
Under review as a conference paper at ICLR 2023

EFFICIENT POLICY SPACE RESPONSE ORACLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy Space Response Oracle methods (PSRO) provide a general solution to
approximate Nash equilibrium in two-player zero-sum games but suffer from
two drawbacks: (1) the computational inefficiency due to consistent meta-game
evaluation via simulations, and (2) the exploration inefficiency due to learning
best responses against fixed meta-strategies. In this work, we propose Effi-
cient PSRO (EPSRO) that considerably improves the efficiency of the above two
steps. Central to our development is the novel subroutine of no-regret optimiza-
tion on solving unrestricted-restricted (URR) games. By modeling the EPSRO
as URR game solving, one can compute the best responses and meta-strategies
in a single forward pass without extra simulations. Theoretically, we prove that
the proposed optimization procedures of EPSRO guarantee the monotonic im-
provement on the exploitability, which is absent in existing researches of PSRO.
Furthermore, we prove that the no-regret optimization has a regret bound of
O(
√

T log [(k2 + k)/2]), where k the size of restricted policy set. The pipeline
of EPSRO is highly parallelized, making policy-space exploration more affordable
in practice and thus more behavioral diversity. Empirical evaluations on various
games report that EPSRO achieves a 50x speedup in wall-time and 2.5x data effi-
ciency while obtaining comparable exploitability against existing PSRO methods.

1 INTRODUCTION

Policy Space Response Oracles (PSRO) (Lanctot et al., 2017) is a general reinforcement learning
algorithm for zero-sum games, which has been applied in many non-trivial multi-agent learning
tasks (Vinyals et al., 2019; Liu et al., 2021b). In general, PSRO approximates a Nash equilibrium
(NE) by iteratively expanding a restricted game formed by a set of restricted policy sets, which is
ideally much smaller than the original game. To achieve that, PSRO performs meta-game solving
to produce a tuple of meta-strategies as an approximate NE; and learns best responses against the
meta-strategies at each epoch.

Although PSRO can solve the original multi-agent learning problem in restricted games, it is still
computationally expensive to solve meta-game and learn high-quality best responses. Specifically,
solving a geometrically growing meta-game relies on numerous simulations across the Cartesian
space of growing policy sets (Omidshafiei et al., 2019; Yang et al., 2020), which results in compu-
tational inefficiency; learning best responses against fixed opponent meta-strategies lacks adequate
opponent exploration, which results in slow convergence, i.e., exploration inefficiency. An expected
property for PSRO is the non-degenerate guarantee for best response learning, as the expanded pol-
icy sets towards a closer approximation of NE in this case. However, the exploration inefficiency
empirically hinders the generation of high-quality responses under guarantee (Wang et al., 2021)
even though the PSRO can substantially expand the policy sets. In the worst case, PSRO needs to
add all feasible policies from the original game and thus generates large policy sets, making it more
computational expensive and slow to converge (McAleer et al., 2020). A line of work to resolve the
above issues is to utilize parallelism for best responses learning (Lanctot et al., 2017; Balduzzi et al.,
2019; McAleer et al., 2020; Liu et al., 2021a), i.e., a kind of pre-training to improve the quality of
best responses. However, they learn best responses still rely on numerous simulations and playing
against fixed meta-strategies.

It is desirable for an efficient method to these problems. Our key insight is that the computation of
meta-strategies can be free from dedicated simulations, and the learning of best responses should
have adequate opponent exploration and be toward monotonic expansion on restricted policy sets.

1

Under review as a conference paper at ICLR 2023

Figure 1: An overview of EPSRO. (a) EPSRO runs in a loop that learns best responses by solving
URR games for each player, then expands the restricted policy sets with these πi,θ at each epoch.
(b) At each epoch, EPSRO runs parallel URR game solve for each active best response πj

i,θ (Algo-
rithm 4), where j is the level. In each URR game, πj

i,θ plays against Πr,k
−i where k = 1, . . . , j − 1.

Previous work has proposed to learn a generalized best response as a monotonic expansion guar-
antee (Zinkevich et al., 2007a; Hansen et al., 2008). However, they only focus on tabular cases in
which the policy space is limited. Moreover, they require nested meta-game solving to compute
generalized best responses, resulting in high computational costs.

In this paper, we propose the Efficient PSRO (EPSRO) and formulate it as unrestricted-restricted
(URR) games to solve the above two kinds of inefficiency. Compared to existing PSRO methods,
EPSRO does not require any dedicated simulation to solve a restricted meta-game beforehand. In-
stead, EPSRO merges the best response learning and meta-strategies computation by performing
URR game solving. In this case, each best response policy and its opponent meta-strategy com-
pose of an approximate NE, and the algorithm outputs a tuple of meta-strategies as a solution. We
prove that the learned best responses are guaranteed to expand the restricted policy sets in a mono-
tonic manner, improving exploration efficiency. To efficiently solve the URR games, we leverage
no-regret optimization (Daskalakis et al., 2011) and reinforcement learning (RL) (Sutton & Barto,
2018). As the EPSRO has growing policy sets, it always breaks the convergence when new policies
are added. Thus, EPSRO needs to retrain meta-strategies from scratch to satisfy such a change,
resulting in high retraining costs. As a solution to this issue, we propose a warm-start technique.
Moreover, we introduce a pipeline URR solver to make the best response learning be parallelized,
which further improves the training efficiency of the underlying reinforcement learning step. We
analyze the algorithm performance and give a regret bound of O(

√
T log [(k2 + k)/2]), where k is

the size of the final restricted policy set. This bound implies that our algorithm has a better toler-
ance for the growing size of policy sets than previous work (Appendix G.1). The empirical results
show that EPSRO substantially improves efficiency and performs better than existing PSRO-based
methods in the high-dimensional matrix, poker, card games, and multi-agent gathering tasks.

2 PRELIMINARIES

Two-player Normal-form Games. A two-player normal-form game (Fudenberg & Tirole, 1991)
can be formalized as a tuple (Π, UΠ). Π = (Π1,Π2) the tuple of policy sets; UΠ = (UΠ1 , UΠ2)
the tuple of payoff matrices. Formally, ∀i ∈ {1, 2}, UΠi : Π → R|Π1|×|Π2|, in which each item
represents the utility under a joint policy or accumulative reward in reinforcement learning termi-
nology. Players in the game try to maximize their own expected utility by sampling policy from a
mixture (distribution) σi over their policy sets, where ∀i ∈ {1, 2}, σi ∈ ∆(Πi). For the sake of
convenience, we use −i to denote the other players except for i in the following content. A best
response to a mixed-strategy σ−i is defined as a strategy that has highest utility. It can be expressed
as BR(σ−i) = argmaxσi ui(σi, σ−i), where ui(·, ·) denotes the utility function of player i.

Policy Space Response Oracles (PSRO). Double Oracle (DO) methods (McMahan et al., 2003;
Le Cong Dinh et al., 2021; McAleer et al., 2021) provide an iterative mechanism for finding an
approximation of Nash equilibrium in normal-form games. These algorithms maintain an iteratively

2

Under review as a conference paper at ICLR 2023

expanded restricted policy set Πr
i for each player. At each epoch, a Nash equilibrium σ = (σi, σ−i)

is computed for a restricted meta-game formed by a tuple of restricted policy sets Πr = (Πr
i ,Π

r
−i).

Then, a best response to this Nash equilibrium for each player i is computed and added to its re-
stricted policy set as Πr

i = Πr
i ∪ {BR(σ−i)}. As a generalization of DO, PSRO defines restricted

meta-games with sets of reinforcement learning policies. In this case, the normal-form games in
PSRO are an abstraction of feasible joint policy space instead of trivial matrix games. Thus, tech-
niques for DO algorithms cannot be directly applied to PSRO cases; also, PSRO are challenged by
higher complexity than DO due to nested reinforcement learning procedures. In practice, PSRO
learns to approach an approximate NE at a level of precision ϵ ≥ 0 (Aziz, 2010). To evaluate the
quality of the approximation, we use NASHCONV(σ) =

∑
i ui (BRi(σ−i), σ−i)−ui(σ) to compute

the exploitability of σ to oracles {BR(σ−i) | i = 1, 2} (Johanson et al., 2011). σ is an exact Nash
equilibrium if NASHCONV = 0. It is no difficulty to know that higher exploitation efficiency brings
a lower exploitability.

We summarize the pseudo-code of PSRO in Algorithm 1. At each epoch, PSRO learns approximate
best responses by running nested reinforcement learning algorithms. However, such a procedure
is data-thirsty and has no guarantee of finding a high-quality best response to bring higher payoffs
for a restricted policy set, especially in the case of complex tasks. After the best response learning,
PSRO requires dedicated simulations to compute the missing items in UΠr

. In general, the amount
of simulations grows geometrically asO(M · |Πr

i |), where |Πr
i | and M denote the size of a restricted

policy set and the number of simulations for each missing item, respectively.

Algorithm 1: VANILLA PSRO
Input: initial restricted policy sets Πr = (Πr

1,Π
r
2)

/* can be saved via URR games */

Input: empty payoff table UΠr

Input: meta-strategies σi ∼ UNIFORM(Πr
i)

1 while not terminated do
2 for player i ∈ {1, 2} do
3 for many episodes do
4 Train best response πi,θ against π−i ∼ σ−i

5 Πr
i = Πr

i ∪ {πi,θ}
/* can be saved via URR games */

6 Run simulations to compute missing entries in UΠr

7 Compute a meta-strategy σ from UΠr

Output: current meta-strategy σi for player i

Algorithm 2: SIMPLIFIED
PSRO WITH URR GAMES
Input: initial restricted policy

sets Πr = (Πr
1,Π

r
2)

1 while not terminated do
2 for player i ∈ {1, 2} do
3 Random initialize a best

response πi,θ

4 (πi,θ, σ−i,β) =
SOLVEURR(πi,θ,
Πr

−i)
5 Πr

i = Πr
i ∪ {πi,θ} for

i ∈ {1, 2}
Output: current meta-strategy

σi for player i

3 EPSRO: EFFICIENT PSRO

The keys to EPSRO’s high efficiency lie in two aspects: (1) eliminating simulations for meta-
strategies computing; (2) learning high-quality best responses. For the first aspect, we developed
EPSRO on top of URR games (Section 3.1), it solves the computational inefficiency; for the second
aspect, we perform no-regret optimization (Section 3.2) for URR solving, it solves the exploration
inefficiency. Considering the influence of growing policy sets on training, we leverage warm-start
learning and parallelism (Section 3.3) to save training costs. We summarize the pseudo code of
EPSRO in Algorithm 4 and exhibit its overview in Figure 1.

3.1 MODELING EPSRO AS URR GAMES

Restricted meta-games are constructed for computing meta-strategies in previous PSRO methods.
However, solving it relies on numerous simulations, which challenges the computational efficiency.
In this work, we eliminate restricted meta-game solving by re-formulating PSRO as an unrestricted-
restricted (URR) game. Although a similar concept was proposed in Zinkevich et al. (2007a), it
requires a nested restricted meta-game procedure and only focuses on tabular cases. Thus, our URR
game modeling exhibits more potential in comparison.

3

Under review as a conference paper at ICLR 2023

Definition 3.1 (URR Game). An unrestricted-restricted game for player i is a tuple (Πi,Π
r
−i). Πi

the i’s full policy set; Πr
−i the −i’s restricted policy set. In this game, the i models its policy as a

function parameterized by θ, i.e. πi,θ ∈ ∆(Πi); −i models its strategy as a function parameterized
by β, i.e. σ−i,β ∈ ∆(Πr

−i). All players play against each other and converge to a Nash equilibrium
(π⋆

i,θ, σ
⋆
−i,β) where π⋆

i,θ = BR(σ⋆
−i,β), and σ⋆

−i,β = BR(π⋆
i,θ).

As described in Definition 3.1, a URR game directly computes meta-strategies and best responses
by performing adversarial learning instead of learning best responses to fixed meta-strategies which
are derived from restricted meta-games solving. Therefore, URR games save dedicated simulations
to achieve higher computational efficiency. Algorithm 2 lists the pseudo-code of an URR-based
PSRO for comparison with the vanilla PSRO (Algorithm 1). Despite saving simulation costs, we
need to investigate whether the expansion of its policy set is non-degenerate as it is a key principle
to exploration efficiency. Conceptually, the non-degenerate policy set expansion means that a new
added best response has to satisfy: (1) not be in existing gamescape; (2) bring utility improvements
and exploitability decrease when playing against any opponent meta-strategies σ−i ∈ ∆(Πr

−i). The
gamescape is introduced in Balduzzi et al. (2019) to evaluate how closely a restricted policy set is
to the full policy space Π. Though being originally defined in the field of self-play, the concept of
gamescape can be naturally extended to URR games as follows.

Definition 3.2 (URR Gamescape, derived from Balduzzi et al. (2019)). Given an URR
game with payoff matrix U, the corresponding empirical gamescape (EGS) is G :=
{convex mixture of columns of U}.

Theorem 3.3 (Monotonic Policy Space Expanding). For any given epoch e and e+ 1, let (πe
i , σ

e
−i)

and (πe+1
i , σe+1

−i) be Nash equilibrium of URRe
i and URRe+1

i , respectively, where πe
i , π

e+1
i ∈ Πi,

σe
−i ∈ ∆e

Πr
−i

and σe+1
−i ∈ ∆e+1

Πr
−i

. The utilities of πe
i against strategies σe

−i and σe+1
−i satisfies

ui(π
e
i , σ

e
−i)− ui(π

e
i , σ

e+1
−i) ≥ 0, (1)

where ∆e
Πr

−i
indicates ∆(Πr,e

−i). (See Appendix B.1)

Theorem 3.3 indicates that EPSRO has a monotonic utility improvement and policy space expansion
with URR games. We further investigate that EPSRO has higher exploration efficiency than the naive
PSRO (Section 4) and discuss this property theoretically (Appendix B.2).

3.2 SOLVING URR GAMES

We’ve built our EPSRO with URR and gave analysis for its policy set expansion, but how to effi-
ciently solve URR games is still a question. A feasible method for the implementation is no-regret
optimization (Bowling, 2004; Daskalakis et al., 2011), which is used to solve two-player zero-sum
games. Under this framework, a learning algorithm could approximate the NE asymptotically by
playing the same game repeatedly. We give its definition as follows.

Definition 3.4. Considering a sequence of mixed strategies for player i as π1, π2, . . . , an algorithm
of −i that generates a sequence of mixed strategies σ1, σ2, . . . is called a no-regret algorithm if we
have: limT→∞ RT /T = 0, RT = maxσ∈∆Π−i

∑T
t=1(π

⊤
t Uσ − π⊤

t Uσt).

A well-known no-regret algorithm is Multiplicative Weights Update (MWU) (Freund & Schapire,
1999), which updates strategy by considering the averaging loss vector to opponent strategies along
the learning horizon and then achieves no-regret as the learning horizon towards infinite. We give
its definition in Appendix B.3. In our implementation, we leverage a variant of MWU for meta-
strategies learning and an off-policy reinforcement learning algorithm for best response learning. We
list the pseudo-code in Algorithm 3. The opponent meta-strategy σ−i is represented as a Boltzman
distribution, which is parameterized by a vector β = [β1, . . . , β|Πr

−i|]. Thus, each support of σ−i

could be expressed as σ−i(j) =
exp βj∑n
i=1 exp βi

. We update σ−i by following Algorithm 5.

4

Under review as a conference paper at ICLR 2023

Algorithm 3: SOLVEURR
Input: URR game (Πi,Π

r
−i), BR πi,θ ∼ ∆(Πi)

Input: meta-strategies σ−i,β ∼ UNIFORM(Πr
−i)

1 while not terminated do
2 Train best response πi,θ′ ← πi,θ against π−i ∼ σ−i,β with reinforcement learning step
3 Update σ−i,β′ ← σ−i,β against πi,θ by following Algorithm 5 in Appendix A
4 πi,θ ← πi,θ′ , σ−i,β ← σ−i,β′

Output: an approximate Nash (π⋆
i,θ, σ

⋆
−i,β)

Warm-Starting Algorithm. In EPSRO, a critical issue for the meta-strategy learning is that the
length of meta-strategy changes as the policy set expands. Therefore, we need to learn the meta-
strategy with a new expanded β at each epoch. However, if we start learning from scratch, the
cost of re-training grows more and more expensive as the policy set expands, resulting in a slow
convergence rate. To tackle this issue, we propose a warm-starting technique that enables the meta-
strategy starts from a non-trivial initialization. Since the warm-starting aims to save training costs
to achieve a small enough regret when Πr changes, so the key is to correctly initialize the regrets
instead of only starting the strategy. Because a wrong initialization of the regrets will result in huge
regrets in subsequent iterations, which is no better than starting from scratch. As pointed in Brown
& Sandholm (2016), a feasible warm-starting should be a substitute strategy that does not violate
the regret bound and the approximate NE of the last epoch.
Theorem 3.5 (Theorem 1 in Brown & Sandholm (2016)). In a two-player zero-sum game, if
RT

i

T ≤ ϵi for both player i ∈ {1, 2}, then (π̄i, σ̄−i) is a (ϵ1 + ϵ2)-equilibrium, where σ̄−i =∑T
t=1⟨σ−i,t, l−i,t⟩/

∑T
t=1 T l−i,t, π̄i =

∑T
t=1⟨πi,t, li,t⟩/

∑T
t=1 T li,t, R

T
i the summation of regrets

of T iterations, lt is the loss vector to the opponent policy set.

Theorem 3.5 shows that if we use a regret-based average σ̄−i (or π̄i) as the substitute of a sequence
of σ−i,t (or πi,t), the substitute can still hold the equilibrium. In EPSRO, as the restricted policy
set grows from Πr,e

−i to Πr,e+1
−i , we need to investigate whether there is a feasible substitute strategy

σ̄
′

−i ∈ ∆e+1
Πr

−i
to σ̄−i ∈ ∆e

Πr
−i

follows the regret guarantee of epoch e.

Theorem 3.6 (See Appendix B.5). Suppose a substitute policy of σ̄−i ∈ ∆e
Πr

−i
is σ̄

′

−i ∈ ∆e+1
Πr

−i
, and

it satisfies ue+1
i (π̄i, σ̄

′

−i) = ue
i (π̄i, σ̄−i), we have

max
σ−i∈∆e+1

Πr
−i

1

T

T∑
t=1

(
ue+1
−i (πt

i , σ−i)− ue+1
−i (πt

i , σ̄
′

−i)
)
≤ ϵT−i,

where ϵT−i is the regret bound of epoch e+ 1, πt
i ∈ ∆(Πi).

The motivation behind Theorem 3.6 is that a strategy satisfies the regret bound at e can be a non-
trivial regret initialization at e + 1. Thus, once we compute such a σ̄

′

−i that satisfies ui(π̄i, σ̄
′

−i) =
ui(π̄i, σ̄−i), then it is a feasible warm-start at the next epoch to save the training time. As multiple
substitute strategies exist that satisfy the above conditions, the latest best response may not contribute
to a learned one, making the learning of meta-strategies stuck at an old policy set. To solve this
problem, we can compute an initialization with some regularizer.

Lemma 3.7 (See Appendix B.7). Let k = |Πr,e+1
−i |, σ̄

′

−i be parameterized by β−i =

[β−i,1, β−i,2, . . . , β−i,k], σ̄
′

−i(k) the k-th item of σ̄
′

−i, x = [σ̄
′

−i(1), . . . , σ̄
′

−i(k − 1)]T , l̄e−i is −i’s
average loss vector to π̄i at epoch e. Then a feasible initial of βe+1

−i could satisfy

βe+1
−i = argmin

β−i

∥ (x− σ̄−i)
⊤ l̄e−i − σ̄

′

−i(k)u−i(π̄i, π
e+1
−i) ∥2 −λH(σ̄

′

−i), (2)

where λ > 0, H(σ̄
′

−i) is the entropy of σ̄
′

−i.

Lemma 3.7 computes a βe+1
−i for the initialization of σe+1

−i to satisfy Theorem 3.6. In addition,
the best response πi,θ also follows these conditions by continuous training instead of restarting
parameters at each epoch. We now present the regret bound of EPSRO as follows.

5

Under review as a conference paper at ICLR 2023

Theorem 3.8 (Regret Bound of EPSRO). Let l1, l2, . . . , lT be a sequence of loss vectors player by an
opponent, and ⟨·, ·⟩ be the dot product, then EPSRO is a no-regret algorithm with (See Appendix B.8)

1

T

(
T∑

t=1

⟨σt, lt⟩ − min
σ∈∆(Πr

t)

T∑
t=1

⟨σ, lt⟩

)
≤
√
log [(k + 1)k/2]√

2T
, where k is the size of Πr.

Theorem 3.8 shows that EPSRO is no-regret when the policy set is finite and horizon tends to infinite.
Though some complex games have continuous policy space, the number of effective policies is finite
in general. We further give the convergence rate of EPSRO as follows.
Theorem 3.9 (Convergence Rate of EPSRO). Let k, N denote the size of restricted policy sets Πr

−i
and Πi. Then the learning of Algorithm 3 will converge to the Nash equilibrium with the rate (See
Appendix B.9):

ϵT =

√
log [(k + 1)k/2]

2T
+

√
log [(N + 1)N/2]

2T
.

3.3 PIPELINE URR SOLVER

Algorithm 4: EFFICIENT PSRO (EPSRO)
Input: inital restricted policy sets Πr = (Πr

1,Π
r
2)

1 while not terminated do
2 for all player i ∈ {1, 2} in parallel do
3 for all active policies πj

i ∈ Πr
i in parallel do

4 πj
i,θ, σ

<j
−i,β = SOLVEURR(πj

i,θ,Π
r,<j
−i)

5 if πj
i,θ is the lowest active policy and meets

stops cond. then
6 Set it to fixed and Πr

i := Πr
i ∪ {π

j
i }

7 Generate a new active policy

Output: current meta-strategies σ = (σ1, σ2)

While Algorithm 3 is clear, the re-
inforcement learning step can take a
long time to converge to a good re-
sponse, especially in complex games.
To overcome this inefficiency, we in-
troduce a parallel solution for EP-
SRO. Inspired by Pipeline-PSRO (P-
PSRO) (McAleer et al., 2020), we
maintain a queue of ranked policies
for each player i. An active pol-
icy πj

i,θ ranked with j will be trained
with parallized URR games. For each
URR game, πj

i,θ plays against an op-
ponent meta-strategy σ<j

−i,β of Πr,<j
−i ,

composed of lower ranked policies {π1
−i, . . . , π

j−1
−i }. Once a lowest active policy meets the stop

condition (e.g. number of training episodes, we set it to 10,000 episodes in our implementation), it
will be fixed, and a new active policy will be added into the queue with the highest level. Figure 1
illustrates an example dynamics, it able to scale up the no-regret optimization with convergence guar-
antee by maintaining a hierarchical pipeline of reinforcement learning policies as P-PSRO (Propo-
sition 3.2 in McAleer et al. (2020)).

4 EXPERIMENTS

We compare EPSRO with five algorithms, including Self-play (Hernandez et al., 2019),
PSRO (Lanctot et al., 2017), Rectified PSRO (PSRO-rN) (Balduzzi et al., 2019), Mixed-
Oracles (Smith et al., 2020), and Pipeline PSRO (P-PSRO) (McAleer et al., 2020). The environ-
ments for the test are four classes of increasing difficulty games, i.e., matrix games, Poker games,
card game (Apppendix F.2) and Multi-agent Gathering. We investigate the exploration and com-
putational efficiency of algorithms in these experiments, also the performance on convergence. We
use NASHCONV to evaluate the convergence quality and exploration efficiency, and cardinality of
payoff matrix (Régin & Gomes, 2004) to assess the diversity, i.e., the policy differences in the policy
set. The matrix games are designed for the comparison of exploration efficiency. Especially the
non-transitive mixture game (Section 4.1), which vividly characterizes the exploration dynamics of
algorithms. As for the computational efficiency, we analyze it from the number of samples and time
consumption in poker games. Since the card game and multi-agent gathering tasks are difficult to
traverse the game tree, we evaluate them with a normalized scoring. Extra results and the pseudo-
code of score calculation are in Appendix F. The higher the score, the lower exploitability of the
algorithm. We repeat all experiments with 5 different random seeds on a single machine with 64
CPUs, 256 G RAM, and 2 GeForce RTX 3090 GPUs.

6

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250

10 1

100

AlphaStar

PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

Iteration

(a) NashConv

0 50 100 150 200 250
0

1

2

3

4

5

6

7
AlphaStar

PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

Iteration

(b) Cardinality

0 50 100 150 200 250

10 2

10 1

100

Random120

PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

Iteration

(c) NashConv

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

2.5
Random120

PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

Iteration

(d) Cardinality

Figure 2: Comparison of NASHCONV and cardinality. (a) and (b) show the NASHCONV and car-
dinality on AlphaStar matrix game, respectively; (c) and (d) show the NASHCONV and cardinality
on a high-dimensional symmetric game (n = 120), respectively. Although EPSRO has lower car-
dinality than some other algorithms, it outperforms all baselines on the NASHCONV. We argue that
a lower cardinality but better exploitability indicates that the algorithm has higher exploration effi-
ciency since it achieves better performance with fewer policies. More results in Appendix F.3.

PSRO P-PSRO NEPSRO EPSRO

Figure 3: Exploration trajectories on Non-transitive Mixture Games. The more trajectories close to
the centers of Gaussian, the higher the exploration efficiency of the algorithm. EPSRO outperforms
all selected baselines since it explored all centers. More results in Appendix F.1.

100 101 103 104102
Walltime (seconds)

10 1

100

Na
sh

Co
nv

Kuhn Poker
EPSRO
PSRO
Mixed-Oracles
Self-Play
P-PSRO
PSRO-rN

EPSRO

(a) vs. Wall-time

103 104 106 107105
Number of Episodes

10 1

100

Na
sh

Co
nv

Kuhn Poker

EPSRO
PSRO
Mixed-Oracles
Self-Play
P-PSRO
PSRO-rN

EPSRO

4e

(b) vs. Samples

0 10000 20000 30000 40000 50000
Walltime (seconds)

100

101

Na
sh

Co
nv

Leduc Poker
EPSRO
PSRO
Mixed-Oracles
Self-Play
P-PSRO
PSRO-rN

EPSRO

(c) vs. Wall-time

0.0 0.8 1.0
 Number of Episodes 1e7

100

101

Na
sh

Co
nv

Leduc Poker
EPSRO
PSRO
Mixed-Oracles
Self-Play
P-PSRO
PSRO-rN

EPSRO

(d) vs. Samples

Figure 4: NashConv on poker games. The number of samples for training each best response is set to
1e4 episodes, and the number of simulations (if needed) for each joint policy is set to 1e3 episodes.
EPSRO achieves similar NASHCONV as P-PSRO. For the computation efficiency, EPSRO achieves
more than 50x speedup on wall-time; more than 2.5x sample efficiency than other algorithms.

4.1 COMPARISON OF EXPLORATION EFFICIENCY

The non-transitive game for the comparison of exploration efficiency is a zero-sum two-player game
consisting of 7 equally-distanced Gaussian humps on the 2D plane. In this game, each player
chooses a point in the 2D plane as its decision, which is transformed into a 7-dimensional vec-
tor πi with each coordinate being the density in the corresponding Gaussian distribution. The payoff
is given by ϕi(πi, π−i) = π⊤

i Sπ−i + 1⊤(πi − π−i), where S is the payoff matrix. In this game,
the optimal strategy should stay close to the center of the Gaussian and explore all the Gaussian
distributions equally. We train best response policies in 50 epochs for each algorithm. As presented
in Figure 3, EPSRO successfully explores all the centers and shows higher exploration efficiency
than other baselines. Although the NEPSRO fails to achieve to any centers like PSRO, its explored
policy space is larger than most algorithms.

7

Under review as a conference paper at ICLR 2023

4.2 HIGH-DIMENSIONAL MATRIX GAMES

Random Symmetric Matrix Game. McAleer et al. (2020) introduce the games to investigate
the performance of PSRO-based methods in high-dimensional symmetric games (SymGame). In
these experiments, we train a strategy π as a best response that plays against another strategy π̂, it is
updated by a learning rate r multiplied by the best response to that strategy: π′ = rBR(π̂)+(1−r)π.
Figure 2 shows the results for n = 120. We report both NASHCONV and cardinality. The results
show that EPSRO and NEPSRO achieve a faster convergence rate and the lowest NASHCONV than
all of the other algorithms. Though they do not achieve the highest cardinality, we argue that there
is a trade-off between convergence and exploration, and EPSRO performs a better balance between
them. It is worth mentioning that the Mixed-Oracle fails to seek a meta-strategy that has a smaller
distance to the Nash equilibrium, even worse than Self-Play. We argue that the policy distills of
Mixed-Oracles may harm the exploration efficiency, especially in a high-dimensional policy space.

AlphaStar Empirical Game. The AlphaStar Matrix Game is derived from solving a complex
real-world game StraCraftII (Czarnecki et al., 2020), which involves 888 reinforcement learning
policies. We test the exploration efficiency and the convergence quality of our method for solving
such empirical games. Similar to the results in the random symmetric matrix game, our algorithm
performs a faster convergence rate and lower NASHCONV than other algorithms, while the Mixed-
Oracle still fails to explore new policies to expand its policy sets (Figure 2).

4.3 POKER GAMES

Gathering OpenGathering Small

2

4

6

8

Sc
or

e

PSRO
EPSRO
P-PSRO
Mixed-Oracles
PSRO-rN
Self-Play

0

Figure 5: The average score of final policy
set that plays against ΠPSRO.

Poker is a common benchmark in multi-agent deci-
sion tasks. In this paper, we introduce two simplified
forms of poker games for experiments, i.e., Kuhn
Poker and Leduc Poker (Zinkevich et al., 2007b;
Bowling et al., 2015). These poker tasks model
zero-sum two-player imperfect-information games,
in which each player shows uncertainty about the
game rules and the state of other players. Similar
to Poker, where each player in these games chooses
to raise/call/fold through rounds of betting. We in-
vestigate the sample efficiency and performance of
EPSRO in this experiment. The training for each al-
gorithm is set to learn 100 policies. The number of samples for training each policy is set to 10000
episodes, and the number of simulations for each joint policy is set to 1000 episodes. Figure 4
presents the results of NACHCONV w.r.t to wall-time and the number of samples. Since no simu-
lations and parallel best response learning, EPSRO substantially achieves high training efficiency.
Specifically, for the wall-time, EPSRO has more than 50x speedup than baselines; for the sample
efficiency, EPSRO has more than 2.5x than other non-parallelized baselines.

4.4 MULTI-AGENT GATHERING

We further investigate the capability of EPSRO to handle more complex multi-agent tasks in multi-
agent gathering environments (MAG)1. MAG is an endless environment whose horizon length could
be infinite. In our experiments, we limit the horizon of each episode to 100. In MAG, the goal of each
agent is to collect as many as “apples”. The apples regrow at a rate dependent upon the configuration
of the uncollected nearby apples. In this case, the more nearby apples, the higher the regrowth rate
of the apples. Naturally, this presents a dilemma for the players: each wants to pick as many apples
as possible. However, if they over-harvest the throughput of apples diminishes, potentially falling
to zero. Figure 5 shows the confrontation results of each algorithm’s final policy set ΠTEST to an
evaluation policy set ΠPSRO. We calculate the score as σTESTMTEST

[
σPSRO

]T
, where MTEST is

the empirical payoff matrix and σ is a learned meta-strategy. The higher the score, the lower the
exploitability and the better the performance of the corresponding algorithm. We report the learning
curve in Figure 10 (Appendix F.4).

1https://github.com/HumanCompatibleAI/multi-agent

8

https://github.com/HumanCompatibleAI/multi-agent

Under review as a conference paper at ICLR 2023

4.5 ABLATION STUDY

0.0 0.2 0.4 0.6 0.8 1.0
Episodes 1e7

100

101

Na
sh

Co
nv

NashConv on Leduc
-- EPSRO
+- EPSRO
-+ EPSRO
EPSRO
PSRO

Figure 6: Ablation study on Leduc.

To investigate the effect of warm-starting and pipeline,
we further conduct ablation experiments on poker games.
In our experiments, three kinds of variants of EPSRO are
tested, i.e., −−EPSRO for no warm-starting and paral-
lelism, −+EPSRO for warm-starting but no parallelism,
+−EPSRO for parallelism but no warm-starting. We run
five trials for each algorithm and train 100 epochs to gen-
erate 100 policies. Figure 6 shows the comparison results
on Leduc poker. Although the warm-starting variant out-
performs −−EPSRO, it fails to achieve a better perfor-
mance than PSRO. We think there may be challenging to
improve the training efficiency of no-regret optimization with warm-starting alone in the case of
a nested reinforcement learning step. Also, the parallelism variant fails to outperform PSRO. As a
comparison, EPSRO is equipped with warm-starting and parallelism, achieving a faster convergence
rate and better performance than the other algorithms. Thus, we think warm-starting and parallelism
can improve the efficiency of each other to some extent.

5 RELATED WORK

There are many variants of PSRO that focus on improving exploration efficiency, while none of
them concentrate on simulation elimination. For instance, DCH (Lanctot et al., 2017) parallelizes
PSRO by training multiple RL policies, each against the meta-strategies below it in the hierarchy.
A problem with this method is that the number of policies should be set beforehand. However, it is
difficult to figure out how many policies does it require to solve a game in practice. McAleer et al.
(2020) proposed a similar solution (P-PSRO), to solve this problem, which inherits the parallelism
training but has no need to preset the number of policies. Another parallelism variant is Recti-
fied PSRO (Balduzzi et al., 2019), but it has been proved not converge in all symmetric zero-sum
games (McAleer et al., 2020). Also, the quality of best responses affects the exploration efficiency.
Specifically, stronger the learned best responses, higher the efficiency (Perez-Nieves et al., 2021;
Yang et al., 2021). However, it is difficult to discover an exact best response in practice. As a
solution, the researchers try to improve the policy diversity. Among the existing work, DPP (Perez-
Nieves et al., 2021) utilizes the expected cardinality to measure the diversity of policy set. Liu et al.
(2021b) proposed a method that unify both behavior and reward distance to measure the diversity.

Concurrently to our work, McAleer et al. (2022) proposed a similar work named AODO. Their
work differs from ours in the following ways: (1) We focus on improving the training efficiency
of PSRO-based methods, providing monotone improvement and convergence analysis for EPSRO,
while AODO focuses on making a guarantee to monotonic decrease the NASHCONV (Johanson
et al., 2011); (2) EPSRO introduces parallelized best response training while AODO executes in
singleton; (3) We proposed a warm-start technique to tackle the re-training problem while AODO
starts from scratch at each epoch; (4) We demonstrate the experiments with 5 baselines on both
high-dimensional matrix games, poker games, card games and non-trivial multi-agent gathering
tasks while AODO considers only one baseline and fewer environments.

6 CONCLUSIONS

In this work, we propose a parallel algorithm EPSRO to improve the efficiency of PSRO. The em-
pirical results show that EPSRO achieves higher efficiency than existing works. The improvements
of EPSRO benefit from learning best responses against the whole opponent restricted policy set and
cooperating with parallelism. However, EPSRO is limited to handling the two-player cases because
there will be a divergence in selecting meta-strategies for more players involved. In future work,
we would like to seek a method to solve this problem and generalize EPSRO to multi-player cases.
Moreover, since the warm-starting used in our current implementation heavily relies on the approx-
imate NE from the last epoch, it may be challenging to achieve an ideal performance when the
approximate NE is low quality. Thus, a warm-starting that can be flexible in choosing any init regret
would be more valuable.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Haris Aziz. Multiagent systems: algorithmic, game-theoretic, and logical foundations by y. shoham
and k. leyton-brown cambridge university press, 2008. ACM Sigact News, 41(1):34–37, 2010.

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech Czarnecki, Julien Perolat, Max Jader-
berg, and Thore Graepel. Open-ended learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR, 2019.

Michael Bowling. Convergence and no-regret in multiagent learning. Advances in neural informa-
tion processing systems, 17, 2004.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149, 2015.

Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimization in
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Shicong Cen, Fan Chen, and Yuejie Chi. Independent natural policy gradient methods for po-
tential games: Finite-time global convergence with entropy regularization. arXiv preprint
arXiv:2204.05466, 2022.

Wojciech M Czarnecki, Gauthier Gidel, Brendan Tracey, Karl Tuyls, Shayegan Omidshafiei, David
Balduzzi, and Max Jaderberg. Real world games look like spinning tops. Advances in Neural
Information Processing Systems, 33, 2020.

Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algorithms
for zero-sum games. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pp. 235–254. SIAM, 2011.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Thomas Dueholm Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen. On range of skill. In
AAAI, pp. 277–282, 2008.

Daniel Hernandez, Kevin Denamganaı̈, Yuan Gao, Peter York, Sam Devlin, Spyridon Samothrakis,
and James Alfred Walker. A generalized framework for self-play training. In 2019 IEEE Confer-
ence on Games (CoG), pp. 1–8. IEEE, 2019.

Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating best re-
sponse calculation in large extensive games. In Twenty-second international joint conference on
artificial intelligence, 2011.

Marc Lanctot, Vinicius Zambaldi, Audrūnas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien
Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent rein-
forcement learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 4193–4206, 2017.

Yaodong Yang Le Cong Dinh, Zheng Tian, Nicolas Perez Nieves, Oliver Slumbers, David Henry
Mguni, Haitham Bou Ammar, and Jun Wang. Online double oracle. 2021.

David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and Economic
Behavior, 56(2):285–298, 2006.

10

Under review as a conference paper at ICLR 2023

Siqi Liu, Luke Marris, Daniel Hennes, Josh Merel, Nicolas Heess, and Thore Graepel. Neupl:
Neural population learning. In International Conference on Learning Representations, 2021a.

Xiangyu Liu, Hangtian Jia, Ying Wen, Yaodong Yang, Yujing Hu, Yingfeng Chen, Changjie Fan,
and Zhipeng Hu. Towards unifying behavioral and response diversity for open-ended learning in
zero-sum games. Advances in Neural Information Processing Systems, 34, 2021b.

Stephen McAleer, JB Lanier, Roy Fox, and Pierre Baldi. Pipeline psro: A scalable approach for
finding approximate nash equilibria in large games. Advances in Neural Information Processing
Systems, 33:20238–20248, 2020.

Stephen McAleer, John Banister Lanier, Kevin A Wang, Pierre Baldi, and Roy Fox. Xdo: A double
oracle algorithm for extensive-form games. Advances in Neural Information Processing Systems,
34:23128–23139, 2021.

Stephen McAleer, Kevin Wang, Marc Lanctot, John Lanier, Pierre Baldi, and Roy Fox. Anytime
optimal psro for two-player zero-sum games, 2022.

H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Shayegan Omidshafiei, Christos Papadimitriou, Georgios Piliouras, Karl Tuyls, Mark Rowland,
Jean-Baptiste Lespiau, Wojciech M Czarnecki, Marc Lanctot, Julien Perolat, and Remi Munos.
α-rank: Multi-agent evaluation by evolution. Scientific reports, 9(1):1–29, 2019.

Nicolas Perez-Nieves, Yaodong Yang, Oliver Slumbers, David H Mguni, Ying Wen, and Jun Wang.
Modelling behavioural diversity for learning in open-ended games. In International Conference
on Machine Learning, pp. 8514–8524. PMLR, 2021.

Jean-Charles Régin and Carla P Gomes. The cardinality matrix constraint. In International Confer-
ence on Principles and Practice of Constraint Programming, pp. 572–587. Springer, 2004.

Max Smith, Thomas Anthony, and Michael Wellman. Iterative empirical game solving via single
policy best response. In International Conference on Learning Representations, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jan van den Brand. A deterministic linear program solver in current matrix multiplication time.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
259–278. SIAM, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Yongzhao Wang, Qiurui Ma, and Michael P Wellman. Evaluating strategy exploration in empirical
game-theoretic analysis. arXiv preprint arXiv:2105.10423, 2021.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In International Conference on Machine Learning, pp. 5571–5580.
PMLR, 2018.

Yaodong Yang, Rasul Tutunov, Phu Sakulwongtana, and Haitham Bou Ammar. αα-rank: Practi-
cally scaling α-rank through stochastic optimisation. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1575–1583, 2020.

Yaodong Yang, Jun Luo, Ying Wen, Oliver Slumbers, Daniel Graves, Haitham Bou Ammar, Jun
Wang, and Matthew E Taylor. Diverse auto-curriculum is critical for successful real-world mul-
tiagent learning systems. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 51–56, 2021.

11

Under review as a conference paper at ICLR 2023

Martin Zinkevich, Michael Bowling, and Neil Burch. A new algorithm for generating equilibria in
massive zero-sum games. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFI-
CIAL INTELLIGENCE, volume 22, pp. 788. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2007a.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. Advances in neural information processing systems, 20:
1729–1736, 2007b.

12

Under review as a conference paper at ICLR 2023

A ALGORITHMS

Algorithm 5 shows the pseudo-code of meta-strategy optimization. Although the update of EPSRO’s
meta-strategies does not exploit the loss directly like MWU, it follows MWU by exploiting the
computed gradients. We further explain it in Lemma B.4.

Algorithm 5: DETERMINISTIC META STRATEGY OPTIMIZATION

Input: initialize the σ−i,β with Algorithm 6
Input: initialize an episode reword buffer B;window size L; K the length of meta-strategy

σ−i,β

Input: loss vector buffer Li,L−i ∈ RK ; counters: N1 = 0, . . . , NK = 0
1 while not terminated do
2 for many episodes do
3 Sample πk

−i ∼ σ−i,β to play against πi,θ

4 Collect episode return rk into B and Nk := Nk + 1
5 if the size of B equals to L then
6 Calculate average observed returns: ∀k = 1, . . . ,K, r̄k =

∑L
l=1 1j=kr

j
l

Nk

7 Compute gradients for βk = argmaxβk
r̄k and update σ−i,β with Lemma B.7

8 Collect loss vectors lk−i = −r̄k, lki = r̄k into Li, L−i, respectively
9 Reset buffer B and counters

Output: meta-strategy σ−i for player −i, loss vector buffers Li, L−i

We introduce the warm-starting for opponent meta-strategy as follows. For each player i, the algo-
rithm randomly initializes a vector β with the length equals to the size of Πr

−i. At each epoch e+1,
we slightly run a simulation procedure of (πi, π−i) to estimate the utility u−i(πi, π−i) before apply-
ing the Lemma 3.7 to optimize β. Then, by cooperating with the average loss vector from last epoch
e, we could start the optimization to compute a feasible β∗ that makes σ−i satisfy Theorem 3.6.

Algorithm 6: META-STRATEGY WARM-START

Input: newly learned policy support π−i; best response πi from last epoch; error threshold
τ ≥ 0

Input: initialize σ−i with β ∈ R|Πr
−i|; loss vectors from last epoch [l1−i, . . . , l

T
−i]

1 Compute average loss vector l̄−i =
(
l1−i + · · ·+ lT−i

)
/T

2 Estimate u−i(πi, π−i) by running simulation for (πi, π−i)
3 Compute the square error of utility as

ξ2 =∥ (x− σ−i)
⊤ l̄−i − σ−i(k)u−i(πi, π−i) ∥2 −λH(σ−i)

4 Update β as β := β −∇βξ2
5 if ξ2 ≤ τ then
6 Stop optimization and continue
7 else
8 Go back to step 3

Output: meta-strategy σ−i

Algorithm 6 relies on the computation of ξ2, we introduce its definition in Lemma B.7.

B PROOFS

A PROOF OF THEOREM 3.3

Theorem B.1 (Monotonic Policy Space Expanding). For any given epoch e and e+1, let (πe
i , σ

e
−i)

and (πe+1
i , σe+1

−i) be Nash equilibrium of URRe
i and URRe+1

i , respectively, where πe
i , π

e+1
i ∈ Πi,

σe
−i ∈ ∆e

Πr
−i

and σe+1
−i ∈ ∆e+1

Πr
−i

. The utilities of πe
i against opponent strategies σe

−i and σe+1
−i

13

Under review as a conference paper at ICLR 2023

satisfies
ui(π

e
i , σ

e
−i)− ui(π

e
i , σ

e+1
−i) ≥ 0, (3)

where ∆e
Πr

−i
indicates ∆(Πr,e

−i). Especially, ui(π
e
i , σ

e
−i) − ui(π

e
i , σ

e+1
−i) > 0 indicates there is a

strictly policy space expanding at e+ 1, i.e., πe+1
−i ∈ Πr,e+1

−i \Πr,e
−i .

Proof. Note that the proof is non-trivial since Πr,e
−i ⊂ Πr,e+1

−i , so we cannot directly derive Theo-
rem B.1 with the Nash equilibrium (πe

i , σ
e
−i). Instead, we should combine equilibriums of epoch e

and e+1. Additionally, the equilibrium considered is mixed-strategy Nash equilibrium. Considering
the property of Nash equilibrium, ∀πi ∈ ∆(Πi), ui(πi, σ

e+1
−i) ≤ ui(π

e+1
i , σe+1

−i), then we have

ui(π
e
i , σ

e+1
−i) ≤ ui(π

e+1
i , σe+1

−i). (4)

Analogously, ∀σ−i ∈ ∆e+1
Πr

−i
, ui(π

e+1
i , σe+1

−i) ≤ ui(π
e+1
i , σ−i), then we have

ui(π
e+1
i , σe+1

−i) ≤ ui(π
e+1
i , σe

−i). (5)

Combining Eq. (4) and (5), we can derive

ui(π
e
i , σ

e
−i)− ui(π

e
i , σ

e+1
−i) (6)

≥ ui(π
e
i , σ

e
−i)− ui(π

e+1
i , σe+1

−i)

≥ ui(π
e
i , σ

e
−i)− ui(π

e+1
i , σe

−i).

Since (πe
i , σ

e
−i) is a Nash equilibrium, then there is ui(π

e
i , σ

e
−i) − ui(π

e+1
i , σe

−i) ≥ 0. Thus
ui(π

e
i , σ

e
−i)− ui(π

e
i , σ

e+1
−i) ≥ 0.

DISCUSSION OF EXPLORATION EFFICIENCY

We further discuss the exploration efficiency from the theoretical perspective as follows.

Proposition B.2. EPSRO has higher exploration efficiency than PSRO.

Proof. Before the proof, we note that σi ∈ ∆(Πr
i) and πi ∈ ∆(Πi) for each player i ∈ {1, 2}. The

NASHCONV (NC) of PSRO is

NCpsro = max
πi∈∆(Πi)

ui(πi, σ−i) + max
π−i∈∆(Π−i)

u−i(σi, π−i)

= max
πi∈∆(Πi)

ui(πi, σ−i)− max
π−i∈∆(Π−i)

ui(σi, π−i)

= ui(π
∗
i , σ−i)− ui(σi, π

∗
−i),

and ui(π
∗
i , σ−i) ≥ ui(σi, σ−i) ≥ ui(σi, π

∗
−i).

At each epoch, EPSRO directly learns a tuple of strategies as an equilibrium for each player, i.e.,
(π∗

i , σ
∗
−i) and (σ∗

i , π
∗
−i) are two NEs of (Πi,Π

r
−i), (Π

r
i ,Π−i), respectively. Thus, we can apply the

same rule as PSRO to derive EPSRO’s NASHCONV which satisfies the following inequality:

NCepsro = ui(π
∗
i , σ

∗
−i)− ui(σ

∗
i , π

∗
−i)

≤ ui(π
∗
i , σ−i)− ui(σ

∗
i , π

∗
−i)

≤ ui(π
∗
i , σ−i)− ui(σi, π

∗
−i) = NCpsro.

Though NCepsro ≤ NCpsro, the equation only holds when (π∗
i , σ−i) and (σi, π

∗
−i) are equilibrium

because it requires Πr
i = Πi for each player. Thus, NCepsro < NCpsro at each epoch before

convergence, i.e. EPSRO has higher exploration than PSRO.

14

Under review as a conference paper at ICLR 2023

MODELING THE LEARNING AS MWU

In this paper, we argue that the updates of meta-strategies (Algorithm 5) follow the rule of Multi-
plicative Weights Update (MWU) algorithms. Before the explanation of equivalence, we introduce
the definition of MWU as follows.

Definition B.3 (Multiplicative Weights Update Freund & Schapire (1999)). Given a game with
utility matrix U for the row player, let c1, c2, . . . be a sequence of mixed strategies played by the
column player. The row player is said to follow MWU if πt+1 is updated as follows:

πt+1(i) = πt(i)
exp (µta

i⊤Uct)∑n
i=1 πt(i) exp (µtai

⊤
Uct)

,∀i ∈ [n] (7)

where µt > 0 is a parameter, π0 = [1/n, . . . , 1/n] and n is the number of pure strategies (a.k.a.
experts).

Then we prove the equivalence in the following Lemma.

Lemma B.4. Let β = [β1, . . . , βn] be the weights vector of the meta strategy played by player −i.
The player is said to follow MWU if σ−i,β′ is updated as follows

σ−i,β′(j) =
exp (βj − gj)∑n
j=1 exp (βj − gj)

, (8)

where gj is the estimated gradients to item βj .

Proof. Since the learning for each opponent −i follows the same rule, we mitigate the index −i
here.

σβ′(j) =
exp (βj − gj)∑n
i=1 exp (βi − gi)

= expβj
exp−gj∑n

i=1 expβi · exp−gi

=
expβj∑n
i=1 expβi

· exp−gj∑n
i=1

exp βi∑n
k=1 exp βk

exp−gi

= σβ(j) ·
exp−gj∑n

i=1 σβ(i) exp−gi

where gj = η∇βj
u−i(πi, σ−i,β), η is the learning rate.

A PROOF OF THEOREM 3.6

As introduced in the main content, we consider a warm-start technique to reduce the re-training cost
of meta-strategies and save training steps. To find a feasible meta-strategy σ̄

′

−i for warm-starting,
we need to ensure that σ̄

′

−i follows two conditions proposed by Noam Brown et al. (2016) Brown
& Sandholm (2016), i.e. (1) cannot violate the bound of regret of the latest epoch e + 1 and (2)
cannot violate the Nash equilibrium of the latest epoch e + 1. In our paper, we choose the average
strategies σ̄

′

−i that satisfies ue+1
i (π̄i, σ̄

′

−i) = ue
i (π̄i, σ̄−i). Note that the utility function of epoch

e+ 1 is different from the one of epoch e since the dimension of opponent strategy is changed with
a new introduced best response πe+1

−i , i.e. ue
i (π̄i, ·) ∈ Rk while ue+1

i (π̄i, ·) ∈ Rk+1.

Theorem B.5. Suppose a substitute policy of σ̄−i ∈ ∆e
Πr

−i
is σ̄

′

−i ∈ ∆e+1
Πr

−i
, and it satisfies

ue+1
i (π̄i, σ̄

′

−i) = ue
i (π̄i, σ̄−i), we have

max
σ−i∈∆e+1

Πr
−i

1

T

T∑
t=1

(
ue+1
−i (πt

i , σ−i)− ue+1
−i (πt

i , σ̄
′

−i)
)
≤ ϵT−i, (9)

where ϵT−i is the regret bound of epoch e+ 1, πt
i ∈ ∆(Πi).

15

Under review as a conference paper at ICLR 2023

Proof. As introduced in Brown & Sandholm (2016), the regret bound ϵT−i in the case of extensive
games is

ϵT−i =

∑
I∈I−i

√
pσi (I)∆(I)

√
|A(I)|

√
T

,

where I is the information set, I−i indicates the information set for player −i, pσi is the joint prob-
ability of reaching information set I , ∆(I) is the range of payoffs reachable by player −i, A(I) is
the set of policies. As EPSRO frames the game solving in a normal-form game at any epoch k, then
we know the size of information set I is always 1. pσi = 1, ∆(I) = Uk

max − Uk
min where Uk is the

payoff matrix, |A(I)| = k at epoch k. Considering the horizon of no-regret optimization, we have

max
σ−i∈∆e+1

Πr
−i

1

T

T∑
t=1

(
ue+1
−i (πt

i , σ−i)− ue+1
−i (πt

i , σ
t
−i)
)
≤ ϵT−i, where ϵT−i =

√
k(Uk

max − Uk
min)√

T
.

(10)

As a feasible substitute strategy for the sequence of σt
−i, Brown & Sandholm (2016) proved that it

should satisfies the following two constraints: (1) a chosen substitute σ̄ = (π̄
′

i, σ̄
′

−i) should satisfy
ue+1
i (σ̄) + ue+1

−i (σ̄) ≤ 0; (2) we must ensure that no information set violates the bound on regret
guaranteed in (10). As ue+1

i (π̄i, σ̄
′

−i) = ue
i (π̄i, σ̄−i), the substitute strategies hold the condition (1)

as they are a NE at epoch e. As for the condition (2), Brown & Sandholm (2016) claimed that (3)
the growth of substitute regret has the same bound as the growth rate of normal regret ((Brown &
Sandholm, 2016, Lemma. 2)); (4) we can use a substitute strategy regret to prove convergence to a
Nash Equilibrium just as we could use normal regret ((Brown & Sandholm, 2016, Lemma. 3)).

Thus, if we use a substitute strategy (π̄i, σ̄
′

−i) that warm-start to T iterations as Eq. 9, and play more
T ′ ≥ 0 iterations according to Algorithm 5, then we still have:

max
σ−i∈∆e+1

Πr
−i

T
(
ue+1
−i (π̄i, σ−i)− ue+1

−i (π̄i, σ̄
′

−i)
)
+

T ′∑
t′=1

(
ue+1
−i (πt′

i , σ−i)− ue+1
−i (πt′

i , σ
t′

−i)
)

(11)

≤ (T + T ′)ϵT+T ′

−i .

Thus, (π̄i, σ̄
′

−i) satisfies the conditions (1) and (2) as a warm-starting strategy.

We can further quantify the saved number of iteration as follows when warm-starting is introduced.

Corollary B.6. Assuming EPSRO achieves ϵki =
√
kRk√
T

at epoch k, the substitute strategy for epoch
k + 1 which follows Theorem B.8 will save training iteration as

T
′
≤
∣∣∣∣Rk+1

Rk

∣∣∣∣2 · k + 1

k
· T,

where T is the training iteration for at epoch k, Rk+1 = Uk+1
max − Uk+1

min , Rk = Uk
max − Uk

min.

Proof. Suppose the warm-starting initialize a strategy to save T ′ a epoch k + 1, then we have

R2
k · k
T

≤
R2

k+1 · k + 1

T ′ . (12)

Thus we have T
′ ≤

∣∣∣Rk+1

Rk

∣∣∣2 · k+1
k · T . Note there always have Rk+1 ≥ Rk.

16

Under review as a conference paper at ICLR 2023

A PROOF OF LEMMA 3.7

As for the exact bound of regret, we will give a proof in Theorem B.5. Note that the utility function of
epoch e+1 is different from the one of epoch e since the dimension of opponent strategy is changed
with a new introduced best response πe+1

−i , i.e. ue
−i(π̄i, ·) ∈ Rk while ue+1

−i (π̄i, ·) ∈ Rk+1. Thus,
before the optimization of β, we need to slightly run a simulation to estimate the item u−i(π̄i, π

e+1
−i)

in ue+1
−i .

Lemma B.7. Let k = |Πr,e+1
−i |, σ̄′

−i be parameterized by β−i = [β−i,1, β−i,2, . . . , β−i,k], σ̄
′

−i(k)

the k-th item of σ̄
′

−i, x = [σ̄
′

−i(1), . . . , σ̄
′

−i(k − 1)]⊤, l̄e−i is −i’s average loss vector to π̄i at epoch
e. Then a feasible initial of βe+1

−i could satisfy

βe+1
−i = argmin

β−i

∥ (x− σ̄−i)
⊤ l̄e−i − σ̄

′

−i(k)u−i(π̄i, π
e+1
−i) ∥2 −λH(σ̄

′

−i), (13)

where λ > 0, H(σ̄
′

−i) is the entropy of σ̄
′

−i.

Proof. Considering the error between ξ = ue
−i(π̄i, σ̄−i)− ue+1

−i (π̄i, σ̄
′

−i). It can be rewritten as

ξ = −σ̄⊤
−i l̄

e
−i −

(
−x⊤ l̄e−i + σ̄

′

−i(k)u−i(π̄i, π
e+1
−i)

)
= (x− σ̄−i)

⊤ l̄e−i − σ̄
′

−i(k)u−i(π̄i, π
e+1
−i).

Thus, we can optimize β−i by minimizing the error ξ as βe+1
−i = argminβ−i ∥ ξ ∥2.

We compute the initial of σe+1
−i as Lemma B.7. Note that there is another solution as σ̄

′

−i(k) =

0, σ̄−i = x. In that case, the newly introduced policy πe+1
−i will have no chance to be sampled,

causing biased or even wrong solution. Thus, we consider adding a regularization in Eq. 13 that
maximizes the entropy of σ̄

′

−i, i.e. H(σ̄
′

−i) = −σ̄′⊤
−i log σ̄

′

−i and βe+1
−i = argminβ−i

∥ ξ ∥2
−λH(σ̄

′

−i), where λ > 0.

A PROOF OF THEOREM 3.8

Theorem B.8 (Regret Bound of EPSRO). Let l1, l2, . . . , lT be a sequence of loss vectors player by
an adversary, and ⟨·, ·⟩ be the dot product, then Algorithm 5 is a no-regret algorithm with

1

T

(
T∑

t=1

⟨σt, lt⟩ − min
σ∈∆(Πr

t)

T∑
t=1

⟨σ, lt⟩

)
≤
√
log [(k + 1)k/2]√

2T
, where k is the size of Πr.

Proof. Note that the loss vector is the opposite of utility at each iteration, i.e., lt = −ut. The proof
follows the approach of Le Cong Dinh et al. (2021). Denote |T1|, . . . , |Tk| be the learning horizon
of each epoch. During each |Tj |, the restricted policy set is denoted as unchanged Πr,i. In the case
of finite k, we have:

k∑
i=1

|Ti| = T. (14)

For each training epoch i, following the regret bound of MWU, we have:

|T i+1|∑
t=|T i|+1

⟨σt, lt⟩ − min
σ∈∆(Πr

i)

|T i+1|∑
t=|T i|+1

⟨σ, lt⟩ ≤
√
|Ti| log |Πr,i|

2
, where |T i| =

i∑
j=1

|Tj |. (15)

17

Under review as a conference paper at ICLR 2023

Considering all time horizon, for i = 1, . . . , k, we have:
k∑

i=1

√
|Ti| log |Πr,i|

2
≥

T∑
t=1

⟨σt, lt⟩ −
k∑

i=1

min
σ∈∆(Πr,i)

|T i+1|∑
t=|T i|+1

⟨σ, lt⟩ (16)

≥
T∑

t=1

⟨σt, lt⟩ − min
σ∈∆(Πr)

k∑
i=1

|T i+1|∑
t=|T i|+1

⟨σ, lt⟩ (17)

=

T∑
t=1

⟨σt, lt⟩ − min
σ∈∆(Πr)

T∑
t=1

⟨σ, lt⟩. (18)

Note that i = |Πr,i|, then
∑k

i=1

√
|Ti| log |Πr,i| ≤

∑k
i=1

√
T log(i). As the sum of logarithms is

concave, so we have
∑k

i=1

√
T log (i) ≤

√
T log

(∑k
i=1 i

)
=
√

T log [(k + 1)k/2] then we have√
log [(k + 1)k/2]√

2T
≥ 1

T

(
T∑

t=1

⟨σt, lt⟩ − min
σ∈∆(Πr)

T∑
t=1

⟨σ, lt⟩

)
.

In addition, we provide a comparison of regret bound on existing solvers in Appendix G.1.

A PROOF OF THEOREM 3.9

Before the proof of convergence rate of EPSRO, we want to clarify that the reinforcement learning
procedure for the best response πi should be an equivalence of MWU. Fortunately, many reinforce-
ment learning algorithms can be treated like that as their policy function is modeled as a Boltzman
distribution Cen et al. (2022). Thus, EPSRO can implement such a procedure with algorithms like
Soft Actor Critic Haarnoja et al. (2018), Soft Q-learning Haarnoja et al. (2017), DQN with Boltzman
sampling Yang et al. (2018) and others. With this condition, we can apply the Theorem B.5 to πi

and then derive the convergence rate as follows.
Theorem B.9 (Convergence Rate of EPSRO). Let k, N denote the size of restricted policy sets Πr

−i
and Πi. Then the learning of Algorithm 3 will converge to the Nash equilibrium with the rate:

ϵT =

√
log [(k + 1)k/2]

2T
+

√
log [(N + 1)N/2]

2T
.

Proof. Using the regret bound of Theorem B.8 we have:

max
πi

1

T

(
T∑

t=1

ui(πi, σ
t
−i)− ui(π

t
i , σ

t
−i)

)
≤ ϵi,

max
σ−i

1

T

(
T∑

t=1

u−i(π
t
i , σ−i)− u−i(π

t
i , σ

t
−i)

)
≤ ϵ−i,

where ϵi =
√

log [(N+1)N/2]
2T and ϵ−i =

√
log [(k+1)k/2]

2T . From the above inequalities and u−i(·, ·) =
−ui(·, ·) in zero-sum games, we can derive that

ui(π̄i, σ̄i) ≥ min
σ−i∈∆(Πr

−i)
ui(π̄i, σ−i) ≥

1

T

T∑
t=1

ui(πt, σt)− ϵ−i

≥ max
πi

ui(πi, σ̄−i)− ϵi − ϵ−i.

By symmetry, we have

ui(π̄i, σ̄i) ≤ max
πi

ui(πi, σ̄−i) ≤
1

T

T∑
t=1

ui(π
t
i , σ

t
−i) + ϵi

≤ min
σ−i

ui(π̄i, σ−i) + ϵ−i + ϵi.

18

Under review as a conference paper at ICLR 2023

Thus, with ϵT = ϵi + ϵ−i, we have

max
πi

ui(πi, σ̄−i)− ϵT ≤ ui(π̄i, σ̄−i) ≤ min
σ−i

ui(π̄i, σ−i) + ϵT .

By definition, we have (π̄i, σ̄−i) is ϵT -Nash equilibrium.

C IMPLEMENTATION AND HYPER-PARAMETER SELECTION

Learning Meta-strategies and Best-response. We introduce the algorithm for learning meta-
strategies in Algorithm 5. We train best response policies with off-policy reinforcement learning
algorithm, DQN. For all involved PSRO baselines in our paper, the selected implementation for best
response learning is DQN.

Parameter Selection. We keep the consistency on the implementation of policy support in each
PSRO-based method in this paper. Expressly, the network is set to 4 Dense layers, 256 units each.
The learning rate for reinforcement learning policy is set to 0.01. For the hyper-parameters of meta-
strategy, the window size L is set to 100 episodes, the learning rate is 0.01 for Kuhn Poker, and
0.005 for other environments. The number of parallel workers is set to 4 for EPSRO and P-PSRO in
all experiments.

D BASELINES

Self-Play. Self-play is an open-ended learning algorithm for multi-agent reinforcement learn-
ing Hernandez et al. (2019). In the training process, self-play generates a sequence of policies and
keeps training policies against the newest opponents. This algorithm outperforms in some classic
games, such as Go and Chess. However, self-play fails in nontransitive games.

Policy Space Response Oracles (PSRO). PSRO algorithm is well described above in previous
sections. It provides an iterative solution to solve the approximation of Nash equilibrium for large
games Lanctot et al. (2017). PSRO iteratively trains new policies against a meta-strategy of opponent
population and expends policy populations with the current well-trained policy.

Rectified PSRO (PSRO-rN). PSRO-rN is a variant of PSRO that aims to solve non-transitive
zero-sum games Balduzzi et al. (2019), such as rock-paper-scissors. This algorithm involves recti-
fied Nash response to construct adaptive sequences of objectives for non-transitive games. Policies
in PSRO-rN only train against others that they already beat.

Mixed Oracles. Mixed Oracles is another variant of PSRO that aims to improve computational
efficiency by reducing training costs Smith et al. (2020). At each iteration, it utilizes knowledge of
former iterations, thus only needing to train current policies against the newest opponent.

Pipeline-PSRO (P-PSRO). To further accelerate the training process of PSRO, P-PSRO is pro-
posed to parallelize the training process McAleer et al. (2020). Compared to other parallel algo-
rithms, such as DHC, which fail to converge in some cases, P-PSRO maintains a parallel pipeline of
learning workers with convergence guarantees.

E ENVIRONMENT DETAILS

We introduce more details about the random symmetric games and mulit-agent gathering environ-
ments here.

Random Symmetric Games. McAleer et al. McAleer et al. (2020) introduce the games to inves-
tigate the performance of PSRO-based methods in high-dimensional symmetric games (SymGame).
In this experiment, we generated random symmetric zero-sum matrices with different dimension n.
For a given matrix, elements in the upper triangle are distributed uniformly: ∀i < j ≤ n, ai,j ∼
UNIFORM(−1, 1) and for the lower triangle, the elements are set to be the negative of its diagonal

19

Under review as a conference paper at ICLR 2023

counterpart: ∀j < i ≤ n, ai,j = −aj,i. The diagonal elements are equal to zero: ai, i = 0. The
matrix defines the utility of two pure strategies to the row player. A strategy π ∈ ∆n is a distribution
over the n pure strategies of the game given by the rows (or equivalently, columns) of the matrix.

Multi-agent Gathering. We introduce two multi-agent gathering environments in this paper, the
Gathering Small and the Gathering Open. For each environment, the agent number is set to 2,
and the difference between them is that the Gathering Open has a much bigger map than Gathering
Small. Therefore, the agents need to explore a higher dimensional state space in the Gathering Open
than the smaller one.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 NON-TRANSITIVE MIXTURE GAME

We test six PSRO-based algorithms in the non-transitive mixture game to investigate the exploration
efficiency. We also introduce the results of NASHCONV to compare the performance. We find
that EPSRO outperforms all other algorithms in this game, and performs the highest exploration
efficiency.

(a) PSRO (b) Mixed-Oracles (c) PSRO-rN

(d) P-PSRO (e) NEPSRO (f) EPSRO

Figure 7: Exploration trajectories on Non-transitive Mixture Games. The more trajectories close to
the centers of Gaussian, the higher the exploration efficiency of the algorithm. EPSRO outperform
all selected baselines since it explored all centers.

F.2 GOOFSPIEL

0 20 40 60 80 100
Epochs

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Sc
or

e

Normalized Score on Goofspiel
P-PSRO
EPSRO

Figure 8: The average score of growing pop-
ulation on Goofspiel.

Goofspiel is a more complex task than Leduc poker
with 13 cards and turn-based moves. Considering
the high cost of traversing a game tree to compute
the exploitability, we evaluated the algorithm with
the same approach as in Multi-agent gathering tasks,
i.e., calculating the normalized score to the final pol-
icy population of naive PSRO. For the comparison,
we choose Pipeline PSRO since it outperforms other
baselines in all environments. We explain the mean-
ing of score as: 0 for a tie, < 0 for a loss and > 0
for a win. In particular, -1 means that an algorithm is

20

Under review as a conference paper at ICLR 2023

dominated by naive PSRO, and 1 means that an algorithm dominates naive PSRO. We evaluate the
score of the grouping population (size from 1 to 100) and report the results in Figure 8. The results
show that the EPSRO achieves better performance than P-PSRO and lower exploitability. For the
scores of the final population, P-PSRO and EPSRO achieve 0.244 and 0.332, respectively.

F.3 RANDOM SYMMETRIC MATRIX GAME

We compare the NASHCONV over iteration of EPSRO with PSRO, P-PSRO, Rectified PSRO, Self-
Play, Mixed-Oracles and naive EPSRO without pipeline training (NEPSRO). We run 5 experiments
for each set of dimension. The dimensions of size including 15, 30, 45, 60 and 120. The learning
rates is set to 0.5, and 4 parallel threads for parallel algorithms. We find that EPSRO performs better
than all other algorithms in every dimension setting.

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

Random15
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(a) Cardinality when
dim=15

0 50 100 150 200 250

10 2

10 1

100

Random15
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(b) NASHCONV when
dim=15

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

Random30
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(c) Cardinality when
dim=30

0 50 100 150 200 250

10 2

10 1

100

Random30
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(d) NASHCONV when
dim=30

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

Random45
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(e) Cardinality when
dim=45

0 50 100 150 200 250

10 2

10 1

100

Random45
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(f) NASHCONV when
dim=45

0 50 100 150 200 250

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Random60
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(g) Cardinality when
dim=60

0 50 100 150 200 250

10 1

100

Random60
PSRO
P-PSRO
PSRO-rN
Self-play
NEPSRO
EPSRO
Mixed-Oracles

(h) NASHCONV when
dim=60

Figure 9: Comparison on NASHCONV and cardinality for random symmetric matrix games with
different dimensions.

F.4 MULTI-AGENT GATHERING

Multi-agent Gathering environments (MAG) have complex state space than the other games, so that
it is highly computation expensive to traverse the game tree to compute the NASHCONV. Instead, we
evaluate all algorithms with a fixed policy set. In our experiments, the fixed policy set is generated
with PSRO, i.e. ΠPSRO. We list the pseudo-code for evaluation in Algorithm 7.

Algorithm 7: EMPIRICAL EVALUATION ON MAG

Input: a policy set ΠTEST of evaluated algorithm; ΠPSRO; an empty matrix M ∈ R|ΠTEST|×|ΠPSRO|

1 for each policy πTEST
i in ΠTEST do

2 for each policy πPSRO
j in ΠPSRO do

3 Run 50 episodes to evaluate Mi,j = ui(π
TEST
i , πPSRO

j)

4 Compute score of σTEST
1:i as SCORE(σTEST

1:i) = σTEST
1:i M1:i

[
σPSRO

]T
Output: a list of score SCORE(ΠTEST) = {SCORE(σTEST

1:i) | i = 1, . . . , |ΠTEST|} for ΠTEST

σTEST
1:i in Algorithm 7 indicates a meta-strategy composed of π1, . . . , πi, and M1:i is a sub matrix

with row 1 to i. We present SCORE(ΠTEST) of each algorithm in Figure 5. The curve of Self-Play is
not included because we keep only two policies (one for the opponent, another for training) in our
implementation.

21

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100

3

4

5

6

7

8

9

10

Sc
or

e

EPSRO
PSRO
P-PSRO
PSRO-rN
Mixed-Oracles

(a) Gathering Small

0 20 40 60 80 100
2

4

6

8

10

Sc
or

e

EPSRO
PSRO
P-PSRO
PSRO_rN
Mixed-Oracles

(b) Gathering Open

Figure 10: The score of algorithms on two multi-agent gathering environments. The horizon axis
indicates the number of training iterations. As reported in this Figure, EPSRO performs better than
other algorithms.

In the training stage, we set the number of simulations for each joint policy as 100, and 10000
episodes to optimize each policy. Except for EPSRO, the training time of each algorithm on the
Gathering Small is about 24 hours, and 26 hours for the Gathering Open, while the training time for
EPSRO is about 8 hours.

G CONVERGENCE PROOF OF AVERAGE SUBSTITUTE STRATEGIES

Theorem G.1. ((Brown & Sandholm, 2016, Theorem 1)). In a two-player zero-sum game, if RT
i

T ≤
ϵi for both player i ∈ {1, 2}, then σ̄ is a (ϵ1 + ϵ2)-equilibrium.

Proof. Follow the proof approach of Waugh et al. (2009). From (5), we have that

max
σ∈∆

1

T

(
T∑

t=1

ui(σ
′
i, σ

t
−i)− ui(σ

t
i , σ

t
−i)

)
≤ ϵi. (19)

Since σ′
i is the same on every iteration, this becomes

max
σ′∈∆

ui(σ
′
i, σ̄

T
−i)−

1

T

T∑
t=1

ui(σ
t
i , σ

t
−i) ≤ ϵi. (20)

Since ui(σ) = u2(σ), if we sum Equation 20 for both players

max
σ′
1∈∆

u1(σ
′
1, σ̄

T
2) + max

σ′
2∈∆

u2(σ̄
T
1 , σ

′
2) ≤ ϵ1 + ϵ2, (21)

max
σ′
1∈∆

u1(σ
′
1, σ̄

T
2)− min

σ′
2∈∆

u1(σ̄
T
1 , σ

′
2) ≤ ϵ1 + ϵ2. (22)

Since u1(σ̄
T
1 , σ̄

T
2) ≥ minσ′

2∈∆ u1(σ̄
T
1 , σ

′
2), so we have maxσ′

1∈∆ u1(σ
′
1, σ̄

T
2)− u1(σ̄

T
1 , σ̄

T
2) ≤ ϵ1 +

ϵ2. By symmetry, this is also true for player 2. Therefore, ⟨σ̄T
1 , σ̄

T
2 ⟩ is a (ϵ1 + ϵ2)-equilibrium.

When warm starting, we can calculate this value because we set σ̄T = σ. However we cannot
calculate

∑T
t=1 ui(σ

t) because we did not define individual strategies played on each iteration.
Fortunately, it turns out we can substitute another value we refer to as Tui(σ̄), chosen from a range
of acceptable options. To see this we first observe that the value of

∑T
t=1 ui(σ

t) is not relevant
to the proof of Theorem G.1. Specifically, in Eq. 21, we see it cancels out. Thus, if we choose
(π̄i, σ̄−i) such that satisfies it. Since maxπ ui(π, σ̄

T
−i) ≥ ui(π̄i, σ̄−i) and maxσ−i

u−i(π̄i, σ−i) ≥
u−i(π̄i, σ̄−i). Thus (π̄i, σ̄−i) is a feasible warm-starting strategy.

G.1 COMPARISON OF REGRET BOUND

We compare EPSRO with existing solvers in the Table from the perspective of time complexity or
regret bound.

22

Under review as a conference paper at ICLR 2023

Method Time Complexity (Õ) /
Regret Bound (O)

Linear Programming van den Brand (2020) Õ(n exp (−T/n2.38))

Fictitious Play Leslie & Collins (2006) Õ(T−1/(n+m−2))

Double Oracle McMahan et al. (2003) Õ(n exp (−T/n3.88))

Multipli. Weight UpdateFreund & Schapire (1999) O(
√

log n/T)

Policy Response Oracles Lanctot et al. (2017) ×

Online Double Oracle Le Cong Dinh et al. (2021) O(
√

k log k/T)

EPSRO O(
√
log [(k2 + k)/2]/T)O(

√
log [(k2 + k)/2]/T)O(

√
log [(k2 + k)/2]/T)

23

	Introduction
	Preliminaries
	EPSRO: Efficient PSRO
	Modeling EPSRO as URR Games
	Solving URR Games
	Pipeline URR Solver

	Experiments
	Comparison of Exploration Efficiency
	High-dimensional Matrix Games
	Poker Games
	Multi-agent Gathering
	Ablation Study

	Related Work
	Conclusions
	Algorithms
	Proofs
	A Proof of Theorem 3.3
	Discussion of Exploration Efficiency
	Modeling The Learning as MWU
	A Proof of Theorem 3.6
	A Proof of Lemma 3.7
	A Proof of Theorem 3.8
	A Proof of Theorem 3.9

	Implementation and Hyper-parameter Selection
	Baselines
	Environment Details
	Additional Experimental Results
	Non-transitive Mixture Game
	Goofspiel
	Random Symmetric Matrix Game
	Multi-agent Gathering

	Convergence Proof of Average Substitute Strategies
	Comparison of Regret Bound

