are also intrinsically evaluated to
assess how well they capture the contextuality
and real-world analogies - based on word analo-
gies and using corresponding images. IMAGI-
NATOR will be made publicly available.

1 Joint Modality and Contextuality

Word embeddings are learned representations such
that words with similar meanings are represented
similarly. Distribution-based compositional word
embeddings like Word2vec (Mikolov et al., 2013a)
and GloVe (Pennington et al., 2014) are popular in
modern NLP. These are used to extract the notion
of relatedness across different words, and capture
the overall semantic meaning of a text. Consider
the king-queen (Mikolov et al., 2013b) word vector
analogy (figure 1), which shows how good these
word embeddings are at capturing syntactic and
semantic regularities in language.

The notion of contextual similarity (i.e., words
occurring together) is used in learning the represen-
tations, because of which vector arithmetic like
King - Man + Woman = Queen are possi-
ble. See Fig. 1 (Mikolov et al., 2013b). Deriving
an analogous representation using images is a chal-
lenging task since the concept of relatedness among
images is not well-defined. Motivated by this argu-
ment, we propose creating JEs that can represent
real-world analogies, which can aid in solving sev-
eral multimodal tasks owing to their distributional
semantics.
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(a) The king, queen  (b) An expected joint embed-
analogy ding(JE) space: king:- queen;:
2z bovie - girle

Figure 1: CNN-based image embeddings are unable
to capture contextuality like existing word embeddings.
The king-queen vs. man-woman analogy has been pop-
ularized by (Mikolov et al., 2013b), whereas drawing a
similar analogy in image vector space is rather impossi-
ble. We argue joint embedding is the alternative.



2 Contemporary Joint Embedding
Methods

Canonical Correlation Analysis (CCA)-based meth-
ods use similarities to project two inputs onto a vec-
tor space. CLIP (Radford et al., 2021) utilizes con-
trastive pre-training and encodes aligned image and
text embeddings with the help of text and visual
modality encoders. Stanford’s Joint Embedding
(Kolluru, 2019) uses VGG-19 (Simonyan and Zis-
serman, 2014) and GLoVe (Pennington et al., 2014)
to generate the image and text encodings using a
triplet loss. (Chen et al., 2020) proposed UNITER,
trained on a large dataset, which uses an image and
text encoder and a transformer to generate the final
embeddings. Jia et al. (2021) use a noisy dataset
of 1 billion (image, alt-text) pairs and propose a
dual architecture for aligning and generating the
visual and textual embeddings. This architecture
uses contrastive loss for learning. Tan and Bansal
(2019) proposed a framework to create a relation
between visual and language modalities. This ar-
chitecture consists of three encoders, one object
relation encoder, a language encoder and a cross-
modal encoder. Compared to the aforementioned
prior works- illustrated in appendix figure 10, the
unique differentiating factor with IMAGINATOR
is that we focus on the word-level grounding of
images while prior works perform embedding gen-
eration at the sentence level. Our belief is that this
will help us learn rich relational features, i.e., fea-
tures that are rich encapsulations of words and the
corresponding objects they represent via images.

3 IMAGINA
embeddings
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Off the shelf, word embeddings like Word2vec
(Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) are prevalently used in modern NLP.
Furthermore, pre-trained language models such as
BERT (Devlin et al., 2018), GPT (Radford and
Narasimhan, 2018), etc. use such pre-trained word
embeddings to tackle several downstream NLP
tasks. The motivation behind creating IMAGINA-
TOR is something kindred. Researchers can down-
load pre-trained JEs and utilize them for any task
they have in hand. Existing techniques have only
explored JEs from the sentence-level perspective,
which makes it less flexible to repurpose them for
other tasks, but most importantly, demands a lot
more data for the model to understand and derive
meaningful relationships. We thus operate at the

word level rather than sentence-level, to help im-
prove the "sharpness” of the data, with the hope
that this would, in turn, help synthesize higher rela-
tional features that can offer optimal performance
on downstream tasks. To that end, we make some
simple assumptions and posit arguments on their
choice as better alternatives.

3.1 Object vs. word - a unit hypothesis

The smallest meaningful unit of text is a word,
which we assume signifies a visual object embed-
ded in an image. Albeit, the common trend is to
train end-to-end network on sentence-level, but sys-
tem may not be able to learn fine grained contex-
tual relations like king-queen analogy. This design
choice also aligns with our motivation to generate
general-purpose JEs suited for a wide variety of
downstream tasks (c.f. section 6).

3.1.1 Number of Objects

The number of objects in available datasets like
Flickr30k (Young et al., 2014) and COCO (Lin
et al., 2014) is limited only to a few hundred. How-
ever, if we are interested to learn real-world analo-
gies like king-queen analogy we require far more
real-life objects to be detected by the system. De-
tic (Zhou et al., 2022), a recent object detection
technique, provides 21K object classes and thus,
seems the most pertinent. Results shown in table 8
indicate that an incremented in the number of ob-
jects leads to a corresponding increase the accuracy.
Table 1 compares the number of objects supported
among models popular in the research community.

Model No. of objects
YOLO X (Ge et al., 2021) 80
Inception V3 (Szegedy et al., 2016) 600
SWIN-L (Liu et al., 2021) 1000
OSCAR Plus (Zhang et al., 2021) 1843
Detic (Zhou et al., 2022) 21K

Table 1: Objects detection capabilities of popularly used
models.

3.2 Learning JE

Based on the unit hypothesis, we capture three
aspects of the input data while generating joint
embeddings:

* Object-object collocation: v,

* Word-object collocation: vy,

* Word-object correlation: vq,or

More about each component and their embeddings
in the upcoming sections.
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Figure 2: (Top) Architecture for creating text embeddings and v, and v,,,: the rows and columns in the collocation
matrix are the words from the text or objects detected from the images from dataset. Each cell of this matrix
represents the occurrence count of each row-column pair in the dataset. The two final vectors are generated using
PPMI and eigenvalue weighting over the vectors from collocation matrices. (Bottom) Architecture for learning
Vwor: (left) the averaged VGG19 representation of a particular object across the whole dataset is passed; (right)
word2vec representation of the word (i.e., the name of the visual object; for e.g., horse in this case).

3.3 Learning v,, and v,,,

Figure 2 (top) offers a visual summary of the pro-
cess of generating object-object collocation embed-
dings v,, and word-object collocation embeddings
Vwo- Voo and vy, are learned using an object col-
location matrix, where objects refer to the entities
detected using an object detection model. Object
collocation matrix is a matrix where the rows and
columns correspond to objects detected in our im-
ages and each cell represents the co-occurrences of
the respective two objects. We then take the rows
and apply dimensionality reduction techniques like
SVD along with Eigenvalue weighting, the vector
obtained is then used as the embedding. This yields
object-object collocation, which encodes how fre-
quently a detected object co-appears with other
detected objects in the dataset. On the other hand,
word-object collocation is built using the objects
from object detection on images and the words
from the associated text given in the datasets. This
might seem similar to object-object collocation at
first glance, but a major difference is that the value
in each cell represents the number of image cap-
tions having the corresponding object and word
pair. With this collocation matrix, we get infor-

mation on how frequently every object co-appears
with other words in the dataset.

3.4 Learning v,

Figure 2 (bottom) unpacks the process of generat-
ing the word-object correlation embeddings vqor-
Vwor 18 learnt using a different approach when com-
pared with the other two embeddings. Collocation
can be defined using the co-occurance of two enti-
ties but correlation calls for a deeper understanding
of the two entities. Therefore, we get joint embed-
dings for word-object correlation using word and
object vectors.

We generate object embeddings by passing all
detected crops of the object from the dataset to
VGG19 (Simonyan and Zisserman, 2014). An av-
erage of these embeddings across all instances give
us the final embedding for the object encoded as a
mean representation. The word embeddings are ac-
quired by creating a word-word collocation matrix
for the text in the dataset, kindred to the afore-
mentioned collocation matrices, where each cell
represents the number of co-occurrences of the cor-
responding word pair.

To obtain the final joint embedding from these
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Figure 3: The IMAGINATOR JE vector space captures real-world analogies well. These examples are taken from
similar word examples and these depicted distances are vector space euclidean distances.

two vectors, we project the object embedding in the
word embedding space instead of projecting both
embeddings in a common space (Kolluru, 2019;
Radford et al., 2021). The motivation behind this
is to maintain the contextuality captured in word
embeddings and thus enforce the object embed-
dings to learn the correlations. Once they learn
a correlated vector space, we get the JEs from a
weighted average of the projected word and object
embedding. We perform experiments to compare
several projection methods (such as CCA (Thomp-
son, 2000), Kernel CCA (Hardoon et al., 2004),
Deep CCA (Andrew et al., 2013) etc.) and loss
functions (InfoNCE (Oord et al., 2018), contrastive
loss (Hadsell et al., 2006), and triplet loss (Schroff
et al., 2015)). Emperically, we find that orthog-
onal projection and triplet loss give the best JE
results. We believe CCA overfits on our data while
orthogonal projection (Artetxe et al., 2018) uses the
features based on the dataset size. Please refer to
table 8 in Appendix for more on these experiments
and their results.

4 Lessons learnt from NLP

Word embeddings are learnt in two major ways:
(1) classical count based methods, and (ii) neural
network based prediction methods. Levy et al.
(2015) argue that the performance gains of neu-

ral network based word embeddings are due to
certain system design choices and hyperparame-
ter optimizations, rather than the embedding algo-
rithms themselves. Furthermore, they show that
these modifications can be transferred to traditional
distributional models, yielding similar gains. In
contrast to prior reports, they show mostly local or
insignificant performance differences between the
methods, with no global advantage to any single
approach over the others. Therefore, we remain
grounded to count-based distributional semantics
methods. Raw counts or normalized counts are not
useful, rather we choose alternatives like PMI and
SVD.

4.1 PPMI and Context Distribution
Smoothing

The PPMI (Positive Pointwise Mutual Information)
between a word and its context is well known to be
an effective association measure in the word simi-
larity literature. (Levy et al., 2015) show that the
skip-gram with negative-sampling training method
(SGNS) is implicitly factorizing a word-context ma-
trix whose cell values are essentially shifted PML.
Following their analysis, we present two variations
of the PMI (and implicitly PPMI) association met-
ric, which we adopt from SGNS. In this section, w
and c represent the word and context matrix.



Shifted PMI. The shift caused by 1 < k (the
number of negative samples in the optimization
(w,c): PMI(w,c) — log(k)) can be applied to
distributional methods through shifted PPMI (Levy
and Goldberg, 2014):

The k here, firstly, estimates negative sample
distribution and secondly, acts as a prior on the
probability of an occurrence of (w, ¢) in the corpus
vs. a negative sample. Shifted PPMI captures the
latter, i.e, the prior aspect of k.

SPPMI(w,c) =max(PMI(w,c)—log(k), 0)

(1

Context Distribution Smoothing (CDS).

Word2Vec (Mikolov et al.,, 2013a) samples

negative samples according to a smoothed unigram

distribution. This smoothing variation has an
analog when calculating PMI directly:

N

PMI,(w,c) = logm ()
PMI(c) = Ei(f();a 3)

By enlarging the probability of sampling a rare
context (since Py (c) > P(c) when c is infrequent),
CDS reduces the PMI of (w, ¢) for a rare context ¢
— thus removing PMI’s bias towards rare words.

4.2 SVD and Eigenvalue Weighting (eig)

Word and context vectors derived using SVD of
collocation matrices can be represented by:

WP U, 5y CVP =V, @)
However, in this case, C'V'? is orthonormal while
WSVD is not. Factorization achieved by SGN is
much more symmetric and a similar symmetry can
be derived using the following factorization:

W=Us VS C=V;- /3 5)

Levy et al. (2015) states that while it is not theo-
retically clear why a symmetric approach performs
better for semantic tasks, it works empirically.

For our vector-deriving implementation, we use
this as a dimensionality reduction technique. It
is similar to SVD but instead of the usual repre-
sentation: W = U.X; and C = Vj, eigenvalue
weighting uses W = U.22'5 and C' = V. To sum-
marize, after creating the collocation matrix, we
derive vectors by initially applying SPPMI with
CGS. This is followed by the SVD of the matrices
with eigenvalue weighting.

5 Merging v,y Vo, and vy,

The three vectors can be merged using approaches
such as concatenation, averaging or autoencoding
(figure 4). Autoencoder is a pertinent research topic
where merging of a number of vectors is learnt
automatically by a trained model. This approach
considers learning the embeddings by considering
complementary information from it’s source em-
beddings. In the interest of simplifying this aspect
of our design, for our experiments, we use weighted
average to combine the embeddings. The weights
are decided in an experimental fashion. The best
weights we found are 10, 10, and 80 for vy0, Viyo,
and vy, respectively.

w (2----2) averaging

] _.-1) concatenation

™3) autoencoder

meta-learning

Figure 4: Merging the three representational vectors -
Voor Vwo» aNd Vyor

6 Intrinsic evaluation of IMAGINATOR

To be able to make vector arithmetic like King -
Man + Woman = Queen in a generated word
vector space is well known as the intrinsic evalua-
tion paradigm. Contemporary image embeddings
are devoid of contextuality, whereas text embed-
dings are much more meaningful, as shown in fig-
ure 1. With joint embeddings, we aim to add a
contextual component to improve the semantic rich-
ness of the joint embeddings vector space. We use
two kinds of intrinsic evaluation setup to evaluate
IMAGINATOR: (i) word analogy, and (ii) similar
object analogy. Word contextuality is evaluated
using different word analogy methods while image
contextuality is evaluated using a similarity metric
between images of objects that are alike.

6.1 Word Analogies

We adopt the process and all the 10 datasets men-
tioned in (Jastrzebski et al., 2017) to evaluate
IMAGINATOR against word analogy using three
intrinsic evaluation tasks: (i) word similarity, (ii)
word analogy, and (iii) word categorization. The
word embeddings for given similar words from
datasets of all three tasks are computed. We use
average euclidean distance to derive the final re-
sults, as shown in table 2 for embeddings from
GloVe (Pennington et al., 2014), CLIP (Radford
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Dataset GloVe CLIP SJE ALIGN Ours
WS353 (Finkelstein et al., 2001) 265 035 019 0.09 0.14
MTurk (Halawi et al., 2012) 199 029 028 0.09 0.20
RG65 (Rubenstein et al., 1965) 075 038 020 0.14 0.13
RW (Pilehvar et al., 2018) 096 0.19 0.17 0.10 0.25
SimLex999 (Hill et al., 2015) 231 018 022 014 0.12
MEN (Bruni et al., 2014) 051 022 013 012 0.11
Google Analogy (Mikolov et al., 2013a)  2.09  0.18 0.12 0.09 0.15
MSR Analogy (Mikolov et al., 2013b) 0.63 030 0.09 0.11 0.22
SemEval2012 (Jurgens et al., 2012) 1.2 021 032 0.13 0.26
BLESS (Baroni and Lenci, 2011) 277 022 019 012 0.11
Average 1.5 025 0.19 0.12 0.16

Table 2: Results (average euclidean distance) for intrin-
sic valuation of our JEs based on notable word analogy
methods. Lower is better.

Dataset SIJE CLIP ALIGN IMAGINATOR
Flickr 30K 08 04 0.2 0.06

MS COCO 0.9 1.3 0.7 0.2
Google CC 02 04 0.2 0.08
Visual Genome 1.1 1.4 0.9 0.1
Average 0.75 0.88 0.5 0.11

Table 3: Results (average pairwise euclidean distance)
for instrinsic valuation of our JEs based on object simi-
larity on objects from multiple datasets. Lower is better.

etal., 2021), ALIGN (Jia et al., 2021), and IMAGI-
NATOR.

While SJE is competitive and ALIGN is better
on word similarity compared to IMAGINATOR,
but IMAGINATOR is significantly better on im-
age object similarity/analogy, detailed in the next
section.

6.2 Image Similarity

We use the Caltech 101 (Li et al., 2022) dataset
objects for this evaluation. Figure 3 shows several
examples of the relation between projected joint
embeddings of these objects. Analogy-making on
images is relatively challenging. Our hypothesis is
vectors of the same/similar objects must be nearby
in the IMAGINATOR vector space. We take out list
of similar objects from the the Caltech 101 dataset,
apply VGG19 and then orthogonally (Artetxe et al.,

2018) project those objects to IMAGINATOR vec-
tor space. Then we calculate the pairwise-euclidean
distance between such vectors and average them for
the entire dataset. Table 4 offers a summary with
the relative upside of IMAGINATOR compared
to all the existing alternatives VGG19, SJE, CLIP,
and ALIGN respectively listed next to each score.
Furthermore, table 3 shows the performance on
existing vision embedding techniques and IMAGI-
NATOR on other similar datasets.

VGGI19 SIE
56(97% 1) 19093%1)

CLIP ALIGN  IMAGINATOR
1.5091%1) 0.92 (86% 1) 0.13

Table 4: Results (average pairwise euclidean distance)
for intrinsic valuation of our JEs based on object simi-
larity on the Caltech 101 dataset. Lower is better.

7 IMAGINATOR for - Image Captioning
and Image2tweet

The downstream vision-language (VL) tasks cho-
sen to test our pre-trained JEs are: (i) image cap-
tioning, (ii) Image2Tweet, and (iii) text-based im-
age retrieval.

7.1 Image Captioning

Image captioning is a common multimodal task
which involves the generation of a textual descrip-
tion for an image. Describing the contents of an
image requires visual understanding at an object
level. We use JEs from IMAGINATOR to gener-
ate captions on datasets such as Flickr30k (Young
et al., 2014) and COCO (Lin et al., 2014).

For an input image, we start by obtaining an
image embedding using VGG19 (Simonyan and
Zisserman, 2014), which is then orthogonally pro-
jected in IMAGINATOR embedding space. We
use the JE of the image to find & nearest objects
in the vector space. For our experiments we used
k = 10, giving us 10 objects associated with the
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(a)

IMAGINATOR: A kitchen with a sink, stove, oven, and beers.

food cooking.
OSCAR: a kitchen with a lot of pots and pans in it.

(b)

IMAGINATOR: A vocalist, drummer, and a guitarist sings a
tune.

Gold Caption: A commercial stainless Kitchen with a pot of  Gold Caption:A musical band are by their instruments most

likely playing a song .
OSCAR: A man on a stage with a guitar and a keyboard.

Figure 6: Examples of some image captioning outputs generated by IMAGINATOR along with the original caption
and the caption generated by OSCAR (Li et al., 2020). For more examples please refer the supplementary file.

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERTrypraginvaToRr

Figure 7: Image retrieved for the query - "several climbers climbing rock together” - it is evident that ALBEF (Li
et al., 2021) wrongly emphasized on "rock together", whereas XVLM (Zeng et al., 2021) is unable to comprehend
plurality in the query here, while BERT 1y acrnv aAT0R can do the job well.

input image. These objects are then passed to
a sequence-to-sequence module, namely, the T5
transformer (Bhatia, 2021), which generates the
final caption. We use a pre-trained TS model, fine-
tuned on Flickr30k and COCO. Figure 5 describes
the captioning pipeline while Figure 6 shows some
output examples. IMAGINATOR surpasses the
current SOTA by 3.1 BLEU (Flickr30K) and 1.4
BLEU (COCO), as shown in Table 5. We also eval-
uated our captions using BERTScore and achieved
0.87 on Flickr30k and 0.88 on COCO, there is no
BERTScore reported in UVLP (Zhou et al., 2020)
and OSCAR (Li et al., 2020).

Method Flickr30K COCO
UVLP (Zhou et al., 2020) 30.1 (SoTA) -
OSCAR (Li et al., 2020) - 41.7 (SoTA)
SJE + k nearest objects + T5 30.5 35.6
CLIP + k nearest objects + T5 31.3 36.3
IMAGINATOR + k nearest objects + T5 33.2 43.1

Table 5: Comparison of different modelling approaches
in image captioning.

7.2 Image2Tweet

Image2Tweet (Jha et al., 2021) is a task which
is a notch above traditional image captioning in
terms of complexity. Given an input image, the
task involves generating a tweet like a human news
reporter. Figure 24 shows some examples from the

dataset.

The tweet is generated using a method similar to
image captioning. The joint embedding of the input
image is used to find the k nearest neighbouring
embeddings in the projections space. These neigh-
bours are then used to generate the tweet using a
sequence-to-sequence model.

The results are based on the CIDEr metric (c.f.
table 6). We found that using other datasets
for training SOTA models fails miserably, indicat-
ing that Image2Tweet is a fairly complex prob-
lem. However, IMAGINATOR performs reason-
ably well on the task and surpasses comparable
contemporary SoTA captioning methods UVLP
(Zhou et al., 2020) and OSCAR (Li et al., 2020).

Method CIDEr
Baseline of Image2tweet (Jha et al., 2021)  0.0003
UVLP (Zhou et al., 2020) [SoTA on Flickr] 0.003
OSCAR (Li et al., 2020) [SoTA on COCO]  0.004
CLIP (Radford et al., 2021) 0.006
Stanford joint embedding (Kolluru, 2019) 0.007
5 ensemble (Luo et al., 2018) 0.0090
IMAGINATOR + k nearest objects + T5 0.0095

Table 6: Performance of various multi-modal models in
the Image2Tweet shared task.
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7.3 Text-based Image retrieval

The fundamental question that we are seeking an
answer to is whether using IMAGINATOR word-
object level embeddings we can achieve compo-
sitionally and achieve a vector representation for
sentence-image level. For example, by passing on
word vectors in a sequence to a language model we
can obtain a sentence-level vector representation.
To verify the compositionality of joint modality
embeddings, we tested our approach on the task of
text-based image retrieval on the Flickr30K dataset
(Young et al., 2014). The main challenge of this
task is to find out the appropriate content in the
visual space while the input is in the text space.
Another reason for introducing compositionality is
that each word is usually associated with multiple
images. Hence, there is a need for us to learn a sin-
gle image representation for a given text. Though
we explore contrastive methods in section 8, to
solve the above-mentioned challenges, we intro-
duce an approach using BERT and evaluate it on
text-based image retrieval.

Method R@l R@5 R@10
ALBEF (Li et al., 2021) 856 975 989
XVLM (Zeng et al., 2021) 86.1 973  98.7
BERT v AGINATOR 8948 981 99.2

Table 7: Results for image retrieval: Recall@{1, 5, 10}
Score for Flickr30K (Young et al., 2014).

7.3.1 Compositionality of Joint Embeddings -
BERTIMAGINATOR

BERT is arguably the most successful modelling
architectures in NLP. It accepts token embed-
dings as input and produces contextualized em-
beddings as output. In contrast, we propose

BERTvrAaGIN ATOR, Which is trained to take im-
age-+text as input and output a compositional vector
representation for both modalities.

We utilize BERT (Devlin et al., 2018) and CLIP
(Radford et al., 2021) as our backbones to generate
JEs. Instead of feeding the BERT model tokenized
words obtained via a tokenizer, we use IMAGINA-
TOR (c.f. section 3.4) word-object embeddings as
input to the model. We process necessary tokeniza-
tion, position encoding, and segment embeddings
accordingly, per the BERT architecture.

We utilize CLIP (Radford et al., 2021) for gen-
erating another JE using an image-sentence pair
by obtaining the image and text embeddings from
CLIP encoders and concatenating them. We re-
fer to this as the sentence JE. Both these em-
beddings, viz., the sentence JE and projected
BERT v acINATOR, are projected to a common
space using orthogonal projection (Artetxe et al.,
2018), on which we compute our loss. Figure 8
visually depicts our training process while table 7
shows BERT s agrnvaToR outperforming SoTA
information retrieval (IR) baselines, namely AL-
BEF (Lietal., 2021) and XLVM (Zeng et al., 2021)
on Recall@{1, 5, 10}.

8 Conclusion and Takeaways

We proposed a new pre-trained joint embedding
IMAGNIATOR. Our major contribution is on
adopting count-based methods for joint modality,
echoing the philosophy from Levy et al. (2015).
IMAGINATOR outperformed SoTA on three tasks:
(i) image captioning, (ii) Image2Tweet, and (iii)
text-based image retrieval. We present an in-depth
intrinsic evaluation along with a new architecture
BERTpracIN ATOR- In the future, we would like
to explore other multimodal tasks such as VQA.



Discussion and Limitations

While IMAGINATOR pushes the boundaries of the
state-of-the-art in tasks that involve language and
vision joint modelling, there are some limitations.

Object Detection - Limited Number of Classes

IMAGINATOR utilizes the atomic units of multi-
modal data — individual words for text representa-
tion and individual objects for image representa-
tion. Typically, the number of unique words (i.e.,
the vocabulary) is quite large in a given text rela-
tive to the number of objects in images. As such,
IMAGINATOR being a joint learning technique is
bottlenecked by the capabilities of existing object
detection techniques since they only typically deal
with a limited repertoire of objects (c.f. table 1).
To enhance the richness and expressivity of JEs,
object detection models that can identify the wide
gamut of objects in the world would be critical.

Contrastive Learning

Contrastive learning is a task-independent tech-
nique that focuses in learning the similarity and
differences between samples in a dataset. The ob-
jective here is to learn an embedding space where
similar inputs, say samples belonging to the same
class (c.f. figure 9), are embedded as similar rep-
resentations while samples from dissimilar classes
are separated in the embedding space. Despite
IMAGINATOR performing well in several tasks,
our object representation can be improved signif-
icantly from simply being an average of image
embeddings. Instead, contrastive learning can help
learn better vectors that capture the relations be-
tween images and their objects.

Figure 9: Same object class (horse) with different visu-
als.

Vision Transformer and Positional Encoding

A Vision Transformer (ViT) is a transformer that is
targeted at vision processing tasks, such as object
recognition and is much more robust than CNNss.
It divides an image into fixed-size patches, embeds
each of them, and includes a positional embedding

along with the patch embedding as an input to the
transformer encoder. In our case, if we could draw
meaningful cross-modal connections between sec-
tions of text and the corresponding parts of images,
a significant performance uptick can be potentially
reached. This can be implemented using the vari-
ous positional encoding schemes in ViT.
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Frequently Asked Questions (FAQs)

1. Doesn’t averaging individual object embeddings (or even word embeddings) result in a noisy object
embedding?

Ans. Yes, averaging individual embeddings is a limitation of this work and a future avenue of
exploration. On the other hand, concatenation is computationally expensive. However, empirically, we
found that averaging gave better results than concatenation. We would like to explore autoencoding
and contrastive learning in the future as mitigation methods.

2. Why does orthogonal projection work better than CCA-based methods?

Ans. Orthogonal projection is a discriminative method that attempts to find out the discriminative
projection for two vector spaces aligned to a unified dimension. On the other hand, CCA tries to learn
relations among two vector spaces. While orthogonal projection offers competitive performance with a
limited number of classes, CCA is undoubtedly more powerful when the number of classes is higher.
In our case, since we only have 21K objects, orthogonal projection yielded better results.

3. Instead of directly learning a caption generation model based on the learned joint embedding, this
paper projects VGG-19 embeddings orthogonally in the learned joint embedding space, using it to
find the k nearest objects in the vector space, and then passes these objects through TS5 for caption
generation. What is the motivation behind this approach?

Ans. Image object detection is a separate task altogether, and we are not trying to solve that problem
here. Given an image, we first get its VGG-19 embedding and then project it to IMAGINATOR space
since VGG-19 and IMAGINATOR have disparate embedding spaces and need to be aligned. A by-
product of this approach is that it also helps affirm that IMAGINATOR performs well, otherwise it might
raise doubts that the performance gain is happening due to TS5 efficiency rather than IMAGINATOR.
Lastly, we would like to draw the attention of readers that the proposed captioning architecture is very
simple and still outperforms SoTA.

4. Did you consider experimenting with ResNet or Fast-RCNN?
Ans. We performed experiments using ResNet, but the results were poor. One plausible explanation
is the fact that higher embedding dimensions lead to a performance drop.

5. Why was the Detic the baseline architecture of choice for IMAGINATOR?

Ans. The presumption of this work is to leverage the legacy of the NLP-centric count-based vec-
torification methods for joint modality. Therefore, maximizing the number of objects will give us a
denser matrix to calculate the so-called collocation. In the future, we plan to seek methods that can
detect more than 21K objects, and strongly believe that will have a positive effect on the learned joint
embedding space.
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Appendix

What is the value-addition of this work given Joint Embeddings have been explored in various ways
for the past few years?

Learning joint embeddings has been a topic that has received immense interest from the multimodal Al
community over the past decade (Chen et al., 2020; Jia et al., 2021; Tan and Bansal, 2019). A concise
survey on this topic has been presented in Wang et al. (2022), which offers an extensive treatment of both
early (i.e., input-level), mid (i.e., feature-level), and late (i.e., decision-level) fusion methods, depicted
visually in figure 10. Learning joint embeddings using early-fusion methods (like the one we adopted
in our work) essentially enables identifying cross-correlations between various modalities (such as text,
images, video, audio, spatial/point-cloud information, etc.) early on in the learning process. As such, the
resultant vector representations typically lead to top-notch performance in most downstream tasks. On
the other hand, a vast majority of work focuses on feature fusion where modalities are first individually
processed and then projected to a common vector space to draw correlations using variety of projection
methods like CCA (Thompson, 2000), Deep CCA (Andrew et al., 2013), etc.

As mentioned in Section 2, IMAGINATOR’s novelty is associated with the word-level grounding
of objects using traditional count-based approaches, an NLP tradition that was prevalent before the
neural era. This is a significant detour from recent work in learning joint embeddings that uses deep
learning-based techniques, which suffer from a lack of control or ease of interpretation owing to their
inherent black-box nature. As such, this design decision has allowed us to learn rich features that
are collocation-based representations of visual objects that are grounded in words which represent the
object’s moniker(s). The collocation-based contextual word vectorization is primarily influenced by the
distributional hypothesis "You shall know a word by the company it keeps" (Firth, 1957). Intrigued by
how such a collocation-based method can aid visual contextual learning, we sought to testify its utility
in learning joint emebddings. However, the ability of count-based joint embedding techniques can be
severely limited due to the insufficient number of objects detected, which led to us overcoming this issue
by using statistical correlational methods inspired by NLP (Levy et al. (2015). We plan to further scale
this technique by first enabling detection of additional (>20K) visual objects, hypothesizing that this
learning paradigm can lead to even richer representations.

® Q) ,
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Figure 10: Notable recent work related to vision-language pre-training. Taken from Wang et al. (2022).
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Rolodex of additional experiments carried out for the optimal generation of v,,, V0, and Vy0;

Table 8 expands on section 3.3 and 3.4 and shows a comparison of different embedding methods,
dataset combinations, number of objects, loss functions, and projection methods with performance on the
captioning task. We consider normalized count, PMI, PPMI, and Factorized PPMI for vector building and
SVD and Eigenvalue factorization for dimensionality reduction. For dataset, we combine multiple datasets
with an increase in the number of objects in each of the combined datasets. We consider Flickr30K, COCO,
and Conceptual Captions (CC). For projection, we consider Orthogonal Projection, CCA, regularized
CCA, and Deep CCA for our experiments. From Table 8, we can see that with an increase in the number
of objects, the captioning score also correspondingly increases.

. . . . Performance
Embedding method Dataset No. of objects Loss function Projection method Flickr30K  COCO
Normalized count Flickr30K 1000 Triplet loss Orthogonal 32.1 29.3

Flickr30K + COCO 1080 Triplet loss Orthogonal 324 33.7
PMI Flickr30K + COCO 17000 Triplet Loss - 334 34.8
PPMI Flickr30K + COCO 17000 Triplet Loss - 33.9 354
Factorized PPMI Flickr30K + COCO 17000 Triplet Loss - 34.1 37.9
Factorized PPMI + SVD  Flickr30K + COCO 17000 Triplet Loss - 324 36.2
Factorized CCA 30.2 322
PPMI Flickr30K 1000 Triplet Loss  Regularized CCA 30.9 33.9
+ Deep CCA 30.5 332
Eigen Flickr30K + COCO 1080 Triplet loss Orthogonal 31.9 35.7
Value Flickr30K + COCO 17000 Triplet loss  Regularized CCA 33.2 40.1
Factorization Flickr30K + COCO 17000 Triplet loss Deep CCA 33.8 38.1

Table 8: Results on image captioning datasets (Flickr30K, COCO, and Conceptual Captions) for different embedding
methods, datasets, loss functions, and projection methods.
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Intrinsic evaluation of IMAGINATOR

The goal behind intrinsic evaluation is to understand how well the embeddings adhere to the contextuality
constraint. Building upon section 6, we consider standard relational terms - king, queen, boy, woman
and performed an intrinsic evaluation on them to identify the relationships between these terms. We
project the joint embeddings of the image and check the Euclidean distance among them; the lower the
distance between similar terms, the better the contextuality. Figure 11 shows additional intrinsic evaluation
examples.

Tree Grasshopper

Vegetables ~ Farm Land

(@)

University

Game

Carrot

©) ®

Figure 11: Examples for intrinsic evaluation of our JEs based on word analogies and image similarity.
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Examples of image captioning - IMAGINATOR vs. Gold Caption vs. OSCAR (SoTA)

(a) IMAGINATOR: A bedroom with
bedspreads, pillows, and a nightstand.
Gold Caption: the - bedroom stone
cottage can sleep people.

OSCAR: A bedroom with a bed,
dresser, and nightstand.

4

(d) IMAGINATOR: A photo of a con-
sole.

Gold Caption: The player staring in-
tently at a computer screen.

OSCAR: A man sitting in front of a
flat screen TV.

(g) IMAGINATOR: A young woman
and man rowing a boat.

Gold Caption: A man and woman are
on a gray and white rowboat.
OSCAR: Group of people on a small
boat in the water.

S

(b) IMAGINATOR: A group of peo-
ple are singing and clapping while a
group of musicians are performing.
Gold Caption: A band is playing in
front of an audience and the singer is
wearing an orange shirt.

OSCAR: A man holding a baseball bat
in front of a crowd.

(e) IMAGINATOR: A group of peo-
ple playing ping-pong together.

Gold Caption: Young girls line up
across each other and a ping-pong ta-
ble in a gymnasium while a few boys
plan on a table further back.

OSCAR: A group of children playing
a game of ping pong.

(h) IMAGINATOR: A kitchen with
cabinets, cabinets, and a dishwasher.
Gold Caption: A kitchen with
wooden cabinets and black appliances
OSCAR: A kitchen with a sink, dish-
washer, stove and refrigerator.

Ok

(c) IMAGINATOR: Photograph of a
tall tower with steeples.

Gold Caption: sandcastle beach on
bright sky.

OSCAR: A castle made of sand with
a clock tower in the background.

(f) IMAGINATOR: "girls" and "boys"
at a venue.

Gold Caption: party in the park under
cherry blossoms.

OSCAR: A group of people sitting
around a park with pink flowers.

o po
(1) IMAGINATOR: Chefs cooking
with a stover and other cookware in
a laboratory.
Gold Caption: Two chefs in a restau-
rant kitchen preparing food .
OSCAR: Two men in a commercial
kitchen preparing food.

Figure 12: Examples of some image captioning outputs generated by IMAGINATOR along with the original caption
and the caption generated by OSCAR (Li et al., 2020) for each respective image
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Examples of image retrieval - IMAGINATOR vs. SoTA: (i) ALBEF (Li et al., 2021), and (ii)
XVLM (Zeng et al., 2021)

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zenget al.,2021) (c) rank 1 image BERTyragrnvaToR

Figure 13: Image retrieved for the query: "Two little children, one boy and one girl laughing".

P | i3 AT
(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERTryraginaTOR

Figure 14: Image retrieved for the query: "A dog is running in the sand".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERT 1y agrvaTOR

Figure 15: Image retrieved for the query: "Bride and groom walking side by side".

- ¥

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERTryraginaTOR

Figure 16: Image retrieved for the query: "Redhead woman in pig- tails and glasses sewing on a sewing machine".
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(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERT;ypraginaTOR

Figure 17: Image retrieved for the query: "Smiling boy in white shirt and blue jeans in front of rock wall with man
in overalls behind him".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERT;yracinaTOR

Figure 18: Image retrieved for the query: "Two Asian or Spanish people, a woman and a man, sitting together in
front of a glass window as cars pass".

Figure 19: Image retrieved for the query: "A little boy plays with a Nintendo GameCube controller inside a
McDonald’s".

(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERT;yracinaTOR

Figure 20: Image retrieved for the query: "A blonde woman wearing glasses and a gray sweatshirt is cutting
something with scissors".
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(a) rank 1 image ALBEF (Li et al., 2021) (b) rank 1 image XVLM (Zeng et al.,2021) (c) rank 1 image BERTrypragrvaToR

Figure 21: Image retrieved for the query: "A person wearing skis looking at framed pictures set up in the snow".

= == - e "': o (] AS i
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Figure 22: Image retrieved for the query: "A very young girl playing with a bubble-blowing wand , holding a bottle
of bubble solution and walking through a park or field".
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Figure 23: Image retrieved for the query: "A woman in an outdoor marketplace, wearing a large cone-shaped hat,
standing behind two large baskets containing loaves of bread".
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Image2Tweet examples - Gold vs. 5 ensemble SoTA (Lu et al., 2018) vs.BE RT3 AGINATOR

Image2tweet is a particularly hard problem to solve. It can involve social engineering, web information
scraping, face recognition, etc. The results in table 6 show the current status of the problem and it needs
substantial research work to develop a solution. Figure 24 shows additional Image2Tweet examples which
indicate the quality of text generated given the image. Compared with the novel information present in the
image, shows the amount of complexity associated with the task.

(a) Gold Caption: Should you wear a
mask to protect yourself from coronavirus?
#Coronavirus #COVID19

5 ensemble (Luo et al., 2018): a group of
surgeons prepare for surgery.
IMAGINATOR: people wearing masks
during the pandemic.

(d) Gold Caption: JEE (Main) begins to-
day - students are following protocols -
queue, social distancing, masks.

5 ensemble (Luo et al., 2018): students
wearing face masks during a protest.
IMAGINATOR: young girls wearing
masks in a queue.

(g) Gold Caption: SC refuses to entertain
plea against Madras HC order on Patanjali’s
use of *Coronil’.

5 ensemble (Luo et al., 2018): a gothic
buildiing.

IMAGINATOR: supreme court of India
building.

(j) Gold Caption: Indian prime minister
addressing to the nation in his own man ki
baat.

5 ensemble (Luo et al., 2018): politician
making a speech at a function.
IMAGINATOR: Modi is delivering a
speech on camera.

(b) Gold Caption: Donald Trump’s India
visit will be beneficial for both the coun-
tries.

5 ensemble (Luo et al., 2018): politician
shakes hands with politician during a bilat-
eral meeting.

IMAGINATOR: Two men are handshak-
ing with an Indian flag in the background.
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(e) Gold Caption: Country needs so many
doctors than politicians - pandemic realiza-
tion.

5 ensemble (Luo et al., 2018): person, left,
and person, right, are both members of the
team.

IMAGINATOR: Two doctors with face
shields.

(h) Gold Caption: No rugby for world
champion as South Africa maintains ban.
5 ensemble (Luo et al., 2018): rugby
player looks dejected after defeat
IMAGINATOR: A scene of a rugby match
with three players visible.

(k) Gold Caption: Kamala Harris bring-
ing energy, dollars and more to Joe Biden’s
campaign.

5 ensemble (Luo et al., 2018): politician
gives a speech during the second day.
IMAGINATOR: Harris making promises.
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(c) Gold Caption: I am here to play cricket
not gimmick - @PrithviShaw to press.

5 ensemble (Luo et al., 2018): cricket
player during a press conference.
IMAGINATOR: A man in a press confer-
ence.

(f) Gold Caption: 5G tech is picking up
pace and expectations are high, but rollout
is still years away in India.

5 ensemble (Luo et al., 2018): the logo on
a background of a blue sky with clouds.
IMAGINATOR: 5G logo.

(i) Gold Caption: I love India, but In-
dians don’t like me.

5 ensemble (Luo et al., 2018): politi-
cian addresses a crowd of supporters.
IMAGINATOR: An angry politician
delivering a speech.

(1) Gold Caption: US Presidential elec-
tion: Hillary-Tulsi spat scorches Demo-
cratic Party.

5 ensemble (Luo et al., 2018): Two politi-
cians are debating.

IMAGINATOR: Hillary Clinton and an-
other woman in white dress.

Figure 24: Additional examples of Image2Tweet task - gold vs. 5 ensemble SoTA (Li et al., 2020)
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