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Abstract

Simulation modeling offers a flexible approach to constructing high-fidelity synthetic rep-
resentations of complex real-world systems. However, the increased complexity of such
models introduces additional complications when carrying out statistical inference proce-
dures. This has motivated a large and growing literature on likelihood-free or simulation-
based inference methods, which approximate (e.g., Bayesian) inference without assuming
access to the simulator’s intractable likelihood function. A hitherto neglected problem in
the simulation-based Bayesian inference literature is the challenge of constructing uninfor-
mative reference priors for complex simulation models. Such priors maximise an expected
Kullback-Leibler divergence from the prior to the posterior, thereby influencing posterior
inferences minimally and enabling an “objective” approach to Bayesian inference that do
not necessitate the incorporation of strong subjective prior beliefs. In this paper, we propose
and test a selection of likelihood-free methods for learning reference priors for simulation
models, using variational approximations and a variety of mutual information estimators.
Our experiments demonstrate that good approximations to reference priors for simula-
tion models are in this way attainable, providing a first step towards the development of
likelihood-free objective Bayesian inference procedures.

1. Introduction

Simulation models have played a crucial role across a range of scientific disciplines includ-
ing epidemiology (Kerr et al., 2021), economics (Dyer et al., 2024; Wiese et al., 2024) and
robotics (Todorov et al., 2012). More generally, simulation models can be used to explore
intricate dynamics, test hypotheses, and make predictions about real-world phenomena.
However, simulation models often lack an analytically tractable likelihood function, pre-
venting the direct application of classical statistical inference methods to learn simulator
parameters. In response to this challenge, a variety of inference procedures have been devel-
oped by the simulation-based inference (sbi) community, ranging from classical approaches
such as Approximate Bayesian Computation (Beaumont, 2019), to modern methods based
in density (and density ratio) estimation (Thomas et al., 2016; Papamakarios and Murray,
2016; Hermans et al., 2020; Greenberg et al., 2019). Each of these procedures are united by
the common assumption that the likelihood function cannot be evaluated, but only sampled
from via forward-simulation.

More formally, consider a simulator which, given parameters θ ∈ Θ ⊆ Rd, produces a
random output supported on an output space X . That is, the simulator implicitly defines
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a density pθ over outputs for each parameter value θ ∈ Θ. Given a prior distribution π
over model parameters as well as observed iid data, x1:n = (x1, . . . , xn), generated by the
simulator’s real-world counterpart, the goal of Bayesian simulation-based inference methods
is to approximate the posterior distribution given by Bayes’ Theorem:

πx1:n(θ) ∝ pθ(x1:n)π(θ). (1)

As discussed above, such inference must be performed under the assumption that pθ cannot
be evaluated, but instead readily sampled from via forward-simulation.

The prior, π, is intended to encapsulate pre-existing knowledge or beliefs about the
plausible parameter values, whilst the posterior πx1:n encapsulates updated beliefs about
plausible values for θ having observed the real-world data x1:n. However, in many practical
scenarios, strong prior information regarding likely values for model parameters may be
unavailable or unreliable (Jarne Ornia et al., 2024). Even when prior beliefs exist and can
be readily expressed in the form of a prior distribution, they may not be confidently held.
As a result, the modeller may wish to carry out Bayesian inference in a way that minimises
the influence of their own prior beliefs, and determine the posterior that emerges when
minimal prior information is encoded into the inference procedure.

Such considerations have motivated the development of objective Bayesian methods,
which offer a principled approach to constructing priors that are minimally informative
and, correspondingly, posteriors that are maximally data-driven. In particular, reference
priors (Bernardo, 1979; Berger and Yang, 1994; Bernardo, 1997; Berger et al., 2009) have
emerged as a prominent choice of uninformed prior. In short, a reference prior maximizes
the expected information gain from observed data and minimizes the influence of the prior
on the posterior in an information-theoretic sense. More formally, the n-reference prior π∗n
associated with a simulator and a class of plausible prior distributions is Π is given by:

π∗n = argmax
π∈Π

E θ∼π
x1:n∼pθ

[
log

πx1:n(θ)

π(θ)

]
. (2)

The objective on right-hand side of Equation (2) is equivalent to the mutual information
Iπ(x1:n, θ) between x1:n and θ ∼ π. Reference priors have several desirable properties, in-
cluding invariance under reparameterization and good frequentist coverage (Consonni et al.,
2018). In addition, reference priors asymptotically achieve the minimax entropy risk when
Π is the class of continuous priors on Θ (Clarke and Barron, 1994). Unfortunately, deriv-
ing reference priors analytically is often difficult and completely intractable for anything
aside from simple models. This issue is further exacerbated in the context of sbi, since
unavailability of pθ precludes direct evaluation of the expectation in Equation (2).

In this paper, we address this problem by proposing and testing two novel likelihood-
free approaches for learning reference priors. The first approach, based on the entropy
decomposition of the mutual information (Kozachenko and Leonenko, 1987; Kraskov et al.,
2004), makes no further assumptions on simulator behavior. Meanwhile our second approach
assumes differentiability, and exploits this to maximize variational lower bounds on the
mutual information (Oord et al., 2018; Song and Ermon, 2020; Letizia et al., 2023). We
demonstrate our approach on several simple use cases where the asymptotic reference prior
is known.
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2. Methods

Before presenting each of our methods in detail, we first outline the general structure shared
by all methods. Recall that Equation (2) may be expressed as an optimisation problem with
objective corresponding to the mutual information Iπ(x1:n, θ) between θ and a set of model
outputs x1:n sampled from pθ. Each of our methods involve computing an estimate Î of the
mutual information, which is in turn used as an optimization objective to train a variational
prior. This general procedure is outlined by Figure 1.

In words, a batch of B parameters {θ(b)}Bb=1 is first sampled from a variational prior

with tractable density πϕ and parameters ϕ. A corresponding set of model outputs x
(b)
1:n is

generated for each parameter by forward-simulation. The outputs are then encoded into
a low-dimensional approximate sufficient statistic using an encoder sφ with parameters φ.
The encoded outputs are paired with their corresponding parameter value and passed to
an estimator which returns an approximation Î of the mutual information that is used to
update the respective parameters of the variational prior πϕ and the encoder sφ. The nature
of this update depends on the structure of the mutual information estimator.

In what follows, we present two different classes of mutual information estimators which
correspond to two different schemes for learning reference priors. As Figure 1 indicates, we
assume that the variational prior is parameterised by a normalizing flow. For the sake of
brevity, we use hπ(x1:n, θ) = pθ(x1:n)π(θ) to denote the joint distribution of (x1:n, θ) under
the prior π. Likewise, we use mπ(x1:n) to define the corresponding marginal distribution
over model outputs.

2.1. Generative Difference of Entropy Estimators

The first of our methods relies on the classical entropy decomposition of the mutual infor-
mation:

Iπ(x1:n, θ) = Hπ[θ]− Ex1:n∼mπHπx1:n
[θ] (3)

By estimating each entropy term in Equation (3), we may construct an estimate of the
mutual information. Given our assumption that the variational prior has a tractable density
πϕ(θ), Hπϕ [θ] can be unbiasedly estimated via Monte-Carlo:

Hπϕ [θ] ≈ − 1

B

B∑
b=1

log πϕ(θ
(b)). (4)

Thus, we shift our focus to estimating the second term of Equation (3). Taking inspiration

from Pichler et al. (2022), we construct a conditional density estimator πψx1:n for the posterior

πx1:n . We parameterize πψx1:n with a conditional normalizing flow, which is conditioned on

sφ(x1:n). Using π
ψ
x1:n , we may estimate the second term of Equation (3) as follows:

Ex1:n∼mπHπx1:n
[θ] ≈ − 1

B

B∑
b=1

log πψ
x
(b)
1:n

(θ(b)). (5)
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Flow πϕϕ θ Simulator pθ x1, . . . , xn

Encoder sφsφ(x1, . . . , xn)MI
EstimatorÎ

Figure 1: A diagram depicting the overall pipeline for the methods described in Section 2.

Combining Equations (4) and (5) we arrive at the following estimator for the mutual infor-
mation:

Î = − 1

B

B∑
b=1

log πϕ(θ
(b)) +

1

B

B∑
b=1

log πψ
x
(b)
1:n

(θ(b)). (6)

To learn a reference prior, we may simultaneously update ϕ, φ and ψ via stochastic gradient
ascent on Î. We refer to this method of learning a reference prior as the Generalized
Entropy Difference Estimator (GED). Note that GED does not require the simulator to be
differentiable.

2.2. Variational Lower Bound Methods

When the simulator is differentiable, we may also exploit variational lower bounds on the
mutual information to learn an approximate reference prior. A wide range of variational
lower bounds have been proposed in the literature (see Poole et al. (2019) for a thorough
overview). Many such bounds rely on the following variational characterization of the KL-
divergence (Donsker and Varadhan, 1975) between two distributions P and Q:

DKL(P∥Q) = sup
T∈L∞

EP [T ]− logEQ[eT ], (7)

where L∞ is the space of essentially bounded measurable functions. In particular, Belghazi
et al. (2018) exploit Equation (7) by proposing MINE, which parameterises T with a neural
network (commonly referred to as a critic) so that a reasonably tight lower bound on the
mutual information can be learned via stochastic gradient ascent. Due to the second term
of Equation (7), which corresponds to the log-partition function of Q, MINE suffers from
high variance, especially when the mutual information is large (Song and Ermon, 2020;
McAllester and Stratos, 2020). To mitigate this issue, Song and Ermon (2020) propose
SMILE, which clips empirical approximations of the log-parition function to lie in the range
[−τ, τ ], where τ > 0 is a hyperparameter controlling the bias-variance trade-off associated
with truncating the log-partition function.

In the context of contrastive predictive coding, the InfoNCE objective was proposed by
Oord et al. (2018) for the purpose of estimating the density ratio of a joint distribution
P (X,Y ) of random variables X and Y :

sup
T

EPn(X,Y )

[
1

n

n∑
i=1

log
T (xi, yi)

1
n

∑
j ̸=i T (xi, yj)

]
, (8)
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where Pn denotes the n-fold product distribution associated with P . As observed by the
original authors, InfoNCE implicitly maximises a variational lower bound on the mutual
information betweenX and Y . In essence, the goal of the critic T is to accurately distinguish
between samples drawn jointly from P (X,Y ) and samples drawn from the marginal product
P (X)P (Y ).

Given a variational lower bound on the mutual information, we may jointly train a critic
T and a variational prior πϕ to learn a reference prior. The variational prior is responsible
for inducing high mutual information between x1:n and θ by maximising the variational
lower bound produced by the critic. Meanwhile, the critic is tasked with keeping the
variational lower bound tight so that the variational prior has a good approximation of the
mutual information to benchmark against. Both networks may be simultaneously updated
via stochastic gradient ascent. For instance, using InfoNCE, a critic Tµ with parameters µ,
and a flow πϕ, we may proceed as follows:

1. Sample {(x(b)1:n, θ
(b))}Bb=1 from hπϕ .

2. Compute the variational lower bound using critic Tµ:

Î =
1

B

B∑
b=1

log
Tµ(sφ(x

(b)
1:n), θ

(b))

1
B

∑
a̸=b Tµ(sφ(x

(b)
1:n), θ

(a))
.

3. Simultaneously update the parameters ϕ, φ and µ via stochastic gradient ascent on
Î.

Note that there is a different version of the training scheme above for each variational
approximation of the mutual information. During our experiments, we adopt both SMILE
and InfoNCE as variational objectives, for several reasons. Many real-world simulators
produce high dimensional outputs such as time series, leading to the possibility of high
variance outputs. SMILE is naturally suited to this setting due to the hyperparameter
τ that enables explicit management of the bias-variance trade-off. Meanwhile, InfoNCE
typically exhibits low variance, since the optimal critic does not depend on batch size
(Poole et al., 2019). This property is especially important for expensive simulators, since
only smaller batch sizes can be used under limited simulation budgets.

3. Performing Simulation-based Inference

It is worth highlighting that, for each of the methods described in the Section 2, the ability
to perform sbi using the learned reference prior πϕ comes at no further training cost. For

instance, GED entails the construction of an amortised (in x1:n) estimator πψx1:n(θ) for the
posterior density that results from the use of the learned prior πϕ, which can be immediately
reused to generate posterior samples. Similarly, for the approaches outlined in Section
2.2, which are based on optimizing a variational lower bound of the mutual information
between x1:n and θ, the learned discriminators Tµ estimate a function w of the density ratio
hπϕ(x1:n, θ)/mπϕ(x1:n)πϕ(θ). For example, in the case of SMILE, w is the identity. Since
we have assumed that the variational reference prior density πϕ is tractable to evaluate,
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estimates of the log-posterior density log πx1:n(θ) resulting from the use of the prior πϕ may
be obtained as

log πx1:n(θ) ≈ logw−1(Tµ(x1:n, θ)) + log πϕ(θ). (9)

Equation (9) can be used in, for example, an mcmc procedure to generate samples from the
posterior πx1:n . In both cases, Bayesian sbi can be immediately performed with no further
training of density ratio or posterior estimators.

4. Experiments

(a) Triangular (b) AR1 Process (c) Scale Gaussian

(d) Exponential Rate (e) KST (AR1) (f ) KST (Triangular)

Figure 2: Comparison of proposed methods for learning reference priors on tractable models.

In this section, we present a series of experiments to assess the ability of the methods
described in Section 2. More specifically, we evaluate each method on four simulators where
the asymptotic reference prior is known. We consider a scale Gaussian model, an exponential
rate model, a triangular model and an AR1 process model. Full details about each model
and their corresponding asymptotic reference priors can be found in the Appendix.

Results are shown in Figures 2(a)-(d). The asymptotic reference prior is marked by a
dashed line in each plot. Note that all of our methods closely match the asymptotic reference
prior. To provide a quantitative analysis we compare the learned reference priors for both
the triangular and AR1 models against the corresponding true asymptotic reference priors
via a two-sample Komolgorov-Smirnov test (KS). Results are shown in Figures 2(e)-(f).
The x-axis of each plot indicates the number of samples used in the KST whilst the y-axis
denotes the value of the KS test statistic. In both cases all of our methods consistently
pass the KST for up to 200 samples at a significance level of α = 0.05, avoiding the failure
regions shaded in red.
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5. Conclusion

In this paper, we investigate several novel approaches to learning reference priors for arbi-
trary simulation models. Through experiments on tractable examples, we have shown that
these methods can learn good reference priors for simple simulators. Testing our methods
on more complex simulators, where the reference prior is not analytically available, forms
an interesting direction for future work. Finally, reference priors are only one possible ap-
proach to conducting “objective” Bayesian inference, and other considerations can lead to
alternative objective priors in Bayesian analysis (Consonni et al., 2018). The present work
is a first step towards enabling objective Bayesian inference for complex simulation mod-
els, and developing likelihood-free methods for estimating other classes of objective priors
constitutes an interesting direction for future work.
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Appendix A. Benchmark Models

Here we provide further details about each of the models used in our experiments.

Gaussian Scale Model. The first tractable example we consider simulates Gaussian
random variables. For this model, n samples are generated iid fromN (µ, σ2) as xt = µ+θut,
with ut ∼ N (0, 1), and where µ ∈ R is known, θ > 0 is a free parameter, and N (a, b2) is
a Normal distribution with mean a and variance b2. Here, the reference prior (Yang and
Berger, 1996) for θ is π∗(θ) ∝ 1/θ.

Exponential Rate Model. We next consider an exponential model, whose generative
process is as follows: for t = 1, . . . , n, we generate random variables xt from an Exp(θ)
density as xt = − log (1− ut) /θ, where ut ∼ U(0, 1), θ > 0 is a parameter, and U(a, b) is a
uniform distribution on [a, b]. As with the Gaussian scale model, the reference prior for θ
is known (Yang and Berger, 1996) to be π∗(θ) ∝ 1/θ.

Triangular Model. In this example, we generate random variables from a triangular
distribution on [0, 1]. Here, iid data is generated for t = 1, . . . , n as

xt = I [ut ≤ θ]
√
θ · ut + (1− I [ut ≤ θ])

(
1−

√
(1− ut) (1− θ)

)
, (10)

where θ ∈ (0, 1) is a free parameter and ut ∼ U(0, 1) is a random variable distributed uni-
formly on [0, 1]. The reference prior is known (Berger et al., 2009) to be well-approximated
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by a Beta(1/2, 1/2) distribution. Though the derivative of xt with respect to θ for fixed
ut is 0 almost everywhere when defined in the usual sense, we may nonetheless define an
approximate surrogate gradient through, e.g., the straight-through gradient trick (Bengio
et al., 2013) in order to backpropagate through xt. As such, we may continue to apply the
methods described in Section 2.2, which require a differentiable simulator.

Autoregressive Time-series Model. Finally, we consider the standard autoregressive
time-series model of order 1 (AR(1)). Using ut ∼ N (0, 1), t = 1, . . . , n, this model generates
a time-series x1, . . . , xn as

x1 = σu1, and xt = θxt−1 + σut for t = 2, . . . , n, (11)

where σ > 0 is fixed and θ ∈ [−1, 1] is a free parameter. It can be shown (Berger and Yang,

1994) that the corresponding reference prior for θ ∈ [−1, 1] is π∗(θ) ∝
(
1− θ2

)−1/2
.
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