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ABSTRACT

While pre-trained available metrics, such as perplexity, correlates well with model
performance at scaling-laws studies, their predictive capacities at a fixed model
size remains unclear, hindering effective model selection and development. To
address this gap, we formulate the task of selecting pretraining checkpoints to
maximize downstream fine-tuning performance as a pairwise classification problem:
predicting which of two LLMs, differing in their pre-training, will perform better
after supervised fine-tuning (SFT). We construct a dataset using 50 1B parameter
LLM variants with systematically varied pre-training configurations, e.g., objectives
or data, and evaluate them on diverse downstream tasks after SFT. We first conduct
a study and demonstrate that the conventional perplexity is a misleading indicator.
As such, we introduce novel unsupervised and supervised proxy metrics derived
from pre-training that successfully reduce the relative performance prediction error
rate by over 50%. Despite the inherent complexity of this task, we demonstrate the
practical utility of our proposed proxies in specific scenarios, paving the way for
more efficient design of pre-training schemes optimized for various downstream
tasks.

1 INTRODUCTION

Large Language Models (LLMs) (Google et al., 2024; OpenAI, 2023; Chowdhery et al., 2023;
Grattafiori et al., 2024) are central to contemporary NLP, powering systems like Chatbots and
specialized assistants. They are typically employed via few-shot prompting or task-specific fine-
tuning. Despite the accessibility afforded by prompting, fine-tuning on downstream tasks is often
indispensable for optimal model performance, particularly within specific application domains or
when utilizing private data (Singhal et al., 2025; Lee et al., 2024a; Lai et al., 2023).

While LLMs demonstrably improve on supervised fine-tuning (SFT) tasks with increasing
scale (Zhang et al., 2024; Isik et al., 2025), the substantial costs associated with larger models
strongly motivate performance optimization at a fixed size. These efforts often concentrate on refining
pre-training elements, such as data compositions (Shen et al., 2024; Penedo et al., 2024) or training
objectives (Raffel et al., 2020; Tay et al., 2023a;b). This context underscores a critical need: the
ability to reliably forecast the post-SFT performance of same-size LLM variants using only indicators
available during pre-training. Although metrics like perplexity correlate well with scaling-driven
performance gains (lower perplexity generally corresponds to better few-shot (Grattafiori et al.,
2024) and fine-tuning (Isik et al., 2025) results as model size expands), their predictive efficacy
for fine-tuning outcomes within a constant model size remains uncertain. Practically, dependable
predictors are essential to avoid the prohibitive expense of fine-tuning numerous checkpoints. This
requirement is especially pronounced for monitoring and guiding decisions throughout the lengthy
pre-training cycles (often months) of very large models (Liu et al., 2024a; Grattafiori et al., 2024),
and also when subsequent fine-tuning involves substantial datasets, including potentially stopping
unpromising runs early.

To investigate the predictability of fine-tuning outcome within feasible computational limits, our
study employs a controlled methodology using smaller models. We train multiple variants of a 1B-
parameter language model, each incorporating systematic variations in its pre-training configuration.
We then evaluate the accuracy of potential predictors by comparing their values at the final pre-training
checkpoints against the models’ eventual performance after supervised fine-tuning (SFT). While
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Figure 1: Mean pairwise error rates across three SFT tasks (separate plots). Each plot compares
perplexity, the best individual proxy (Section 3), and the learning-to-compare proxy (shown on the
x-axis). The y-axis represents the error rate, defined as the proportion of mis-classified LLM pairs
regarding post-SFT performance.

simplified, we posit that this approach provides representative insights into the core question–whether
fine-tuning outcome can be reliably predicted during and after pre-training. Specifically, we generated
50 distinct 1B-parameter LLM variants by systematically altering pre-training objectives (Raffel
et al., 2020; Tay et al., 2023a;b), data composition strategies (Shen et al., 2024), and data processing
techniques such as filtering and domain tagging (Penedo et al., 2024). These pre-trained models
were subsequently fine-tuned across a diverse suite of tasks, including commonsense reasoning,
retrieval-augmented generation and closed-book question answering. Specifically, we select five
datasets (Clark et al., 2019; Zellers et al., 2019; Bisk et al., 2019; Mihaylov et al., 2018; Sakaguchi
et al., 2021) for commonsense reasoning, four (Kwiatkowski et al., 2019; Joshi et al., 2017; Yang
et al., 2018; Ho et al., 2020) for retrieval-augmented generation, and two (Kwiatkowski et al., 2019;
Joshi et al., 2017) for closed-book question answering. To align with the practical model development
scenarios where the primary goal is to identify top performers from a set of candidate models, we
formulate the prediction challenge as a pairwise classification task: given two pre-trained models
differing only in pre-training, the goal is to predict which model will achieve superior performance
after SFT.

We begin by evaluating conventional perplexity, computed using a causal language modeling ob-
jective (Brown et al., 2020), as a predictor of SFT performance. Surprisingly, this standard metric
correlates poorly with the downstream results of the LLMs after fine-tuning, resulting in prediction
error rates exceeding 60% across all three evaluated tasks–worse than the 50% error rate of random
guessing (Figure 1). Motivated by prior work (Raffel et al., 2020; Tay et al., 2023a; Von Oswald et al.,
2023), we then introduce alternative pre-training available proxies, including span corruption-based
perplexity and k-shot learning performance (Min et al., 2022). These proxies yield substantially
improved prediction accuracy; the best-performing proxy for each task reduces the error rate by nearly
half compared to conventional perplexity (Figure 1). For example, in the commonsense reasoning
task, the error rate drops from 69.4% to 31.3%. Furthermore, we propose a learning-to-compare
(LTC) framework that integrates multiple proxies via supervised classification. By learning inter-
actions across these heterogeneous signals, the LTC approach achieves more robust performance
estimation and further decreases the predictive error. The contributions of this paper are three-folds.

• We present the first formal study focused on predicting post-SFT performance across LLMs of
identical size using pretraining signals—departing from prior scaling-based analyses.

• Our work demonstrates the insufficiency of perplexity for this prediction task and introduces novel
unsupervised and supervised proxies achieving over a 50% reduction in error rates.

• Our work underscores the challenges of predicting supervised fine-tuning performance and confirms
the practical value of the proposed proxies in specific scenarios; to foster further research, we
provide the SFT performance data and individual pre-training proxy measurements in Appendix
Table 8.
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2 PROBLEM DEFINITION AND SETUP

This section defines the problem and details the setup, including the generation of diverse LLM
variants, the target SFT tasks, and the pre-training signals used as prediction proxies.

2.1 LLM VARIANTS AND TARGET SFT TASKS

LLM model variations. To approximate pre-training studies while maintaining reasonable compu-
tational resources, we continuously trained a 1B parameter LLM with 100B tokens, systematically
ablating pre-training objectives, data mixture re-weighting, and data filtering and tagging. This con-
tinuous pre-training approach allowed us to generate a wider range of model variants while managing
computational resources. Pre-training objectives: We explored seven pre-training objectives: causal
language modeling (CLM) (Brown et al., 2020), span corruption (SC) (Raffel et al., 2020), prefix
language modeling (PLM) (Raffel et al., 2020), SC+CLM, UL2 (Tay et al., 2023a), UL2R (Tay
et al., 2023b), and UL2R+CLM (Garcia et al., 2023). CLM and PLM generate tokens left-to-right,
with CLM using the full context and PLM conditioning on a prefix. SC reconstructs masked spans,
parameterized by noise density and mean span length, set to (0.15, 3) following (Raffel et al., 2020).
SC+CLM jointly trains SC and CLM. UL2 mixes six SC variants with PLM, while UL2R uses two
SC settings—(0.15, 3) and (0.5, 32)—with PLM. UL2R+CLM extends UL2R by adding a CLM
objective. Mixture re-weighting: We train on the 627B-token Slimpajama corpus (Soboleva et al.,
2023), which includes seven diverse domains. We reweigh different domains following (Shen et al.,
2024), producing six 100B-token subsets by adjusting domain distributions (detailed in Table 5 in
Appendix); Data filtering and tagging: Source domain metadata was integrated by pre-pending each
instance with its respective domain label (e.g., [Common Crawl]). Length-based sub-corpora were
generated by selecting instances within the [25%, 75%] and [75%, 100%] token length quantiles. We
in total produced 50 distinct LLM variants, the specifications of which are provided in Table 6 in
Appendix.

Target SFT tasks. We employed commonsense reasoning (CMS), retrieval-augmented generation
(RAG), and closed-book question answering (CBQA) as the target supervised fine-tuning (SFT) tasks.
These tasks were chosen to assess critical LLM capabilities such as reasoning, context utilization,
and memorization, which are complex and challenging. Furthermore, they are well-established
within the NLP community and offer ample training data. To obtain task-level SFT scores, we
averaged dataset-specific scores within each task. Specifically, CMS included BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al.,
2021), and OpenBookQA (Mihaylov et al., 2018); RAG utilized NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), HotpotQA (Yang et al., 2018), and 2Wiki (Ho et al., 2020); and CBQA
used NQ (Kwiatkowski et al., 2019) and TriviaQA (Joshi et al., 2017).

2.2 PREDICTION PROXIES

This study investigates two distinct prediction proxies: Perplexity (PPL) and k-shot learning (Kshot).
Perplexity is a prevalent prediction proxy for monitoring LLM pre-training, whereas the intuitive
rationale for k-shot learning lies in its potential correlation with fine-tuned performance on the
identical task (Tay et al., 2023a; Ahn et al., 2023; Von Oswald et al., 2023).

Perplexity (PPL) is calculated through two distinct methods. PPL-CLM represents the conventional
causal language modeling perplexity. Driven by UL2’s (Tay et al., 2023a) demonstration of span
corruption’s efficacy in supervised fine-tuning, we present the PPL-SC proxy. This metric is derived
from the span corruption methodology, as in T5 (Raffel et al., 2020), and computes perplexity over
randomly sampled text spans. Both perplexities are computed on the PILE development set (Gao
et al., 2020), with span corruption parameters (0.15, 3) (Raffel et al., 2020). For the purposes
of clarity in presentation, we utilize the inverse of the actual perplexity values, namely, 1

Perplexity .
This transformation aligns with Kshot such that higher proxy values correspond to improved SFT
performance. Unless explicitly stated otherwise, PPL-CLM and PPL-SC in this paper refer to these
inverted values. K-shot performance is calculated by averaging the results from evaluating test sets of
target datasets for each SFT task. The actual prompts are detailed in Appendix F. Akin to Chowdhery
et al. (2023), we use 1 shot for CMS and 5 shots for RAG and CBQA. This yields five efficient proxy
scores for each model: PPL-CLM, PPL-SC, Kshot-CMS, Kshot-RAG, and Kshot-CBQA.
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .332 .380 .354

Individual Prediction Proxies
PPL-SC .703 .622 .609
Kshot-CMS .573 .569 .525
Kshot-RAG .696 .766 .704
Kshot-CBQA .437 .447 .467

Aggregated Prediction Proxies
Combine Five Proxies .622 .598 .564

Analytical Exploration of Headroom Potential
PPL-SC + Kshot-RAG .744 .696 .642
PPL-SC + Kshot-RAG - PPL-CLM .763 .692 .635

Table 1: Accuracy of Individual vs. Aggregated Proxy Predictors.

2.3 PAIRWISE ACCURACY AS A MEASURE OF PREDICTIVE POWER

We evaluated each pre-trained LLM variant by fine-tuning it on individual target dataset training
sets and assessing performance on the corresponding evaluation sets. Task-level scores (SFT-CMS,
SFT-RAG, SFT-CBQA) were computed by averaging these dataset results. Since practical model
selection often involves choosing the best from a small candidate pool, our primary analysis focused
on evaluating the discriminating power of prediction proxies (like perplexity). To achieve this, we
formulated the evaluation as a pairwise prediction task. We generated all 1225 unique pairs from
the 50 LLM variants and measured how accurately each proxy could predict which model in a pair
would achieve better aggregated task-level SFT performance. This pairwise prediction accuracy is
our main metric for proxy effectiveness.

3 PREDICTIVE POWER ON SFT TASKS

Accuracy of individual prediction proxies to SFT performance. Table 1 details the pairwise
SFT prediction accuracy of various proxy metrics across 50 LLM variants. Conventional perplexity
(PPL-CLM) exhibited low accuracy (e.g., 0.3 on SFT-CMS), contrasting sharply with its known
correlation strength in scaling studies. The span corruption perplexity (PPL-SC) performed better (>
0.5 accuracy), consistent with prior findings on span corruption benefits (UL2) (Tay et al., 2023a).
Few-shot (k-shot) proxies achieved higher accuracy still, with Kshot-RAG reaching ≈ 0.7 on SFT-
CMS and SFT-RAG. Despite these improvements, no single proxy proved universally reliable across
all tested SFT tasks.

Aggregating diverse prediction proxies. We explore improving prediction by combining normal-
ized proxy scores (details in Table 1). While averaging all five proxies underperforme Kshot-RAG
alone, combining PPL-SC and Kshot-RAG matched Kshot-RAG’s performance and surpass PPL-SC.
Despite these improvements, even the best individual or combined proxies yield pairwise error rates
around 30%, suggesting inherent task difficulty limits performance. Nevertheless, these simple
arithmetic combinations (e.g., PPL-SC + Kshot-RAG - PPL-CLM) demonstrate the potential to
outperform individual proxies through effective aggregation.

A predictive power case study using varied pre-training objectives. To understand proxy limita-
tions, we analyzed how well PPL-CLM, PPL-SC, and Kshot-RAG predict relative SFT performance
between models differing only in their pre-training objective. We grouped models by objective (CLM,
SC, UL2, etc.) and evaluated pairwise prediction accuracy for comparisons between these groups
(details in Figure 2; Appendix C covers data variations). Confirming earlier results, PPL-SC and
Kshot-RAG consistently outperformed PPL-CLM. However, their accuracy depended significantly
on two factors: (1) The specific pre-training difference: Proxies better captured large performance
gaps caused by different objectives (e.g., SC vs. CLM, often ≥ 0.6 accuracy) than smaller variations.
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Figure 2: Pairwise prediction accuracy for PPL-CLM, PPL-SC, and Kshot-RAG comparing LLMs
differing only in pre-training objective, across three SFT tasks (rows) and the three proxies (columns).
Each cell indicates average accuracy of pairs where the proxy prediction agreed with the SFT result.

(2) The target SFT task: A specific comparison (e.g., SC vs. SC+CLM) could yield low accuracy on
one task (SFT-CMS, 0.2) but high accuracy on others (SFT-RAG/SFT-CBQA, ≥ 0.6).

4 LEARNING TO COMPARE

Recognizing the complementary strengths of individual proxies amidst their challenges (Section 3,
Table 1, Figure 2), we now explore supervised classifiers to combine these signals for potentially
enhanced SFT performance prediction.

4.1 FORMULATION

Given two LLMs mi and mj , our goal is to predict which model achieves better downstream SFT
performance. We denote the values of the five proxies for each model mi as {P k

mi
}k∈D, where

D = {PPL-CLM, PPL-SC,Kshot-CMS,Kshot-RAG,Kshot-CBQA}. The learning-to-compare
model leverages these proxies by training a binary classifier f to predict the fine-tuned perfor-
mance comparison between model pair (mi,mj). For each proxy k, we construct the feature vector:

hk(pmi
, pmj

) =
[
pkmi

− pkmj
, pkmi

· pkmj
, pkmi

, pkmj

]
∈ R4. We concatenate features from all five

proxies to form the input and lead to 20 features, namely, H(pmi , pmj ) ∈ R20. We define the
ground-truth label yij as a binary value, where yij = 1 if LLM mi performs better after SFT than
mj , and yij = 0 otherwise. The classifier is trained by minimizing the binary cross-entropy loss
(formulation is provided in Appendix Section D).

4.2 EXPERIMENT SETUP

We implemented the supervised classifier using LightGBM (details on other models in Appendix
Section D), training separate models per SFT task (CMS, RAG, CBQA). To ensure robustness,
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .306±.081 .366±.060 .331±.054

Individual and Aggregated Proxies
Kshot-RAG .687±.073 .724±.047 .683±.077

Combine Five Proxies .612±.055 .585±.051 .540±.104

Learning To Compare (% Relative to Kshot-RAG)
Trained on the target task
Learning-to-compare .753±.054 (+9.6%) .727±.039 (+0.4%) .753±.060 (+10.2%)

Trained on the source task
SFT-CMS (Src) .753±.054 (+9.6%) .712±.054 (-1.7%) .707±.057 (+3.3%)
SFT-RAG (Src) .734±.047 (+6.8%) .727±.039 (+0.4%) .717±.071 (+5.0%)
SFT-CBQA (Src) .734±.052 (+6.8%) .718±.050 (-0.1%) .753±.060 (+10.2%)

Table 2: Pairwise prediction accuracy (mean ± std dev, 20 runs): Unsupervised baselines vs.
supervised classifiers on SFT-CMS, SFT-RAG, SFT-CBQA.

we performed 20 runs, each using a random 60%/40% split of the 50 LLM variants to generate
training/testing pairs (splits varied per run). We report mean accuracy and standard deviation over the
20 runs in Table 2 (middle section), compared against unsupervised baselines including PPL-CLM
and Kshot-RAG.

4.3 RESULTS

Learning-to-compare enhances predictive power beyond the best-performing proxies. Despite
the challenges of constructing prediction proxies, supervised learning significantly enhances predictive
performance compared to individual or aggregated proxies. As shown in Table 2, LightGBM
outperforms the best individual proxy, Kshot-RAG, by a substantial margin on the SFT-CMS and
SFT-CBQA tasks, improving predictive power by 10% while maintaining comparable performance
on SFT-RAG. This confirms that combining diverse proxies can further boost predictive accuracy.

Learning-to-compare generalizes well across different target tasks. We further assessed Light-
GBM’s generalization by training on one SFT task (source) and evaluating on others (target), using
all five proxies as input. The aim was to determine if a classifier learned for one task could predict
performance on different ones. Results (Table 2, bottom section) reveal effective generalization: mod-
els trained on a source task maintained high predictive accuracy on target tasks, typically performing
within 2-3% of classifiers trained directly on the target task. This demonstrates the robustness of the
learning-to-compare approach across different SFT domains without significant performance loss.

Proxy importance. We quantify each proxy’s contribution to the LightGBM classifiers by comput-
ing their normalized gain-based importance scores, as illustrated in Figure 3 (detailed in Appendix
Section E). Kshot-RAG consistently emerged as the most influential proxy across the three SFT tasks,
showing particular dominance in SFT-RAG and SFT-CBQA. PPL-SC and PPL-CLM represented
the next tier of importance; for instance, PPL-SC was second most important for SFT-CMS, while
PPL-CLM ranked second for SFT-CBQA. Intriguingly, PPL-CLM contributed more significantly to
the LightGBM model’s predictions than Kshot-CMS and Kshot-CBQA, despite possessing lower
standalone accuracy (Table 1). Our hypothesis is that the supervised classifier effectively utilizes the
strong negative correlation observed between PPL-CLM and SFT task performance.

5 CAN POST SFT LLM PERFORMANCE BE RELIABLY PREDICTED?

While the learning-to-compare method doubles prediction accuracy over perplexity (Table 2), its
persistent 25% pairwise error rate limits general applicability. This section analyzes its practical
utility. Analysis shows pairwise prediction accuracy depends heavily on the magnitude of the actual
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Figure 3: Relative influence of proxy metrics in the LTC framework (LightGBM).

SFT performance difference, proving less reliable for subtle distinctions. But we demonstrate reliable
recall of top models within small candidate sets, suggesting value for initial model filtering.

5.1 IMPACT OF PERFORMANCE GAPS ON PREDICTION RELIABILITY

Predicting the relative performance between two language models is expected to be more reliable
when their actual performance levels are significantly different. Conversely, distinguishing between
models with similar performances poses a greater challenge. This section investigates how the
magnitude of the performance gap between model pairs influences the reliability of our prediction
classifiers.

To explore the relationship between performance disparity and classifier accuracy, we first calculated
the absolute difference in supervised fine-tuning (SFT) performance for each model pair on the
target task. We hypothesized that classification accuracy would correlate positively with the size of
this performance gap. For quantitative analysis, we categorized the model pairs into five quantiles
based on their true post-SFT performance difference: [0–20%], [20–40%], [40–60%], [60–80%],
and [80–100%]. Subsequently, we evaluated and compared the classification accuracy for three
predictors—PPL-CLM, Kshot-RAG, and Learning-to-compare—within each quantile. These results
are visualized in Figure 4.

The findings show that prediction reliability for both Kshot-RAG and the Learning-to-compare
predictors indeed improves as the performance gap between models widens. For pairs with min-
imal performance differences ([0–20%] quantile), where models perform almost identically after
fine-tuning, prediction accuracy is low, near chance levels (approximately 0.5). As the absolute
performance difference increases, accuracy steadily rises, reaching approximately 0.9 for the most
distinct pairs ([80–100%] quantile). This confirms that these classifiers yield more reliable predictions
when comparing models that are easier to distinguish. Interestingly, PPL-CLM demonstrates the
opposite behavior: its accuracy diminishes as the performance gap increases, further highlighting
that conventional perplexity is not a dependable indicator for this prediction scenario. Among the
methods tested, the learning-to-compare classifier consistently outperformed both PPL-CLM and
Kshot-RAG across the quantiles, showing particular strength on the SFT-CMS and SFT-CBQA tasks.

5.2 RECALL THE BEST MODEL FROM A SMALL CANDIDATE SET

One key practical use for LLM performance predictors is to identify the most promising models
within a group of candidates, which can lead to significant cost savings by reducing the number of
models that undergo supervised fine-tuning. To assess our classifier’s effectiveness in this critical
application—specifically, its ability to recall the best pre-trained LLMs—we performed a ranking
experiment where pairwise comparisons between models were predicted and then aggregated into an
overall ranking using Borda Count scoring Dwork et al. (2001). Specifically, for each model mi, we
compute its total score by counting the number of pairwise wins over all other models.

Score(mi) =
∑
j ̸=i

1(f(mi,mj)>0.5)

7
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Figure 4: Accuracy comparison of PPL-CLM, Kshot-RAG, and Learning-to-Compare (LTC) on SFT
tasks (CMS, RAG, CBQA), grouped into five quantiles by absolute SFT performance difference.

Figure 5: Top-1 (top row) and Top-5 (bottom row) recall comparison at various cutoffs: supervised
Learning-to-compare (LTC) vs. unsupervised baselines on SFT-CMS, SFT-RAG, and SFT-CBQA
tasks.

where f(mi,mj) denotes the classifier’s predicted probability that mi outperforms mj . 1(·) is
the indicator function. Finally, models are ranked based on their total scores, with higher scores
indicating better predicted fine-tuned performance. Models achieving more pairwise ’wins’ received
higher scores, indicating better predicted performance. The evaluation results, presented as top-1
and top-5 recall in Figure 5, show that our “learning-to-compare” method consistently identified
the top-performing LLMs. Impressively, it achieved perfect top-1 recall for the SFT-CMS, SFT-
RAG, and SFT-CBQA tasks by focusing on the top 7, 7, and 8 predicted models respectively,
demonstrating its effectiveness even when narrowing down a relatively small candidate pool (as
few as 8 models). Additionally, the unsupervised Kshot-RAG method showed strong performance,
corroborating observations from Section 3.

6 RELATED WORK

Pre-training of LLMs LLM pre-training fundamentally shapes capabilities like reasoning (Wei
et al., 2022; Kojima et al., 2022; Zellers et al., 2019), knowledge (Chang et al., 2024), and tool
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use (Yao et al., 2023; Mo et al., 2023). Critical pre-training design choices include the training
objective—such as dominant CLM (Brown et al., 2020; OpenAI, 2023) for generation, SC (Raffel
et al., 2020) which aids fine-tuning (Tay et al., 2023a), or combined UL2-style approaches (Tay
et al., 2023a;b; Garcia et al., 2023), potentially using PrefixLM (Du et al., 2022; Chowdhery et al.,
2023)—and pre-trained corpus composition, which involves quality curation (Rae et al., 2021;
Touvron et al., 2023), filtering (Penedo et al., 2023; Xia et al., 2024), and source mixing (Weber et al.,
2024; Shen et al., 2024) to ensure broad coverage and robustness. Given the variety of design options,
lightweight methods to predict final performance are highly desirable for efficient model development.
This work investigates predictors for supervised fine-tuning outcomes, utilizing systematic variations
across several pre-training design factors in our study.

LLMs SFT Performance Prediction The ability to predict the performance of large language
models (LLMs) after fine-tuning has gained significant importance, largely driven by the substantial
computational investment required for pre-training. Previous research (Kaplan et al., 2020; Hoffmann
et al., 2022; Henighan et al., 2020) established scaling laws showing that increasing pre-training
FLOPs typically reduces perplexity on held-out data, correlating with enhancements in capabilities
like chain-of-thought reasoning (Wei et al., 2022; Kojima et al., 2022), preference alignment (Ouyang
et al., 2022; Bai et al., 2022), and multilingual understanding (Chowdhery et al., 2023), suggesting
larger models generally yield better downstream performance. Analogous scaling phenomena, where
lower perplexity often corresponds to improved outcomes, have also been noted when fine-tuning
LLMs for specific applications (Zhang et al., 2024; Isik et al., 2025); for instance, Isik et al. (2025)
reported such a correlation for machine translation performance. However, token-level perplexity
can over-weight frequent tokens and mask deficits on rare or semantically critical ones (Sinha &
et al., 2020), and its predictability has been questioned for long-context generation (Liu et al., 2024b;
Fang et al., 2025) and many-shot in-context learning (Agarwal et al., 2024), implying it may not be a
robust indicator across all downstream tasks.

Departing from scaling-law studies across varying model sizes or from settings focused on extreme
input/output lengths, we evaluate the efficacy of perplexity as a predictor of fine-tuned performance
among same-size LLMs trained with the same pre-training compute, on widely used NLP tasks.
In this controlled regime, we find that perplexity is not a reliable predictor of downstream SFT
performance, calling into question its utility as a one-size-fits-all proxy for selecting among equal-size
LLM variants. Building on this observation, we introduce several pre-training accessible proxies that
exhibit stronger correlations with downstream SFT outcomes. And further propose a learning-to-
compare framework that ensembles these proxies to rank candidate models, yielding consistent gains
over any single proxy and outperforming perplexity-based selection.

7 CONCLUSION AND FUTURE DIRECTIONS

This study focused on the challenge of predicting LLM performance after supervised fine-tuning
(SFT) using only pre-training indicators, establishing that conventional perplexity is unreliable
for this purpose. We approached this as a pairwise classification task, using 1B parameter LLM
variants with diverse pre-training configurations. We introduced novel unsupervised (Kshot-RAG,
PPL-SC) and supervised (“learning-to-compare”) proxy metrics, which successfully reduced relative
performance prediction error by over 50% compared to perplexity. These proxies proved effective for
predicting outcomes, particularly between models with large performance gaps, and for identifying
top-performing candidates, thereby enabling more efficient LLM development pathways.

Future work should explore the generalizability of these findings to larger model scales and a broader
range of downstream tasks and fine-tuning paradigms. Further investigation into a broader array of pre-
training strategies, data compositions, and the development of even more sophisticated proxy metrics
could yield deeper insights. Additionally, exploring the theoretical connections between specific
pre-training objectives or data characteristics and their influence on downstream task adaptability
after fine-tuning represents a promising avenue for future work, ultimately enabling more efficient
LLM development and selection.
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8 ADDITIONAL EXPERIMENTS AND CLARIFICATIONS (REBUTTAL UPDATES)

In this section, we provide additional experimental results in response to reviewer feedback, covering
extended perplexity evaluations, benchmark resolution analysis, and feature synergy ablation studies.

8.1 EXTENDED PERPLEXITY ANALYSIS (SLIMPAJAMA SPLITS & BENCHMARK TRAIN SETS)

To address the concern that perplexity on the Pile dev set might be insufficient, we conducted a
comprehensive evaluation of additional perplexity-based proxies. We computed perplexity on:

• SlimPajama-Wiki: Domain-specific perplexity on the Wikipedia split.

• SlimPajama-CC: Domain-specific perplexity on the CommonCrawl split.

• Benchmarks PPL-CLM: Mean perplexity computed directly on the training sets of the
downstream benchmarks.

We evaluated these proxies using pairwise classification accuracy (Higher is Better). As shown in
Table 3, all perplexity-based variants, even those matched to the domain, yield significantly lower
predictive accuracy (mean accuracy < 0.46) compared to Kshot-RAG (mean accuracy 0.72). This
confirms our central claim that perplexity is not a reliable indicator of relative post-SFT performance
in this setting.

Table 3: Pairwise predictive accuracy (Higher is Better) of extended perplexity-based proxies
compared to Kshot-RAG.

Proxy Indicator SFT-CBQA SFT-CMS SFT-RAG Mean Acc.
Kshot-RAG (Ours) 0.7064 0.6972 0.7685 0.7240
Benchmarks PPL-CLM 0.4607 0.4133 0.4863 0.4534
SlimPajama-Wiki PPL 0.4450 0.3813 0.4664 0.4309
PPL-CLM (Pile-dev) 0.3350 0.3101 0.3635 0.3362
SlimPajama-CC PPL 0.3110 0.2881 0.3212 0.3067

8.2 BENCHMARK RESOLUTION ANALYSIS (TOP-4 BENCHMARKS)

To verify that the advantage of Kshot-RAG is not due to noise in low-resolution benchmarks, we se-
lected the top-4 benchmarks with the highest resolution: CBQA TriviaQA, CBQA NQ, Winogrande,
and OpenBookQA. We computed the mean pairwise accuracy (Higher is Better) for each proxy on
this high-resolution subset.

As detailed in Table 4, Kshot-RAG achieves the highest mean accuracy (0.6963), while Pile-CLM
(perplexity) shows the lowest accuracy (0.3649). This consistent trend demonstrates that the predic-
tive advantage of Kshot-RAG holds robustly across high-resolution tasks and is not an artifact of
benchmark granularity.

Table 4: Mean pairwise accuracy (Higher is Better) on the Top-4 high-resolution benchmarks.
Kshot-RAG consistently achieves the highest accuracy.

Metric TriviaQA NQ Winogrande OpenBookQA Mean Acc.
Kshot-RAG 0.7192 0.6841 0.6947 0.6873 0.6963
Pile-SC 0.6024 0.5494 0.6424 0.6735 0.6169
Kshot-CMS 0.5159 0.5910 0.5706 0.6016 0.5698
KShot-CBQA 0.4645 0.5371 0.4661 0.4980 0.4914
Pile-CLM 0.3404 0.4555 0.2931 0.3706 0.3649
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8.3 FEATURE SYNERGY AND ABLATION STUDY

To clarify the mechanism behind proxy combination, we conducted an exhaustive ablation study
using a LightGBM classifier across 20 random seeds, enumerating all possible feature subsets from
size k=1 to k=5. For each subset size k, we selected the combination achieving the highest accuracy
and visualized these results in Figure 6.

Observations: As illustrated in Figure 6, at the k = 1 baseline, Pile-SC is the most effective
predictor for SFT-CMS (Acc ≈ 0.61), while Kshot-RAG dominates for SFT-RAG and SFT-CBQA
(Acc ≈ 0.58 and 0.61). Crucially, combining just two features (k = 2) yields substantial performance
gains: c

• SFT-CMS: +11.67% improvement.

• SFT-RAG: +12.06% improvement.

• SFT-CBQA: +9.49% improvement.

Conclusion: These findings provide strong evidence of feature synergy: the model combines
complementary signals to achieve substantially higher accuracy than what any single feature can
provide. We also observe a consistent upward trend (except k=4 to 5 in SFT-RAG). in performance
as more features are included

Figure 6: Ablation study showing average pairwise accuracy vs. number of features (k).
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Sub Dataset DC-0 DC-1 DC-2 DC-3 DC-4 DC-5

SlimPajama

Commoncrawl 52.2% 100.0% 90.9% 75.8% 75.8% 75.8%
C4 26.7% 0.0% 0.0% 0.0% 0.0% 0.0%
GitHub 5.2% 0.0% 9.1% 24.2% 0.0% 9.1%
Books 4.2% 0.0% 0.0% 0.0% 0.0% 7.9%
ArXiv 4.6% 0.0% 0.0% 0.0% 0.0% 0.0%
Wikipedia 3.8% 0.0% 0.0% 0.0% 24.2% 7.3%
StackExchange 3.3% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 5: six configurations of sub dataset combinations in Slimpajama

B PRETRAINING AND LLMS

We use SlimPajama Soboleva et al. (2023) as our pretraining corpus, which consists of data from
seven domains. Following Shen et al. (2024), we apply domain re-weighting to create six dataset
variants. The detailed domain proportions for each variant are provided in Table 5.

We pretrain 50 LLMs, each with 1 billion parameters, on 100 billion tokens. Model variants are
generated by varying pretraining objectives, dataset composition strategies, and learning rates. The
detailed pretraining configuration for each model is provided in Table 6.

C PROXY PREDICTIVE ACCURACY

Similar to Section 3, we group the pre-trained LLMs into six categories either based on their domain
re-weighting or tagging & length filtering configurations. In both cases, paired models share the same
pretraining configurations except for the group-specific factor (domain re-weighting or tagging &
length filtering). We compute the predictive accuracy of each proxy on three SFT tasks and report the
results in the Figure 7 and Figure 8.

D CLASSIFIER IMPLEMENTATION DETAIL

Loss function: Assuming the LLMs in training set as Mtrain, we train the classifier using the binary
cross-entropy loss.

L =
1

C

∑
mi,mj∈Mtrain and i̸=j

−yij log f
(
H(pmi , pmj )

)
− (1− yij) log

(
1− f

(
H(pmi , pmj )

))
Where C is the total number of pairs in Mtrain equals to |Mtrain|(|Mtrain|−1)

2 .

We also instantiate the learning-to-compare framework using Logistic Regression and Neural Net-
works as backbone models. Their performance, compared with unsupervised baselines, is reported in
Table 7.

The implementation details are as follows: For logistic regression, we use scikit-learn’s (Pedregosa
et al., 2011) LogisticRegression with the default lbfgs solver for binary classification. The model
applies L2 regularization with strength C = 1.0, fits an intercept, and runs up to 100 iterations.
Class weighting is not applied. For the neural network, we use scikit-learn’s MLPClassifier with
two hidden layers of size 32 each and ReLU activation. The model is optimized using the Adam
solver and trained for a maximum of 100 iterations. All other hyperparameters are set to their
default values. For LightGBM, we use the LGBMClassifie from the official lightgbm library 1. The
objective is set to binary with binary logloss as the evaluation metric. All other hyperparameters
follow the default settings: num leaves=31, learning rate=0.1, n estimators=100, feature fraction=1.0,
bagging fraction=1.0, and no regularization (lambda l1=0.0, lambda l2=0.0).

1https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
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Model ID Pretrained Objective Domain Re-weight LR Domain Tagging Length Filtering

1 CLM DC-0 1e-4 ✗ ✗
2 CLM DC-0 2.5e-4 ✗ ✗
3 CLM DC-0 5e-4 ✗ ✗
4 CLM DC-0 7.5e-4 ✗ ✗
5 CLM DC-0 1e-3 ✗ ✗
6 SC DC-0 1e-4 ✗ ✗
7 SC DC-0 2.5e-4 ✗ ✗
8 SC DC-0 5e-4 ✗ ✗
9 SC DC-0 7.5e-4 ✗ ✗
10 SC DC-0 1e-3 ✗ ✗
11 PLM DC-0 1e-4 ✗ ✗
12 PLM DC-0 2.5e-4 ✗ ✗
13 PLM DC-0 5e-4 ✗ ✗
14 PLM DC-0 7.5e-4 ✗ ✗
15 PLM DC-0 1e-3 ✗ ✗
16 SC+CLM DC-0 1e-4 ✗ ✗
17 SC+CLM DC-0 2.5e-4 ✗ ✗
18 SC+CLM DC-0 5e-4 ✗ ✗
19 SC+CLM DC-0 7.5e-4 ✗ ✗
20 SC+CLM DC-0 1e-3 ✗ ✗
21 UL2 DC-0 1e-4 ✗ ✗
22 UL2 DC-0 2.5e-4 ✗ ✗
23 UL2 DC-0 5e-4 ✗ ✗
24 UL2 DC-0 7.5e-4 ✗ ✗
25 UL2 DC-0 1e-3 ✗ ✗
26 UL2R DC-0 1e-4 ✗ ✗
27 UL2R DC-0 2.5e-4 ✗ ✗
28 UL2R DC-0 5e-4 ✗ ✗
29 UL2R DC-0 7.5e-4 ✗ ✗
30 UL2R DC-0 1e-3 ✗ ✗
31 UL2R+CLM DC-0 1e-4 ✗ ✗
32 UL2R+CLM DC-0 2.5e-4 ✗ ✗
33 UL2R+CLM DC-0 5e-4 ✗ ✗
34 UL2R+CLM DC-0 7.5e-4 ✗ ✗
35 UL2R+CLM DC-0 1e-3 ✗ ✗
36 CLM DC-1 2.5e-4 ✗ ✗
37 CLM DC-2 2.5e-4 ✗ ✗
38 CLM DC-3 2.5e-4 ✗ ✗
39 CLM DC-4 2.5e-4 ✗ ✗
40 CLM DC-5 2.5e-4 ✗ ✗
41 PLM DC-1 2.5e-4 ✗ ✗
42 PLM DC-2 2.5e-4 ✗ ✗
43 PLM DC-3 2.5e-4 ✗ ✗
44 PLM DC-4 2.5e-4 ✗ ✗
45 PLM DC-5 2.5e-4 ✗ ✗
46 CLM DC-0 2.5e-4 ✗ [25% 75%]
47 CLM DC-0 2.5e-4 ✗ [75% 100%]
48 CLM DC-0 2.5e-4 ✓ ✗
49 CLM DC-0 2.5e-4 ✓ [25% 75%]
50 CLM DC-0 2.5e-4 ✓ [75% 100%]

Table 6: Pre-trained configurations of LLMs

E PROXY NORMALIZED IMPORTANCE SCORE FOR LIGHTGBM

We use LightGBM’s gain-based feature importance, which quantifies how much each feature
contributes to reducing the model’s loss. Specifically, for each feature f , the importance is defined as
the total reduction in the loss function (binary log-loss in our case) due to splits on that feature across
all trees in the ensemble.

Let T denote the set of all decision trees in the trained LightGBM model. For each tree t ∈ T and
each split node s ∈ t, let fs be the feature used at split s, and let ∆L(s) denote the reduction in the
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Figure 7: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-
performing model between two LLMs with different pre-trained dataset domain re-weighting (other
pre-trained configurations fixed). DC-0 to DC-5 referes to different dataset variants, detailed in
Table 5.

loss function caused by that split. Then, the gain-based importance for feature f is computed as:

Gain(f) =
∑
t∈T

∑
s∈t
fs=f

∆L(s)

In our setting, we construct a 20-dimensional feature vector H(pmi , pmj ) ∈ R20 for each model pair
(mi,mj) using five proxies, with each proxy contributing four dimensions as defined in:

hk(pmi
, pmj

) =
[
pkmi

− pkmj
, pkmi

· pkmj
, pkmi

, pkmj

]
To compute proxy-level importance, we group every four dimensions corresponding to each proxy
and sum their individual gain scores:

Gain(k) =
∑
f∈Fk

Gain(f)

where Fk denotes the set of four features derived from proxy k.

This aggregation allows us to assess the overall contribution of each proxy to the classifier’s pre-
dictions. To facilitate comparison across proxies, we normalize the aggregated importance scores.
Specifically, let I(p) denote the total importance score for proxy p (i.e., the sum of importance scores
for its four associated features). The normalized importance for proxy p is computed as:

Ĩ(p) =
I(p)∑

p′∈P I(p′)

where P is the set of all proxies. This yields a distribution over proxies, where higher values indicate
greater influence on the classifier’s decision.
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Figure 8: Predictive accuracy of PPL-CLM, PPL-SC, and Kshot-RAG in distinguishing the better-
performing model between two LLMs with different length & filtering methods (other pre-trained
configuration fixed). The naming follows the format of [Tagging]-[Length Filtering]. “Tag” and
“NoTag” indicate whether domain tags are added. “All” keeps all examples, “Mid” keeps samples
with lengths in the 25–75% quantile range, and “Max” keeps the longest 25% of examples.

F PROMPTS

The exampled prompts used for Kshot-CMS, Kshot-RAG, and Kshot-CBQA tasks are shown in
Figure 9, Figure 10 and Figure 11 respectively.

G SUPERVISED FINETUNED, PERPLEXITY AND KSHOT RESULTS OF LLMS

The all supervised fine-tuned, perplexity and Kshot-learning results are detailed in Table 8.
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SFT-CMS SFT-RAG SFT-CBQA

Conventional Perplexity
PPL-CLM .306±.081 .366±.060 .331±.054

Individual and Combined Proxies
Kshot-RAG .687±.073 .724±.047 .683±.077

Combine Five Proxies .612±.055 .585±.051 .540±.104

Learning To Compare
Train and Evaluate on the same task
Logistic Regression .738±.044 .688±.054 .624±.087

Neural Networks .778±.056 .691±.055 .673±.071

LightGBM .753±.054 .727±.039 .753±.060

Train on SRC task
Logistic Regresion
SFT-CMS (Src) .738±.044 .669±.059 .636±.060

SFT-RAG (Src) .724±.074 .688±.054 .641±.079

SFT-CBQA (SRC) .708±.069 .680±.049 .624±.087

Neural Networks
SFT-CMS (Src) .778±.056 .706±.060 0.683±.062

SFT-RAG (Src) .742±.073 .691±.055 0.667±.075

SFT-CBQA (Src) .748±.067 .695±.059 .673±.071

LightGBM
SFT-CMS (Src) .753±.054 .712±.054 .707±.057

SFT-RAG (Src) .734±.047 .727±.039 .717±.071

SFT-CBQA (Src) .734±.052 .718±.050 .753±.060

Table 7: Performance comparison of unsupervised baselines and supervised classifiers (Logistic
Regression, Neural Networks, LightGBM) for predicting SFT-CMS, SFT-RAG, and SFT-CBQA.
Results are reported as mean accuracy ± standard deviation over 20 runs.
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You are an expert in commonsense reasoning tasks.
// five in-context examples in total.
Question: do iran and afghanistan speak the same language
Answer: True
...
Question: does canada’s worst driver lose their license
Answer: No
Question: does canada’s worst driver lose their license
Answer:

Figure 9: Prompt used for Kshot-CMS

You are an expert in question answering. I am going to give you five example triples of
context, question and answer, in which the context may or may not be relevant to the question.
The examples will be written.

// five in-context examples in total.
Context: <Retrieved documents>
Question: who sang the original blinded by the light
Answer: Bruce Springsteen
...
Context: <Retrieved documents>
Question: who played vincent in nanny mcphee and the big bang
Answer: Oscar Steer

Context: <Retrieved documents>
Question: how many episodes are there in dragon ball z
Answer:

Figure 10: Prompt used for Kshot-RAG. For each question, we retrieve the top-1 document as context
using the Gecko-1B retriever Lee et al. (2024b).

You are an expert in question answering. I am going to give you five example of question-
answer pairs as the in-context examples first. Your task is to generate a answer given a
question.

// five in-context examples in total.
Question: the first life forms to appear on earth were
Answer: putative fossilized microorganisms
...
Question: who made the beavis and butthead theme song
Answer: Mike Judge

Question: what network is showing the monday night football game
Answer:

Figure 11: Prompt used for Kshot-CBQA.
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Performance after Supervised Fine-tuning Individual Proxies from Pre-Training
Model ID SFT-CMS SFT-RAG SFT-CBQA PPL-CLM PPL-SC Kshot-CMS Kshot-RAG Kshot-CBQA

1 69.800 47.275 35.600 0.395 0.089 61.560 34.990 20.390
2 70.980 47.600 36.350 0.394 0.094 61.660 33.130 20.130
3 70.520 47.850 36.000 0.391 0.087 60.680 21.230 19.950
4 70.900 48.425 0.150 0.389 0.092 61.100 34.011 0.121
5 70.900 48.375 38.550 0.388 0.079 55.000 39.072 19.315
6 73.560 48.200 36.950 0.377 0.141 59.780 35.980 18.280
7 70.260 47.900 37.350 0.385 0.131 60.300 36.500 17.410
8 74.560 48.600 38.250 0.360 0.143 58.420 35.300 17.810
9 75.200 48.600 38.300 0.331 0.141 56.920 42.692 19.221
10 75.360 48.725 37.750 0.306 0.140 56.460 42.494 18.945
11 70.000 47.750 36.250 0.394 0.096 61.960 37.710 21.090
12 70.420 47.675 36.000 0.387 0.097 61.480 37.300 19.440
13 72.160 48.125 37.800 0.387 0.102 61.980 37.900 20.260
14 73.240 48.475 38.250 0.386 0.104 62.240 42.300 19.177
15 73.560 48.925 38.750 0.382 0.094 62.240 43.003 19.422
16 70.440 47.725 35.600 0.395 0.129 61.560 36.800 20.350
17 71.620 48.000 37.500 0.392 0.132 61.480 36.810 20.200
18 72.980 48.650 37.900 0.388 0.143 61.480 36.490 19.860
19 72.940 48.650 38.450 0.385 0.143 61.180 42.789 19.297
20 73.420 48.825 38.900 0.382 0.143 61.620 43.306 19.522
21 73.140 47.150 34.900 0.394 0.170 61.940 37.100 20.780
22 70.540 46.775 36.900 0.376 0.153 59.500 34.810 15.950
23 74.200 48.350 38.050 0.383 0.178 61.420 37.760 20.610
24 75.140 48.825 38.400 0.378 0.172 61.200 42.933 19.286
25 75.340 49.025 39.100 0.375 0.173 61.700 42.931 19.637
26 68.720 47.150 35.500 0.386 0.129 61.100 36.380 18.290
27 69.760 46.600 35.750 0.378 0.130 60.180 35.740 17.170
28 73.000 48.425 37.900 0.386 0.131 61.660 37.950 21.610
29 73.840 48.625 38.800 0.382 0.134 61.600 42.658 19.467
30 74.340 48.675 39.050 0.379 0.133 61.820 42.700 19.592
31 70.400 47.425 35.900 0.395 0.130 61.780 37.470 20.970
32 71.540 48.100 37.300 0.393 0.125 62.180 37.690 21.700
33 72.900 47.875 35.850 0.390 0.127 62.080 37.710 21.080
34 72.820 48.650 38.800 0.388 0.130 62.120 42.775 19.465
35 73.640 48.600 38.450 0.385 0.129 61.560 42.711 19.290
36 71.620 47.625 37.700 0.364 0.102 61.680 31.760 20.280
37 71.700 47.900 37.250 0.373 0.102 61.640 33.080 19.940
38 70.200 47.650 37.700 0.374 0.096 51.580 11.330 1.230
39 71.080 47.825 37.550 0.387 0.110 60.800 33.860 20.290
40 71.480 48.000 37.850 0.389 0.107 60.720 33.170 19.250
41 72.400 48.000 37.800 0.360 0.101 61.880 37.180 19.720
42 72.300 48.125 37.300 0.368 0.103 62.200 37.610 19.390
43 72.360 48.100 37.350 0.368 0.104 62.180 37.370 20.040
44 72.800 48.350 37.550 0.382 0.111 62.300 37.660 20.320
45 72.480 47.825 38.000 0.383 0.111 61.560 37.870 20.860
46 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
47 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200
48 71.800 47.325 37.350 0.386 0.107 61.160 33.210 18.540
49 72.220 47.900 37.650 0.380 0.104 61.860 26.500 20.160
50 72.040 47.575 37.300 0.387 0.106 61.120 32.380 20.200

Table 8: SFT, perplexity and kshot performance for all pretrained LLMs.
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