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Abstract
To monitor complex systems, such as telecommunication and computer networks, interconnecting het-
erogeneous data with shared definitions is necessary for efficient interpretation of events and incidents.
Semantic Web technologies are essential in this context, as they address the problems of data hetero-
geneity, knowledge sharing and logical/probabilistic reasoning. Well-established Network Monitoring
Systems (NMSs) and Security Information and Event Management systems (SIEMs) do not explicitly use
Semantic Web knowledge representation, however. To fill this gap, we propose an end-to-end data pro-
cessing architecture that combines NMSs/SIEMs design patterns with Semantic Web tools. The platform
features batch/stream processing, declarative data mapping with RML, data patching & reconciliation
with SPARQL queries and SKOS, provenance auditability with centralized configuration and data man-
agement, and semantic data transfer with Kafka. The proposed architecture has been instantiated and
tested in an industrial setting.
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1. Introduction

Incident management for broad scale Information and Communications Technology (ICT)
systems implies scrutinizing massive amount of heterogeneous data for proper definition of
remediation strategies. In the best case, crisp reasoning over situations at hand brings fast root
cause analysis and high level of confidence for selecting the corrective maintenance actions to
carry out. Anomaly detection within decision support systems, such as Network Monitoring
Systems (NMSs) and Security Information and Event Management (SIEM) tools, typically rely
on expert knowledge translated into logical rules for catching specific situations based on the
systems activity traces. However, uncertainty arise whenever the ICT system’s activity shows
unexpected values or behaviors poorly fitting known activity models. A typical solution would
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be to fine-tune the decision support system stack, for example by extending the detection rule
set with the new values, or retraining the anomaly detection model. This unfortunately brings
computational complexity and overfitting to the diagnosis stage.

A better solution is to keep rules and models consistent by working on semantically equal data.
The notions of “ontology” and “data model” solve the challenge of reasoning upon composite
alerting signals at the semantic level. Indeed RDF Knowledge Graphs [1] bring an abstraction
level for standard interpretation and logical reasoning over heterogeneous data.

Leveraging on Semantic Web tools could bring decision support systems for ICT systems to a
next level of diagnosis and recommendation capabilities. However few feedback exist about the
design of such data processing platform from an end-to-end perspective. This paper reports
on the design experiments for a knowledge graph-based data platform made at Orange, an
international telecommunication infrastructure and service provider. The NORIA platform is
part of an on-going research effort for improved resilience of complex networks. It comprises
the following key features: 1) building a RDF Knowledge Graph from static (IT resources lists,
organization) & streamed (trouble tickets, logs) data; 2) providing data & inferences provenance
and confidence indicators; 3) enabling inline & posterior entity patching and reconciliation;
4) enabling multi-level & synergical reasoning. Our main contributions with this paper are:
setting design methodology and principles for an end-to-end knowledge graph-based data
platform, providing Extract Transform & Load (ETL) architecture details and code for handling
descriptive datasets and events streams, and sharing lessons learned while building the platform
about data mapping strategies and configuration deployment.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
explores design challenges and requirements through a tool chain model proposal. Section 4
details our KG-based data platform architecture. References to contributed open source code are
provided there. Section 5 evaluates the platform features and discusses lessons learned. Finally,
Section 6 concludes the paper and discusses some future work.

2. Related Work

Designing a data processing architecture for Incident Management of ICT systems involves
various research and technical domains, such as: data transformation and wrangling, computing
and service architecture, decision-making and business process management. In this section,
we review related work from the aspect of current Network Monitoring Systems (NMSs) &
Security Information and Event Management systems (SIEMs) architectures, and Semantic Web
data management solutions.

NMSs [2, 3] and SIEMs [4, 5] are two different product lines due to the nature of the data
processed and the expectations regarding the incident management processes in which they are
involved (e.g. ISO/IEC 20001, NIST SP 800-612). For telecommunication networks, alarms (i.e. a
durable or non fugitive fault that happens on an atomic function, as per ITU-T G.7710/Y.17013)
are first class citizens that should be reported to a Management and Control System. For

1https://www.iso.org/standard/70636.html
2http://dx.doi.org/10.6028/NIST.SP.800-61r2
3https://www.itu.int/rec/T-REC-G.7710/
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cybersecurity, technical logs combines with vulnerabilities and threat intelligence in a Log
Collection → Log Normalization → Notifications and Alerts → Security Incident Detection
component chain [6] for threat response management.

In both contexts, data processing architectures generally follow the producer/consumer
design pattern4 (a.k.a. observer pattern) and inspirations from distributed computing (i.e. hubs
+ aggregator), particularly in order to be able to handle data sources with varied characteristics
according to the monitored system uniformity and requirements (e.g. an High-Performance
Computing platform with a data transfer and processing service offer vs an Internet Service
Provider with communication service and PaaS offers). Data persistence/dynamics characteristic
and usage objective are driving forces about local computing performance through the choice
of a best storage technology (e.g. Input/Output performance, storage footprint): 1) daemons and
web applications (e.g. dedicated filesystem for raw logs, binaries and libraries); 2) events and node
information (e.g. PostgreSQL5 for structured notifications and characteristics); 3) performance
data (e.g. RRD6 for throughput or CPU usage time series). Other lines of research exist for
improving system performance: distributed event management and multi-agent architectures;
data sketching; stream processing and anomaly detection subject to resource constraints.

Knowledge Graphs [1] bring an abstraction level for standard interpretation and logical
reasoning over heterogeneous data. Graph data structures are sometimes used directly internally
in NMSs and SIEMs for cases such as visualizing network topologies and data flows, representing
and implementing failure mechanism models for root cause analysis (e.g. with fault tree analysis),
or enabling knowledge management and data exploration with a traversal approach. Knowledge
representation with Semantic Web technologies is not in use explicitly in well-established tools,
however. Despite this, various research projects offer solutions of different complexity and
maturity to support the KGC process and make Incident Management more effective.

In end-to-end frameworks [7, 8, 9, 10], the Knowledge Graph Construction (KGC) step is
never considered singular, initial or terminal, but rather is the subject of multiple instances of a
similar tool/principle within processing flows depending on the application field. In addition,
this step is always placed between heterogeneous non-RDF data and a Knowledge Graph
working sometimes as a main data storage, and sometimes as a support for third-party inference
processes.

Generic tools devoted to KGC focus on stream processing and reasoning, for examples:
RMLStreamer [11] applies declarative mapping on the fly to structured data streams (e.g. file,
Kafka topic) with RML rules; StreamingMASSIF [12] uses basic string substitution for mapping,
and allows for real-time reasoning (e.g. SPARQL query processing, Complex Event Time
processing); C-SPARQL [13] extends the SPARQL query language for continuous reasoning
within a publisher/subscriber platform. For static data: RMLMapper [14] enables data fetching
and declarative mapping with RML rules; Ontop [15] creates a virtual graph representation
of various data sources via SPARQL queries; SLOGERT [16] orchestrates log modeling and
annotation with Cyber Threat Intelligence tags7.

4The TM Forum’s ODA aims to improve user experience and IS interoperability in the ICT industry beyond general
best-practice approaches for Decision Support Systems design.

5https://www.postgresql.org/
6http://www.rrdtool.org/
7As for SLOGERT v0.9.1: with MITRE CEE categories from http://cee.mitre.org/language/1.0-alpha/

https://www.postgresql.org/
http://www.rrdtool.org/
http://cee.mitre.org/language/1.0-alpha/


This paper’s end-to-end data processing approach combines NMSs/SIEMs design patterns
with Semantic Web tools. It includes requirements for distributed processing, separation of
concerns, data sketching (i.e. enabling both early and posterior reasoning on data), openness to
third-party databases/tools, and re-use of well-established frameworks (e.g. declarative mapping,
message passing).

3. Design methodology and challenges

This section outlines the methodology followed in constructing a knowledge graph-based data
platform with stream processing and reasoning capabilities for Incident Management over ICT
systems. It proposes a conceptual tool chain and examines design challenges and requirements
to frame the high-level design and implementation work discussed in Section 4.

Conceptual tool chain&design principles. Looking at data integration theory and generic
data transformation processes (e.g. “Extract, Transform, Load”, CRISP-DM), we remark that none
directly take into account the abstraction and reasoning capabilities brought by the Semantic
Web technologies and Knowledge Graphs. Furthermore, these design patterns set apart decision-
making concerns where informed-decisions potentially involve graduated understanding of
data (i.e. raw data → information → knowledge) combined with synergical reasoning [17].

Extending on these, we propose a tool chain model (Figure 1) to guide design thinking steps:
unstructured data (e.g. event logs) enters the tool chain and becomes structured data by appli-
cation of a defined/learnt structure model. Semantic mapping is applied for making annotated
data. These can benefit of additional knowledge from some enrichment service (e.g. mapping
assets to organization or vulnerability knowledge). Reasoning service (e.g. rule-based inference,
confidence propagation, link/entity prediction) work from annotated data for producing further
knowledge (i.e. interpreted data). Downstream agents (e.g. operational teams, information
system) get informed (e.g. situation awareness) by querying interpreted data. This conceptual
tool chain is open to complementary process, such as direct feed of structured data or recursive
loops of the inference step.

Based on the above, we posit the following design principles (further discussed below) to
streamline integration and improve user adoption: 1) Minimize transformation needs at ingress:
data encoding (serialization & structuration) must be backward compatible early in the process-
ing chain to limit the number of technologies used; 2) Independent downstream usage: parallel
downstream applications may focus on different data facets, so the serialization/structure should
allow easy separation of data from meta-data without imposing specific remote procedure calls;
3) Implementation independent: abstractly describing transformation and processing rules en-
ables system behavior description and transposition independent of implementation; 4) Integrate,
customize or build: prioritize integrating existing frameworks that meet requirements, extend
partially meeting frameworks, or develop specific solutions if neither of the previous options
apply.

Note that knowledge engineering methodologies (e.g. Competency Questions [18] and
Linked-Open Terms [19]) are separate from our proposal. Data models resulting from these
methodologies are used in the annotation step, but our tool chain is not affected by changes in



data models from a functional and technical perspective.

Dataset characteristics organize the processing architecture. Scrutinizing Orange in-
ternal datasets and third party datasets based on their TAM Domain/Sub domain8, we took note
of the data structures and technical characteristics (e.g. number and type of features, serializa-
tion syntax, schema definition, access protocol, update period) for devising a data integration
strategy. The update period and data access method emerged as a key design factors: descriptive
datasets (e.g. assets database, network topology, organization) have a low refreshment pace (1
day to 1 week period) and are generally available through file-based platforms (e.g. database
API, file dumps), while network operations and events (e.g. interface status change, applications
logs, alarms, trouble tickets) are stream feeds with fast-paced time-stamped data (real time to
quarter-hour period).

Data wrangling with syntax heterogeneity. When transforming data, we need to simul-
taneously consider syntax heterogeneity and batch/stream processing. This can be represented
using the 𝐸𝑇 [𝑃1]𝐿[𝑃2]𝐿 model embedded in Figure 1, where 𝑃1 components are for per
feed processing and 𝑃2 components apply at the dataset level. The 𝑃1/𝐿 interface should
comply with standard data transport solutions (e.g. JSON for Kafka messages) and Knowlegde
Graph data ingestion methods (e.g. SPARQL Update, periodic/on-demand bulk load), while the
𝐿/𝑃2/𝐿 interface requires data representation transformation to match 𝑃2 requirements (e.g.
Turtle to JSON-Graph) and integrate results (e.g. time-stamped confidence as a RDF triple) into
the KG-based application data model.

Data wrangling with annotation, patching & reconciliation tasks. We assume data
must have meaning (e.g. data is about a hostname or a date, and not just a string of characters)
and structure to be useful (in our case, a relational graph structure). Therefore we introduce
the concept of data patching & reconciliation to do in-place update of the graph data and link
entities from different sources. This includes substituting equivalent literals with controlled
vocabulary and normalizing terms and relationships.

Post-processing constraints on the ETL stages. First, it is important to track data origin
for trustworthiness. From a practical standpoint, this allows for: 1) isolating/correcting contam-
inated (intentionally or not) data sources; 2) accessing the original data to restore its original
meaning and context; 3) exposing data characteristics (e.g. freshness, validity period) for refined
decision-making. Second, it is necessary to make post-processing efficient by considering
both the composition of post-processing (e.g. sequential, parallel) and the form of the data
for lossless transformation, such as from graph to table. The third goal is to determine how
post-processing results are utilized. This involves considering the compatibility of processing
blocks and whether the results can be interpreted beyond their original context. It also involves
reintroducing the results into the base data space to serve iterative or synergistic reasoning. The
nature of the result must also be considered in terms of form and value, as it can add information
to an existing object (e.g. assigning an cyber security risk level to a network asset) or create a

8i.e. their parent application/research domain, see https://www.tmforum.org/application-framework/
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new object (e.g. an alert). Provenance and trust are necessary here, but with different semantics
since they affect the product of data interpretation, not the original data.

4. KG-based platform and data processing architecture

Thinking through the design methodology of Section 3, we developed two data integration
pipelines and a mechanism for data interpretation (Figure 1) based on well-known open source
frameworks (e.g. Apache Kafka9, Apache Airflow10, OpenLink Virtuoso11), academic projects
(e.g. RMLMapper [14], StreamingMASSIF [12], string2vocabulary [20], grlc [21], RDFUnit12) and
adhoc code (Table 1). The overall system is akin to a Lambda data processing architecture [22].

Figure 1: Conceptual tool chain & data platform overview.
Acronyms: ESB = Enterprise Service Bus, SSB = Semantic Service Bus, KG = Knowledge Graph. Plain arrows are for data flows,
dotted arrows for control and query flows. Arrows start from the component initiating the flow/transaction. Numbers for the
“descriptive datasets” and “events” blocks refer to the number of sources in Table 2. Component names within brackets relate
to adhoc code from Table 1. 𝑃1 and 𝑃2 stands for Processing components groups in an 𝐸𝑇 [𝑃1]𝐿[𝑃2][𝐿] reading of the tool
chain (i.e. matching the tool chain with the ETL process model).

Knowledge Graphmanagement. We manage the Knowledge Graph using a Virtuoso quad
store, with enabled SPARQL endpoint and Faceted Browser services. Named graphs enable fast
data access and help track the source of triples in RDF datasets. We use predefined URI patterns
that closely match the NORIA-O data model (see below), following the Graph per Source and/or
Graph per Aspect data management patterns [23]. This prior knowledge simplifies the creation

9https://kafka.apache.org/
10https://airflow.apache.org/
11https://virtuoso.openlinksw.com/
12https://github.com/AKSW/RDFUnit
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Table 1
Adhoc code (complementary developments).

Component name Role

airflow-dag-gen Parametric Airflow DAG generator for data integration and patching.

KafkaSink StreamingMASSIF [11] component for JSON-LD output to Kafka,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

grlc Enhanced grlc [21] with GitLab connector and SPARQL Update,
available at https://github.com/Orange-OpenSource/grlc.

NORIA-O RDF data model for IT networks, events and operations information,
available at https://w3id.org/noria/.

SMASSIF-RML Modified RMLMapper [14] for StreamingMASSIF [11] component,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

ssb-consum-up Kafka to SPARQL gateway,
available at https://github.com/Orange-OpenSource/ssb-consum-up.

virtuoso_loader Event-triggered (Kafka) bulk load of remote RDF datasets into Virtuoso.

of linked data using a declarative transformation approach before inserting mapped data into
the graph (see below for implementation details).

Batch processing for descriptive datasets [airflow-dag-gen, virtuoso_loader]. A set
of Apache Airflow DAGs13 periodically trigger data downloading, mapping and inserting
tasks. DAGs are defined on a per ⟨𝑆𝑜𝑢𝑟𝑐𝑒, 𝑉 𝑖𝑒𝑤⟩ basis and are configured using a limited
set of parameters: schedule interval, a reference to a noria:ETL_process_node entity, and
templated ETL tasks to schedule.
noria:ETL_process_node entities are configuration nodes stored in the platform’s knowl-

edge graph. They include a reference to the data source to download via a dcat:downloadUrl
property, and a relationship to the RML mapping rules (also stored in the platform’s knowledge
graph). This allows for centralizing information (configurations and mapped data) with a
homogeneous representation, resulting in simplified interrogation and audit of data provenance.
Because RML is RDF data, making these rules available from the knowledge graph is as simple
as uploading an RML file into the graph store once the mapping implementation done.

Prior starting a mapping thread (i.e. a local rmlmapper-java instance), 1) a fetchRules
task queries the knowledge graph for the mapping rules and stores them in a temporary file,
and 2) a fetchData task downloads the raw data to map. Then mapping is started with
complementary output configuration parameters asking for RDF Trig14 serialization (enables
targeting specific named graphs in the downstream graph store with rr:graph attributes in
the mapping implementation) and provenance metadata generation at the dataset level [24]
(relates the mapping activity to the rml:source used in the mapping implementation with
a prov:used attribute). Because rmlmapper-java do not include target graph data in the
provenance metadata file, we rewrite the file with an adjustProvenance step. Once the
mapping thread is over, a loadRequest signal triggers fetchMappedData and loaderRun

13https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
14https://www.w3.org/TR/trig/
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threads on a downstream virtuoso_loader component listening to a specialized Kafka topic.
This ends the batch processing for descriptive datasets by inserting mapped data and provenance
metadata into the knowledge graph.

Speed processing for events [SMASSIF-RML, KafkaSink, ssb-consum-up]. A set of
specialized StreamingMASSIF pipelines continuously consume, map and forward data for in-
sertion into the knowledge graph by a downstream ssb-consum-up component (a Kafka to
SPARQL gateway). The typical form of the pipelines is 𝐾𝑎𝑓𝑘𝑎𝑆𝑜𝑢𝑟𝑐𝑒 → 𝑅𝑀𝐿𝑀𝑎𝑝𝑝𝑒𝑟 →
(𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔) → 𝐾𝑎𝑓𝑘𝑎𝑆𝑖𝑛𝑘, where 𝑅𝑀𝐿𝑀𝑎𝑝𝑝𝑒𝑟 is a modified version of the
rmlmapper-java tool (to handle streamed data as a StreamingMASSIF component) and
𝐾𝑎𝑓𝑘𝑎𝑆𝑖𝑛𝑘 sends the data stream in JSON-LD syntax to the Semantic Service Bus (SSB,
see below). Pipelines are defined on a per ⟨𝑆𝑜𝑢𝑟𝑐𝑒, 𝑉 𝑖𝑒𝑤⟩ basis and are configured using a
limited set of parameters: input topic, reference to a RML rules implementation, and output
topic.

Upstream of the mapping pipelines, collect engines depend on the data source technology
and feed type (e.g. Web API periodic pull, ELK stream, Apache Spark stream, MQTT messages).
Downstream of the mapping pipelines, we posit that RDF data can serve multiple purposes (e.g.
direct update of the knowledge graph, intermediary vocabulary reconciliation, multi-source
event logs co-occurrence alerting, notification-triggered dependency calculus).

Therefore we developed the Semantic Service Bus (SSB) concept by leveraging on the above
mentioned Kafka event streaming technology and considering the following features: 1) for-
warding RDF data messages in standard RDF serialization; 2) providing provenance metadata;
3) providing named-graph compatibility; 4) enabling the use of SPARQL Update actions15. The
Kafka platform uses ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ pair-based messaging with native JSON compatibility, hence
JSON-LD is a natural choice for a SSB. Kafka’s 𝑘𝑒𝑦 is for partitioning and compaction16, hence
it is akin to a primary key and may not be used for meta-data unless this complies with the
partitioning and compaction principles (note that 𝑘𝑒𝑦 can be left empty). Considering that input
RDF triples may be part of a named-graph, we define the two following approaches for mapping
JSON-LD to the ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒⟩ message model: 1) build Kafka messages with key = NULL,
and value = <JSON-LD payload> (with or without named graph); 2) assuming named
graph at the subject level, build Kafka messages with key = <JSON-LD metadata>
(e.g. {[provenanceMetadata] , [updateAction], [otherMetadata]} ) and
value = <JSON-LD payload> (with named graph). For the metadata, we remark
that updateAction can be mapped to specializations of well-known vocabular-
ies such as schema:UpdateAction17. Also, provenanceMetadata can include a
prov:wasGeneratedBy attribute as each processing node may update the provenance
metadata for keeping a trace of the processing tool chain. Furthermore, we remark that
approach #2 is partially compatible with #1 from the consumer service perspective. It also sets
constraints on the implementation of the provider service. Based on these last two points, we
chose to implement the approach #1 (i.e. at the KafkaSink and ssb-consum-up level).

15https://www.w3.org/TR/sparql11-update/
16https://kafka.apache.org/documentation/#compaction
17https://schema.org/UpdateAction
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Since we are using named graphs at the Knowledge Graph level and that the Virtuoso graph
store requires defining the target graph parameter for data insertion using SPARQL update
queries, we explicit the design of the ssb-consum-up component with Equations (1) & (2):

(𝑠, 𝑝, 𝑜, 𝑔) −→
𝑂𝑝

𝑂𝑝{GRAPH 𝑔 {𝑠 𝑝 𝑜}} (1)

(𝑠, 𝑝, 𝑜) −→
𝑂𝑝,𝑔

𝑂𝑝{GRAPH 𝑔 {𝑠 𝑝 𝑜}} (2)

where Eq. (1) states that incoming messages from the SSB are RDF triples along with a target
graph information, thus data insertion into the downstream SPARQL endpoint is akin to
translating the messages into SPARQL update queries subject to a user-defined action 𝑂𝑝 (e.g.
INSERT); and Eq. (2) reflects the same with an additional user-defined target graph parameter 𝑔
whenever incoming messages are raw RDF triples. Assuming many StreamingMASSIF pipelines
pushing mapped data with target graph information into a same SSB topic, then a single
ssb-consum-up component instance is sufficient for continuous data insertion (e.g. with
𝑂𝑝 = 𝐼𝑁𝑆𝐸𝑅𝑇 , and 𝑔 = ⟨𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝐺𝑟𝑎𝑝ℎ𝑈𝑅𝐼⟩ for filling any gaps).

Datamodel [NORIA-O]. Based on Orange network & cybersecurity expert panel interviews
and Competency Questions analysis [18], four facets structuring the knowledge domain emerge
from the entities and properties that we identified for describing Incident Management over
ICT systems: structural (network assets such as servers and links), functional (network services
and flows), dynamic (events and states changes) and procedural (processes and actions). There
are several efforts to propose data models representing computing resources and how they are
allocated for hosting services. However, to date, there is no model to describe the multiple
interdependencies between the structural, dynamic, and functional aspects of a network in-
frastructure. In line with the Linked Open Term methodology [19], we have formalized and
implemented the NORIA-O conceptual model [25], an OWL-2 ontology that re-uses and extends
well-known ontologies such as SEAS, FOLIO, UCO, ORG, BOT and BBO. It is used as the main
data model for the data integration and exploitation work described in this paper as it can model
complex ICT system situations and serve as a basis for anomaly detection and root cause analysis.
The NORIA-O data model also provides a set of controlled vocabularies useful for standard inter-
pretation of the Knowledge Graph entities; for example, with reconciliation (see below) on the
network device alarms through the <Notification/EventTypeGroup/SecurityAlarm>
concept scheme.

Patching & Reconciliation [airflow-dag-gen, grlc]. The per source and per concept map-
ping approaches discussed above entails handling data ingest interdependencies with comple-
mentary patching & reconciliation tasks. We make use of an Airflow DAGs-based periodic run
of ordered patching queries in SPARQL syntax via a enhanced grlc [21] tool instance. For this
approach to work, we assume that the NORIA-O data model (see above) is available in the data
store, including the controlled vocabularies (a.k.a. NORIA-O KOS).

We observe that patching requests follow a limited number of forms that can be expressed as
(arche)types of patch queries, thus leading to a standard approach to patching (Eq. 3, where 𝑃



stands for Patching Queries and 𝑂 for Ontology):

𝑃𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠 × 𝑃𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛𝑠
query generator−−−−−−−−→ 𝑃 ; 𝑂 × 𝑃

patching−−−−→ 𝑂′ (3)

We define the 3 following archetypes, hence making the mapping definition process faster and
easier to maintain via patching requirements set in a definition file (e.g. YAML syntax) and
query generation (e.g. Python script + templated SPARQL queries in JINJA2 syntax):

1. 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆 := ⟨𝐿𝑖𝑡𝑒𝑟𝑎𝑙⟩ → ⟨𝑠𝑘𝑜𝑠 : 𝐶𝑜𝑛𝑐𝑒𝑝𝑡(𝑆𝑢𝑏𝑗𝑒𝑐𝑡)⟩. We implement it with
SPARQL queries as an exact string match via a LCASE(STR(x)) = LCASE(STR(y))
statement in order to avoid declaring redundant skos:altLabel in the NORIA-O vocab-
ulary files. For example, from Figure 1: “interface went down” → EventRecord.type
(<kos/Notification/EventType/StateChange>).

2. 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝑈𝑅𝐼 := ⟨𝐿𝑖𝑡𝑒𝑟𝑎𝑙⟩ → ⟨𝑆𝑢𝑏𝑗𝑒𝑐𝑡⟩) (but not a KOS URI). Likewise 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆,
we implement it as an exact string match. For example, from Figure 1: “router HSR2EE2”
→ Resource.resourceHostName('HSR2EE2').

3. 𝑎𝑑𝑑𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 := {⟨𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒,𝑂𝑏𝑗𝑒𝑐𝑡⟩} → ⟨𝑆𝑢𝑏𝑗𝑒𝑐𝑡⟩, i.e. a direct property between
a subject and an object when these 2 nodes are related by a given longer path. For
example, from Figure 1: “issue potentially triggered by” → EventRecord.conformsTo
(Vulnerability('CVE-2021-20433')).

Complementary iterative processing. Complementary Airflow DAGs trigger data model
and data quality audits (e.g. querying the Knowledge Graph against the NORIA-O competency
questions, checking data ingest conformance with the RDFUnit tool), performance evaluations
(e.g. queries velocity vs NORIA-O expressivity), and application-specific code (e.g. querying the
IT network topology from the knowledge graph and then running a graph-based risk assessment
method).

5. Lessons learned

Our design currently runs on Orange internal data (10 data sources encompassing 128 features
over 15 tables, see Table 2). Batch processing generates, updates and patches the Knowledge
Graph on a hourly basis. Speed processing works on generated data until further integration
within the data ecosystem. The size of the resulting RDF dataset at hand is approximately 4
million triples for 400K entities, including streamed events spanning over 111 days. Due to
confidentiality, this dataset is not made public.

The software infrastructure is deployed using an Infrastructure as Code approach. A main
project installs and configures the platform using templated scripts based on a host feature
inventory. Components can be individually started, stopped, or upgraded thanks to a microar-
chitecture design. The platform uses 9 Virtual Machines (VMs) hosted in Orange’s private
cloud with varying hardware setups (e.g. 1-4 vCPU, 8-16 Gb memory, 20-80 Gb storage). CI/CD
is further used for granular version control and performance evaluation, particularly for the
NORIA-O data model, where pre-publishing review and expressivity evaluation are enforced as



Table 2
Data sources and mapping overview, with generic names of Orange internal data sources, along with
features and mapping statistics. Acronyms: AAA = Authentication, Authorization and Accounting.

Nature Data source
Features
(total)

Features
(used)

Features
(used ratio)

rr:TriplesMap
(count)

Events Trouble Tickets 28 21 75,00 % 6
Change Tickets 124 11 8,87 % 2
Alarm monitoring 152 8 5,26 % 1
Logs monitoring 164 3 1,83 % 1

Descriptive AAA groups 6 4 66,67 % 2
Applications 25 15 60,00 % 2
Teams 14 8 57,14 % 3
Users 12 6 50,00 % 2
Logistic database 51 19 37,25 % 8
Backbone logical links 14 5 35,71 % 2
Backbone physical links 14 4 28,57 % 3
Applications types 63 9 14,29 % 1
Network topology 16 2 12,50 % 1
VM management 74 9 12,16 % 3
VM clusters 57 4 7,02 % 2

per the LOT methodology [19]. The data model is automatically loaded into the data store when
there is a change. The same approach is used for orchestration DAGs, where data integration
tasks can change based on data source changes. The latest DAGs releases are downloaded and
scheduled via an update signal sent to the Apache Airflow instance.

From the Apache Airflow DAGs and Virtuoso logs, we measure that the map data and adjust
provenance tasks are from far the longest tasks of the DAGs (Table 3). As we implemented
simple RML rules (i.e. without rr:joinCondition), the mapping time can hardly be lowered
as it depends on the input file size and rmlmapper-java tool implementation. We remark from
complementary experiments that rr:joinCondition entail a ×2 to ×5 increase of processing
time. However, improving provenance data generation for the adjust provenance file step (e.g.
at the rmlmapper-java or file rewriting level) may bring better overall performance with a
×4 increase in throughput.

For speed processing, we confirmed the effectiveness of our SMASSIF-RML →
ssb-consum-ub → Virtuoso tool chain based on local experiments with generated data
(related to the “events” category from Table 2). However, thorough load study is yet to be
conducted with real data sources; evaluation is left for future work. Besides performance, we
observed that although Kafka allows data replay for overcoming subsystems failures, it is a
complex system; so materializing mapped data in files (as in our batch processing approach)
seems more reliable.

For patching & reconciliation, we make use of 42 SPARQL queries (𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆 = 16,
𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝑈𝑅𝐼 = 19, 𝑎𝑑𝑑𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡 = 7). From our experience on reconciliation, 𝑙𝑖𝑡𝑒𝑟𝑎𝑙2𝐾𝑂𝑆
with exact match is sufficient in a great majority of cases, but will misses advanced text anal-
ysis situations such as for noria:logText parsing (e.g. noria:EventRecord.logText("
LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to up") to
enrich with dcterms:type <kos/Notification/EventType/stateChange>). Hence we
developed two complementary approaches: 1) we extended the String2Vocabulary tool [20]



Table 3
Batch processing performance for three representative (small/medium/big) sources from Table 2. Pre-
processing may include: convert to csv, delete first line, convert to UTF-8, crop columns.

AAA groups Users Logistic database Unit

Input data size 0,16 2,4 45,5 [Mb]

Download data 0,44 6,63 % 0,95 1,54 % 3,32 0,69 % [s]
Dump rules 0,14 2,11 % 0,19 0,31 % 0,15 0,03 % [s]
Preprocessing 0,19 2,86 % 9,46 15,37 % 8,66 10,83 % [s]
Map data 3,27 49,25 % 8,54 13,87 % 79,97 16,70 % [s]
Adjust provenance 2,27 34,19 % 40,66 66,05 % 374,26 78,16 % [s]
Notify for loading 0,27 4,07 % 0,29 0,47 % 0,29 0,06 % [s]
Data bulk load 0,05 0,75 % 1,46 2,37 % 12,17 2,54 % [s]
Prov. bulk load 0,01 0,15 % 0,01 0,02 % 0,02 0,00 % [s]
Total time 6,64 61,56 478,84 [s]

Output data 0,52 21 222 [Mb]
5110 244532 2415676 [Triples]

Throughput 769,58 3 972,25 5 044,85 [Triples/s]

with named graph processing capabilities for enabling vocabulary reconciliation with a fuzzy
match approach as a DAG task consecutive to data mapping; 2) we experimented with the
Slogert framework [16] for complementary noria:logText structuring and annotation in a

𝐾𝐺
𝑆𝑙𝑜𝑔𝑒𝑟𝑡−−−−→ 𝐾𝐺 fashion through a DAG.

More generaly, we remark that combining Airflow with grlc [21] allows quick development
of KG-based applications of the extract-process-report type, and friendly access to data and
operations for non-technical/non-expert users. Furthermore, our two step “simple mapping vs
posterior patching” approach allowed us maximizing direct graph traversal capability with URIs
while minimizing duplicates although handling them. This has notably allowed us to keep the
Knowledge Graph’s complexity low by avoiding the use of owl:sameAs predicates. Finally, we
remark that, thanks to a report table such as Table 2, tracking the characteristics of the source files
and TripleMaps for comparison is simplified, resulting in time savings for exploring and cross-
referencing information. Building this table is possible through scripted process akin to𝑅𝑀𝐿𝑠×
𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒𝑠 → {𝑆𝑜𝑢𝑟𝑐𝑒𝐹 𝑖𝑙𝑒, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑜𝑡𝑎𝑙, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑢𝑠𝑒𝑑}. A nice consequence of this
programmatic analysis is the natural emergence of mapping management patterns; this notably
led to design DAG generator tool for convenient management and deployment of the ETL and
patching DAGs. Table 2 is also valuable for complementary analysis. First, it reveals sparse/dense
data sources for our application domain, raising concerns about information redundancy and
database design practice. Second, it suggests potential for additional concepts/relationships,
depending on clever understanding of the necessary and sufficient features for a given domain.
Third, it enables direct reading of data flow from sources to concepts and graphs, revealing
design principles and characteristics behind them.

6. Conclusion and Future Work

In this work, we aimed to design and implement a data processing architecture for Knowledge
Graph-based Incident Management of broad scale Information and Communications Technology



(ICT) systems. We firstly hypothesized that the cross-referencing of semantic representations
from multiple sources would enable the evolution of Decision Support Systems for ICT systems
to a next level of diagnosis and recommendation capabilities. Next, we 1) reviewed technical
architectures for NMSs, SIEMs, and Semantic Web data management; 2) examined design
challenges and requirements for constructing a KG platform that can manage heterogeneous
data and support synergistic reasoning; 3) proposed a data processing architecture and discussed
its implementation details, as well as its performance and lessons learned from using it on real
data.

We developed and deployed a Lambda data processing architecture combining well-known
open source frameworks (e.g. Apache Kafka, Apache Airflow, OpenLink Virtuoso), academic
projects (e.g. RMLMapper [14], StreamingMASSIF [12], string2vocabulary [20], grlc [21], RD-
FUnit) and adhoc code released in open source (e.g. grlc18, SMASSIF-RML19, ssb-consum-up20).
The design proved to be effective for constructing a knowledge graph from a large amount of
Orange internal data. The solution notably minimizes the effort for data quality and trust audit
thanks to the generalized use of RML, and the centralized storage of both data and mapping con-
figuration within the knowlegde graph. Additionally, we open up the possibility of distributed
processing or event-triggered processing through the generalization of RDF data transfer by
message-broker software. However, the data provenance tagging at the dataset level leads to a
loss of information granularity after the data patching/reconciliation steps and introduces a
heavy file adjustment step. Further, a thorough load study is necessary to consider deploying
the stream processing pipeline on massive data (e.g. telemetry data from broadband network
routers or a fleet of IoT devices).

Future work on the NORIA platform will consider both improving the Knowledge Graph
Construction (KGC) process and using the resulting Knowledge Graph for efficient Incident
Management. Focusing on KGC, future work will explore how the full description of the ETL
processes could be stored within the KG with RDF process models [26, 27]. This would allow au-
diting data platforms through a single language, thanks to a joint representation of data and pro-
cessing mechanisms. In the same line of thought, automated patching generation can be enabled
by browsing RML files for rr:predicateObjectMap [rr:objectMap [rml:reference
"<someRef>"]], potentially with an additional toPatchWith(<someGraphPattern>)

property for better end-to-end process automation and automated URI template checking. For
stream processing, we envision comparing our approach with other frameworks [11, 13], both
in terms of performance, reasoning capabilities, and ease of management. This should help
identify decision boundaries, particularly in terms of energy efficiency and network overhead,
in order to move towards a Kappa architecture [22]. This should also provide insights on the
signaling mechanisms to be implemented for opportunistic processing (e.g. SKOS reconciliation
as a service [28], in-line graph clustering) and cooperative decision making. Finally, scrutinizing
knowledge graph pruning and summarization techniques will prevent from ever expanding
datasets (e.g. ICT systems situation models vs an accumulation of logs), although using generic
RDF data models for knowledge representation is already a mitigating factor.

18https://github.com/Orange-OpenSource/grlc
19https://github.com/Orange-OpenSource/SMASSIF-RML
20https://github.com/Orange-OpenSource/ssb-consum-up

https://github.com/Orange-OpenSource/grlc
https://github.com/Orange-OpenSource/SMASSIF-RML
https://github.com/Orange-OpenSource/ssb-consum-up
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