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Abstract

As large language models (LLMs) grow more001
powerful, concerns around potential harms like002
toxicity, unfairness, and hallucination threaten003
user trust. Ensuring beneficial alignment of004
LLMs with human values through model align-005
ment is thus critical yet challenging, requir-006
ing a deeper understanding of LLM behav-007
iors and mechanisms. We propose opening008
the black box of LLMs through a framework009
of holistic interpretability encompassing com-010
plementary bottom-up and top-down perspec-011
tives. The bottom-up view, enabled by mech-012
anistic interpretability, focuses on component013
functionalities and training dynamics. The top-014
down view utilizes representation engineering015
to analyze behaviors through hidden represen-016
tations. In this paper, we review the land-017
scape around mechanistic interpretability and018
representation engineering, summarizing ap-019
proaches, discussing limitations and applica-020
tions, and outlining future challenges in using021
these techniques to achieve ethical, honest, and022
reliable reasoning aligned with human values.023

1 Introduction024

Large language models (LLMs) such as GPT-025

4 (OpenAI, 2023), LLaMA-2 (Touvron et al.,026

2023), Claude (AnthropicAI, 2023), and Gem-027

ini (Team et al., 2023) have led to tremendous ad-028

vances in language understanding and generation.029

However, as LLMs grow more powerful, issues030

around potential toxicity, unfairness, dishonesty,031

and hallucination threaten to undermine user trust.032

There is thus an urgent need to ensure the safe and033

beneficial alignment of LLMs with human values034

through model alignment. Model alignment aims035

to address these issues in order to build user trust036

and ensure LLMs safely generate helpful, honest,037

and unbiased text.038

To address these alignment issues, we need a039

deeper understanding of the reasoning abilities and040

inner mechanisms of LLMs. More specifically, eX-041
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Figure 1: Two views on holistic interpretability: (i)
Bottom-up view of mechanistic interpretability and (ii)
Top-down view of representation engineering.

plainable Artificial Intelligence (XAI) techniques 042

can be leveraged to explain these complex mod- 043

els. The research community has developed a wide 044

range of tools to provide explanations from both lo- 045

cal and global perspectives (Zhao et al., 2023). For 046

example, various feature attribution methods have 047

been proposed to offer insight into how different 048

input tokens contribute to model predictions. How- 049

ever, these approaches have limited competence 050

in fully understanding the functions and behaviors 051

of LLMs. As such, they have limited capacity to 052

address alignment issues. 053

Facing these challenges, we propose opening the 054

black box of LLMs through holistic interpretability 055

as a promising direction to overcome limitations 056

of conventional approaches. As shown in Figure 1, 057

holistic interpretability encompasses two comple- 058

mentary perspectives: bottom-up and top-down 059

views. The bottom-up view through mechanistic 060

interpretability explains models by focusing on the 061

functionality of each component, as well as the re- 062

lationships between models’ abilities and training 063

dynamics. This view interprets functional compo- 064

nents through the concept of circuit, which offers 065

insights into the inner workings of LLMs. The top- 066
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down view through representation engineering ex-067

plains specific model behaviors such as dishonesty068

by analyzing hidden representations (Zou et al.,069

2023). This view enables understanding of how070

information is encoded internally in LLMs.071

In this paper, we provide a systematic overview072

of the landscape around mechanistic interpretabil-073

ity and representation engineering. We summarize074

key techniques, discuss limitations, highlight appli-075

cations, and outline open challenges. Our focus lies076

in how these approaches can enable better align-077

ment of LLMs, so as to achieve ethical, honest, and078

reliable predictions for social good.079

2 Mechanistic Interpretability080

Mechanistic interpretability refers to the process081

of zooming into neural networks to understand the082

underlying components and mechanisms that drive083

their behaviors, also known as reverse engineer-084

ing (Olah et al., 2020a). Just as the microscope085

revealed the world of cells, looking inside neural086

networks provides a glimpse into rich inner struc-087

tures of models. This approach diverges from con-088

ventional interpretability methods that aim to ex-089

plain the overall behaviors through features, neural090

activations, data instances and etc. Instead, it draws091

inspirations from other fields, such as neuroscience092

and biology, to investigate individual neurons and093

their connections. By tracking each neuron and094

weight, an intricate picture emerges on how neural095

networks operate through interconnected “circuits”096

that implement meaningful algorithms. On this097

delicate scale, neural networks become approach-098

able systems rather than black boxes. Neurons099

play an understandable role and their circuits of100

connections implement factual relationships about101

the world. We can thus observe the step-by-step102

construction of high-level concepts, such as circle103

detectors, animal faces, cars, and logical opera-104

tions (Olah et al., 2020a). In essence, zooming105

into the micro-level mechanics of LLMs enables106

deeper comprehension of their macro-level behav-107

iors. Such mechanistic perspective represents a108

paradigm shift in interpretability towards unpack-109

ing the causal factors that drive model outputs.110

2.1 Role in the General XAI Field111

Mechanistic interpretability in XAI represents a112

paradigm shift towards a deeper and more fun-113

damental understanding of deep neural network114

(DNN) models (Zhao et al., 2023).115

• Global versus Local Interpretation: Mechanis- 116

tic interpretability diverges from the traditional 117

local focus of XAI, which concentrates on ex- 118

plaining specific predictions made by deep learn- 119

ing models, e.g., feature attribution techniques. 120

Instead, it adopts a global approach, aiming to 121

comprehend DNN models as a whole through the 122

lens of high-level concepts and circuits. 123

• Post-hoc Analysis versus Intrinsic Design: 124

Mechanistic interpretability aims to decipher the 125

complexities inherent in pre-trained DNN mod- 126

els in a post-hoc way. This contrasts with efforts 127

to create models that are mechanistically inter- 128

pretable by design (Friedman et al., 2023). 129

• Model-Specific versus Model-Agnostic: Un- 130

like some XAI methods such as LIME (Ribeiro 131

et al., 2016) and SHAP (Lundberg and Lee, 132

2017), which are model-agnostic, mechanistic 133

interpretability is a model-specific explanation. 134

It requires tailor-made designs for each distinct 135

LLM, analyzing their unique characteristics. 136

• White-box versus Black-box: Mechanistic in- 137

terpretability aligns with white-box analysis, re- 138

quiring direct access to a model’s internal pa- 139

rameters and activations. This is in contrast to 140

black-box XAI tools such as LIME and SHAP, 141

which operate solely based on the model’s inputs 142

and outputs. 143

In summary, mechanistic interpretability in XAI is 144

a critical approach to gain a profound understand- 145

ing of DNN models. It emphasizes a global and 146

post-hoc perspective, focusing on model-specific, 147

white-box analysis to decipher the inner workings 148

and intrinsic logic of complex AI systems. This 149

approach is pivotal to advance transparency and 150

build trust for LLMs, especially in high-stake sce- 151

narios where grasping “why” behind AI systems is 152

as crucial as the decisions themselves. 153

2.2 Why Mechanistic Interpretability? 154

The question naturally arises: Why has XAI re- 155

search on LLMs moved towards the more special- 156

ized domain in mechanistic interpretability? Ex- 157

ploring this shift can shed light on the evolving 158

needs and challenges in this field. In this section, 159

we attempt to delve into several factors that we 160

believe have play a major role in steering the shift. 161

Alignment Requirement. In the age of LLMs, 162

the standards for model performance have become 163

more rigorous, not just in terms of accuracy but 164
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also in addressing crucial social concerns like hon-165

esty and fairness. Under this circumstance, the166

challenge of aligning LLMs with our values and167

expectations has become a pressing concern, one168

that demands a deep understanding and effective169

control of these models. To tackle these challenges,170

mechanistic interpretability stands out as a promis-171

ing approach, offering a way to understand the172

underlying workings of these models.173

Understanding Reasoning Capability. The field174

of XAI in machine learning had made significant175

progress with techniques designed to provide valu-176

able insights to end users, such as feature attri-177

butions (Ribeiro et al., 2016) and example-based178

explanations (Koh and Liang, 2017). These tech-179

niques have been proven to be quite effective in180

computer vision tasks, where the demands for com-181

plex alignment were less strict. However, as LLMs182

become more sophisticated, their reasoning capabil-183

ity has transformed from mere pattern recognition184

to a form of complex, human-like cognition. This185

advancement in LLMs’ reasoning abilities renders186

traditional XAI methods obsolete and less compe-187

tent in interpreting their behaviors.188

Understanding Inner Working of LLMs. More-189

over, alongside the strong reasoning abilities of190

LLMs, their notorious deep and intricate architec-191

tures are raising new concerns. Since the inner192

workings of these models are multifaceted and in-193

tricate, new challenges in explaining model at the194

structure level have emerged. Conventional global195

interpretability techniques, which are adept at un-196

covering the high-level knowledge acquired in dif-197

ferent components of models, fall short when pro-198

viding sights into the functions and the evolution of199

knowledge within these models. This issue is fur-200

ther confounded as LLMs scale aggressively, mak-201

ing neuron-level and layer-level insights increas-202

ingly insufficient. This complexity highlights the203

urgent need for innovative approaches that enable204

us to zoom in models and provide more in-depth,205

mechanistic understandings at various levels.206

Alternatively, mechanistic interpretability aims207

to unravel the inner workings of LLMs, providing208

insights into the “how” and “why” behind their209

decision-making processes. Specifically, mechanis-210

tic interpretability delves into the causal relation-211

ships and underlying mechanisms within models.212

This not only is more suited to the advanced nature213

of LLMs, but is also crucial to ensure transparency,214

trust, and reliability in their applications.215

2.3 Mechanistic Interpretability Theories 216

Most of the current work on mechanistic inter- 217

pretability is based on vision models, and some 218

recent work has begun to investigate Transformer 219

models. In this section, we introduce some core 220

concepts and pivotal phenomenons in the field of 221

mechanistic interpretability. Since LLMs are too 222

complicated to analyze locally, simple yet artifi- 223

cial models are purposely designed to investigate 224

their characteristics and internal mechanisms. We 225

will introduce the main assumptions and observa- 226

tions made under this setting, including circuits, 227

induction heads, superposition, polysemanticity, 228

and monosemanticity. 229

Circuits. “Circuit” is one of the core concepts 230

in the field of mechanistic interpretability. It was 231

first proposed to reverse engineer vision models, 232

in which individual neurons and their connections 233

are considered functional units (Olah et al., 2020a). 234

Some researchers believe that features existing in 235

earlier layers are fundamental units of models, such 236

as edge detectors. And these features are combined 237

by weights to form a circuit unit. This view is par- 238

tially evidenced by a few understandable neuron 239

units (circuits) firing for directions, such as curve 240

detectors (Cammarata et al., 2020) and high-low 241

frequency detectors (Schubert et al., 2021). Sev- 242

eral phenomenons have been observed in these cir- 243

cuits. For example, symmetric transformations of 244

basic features can be achieved with basic neurons 245

also known as “equivariance” or “motif”, which in- 246

clude copying, scaling, flipping, coloring, rotating, 247

etc. (Olah et al., 2020b). 248

Based on insights derived from vision models, a 249

mathematical framework for transformer circuits 250

has also been proposed (Elhage et al., 2021). To 251

avoid the intricacies associated with LLMs, this 252

framework focuses on decoder-only transformers 253

with no more than two layers, comprised entirely of 254

attention blocks. Thus, within this toy model, the 255

transformer encompasses input embedding, resid- 256

ual stream, attention layers, and output embeddings. 257

Attention layers read information from residual 258

stream and then write their output back into the 259

residual stream. Communications can occur at the 260

layer level. Each attention head works indepen- 261

dently in parallel and contributes its output to the 262

residual stream. Within each head, there are two 263

circuits: i) “query-key” (QK) circuits, responsible 264

for determining attention patterns and source-to- 265

destination token relationships that provide match- 266
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ing abilities. ii) “output-value” (OV) circuits, dic-267

tating how a given token influences the output logit268

and providing copying abilities. The result shows269

that transformers with zero layer can model bi-270

gram statistics, predicting the next token from the271

source token. Adding one layer allows the models272

to capture both bigram and “skip-trigram” patterns.273

Interestingly, with two layers, these transformers274

give rise to a concept termed as “induction head”.275

These induction heads exist in the second layer and276

beyond. Usually, they are composed of heads from277

their previous layer, which are useful in suggesting278

the next token based on the present ones.279

Induction heads. The research indicates that in-280

duction heads are composed of two kinds of heads281

from the previous layer including a query head,282

which provides information from previous tokens,283

and a key head, which matches the destination to-284

ken with the source token. If there is no infor-285

mation for them to copy, they often fall back to286

the first token. As a result, layers with induction287

heads are equipped with more powerful in-context288

learning abilities rather than simple copying. In289

addition, multiple empirical evidences have been290

presented to prove the causal relationships between291

induction heads and in-context learning abilities by292

observing the change of in-context learning abil-293

ities after manipulating induction heads (Olsson294

et al., 2022). Although this theory appears to offer295

a comprehensive explanation of the mechanisms296

behind Transformers with only two attention layers,297

further ablation studies are needed to validate its ac-298

curacy. In particular, this framework is exclusively299

based on attention heads, without incorporating300

MLP layers.301

Superposition. Another important observed phe-302

nomena is superposition, which describes that dif-303

ferent features can be spread across many polyse-304

mantic neurons (Olah et al., 2020a). It is believed305

to originate from the excessive number of features306

compared to the number of neurons. In the anal-307

ysis of a toy example, i.e. a ReLU network, they308

suppose that superposition can not only be used309

to represent additional features but also tolerate in-310

terference, which is based on the ideal assumption311

that larger sparse network is able to disentangle312

all those features into specialized individual neu-313

rons. Superposition is more powerful as feature314

sparsity increases. Furthermore, superposition can315

also perform some kind of computation, such as316

the absolute value function in circuits (Olah et al.,317

2020a). Based on the concept of superposition, one 318

work attempts to identify neurons firing for individ- 319

ual specific human-interpretable high-level features 320

with sparse probing (Gurnee et al., 2023). 321

Polysemanticity. Polysemanticity occurs when 322

individual neurons in neural networks respond to 323

a variety of features. Superposition is identified 324

as a key factor in understanding polysemanticity 325

of neurons within models. A recent study investi- 326

gates this by exploring the cause of polysemanticity 327

through the the lens of “feature capacity”, denoting 328

the proposition of embedding dimension consumed 329

by a feature in the representation space (Scherlis 330

et al., 2022). Adopting one-layer and two-layer toy 331

models similar to those used in the superposition 332

study (Olah et al., 2020a), this work investigates 333

how feature sparsity and importance influence fea- 334

ture capacity allocation. The result indicates that 335

features are represented based on their significance 336

in reducing loss, with more important features be- 337

ing allocated their own dimensions, while less crit- 338

ical ones can be overlooked (Olah et al., 2020a; 339

Scherlis et al., 2022). Features end up sharing di- 340

mensions only when assigning additional capacity 341

results in an equal or substantial decrease in loss. 342

Monosemanticity. A comparable hypothesized 343

phenomena is monosemanticity, in which polyse- 344

mantic neurons can be elucidated by a combina- 345

tion of interpretable features using dictionary learn- 346

ing/a sparse autoencoder (Bricken and Pehlevan, 347

2021). The study is based on a one-layer trans- 348

former model equipped with a 512-neuron MLP 349

layer. The sparse encoder is trained on MLP ac- 350

tivations from 8B data points, with feature expan- 351

sion ranging from 512 to 13,100. The analysis 352

focuses primarily on an expansion with 4,096 fea- 353

tures learned in a single run. During the experi- 354

ment, the hypothesis about disentangling features 355

in a larger sparse network is nearly debunked due to 356

the increased loss and unmanageable performance. 357

Alternatively, Bricken and Pehlevan (2021) adopts 358

the sparse encoder to decompose MLP activations. 359

The results show that dictionary learning can suc- 360

cessfully extract monosemantic features such as 361

Arabic text, DNA sequences, base64 strings, etc. 362

Despite the challenges posed by recovering low- 363

dimension data into a higher dimension, a recent 364

study shows that ground truth features can be re- 365

covered through dictionary learning with a sparse 366

autoencoder (Sharkey et al., 2022). It is worth 367

noting that, in this study, the ground true features 368
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are pre-defined, which differs from real data with369

unknown number of learned features.370

2.4 Understanding Grokking371

In the preceding subsection, we discuss various372

observations of toy networks from a structural per-373

spective. However, it is equally important to un-374

derstand the training dynamics of these models,375

which remains a largely unexplored area. In the376

following, we will focus on a specific phenomena377

that challenges our belief about early stopping to378

prevent overfitting, known as grokking.379

Grokking is a phenomenon where models sud-380

denly improve their validation accuracy after381

severely overfitting on overparameterized neural382

networks (Power et al., 2022). The surge in vali-383

dation accuracy is regarded as a gain of general-384

ization ability. Experiments built on a two-layer385

decoder-only transformer network has shown that386

smaller datasets necessitate a greater number of op-387

timization steps (Power et al., 2022). The minimal388

amount of data needed for grokking also hinges on389

minimal number of data points required to learn a390

robust representation (Liu et al., 2022a). Further-391

more, it has been found that generalization often392

coincides with well-structured embeddings. Addi-393

tionally, regularization measures can accelerate the394

onset of grokking, with weight decay standing out395

as particularly effective in bolstering generalization396

capabilities (Liu et al., 2022a).397

When examining weight norms of the final layers398

in models that don’t use regularization techniques,399

a phenomenon, termed as slingshot mechanism, has400

been observed. It describes a cyclic behavior dur-401

ing the terminal phase of training, where there are402

oscillations between stable and unstable regimes.403

It is characterized by a phase where weight norms404

grow, followed by a phase of norm plateau. Thilak405

et al. (2022) point out that grokking, non-trivial406

feature adaptation, occurs only at the beginning of407

slingshots. The appearance of the slingshot effect408

and grokking can be modulated by adjusting opti-409

mizer parameters, especially when using adaptive410

optimizers such as Adam (Kingma and Ba, 2014).411

However, it is unclear whether this observation412

holds universally across various scenarios. Addi-413

tionally, another concept called the LU mechanism414

has also been proposed, focusing on dynamics be-415

tween loss and weight norms (Liu et al., 2022b). In416

algorithmic datasets, an L-shaped training loss and417

a U-shaped test loss reduction concerning weight418

norms are identified, implying an optimal range 419

for initializing weight norms. Nevertheless, this 420

finding does not seamlessly transfer to real-world 421

machine learning tasks, where large initialization 422

and small weight decay are often necessary. Lyu 423

et al. (2023); Mohamadi et al. (2023) attribute it 424

to a competition between the early-phase implicit 425

bias favoring kernel predictors induced by large 426

initialization and a late-phase implicit bias favor- 427

ing min-norm/margin predictors promoted by small 428

weight decay. Similarly, Merrill et al. (2023) con- 429

clude that this competition manifests a competition 430

between a dense subnetwork in the initial phase 431

and a sparse one after grokking. 432

Another concept is also considered related to 433

grokking, known as double descent. It captures the 434

pattern where a model’s test accuracy at log level 435

initially improves, then drops due to overfitting, 436

and finally increases again after gaining generaliza- 437

tion abilities (Nakkiran et al., 2021). This pattern 438

is more noticeable in the test loss. A unified frame- 439

work has been developed to integrate grokking with 440

double descent, treating them as two manifesta- 441

tions of the same underlying process (Davies et al., 442

2023). The framework attributes the transition of 443

generalization to slower pattern learning, which 444

has been further supported by Kumar et al. (2023). 445

This transition is demonstrated to exist at the level 446

of both epochs and models. 447

The relation between grokking and memoriza- 448

tion has also been explored on algorithmic datasets 449

and with two-layer neural models. Experiments 450

using slightly corrupted datasets have revealed 451

that memorization can coexist with generalization. 452

Memorization can be mitigated by pruning relevant 453

neurons or by regularization. While different reg- 454

ularization methods target various learning strate- 455

gies, they all contribute to better generalizing rep- 456

resentations. And the training process in the study 457

consists of two stages: i) the grokking process, ii) 458

the decay of memorization learning (Doshi et al., 459

2023). However, the underlying causes behind this 460

process are not fully understood. And the assump- 461

tion that regularization is the key to this process 462

are under debate, especially in the light of observ- 463

ing grokking in absence of regularization (Kumar 464

et al., 2023). The importance of the rate of feature 465

learning and the number of necessary features are 466

favored in explanations, challenging the role of the 467

weight norm (Kumar et al., 2023). 468

Interestingly, Nanda et al. (2023) find that 469
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grokking is correlated with another phenomenon470

termed “phase change” (Olsson et al., 2022), ob-471

served during the training phase when using the472

Adam optimizer. “Phase change” is conceived as473

an indicator that models begin to gain in-context474

learning abilities. However, our understanding to-475

wards it is still in its infancy. The assumption of476

links between grokking and “phase change” needs477

further exploration. Besides, the study uncovers an478

algorithm that utilizes Discrete Fourier Transforms479

and trigonometric identities to achieve modular ad-480

dition, with evidence of these operations embedded481

within the model’s weights. The circuits that en-482

able this algorithm seems to evolve in a steady483

manner instead of through randomly walking. It is484

also claimed that the training process encompass485

three distinct stages: memorization, circuit forma-486

tion, and memorization cleanup. Consequently, it487

is hypothesized that grokking occurs gradually as488

memorized parts are removed.489

Additionally, there are other observations in this490

field, such as neural collapse (Papyan et al., 2020),491

yet there is a notable gap in understanding how492

these observations are interconnected. The root493

causes of these observations often leads to con-494

flicting viewpoints. For example, Gromov (2023)495

suggests that grokking might be triggered by the496

learning of a new feature. Unfortunately, the leap in497

generalization could be too subtle to notice without498

a hierarchical model (Gromov, 2023). On the other499

hand, there is some debate around linking grokking500

with generalization (Levi et al., 2023). Moreover,501

a significant limitation of these studies is their fo-502

cus on arithmetic datasets instead of real-world503

datasets, which casts doubt on how broadly these504

findings can be applied. To fully understand the505

generalization of models and reconcile these con-506

flicting views, a holistic examination of how these507

observations relate to each other and their impact508

on training dynamics across models is essential.509

2.5 Application to LLM Alignment510

In this section, we summarize the potential appli-511

cations of mechanistic interpretability techniques512

on LLMs. These applications aim at evaluating513

models’ alignments from different views.514

Inspired by induction heads, a recent work mea-515

sures bias scores of attention heads in pretrained516

LLMs, focusing on specific stereotypes. It has also517

implemented a method to ensure the accuracy of518

identifying biased heads by comparing the changes519

in attention score between biased heads and regular 520

heads. By masking the biased heads identified, the 521

study effectively reduces the gender bias present in 522

the model (Yang et al., 2023). 523

Similarly, one line of work localizes attention 524

heads that are responsible for lying with linear prob- 525

ing and activation patching. A set of carefully de- 526

signed prompts are employed to instruct LLMs to 527

be dishonest. Linear probes are trained to clas- 528

sify true and false activations of attention heads. 529

Then, activations relevant to lying behaviors are 530

patched with those of honest behaviors to observe 531

the change of outputs. Multiple attention heads 532

across five layers are casually located (Campbell 533

et al., 2023). 534

In contrast to decipher the inner workings of 535

models, one study shifts focus to examine the differ- 536

ences between pre-training and fine-tuning phases. 537

It reveals that fine-tuning retains all the capabili- 538

ties learned in pre-training phase. Transformations 539

are due to “wrappers” learned on top of models. 540

Interestingly, these wrappers can be eliminated by 541

pruning a few neurons or by retraining on an un- 542

related downstream task (Jain et al., 2023). This 543

discovery sheds light on potential safety concerns 544

associated with current alignment approaches. 545

3 Representation Engineering 546

As mentioned in Section 2.1, mechanistic inter- 547

pretability represents a narrow field of XAI, relying 548

on tailored, post-hoc, global, and white-box meth- 549

ods to explain the inner workings of LLMs. Within 550

this post-hoc, global and white-box landscape of 551

XAI, there are also other emerging philosophies. 552

One notable direction is representation engineer- 553

ing (Zou et al., 2023). 554

3.1 Why Representation Engineering? 555

Representation engineering excels at offering an 556

intuitive grasp of the learned embedding spaces. 557

Through visualizing these learned representations, 558

we can gain causal insights that help explain and 559

potentially refine models’ behaviors. Furthermore, 560

the use of probing techniques plays a key role in 561

identifying specific parts within models that are 562

crucial for achieving alignments. 563

3.2 Representation Engineering Algorithms 564

Representation engineering techniques follow the 565

probing-based analysis paradigm, which could date 566

back to the BERT era (Zhao et al., 2023). These 567
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techniques can be further grouped into two cate-568

gories: unsupervised and supervised methods.569

Unsupervised Methods: A typical example is570

using principle component analysis (PCA) for571

visualization. To obtain unambiguous represen-572

tation, Marks and Tegmark (2023) create self-573

curated true/false datasets to study the geometry of574

true/false statement representations derived from575

a model’s residual stream. After applying PCA,576

a clear linear structure emerges. The truth direc-577

tions are leveraged to mediate model’s dishonest578

behaviors locally. Another avenue of study em-579

ploys LLMs to explain representations in natural580

language. Firstly, the representations of the original581

models are extracted and then transformed. These582

transformed activations are patched into a transla-583

tion model, which has been trained using data from584

previous interpretability methods. This approach585

has proven to be as effective as, or even better than,586

exiting probing techniques in 12 factual reasoning587

tasks (Ghandeharioun et al., 2024).588

Supervised Methods: Building a linear model on589

top of representations stands as a fundamental tech-590

nique in representation engineering to identify spe-591

cific behaviors. However, one notable limitation592

of this method is that each classifier is designed593

to predict just one particular type of behavior. For594

example, hallucination detection targets at discrim-595

inating if a response is generated from prompts596

and model memories or from extrapolation from597

prompts (CH-Wang et al., 2023). A recent work598

has been developed to identify hallucination to-599

kens from the response by ensembling a range of600

classifiers that are trained for all layers on separate601

hidden parts: MLPs and attention layers (CH-Wang602

et al., 2023). The integrated classifier is responsible603

for performing hallucination detection in response.604

3.3 Application to LLM Alignment605

Existing bias measurements rely heavily on care-606

fully designed prompts (Tamkin et al., 2023). The607

effectiveness of these measurements is determined608

by the comprehensiveness of these prompts. How-609

ever, prompts are limited to capturing only recog-610

nized biases using a finite set of examples. This611

fails to provide a thorough way to uncover biases612

that have been learned but not explicitly known.613

Recently, representation engineering has emerged614

as a promising avenue for detecting such biases615

within embedding spaces.616

A notable study suggests that MLPs operate on617

token representations to alter the distribution of out- 618

put vocabulary (Geva et al., 2022). After reverse 619

engineering MLPs, it is believed that the output 620

from each feed-forward layer can be seen as sub- 621

updates to output vocabulary distributions, essen- 622

tially promoting certain high-level concepts. This 623

insight has been used effectively to mitigate toxi- 624

city levels in LLMs (Geva et al., 2022). Another 625

work finds multiple representation vectors within 626

MLPs that encourage toxicity. These vectors are 627

decomposed using singular value decomposition, 628

allowing researchers to pinpoint specific dimen- 629

sions that contribute to toxicity (Lee et al., 2024). 630

4 Further Discussion 631

In this section, we provide further discussion on 632

different explanation scales of two techniques. Fur- 633

ther, we provide our understanding towards their 634

Explanability Scale. These two techniques ex- 635

plain LLMs at opposite scales. 636

• Micro-scale: Mechanistic interpretability fo- 637

cuses on dissecting the intricate inner workings 638

of LLMs at the neuron and circuit levels. It aims 639

at illustrating how models function and process 640

certain tasks with subnetworks. 641

• Macro-scale: Representation engineering places 642

representations, rather than neurons or circuits, 643

as the central unit of analysis. The goal is to 644

understand and control cognitive behaviors by 645

studying their manifestations in learned represen- 646

tation spaces. 647

Roles in XAI. Two techniques are providing multi- 648

faceted perspectives in the field of XAI. Represen- 649

tation engineering embodies how well embeddings 650

capture the essence of data. Good representations 651

are crucial to making accurate predictions. The vi- 652

sualization of representation can also demonstrate 653

implicitly the quality of learning. On the other 654

hand, through the lens of mechanistic interpretabil- 655

ity, we can delve into relations between models’ 656

abilities like generalization and training dynamics. 657

Examining the evolution of models from initializa- 658

tion to generalization, we can reveal characteristics 659

of generalization, such as sparsity. These character- 660

istics could serve as benchmarks for what consti- 661

tutes “good learning”. Apart from that, mechanistic 662

interpretability is known to explain individual func- 663

tional components and potentially improve model 664

performance in the future. 665
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Potential to Alignment. At current stage, both666

techniques have witnessed preliminary applications667

in LLM alignment. Mechanistic interpretability668

plays a crucial role in locating knowledge or biases669

at the level of attention heads, while representa-670

tion engineering is primarily employed in targeting671

undesired behaviors at the level of layers. Despite672

distinct focus of each approach within models, both673

have proven effective in identifying biases and high-674

lighting practical steps for improvement. However,675

they are still incompetent in uncovering rudimen-676

tary causes behind these biases.677

5 Research Challenges678

In this section, we outline the research challenges679

that deserve future efforts from the community.680

5.1 The Validity of Existing Theories681

While theories that attempt to explain the mecha-682

nisms behind the capabilities of Transformers are683

promising, their empirical support is not defini-684

tive. For example, understanding induction heads685

is key to explain Transformers because they are686

recognized as foundations for in-context learning687

abilities. However, as highlighted by Olsson et al.688

(2022), defining what exactly an induction head is689

remains somewhat elusive. Similarly, the proposi-690

tion of mathematical framework to explain circuits691

inside a simplified network opens up an interest-692

ing avenue of research. Although Lieberum et al.693

(2023) conclude that circuit analysis is feasible on694

LLMs, this theoretical framework has not been695

thoroughly tested with empirical studies. Besides,696

these theoretical models rely on idealized assump-697

tions such as superposition and often lack ground698

truth. This further complicates the task of validat-699

ing these theories.700

5.2 The Curse of Dimensionality701

Another challenge is that the parameters we can702

explain are much less than a third of all parameters703

in LLMs. These explanations focus on compo-704

nents of attention heads, and although dictionary705

learning helps to partially understand polysemantic706

neurons, there is still a vast territory that remains707

unexplored. The rest majority of these model pa-708

rameters are tied to MLP layers, which are notori-709

ously difficult to fully comprehend (Olsson et al.,710

2022). Their compositions are more complicated711

than those of attention layers, making the analysis712

process considerably more arduous and perplex-713

ing. For instance, Geva et al. (2021) believes that 714

the output of MLPs is a composition of memories 715

including textual patterns and output distributions. 716

Meng et al. (2022) attempt to modify MLPs to 717

edit factual knowledge in LLMs. However, the ef- 718

fectiveness of editing has been put into doubt by 719

another work (Hase et al., 2023). 720

5.3 Evaluation of Concepts and Circuits 721

A key challenge in mechanistic interpretability is 722

validating and ensuring the accuracy of proposed 723

conceptual explanations and functional circuits. 724

Unlike straightforward metrics in machine learn- 725

ing to assess predictions, interpretation evaluation 726

lacks clear ground truth. As noted in Chan et al. 727

(2022), we are short of tools to measure the degree 728

to which explanations interpret the relevant phe- 729

nomenon. Existing ad-hoc ablation methods, i.e. 730

standard zero and mean ablations, are neither uni- 731

versal nor scalable. Exploring measurements from 732

various angles, such as casual scrubbing, which 733

involves randomly sampling inputs to patch acti- 734

vations without disturbing the input distribution, 735

could enrich our evaluation dimensions. More- 736

over, manual inspections are challenging in iden- 737

tifying circuits within LLMs. Our understanding 738

of automatically discovering these circuits is still 739

developing (Wang et al., 2022). Heterogeneous 740

mechanistic explanations can be generated in net- 741

works trained on simple tasks such as modular ad- 742

ditions (Zhong et al., 2023). This suggests that 743

even in seemingly simple scenarios, the outcomes 744

of circuit analysis can be uncertain. Additionally, 745

different models learned on similar tasks might 746

learn same family of circuits, but the precise cir- 747

cuits learned by individual networks are not the 748

same (Chughtai et al., 2023). 749

6 Conclusions 750

In this paper, we investigate the techniques that 751

allow us to examine the holistic interpretability of 752

LLMs with the goal of better alignment. We center 753

on two main paradigms: mechanistic interpretabil- 754

ity and representation engineering. We introduce 755

the key techniques within two paradigms, as well 756

as their applications to enhance LLM alignment. 757

Additionally, we also share our insights and visions 758

on them, outlining open challenges around vali- 759

dating theories, tackling complexity, and precisely 760

defining target behaviors. 761
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Limitations762

In this paper, we study the XAI techniques that763

can zoom in LLMs to provide insights on decision764

making. We primarily focus on the mechanistic765

interpretability and representation engineering. De-766

spite the valuable perspectives, our position study767

has some notable limitations. We do not explore the768

complete landscape of relevant XAI methods for769

understanding LLMs, due to the space constraints.770

Other techniques like concept-based explanations,771

example-based explanations, and counterfactual ex-772

planations may also provide some useful insights773

on LLM inner workings as well.774
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