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ABSTRACT

Distributed learning has demonstrated remarkable success in training deep neu-
ral networks (DNNs) on large datasets, but the communication bottleneck reduces
its scalability. Various compression techniques are proposed to alleviate this lim-
itation; often they rely on computationally intensive methods to determine op-
timal compression parameters during training and are popularly referred to as
adaptive compressors. Instead of the hard-to-tune hyperparameters for adaptive
compressors, in this paper, we investigate the impact of two fundamental factors
in DNN training, the layer size of the DNNs and their training phases, to de-
sign a simple yet efficient adaptive scheduler for any compressors to guide the
compression parameters selection. We present a Lightweight Efficient GrAdient
Compression strategY or LEGACY that, in theory, can work with any compression
technique to produce its simple adaptive counterpart. We benchmark LEGACY on
distributed and federated training, involving 6 different DNN architectures for var-
ious tasks performed on large and challenging datasets, including ImageNet and
WikiText-103. On ImageNet training, by sending similar average data volume,
LEGACY’s adaptive compression strategies improve the Top-1 accuracy of ResNet-
50 by 7% − 11%, compared to the uniform Top-0.1% compression through-
out the training. Similarly, on WikiText-103, by using our layer-based adap-
tive compression strategy and sending similar average data volume, the per-
plexity of the Transformer-XL improves ∼ 26% more than the uniform Top-
0.1% compression used throughout the training. We publish anonymized code at:
https://github.com/LEGACY-compression/LEGACY.

1 INTRODUCTION

With the rise of digital data and extraordinary computing power, distributed learning on multiple
computing nodes is vastly adapted to achieve optimal training performance for large deep neural
networks (DNNs) You et al. (2018); Wongpanich et al. (2021); Xu et al. (2021a); Dutta et al. (2020).
However, distributed training requires exchanging gradients between the nodes; the massive volume
of the exchanged updates creates a communication bottleneck, and different compressed commu-
nication techniques (quantization Alistarh et al. (2017); Dettmers (2015); Bernstein et al. (2018),
sparsification Dutta et al. (2020); Aji & Heafield (2017); Stich et al. (2018); Alistarh et al. (2018),
low-rank Vogels et al. (2019), and hybrid Basu et al. (2019)) are designed to mitigate this problem.

Among these techniques, sparsifiers achieve baseline performance by only sending a small subset
of the gradient components. Moreover, the over-parameterized nature of the DNN models creates
sparse gradients during training Vaswani et al. (2019), e.g., NCF He et al. (2017) and DeepLight
Deng et al. (2021) gradients consist of roughly 40% and 99% zero elements, respectively. There-
fore, one can further sparsify these models in an efficient distributed training. The Top-k Aji &
Heafield (2017) sparsifier, which transmits only the k largest elements, is widely utilized in dis-
tributed training. E.g., by communicating only 0.36% of the largest gradient elements of ResNet-50
He et al. (2016) trained on Imagenet Deng et al. (2009), Lin et al. (2018) achieves a baseline no
compression performance. Nevertheless, almost a decade after being introduced by Aji & Heafield
(2017) for gradient compression, there is no clear recipe for what k to set for training different DNN
models using the Top-k sparsifier. While Top-k sends fixed data volume in each training iteration,
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Figure 1: Compression ratio vs. the training iterations and layer size in training ResNet-18 on CIFAR-100 ((a)
and (b)) and NCF on MovieLens-20 M ((c) and (d)) using the Top-k and Threshold sparsifiers.

the threshold sparsifier (a.k.a. hard-threshold Strom (2015); Dutta et al. (2020); Sahu et al. (2021))
communicates gradient components with absolute magnitude greater than a threshold, λ ≥ 0. It sets
anything less than λ to zero. This allows the threshold sparsifier to send a variable amount of data in
each iteration and has a better convergence guarantee Sahu et al. (2021). One can see the threshold
sparsifier as a simple adaptive counterpart of Top-k as it sends variable data volume in each training
iteration. Although theoretically attractive, the same question persists — how to tune the threshold,
λ in practice?

Not only the sparsifiers, (or Top-k in particular) regardless of the compressors, the existing literature
predominantly focuses on uniform compression throughout the training, where the same compres-
sion ratio is used for all layers. Although varying the compression ratio for each layer at different
stages of training is feasible, this area is not well-explored and most available literature proposes
compute-heavy methods to find the best compressor Alimohammadi et al. (2023); Xin et al. (2023);
Khirirat et al. (2021). Attempts were made to achieve optimal compression performance by adopting
different adaptive strategies; see §2. In contrast, we investigated Occam’s Razor principle: “plurality
should not be posited without necessity.” Instead of employing compute-intensive adaptive compres-
sors, can we provide a simple, yet efficient strategy for quickly selecting a compression parameter
for each layer, achieving a good balance between compressed data volume and model performance?

In that pursuit, we train two DNN architectures: (i) ResNet-18 He et al. (2016) on CIFAR 100
Krizhevsky et al. (2009) dataset (baseline no compression Top-1 accuracy is 73.38%) and (ii) NCF
on MovieLens-20M dataset Harper & Konstan (2015) (baseline no compression best Hit-Rate@10
is 95.59%), on standard PyTorch benchmark using 2 NVIDIA A100-SXM4 GPUs with 80 GB
memory, connected via 400 Gbps network bandwidth. We use the Top-k and threshold sparsifiers
and set the hyperparameters k and λ to send the same data volume. For ResNet18 and NCF, k is set
to 3.92%, and 0.35%, respectively, and λ = 0.1. While uniform Top-k achieves a Top-1 accuracy
of 73.04% on ResNet-18 and a best Hit-Rate@10 of 91.33% on NCF, threshold sparsifier achieves
a Top-1 accuracy of 73.32% on ResNet-18 and a best Hit-Rate@10 of 92.7% on NCF, respectively.
To get a better insight into threshold sparsifier’s superior performance over the Top-k, in Figure 1
(a), we plot the compression ratio for different layers of ResNet-18 over iterations and in Figure
1 (b), we plot the total average compression of its different size layers. We observed that the small
and medium layers (dimension less than 102 to up to 105) are not so severely compressed during
the training compared to the large and very large layers (dimension more than 106) — larger layers
experience extremely aggressive compression — even more aggressive than the uniform Top-k for
those layers. Additionally, regardless of their sizes, during the beginning phase of the training, the
layers are less aggressively compressed compared to the final training phase. We made almost
identical observations in the NCF training; see Figures 1 (c)-(d).

Our empirical observations in using the Top-k sparsifier and its adaptive counterpart for DNN train-
ing indicate two key factors: (a) the layer size of the DNNs influence in choosing how much one
needs to compress, and (b) the training phase of the DNNs can be a critical contributor in the adap-
tive compressor design. Moreover, the second observation is consistent with recent research on the
critical training regime of DNNs Achille et al. (2019); Zhang et al. (2022); Agarwal et al. (2021a).
Although our quest for designing an adaptive compressor primarily started with sparsifiers, we be-
lieve, the above-mentioned simple factors can be used conjointly with any compression techniques
in designing its compute-efficient, adaptive counterpart.
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We list our contributions as follows:
Adaptive compressor scheduler (§3). We present a Lightweight Efficient GrAdient Compression
StrategY or LEGACY that, in theory, can work with any compression technique to produce its
simple adaptive counterpart. LEGACY is based on easy-to-obtain information — layer size and
training phase. Designing LEGACY is empirically motivated and stands on solid technical intuitions;
see §3.1. Irrespective of the DNN models and training dataset, LEGACY can guide the selection of
compression parameters based on the layer size or training phase; see system design in §3.3.

Theoretical insights (§4). Under the usual assumptions for stochastic first-order algorithms in
the compressed, distributed setup, we validate the influence of our policies on the convergence of
compressed SGD; see Theorem 1 in §4.

Benchmarking (§5). We benchmark LEGACY through a variety of numerical experiments involving
diverse DNN architectures (convolution and residual networks, transformer, and recommender sys-
tem — a total of 6 models) trained for different tasks (image classification on CIFAR 10, CIFAR
100, and ImageNet, text prediction on WikiText-103, and collaborative filtering on Movielens-20M
— a total of 5 datasets; see Table 2 in §B for a summary) by using Top-k and Random-k as base
compressors. We report our results using multiple metrics: test accuracy, communicated data vol-
ume, throughput, and computation time. Additionally, we compared LEGACY against 4 state-of-the-
art adaptive compressors (CAT Khirirat et al. (2021), Variance-based compression Tsuzuku et al.
(2018), Accordion Agarwal et al. (2021a) and AdaComp Chen et al. (2018a)). Finally, in §5.5, we
deploy LEGACY in a real federated training where the network bandwidth can pose a serious com-
munication bottleneck.

2 RELATED WORK AND BACKGROUND

Gradient compression techniques are broadly divided into four classes: quantization Alistarh et al.
(2017); Dettmers (2015); Bernstein et al. (2018); Wen et al. (2017), sparsification Aji & Heafield
(2017); Stich et al. (2018); Alistarh et al. (2018), low-rank Vogels et al. (2019); Wang et al. (2018);
Yu et al. (2018), and hybrid Strom (2015); Basu et al. (2019); Dryden et al. (2016).

Adaptive compression in high-bandwidth data center. The conventional practice employs the
one-size-fits-all strategy, in which the compression parameters remain constant limiting the opti-
mization potential and impacting model performance and communication resources. L-Greco Al-
imohammadi et al. (2023) utilizes dynamic programming to determine the optimal compression
parameter for each layer under a fixed communication budget. Kimad Xin et al. (2023) and ACE
Wang et al. (2024) dynamically monitors network bandwidth instead of using a fixed communica-
tion budget; CAT Khirirat et al. (2021) employs a communication cost model to optimize compres-
sion efficiency per communicated bit at each iteration. Inspired by the notion of a critical regime
Achille et al. (2019), which emphasizes model sensitivity in a certain period, Accordion Agarwal
et al. (2021a) aims to identify and respond to this regime by applying a lighter compression during
the critical periods. Conversely, LAGS-SGD Shi et al. (2020), and COVAP Meng et al. (2023) take
a different approach by adjusting the compression level to overlap gradient communications with
computational tasks.

In less compute-intensive strategies, we list Luo et al. (2021) which decides the compression de-
gree based on a probability that depends on the gradient value and the layer size. SDAGC Chen
et al. (2020b) adjusts compression thresholds based on the standard deviation of gradients of each
layer. AdaComp Chen et al. (2018a) is similar to the threshold compressor, divides gradient compo-
nents into bins and selects significant components relative to the maximum value in each bin. Guo
et al. (2020) determines the quantization level based on the gradient’s mean-to-standard deviation
ratio; DAGC Lu et al. (2023) assigns compression ratios to workers based on the data distribu-
tion. DLS Zhang et al. (2023a) tries to find a layer-wise Top-k compression level. AdapTop-k Ruan
et al. (2023) sends more components at the beginning and end of the training and fewer components
in the middle. Chen et al. (2018b); Wang et al. (2023; 2022); Deng et al. (2024) suggest freezing
or skipping some layers based on their deviation from the previous iteration or by evaluating the
importance of the learning of each layer. It can potentially reduce communication and computation
by avoiding the gradient computation for first layers Miyauchi et al. (2018); Wang et al. (2022). Qu
et al. (2024); Chen et al. (2020a) compress up and downlink communication.
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Algorithm 1: Compressed distributed training
without error feedback (EF)
Input: Number of nodes n, learning rate η, number

of iterations T, batch-size B per node as nbatch
Output: The trained model x
for t = 0, 1, . . . , T do

On each node i:
gi,t = Calculategradient(xt, nbatch)
ki,t = Chooseparam(gi,t, t)
g̃i,t = Compress(gi,t, ki,t)
Communicate(g̃i,t)
On Master:
[g̃1,t, . . . , g̃n,t] = Receive(n)
[g1,t, . . . , gn,t] = Decompress([~g1,t, . . . , ~gn,t])
gt = AverageGrads([g1,t, . . . , gn,t])
Broadcast(gt)
On each node i:
xt+1 = Update(xt, gt, η)

Table 1: Functions used in our framework.

Function Description
Chooseparam Decide compression

parameters
Compress Apply compression to

each layer
Communicate Send compressed gradient

to the server
Receive Gather the compressed

gradients from workers
Decompress Restore the original

tensor shape
AverageGrads Average the received

gradients
Broadcast Broadcast the averaged

gradient
Update Optimizer independent

parameter update

Transition to low-bandwidth network. Compute-intensive techniques such as CAT Khirirat et al.
(2021) face performance trade-offs, particularly in fast network environments like data centers Agar-
wal et al. (2021b). In such cases, using basic compressors without the extra burden of adaptive com-
putations might take longer than no compression baselines Xu et al. (2021a); Eghlidi & Jaggi (2020);
Zhang et al. (2023b). The scenario changes in federated learning (FL) Kairouz et al. (2019); Bergou
et al. (2023); Xu et al. (2021b); Sun et al. (2024), where low-bandwidth heterogeneous network is de
facto. Hence, compression becomes necessary; but employing complex adaptive compressors may
reduce the data-saving advantages in FL, especially when weaker nodes are involved. As a result,
we need to focus more on lightweight and simple principles to achieve adaptive compression.

Notations. We use ∥x∥ to denote the ℓ2-norm of a vector x. By gi,t and ∇fi,t, we denote the
stochastic gradient and full gradient, respectively, at the ith node at iteration t.

Compressor. A random operator, C(·) : Rd → Rd is a compression operator if EC∥x − C(x)∥2 ≤
(1 − δ)∥x∥2 for all x ∈ Rd, where δ > 0 is the compression factor. A smaller δ indicates a more
aggressive compression. In our setup, δ ∈ (0, 1], and C is a δ-compressor. The popular sparsifiers,
Topk and Randomk have δ = k

d , and E∥x−Topk(x)∥2 ≤ E∥x−Randomk(x)∥2 ≤ (1− k
d )∥x∥

2.

3 HOW CAN WE DESIGN AN ADAPTIVE COMPRESSOR SCHEDULER?

We observe two key factors in DNN training through the examples in Figure 1. First, the compression
ratio has more impact at the beginning of the training than at the end. Second, regarding the topology
of the considered network, it is better to compress large layers and keep small layers uncompressed
(or with easy compression). But, can these observations also be theoretically justified so that we can
build an adaptive compressor scheduler based on them?

To answer this, we formulate the impact of unbiased compressors on the decrease rate for the gradi-
ent descent (GD) algorithm under two relatively easier-to-analyze cases: (i) smooth, strongly convex
functions, and (ii) smooth, nonconvex functions with PL condition. There is no loss of generality
in considering GD instead of distributed SGD — analysis of GD offers ease of notations, and under
simple arguments, leads us to a practical scheduler.

Setup. Consider the empirical risk minimization (ERM) problem with n computing nodes:

min
x∈Rd

[
F (x) :=

1

n

n∑
i=1

fi(x)

]
, (1)

where fi(x) := Ezi∼Di
l(x; zi) denotes the loss function evaluated at the ith node on input zi sam-

pled from its distribution, Di. Let gi,t be the stochastic gradient computed at ith node at iteration t
and of the form gi,t = ∇fi,t+ ξi,t, with E[ξi,t|xt] = 0. To prove our results, we make some general
assumptions; see §A.1.
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Function 1: EpochCompression
({λi}pi=1, {δi}

p
i=1)

Input: Current iteration, t
Output: Compression parameter, δi
j = index of the smallest threshold from
{λi}pi=1 such that iteration t ≤ λi ;

return δj

Function 2: LayerSizeCompression({λi}pi=1, {δi}
p
i=1)

Input: Gradient gi,t at iteration t from worker i
Output: compression parameters list
for each layer L in gi,t do

j = index of the smallest threshold from
{λi}pi=1 such that |L| ≤ λj ;

Append δj to compression parameters list;
return compression parameters list;

3.1 INSIGHT THROUGH THE LENS OF THE COMPRESSED GD ALGORITHM

Let Ct be unbiased δt-compressors for all t ∈ [T ]. The iterative update rule of the compressed GD
algorithm with fixed stepsize, η ≥ 0 and unbiased δt-compressors in solving (1) is given by

xt+1 = xt − ηCt(∇F (xt)). (2)
In the following lemma, we quantify the decrease in the quantity, ∥xt+1−x∗∥2 under the smoothness
and strong convexity assumption; see the proof in §A.2.
Lemma 1. Let F follow Assumptions 1 and 2. Then with fixed stepsize η, the sequence of iterates,
{xt}t≥0 of compressed GD updates satisfy

ECt∥xt+1 − x∗∥2 ≤
(
1− 2µη + η2µL(2− δt)

)
∥xt − x∗∥2.︸ ︷︷ ︸

D(δt):=Real decrease

Note that, the quantity D(δt) is a function of the compression factor. For no compression, δt = 1,
and we obtain:

∥xt+1 − x∗∥2 ≤
(
1− 2µη + µη2L

)
∥xt − x∗∥2.︸ ︷︷ ︸

D(1):=Ideal decrease

Ideally, we are interested in δt ∈ (0, 1] such that D(δt) (i.e., the compressed GD decrease) is as
close as possible to D(1) (i.e., the non-compressed GD decrease). We have

∆ := D(δt)−D(1) = µη2L(1− δt)∥xt − x∗∥2.
Therefore, to have ∆ ≈ 0, we require: (i) At the beginning of the training, we have ∥xt−x∗∥2 ≫ 0.
Therefore, to make ∆ ≈ 0 we need to choose δt close to 1 (no or easy compression). (ii)At the
end of the training we have ∥xt − x∗∥2 ≈ 0. Therefore, no strong control is needed on δt to keep
∆ small. In this case, one can choose δt ≈ 0 (aggressive compression). Moreover, large layers
contribute more significantly to ∥xt − x∗∥2 compared to the small layers. Therefore, to keep ∆
small, it is necessary to compress large layers more aggressively than the smaller ones.

To further extend our theoretical insight, in the next lemma, we consider GD for minimizing
smooth nonconvex function under the PL condition and quantify the functional suboptimality gap,
ECt

(Ft+1)− F∗; see the proof in §A.2.
Lemma 2. Let F follow Assumptions 1 and 4. Then with stepsize η = 1

L , the sequence of iterates,
{xt}t≥0 of compressed GD updates satisfy

ECt
(Ft+1)− F∗ ≤

(
1− δtµ

L

)
(Ft − F∗).︸ ︷︷ ︸

D(δt):=Real decrease

As before, substituting δt = 1 gives the ideal decrease i.e., the decrease in the functional subopti-
mality gap without compression:

Ft+1 − F∗ ≤
(
1− µ

L

)
(Ft − F∗).︸ ︷︷ ︸

D(1):=Ideal decrease

To have D(δt)−D(1) = (1− δt)
µ
L (Ft − F∗) ≈ 0, we require: (i) At the beginning of the train-

ing Ft − F∗ ≫ 0. Therefore, we need to choose δt ≈ 1 (no or easy compression) to keep
D(δt)−D(1) ≈ 0. (ii) At the end of the training Ft − F∗ ≈ 0. Therefore, we can choose δt ≈ 0
(aggressive compression).
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Figure 2: System architecture. The LEGACY framework is highlighted in blue.

3.2 AN ADAPTIVE COMPRESSOR SCHEDULER FOR DNN TRAINING

Motivated by the previous section, we formally define an adaptive compressor scheduler for com-
pressed distributed training on n workers. Although our scheduler is optimizer agnostic, for sim-
plicity, we consider the optimizer to be SGD. Given a stepsize sequence, {ηt ≥ 0}t≥0 and δt-
compressors, the update rule for compressed distributed SGD on n workers is given by

xt+1 = xt − ηt

n

∑n
i=1 Ct(gi,t). (3)

Algorithm 1 provides a general compressed communication framework without error feedback
Karimireddy et al. (2019). We build our approaches around the general framework of Algorithm
1, by changing the compression level through function chooseparam. We require two user-inferred
hyperparameters: (i) a sorted list of p decreasing compression levels, {δi}pi=1, of the δ-compressor
Ct, where δp being the most aggressive compression factor, and (ii) a sorted list of p non-decreasing
thresholds, {λi ≥ 0}pi=1, which represents either an iteration or a layer size at which we use a certain
compression level δi, in Algorithm 1. The threshold change is based on the following approaches:

(i) Training epoch dependent. We start with a less intense compression and gradually increase its
intensity during the training. In Epoch compression, we progressively increase the compression
level δ as training progresses; see Function 1. In this case, the non-decreasing thresholds {λi}pi=1
denote the iterations or epochs at which the compression intensity is increased.

(ii) Layer size dependent. We employ an easy compression level for small layers as their size
is insignificant compared to the larger ones. We achieve this through Layer size compression;
see Function 2. In this Function, we used the thresholds {λi}pi=1 to group layers by their sizes —
smaller layers are affected by a less intense compression, while the larger layers experience a more
aggressive compression.

3.3 SYSTEM ARCHITECTURE — LEGACY

We present Lightweight Efficient GrAdient Compression StrategY or LEGACY; see the system archi-
tecture in Figure 2. LEGACY is compatible with any machine learning framework (e.g., TensorFlow,
PyTorch), and offers a simple API that can be embedded with various gradient compressors (e.g.,
Top-k, QSGD, etc.). In this work, we use sparsifiers as base compressors in LEGACY and use NCCL
AllGather communication collective NCCL. However, LEGACY is agnostic of the optimizer used
for training and it can be effortlessly integrated with other communication protocols such as P2P or
AllReduce communication collective.

For transmitting workers, LEGACY is executed through the intermediary API call chooseparam in
Algorithm 1, responsible for selecting the appropriate compression parameters for each layer. After
gradient computation through any ML benchmark, based on the user’s strategy, epoch compres-
sion Function 1 (b = 1) or Layer size compression Function 2 (b = 0) is invoked to dynamically
determine the compression parameters for each layer, which are then applied to the gradient com-
pressor in the worker. Additionally, Functions 1 and 2 in LEGACY can be used conjointly with the
base-compressor; see the blue three-point arrow. Other than chooseparam, LEGACY uses other
well-known APIs for communication, averaging, broadcasting, etc. from the GRACE library Xu
et al. (2021a); see Table 1. The receiving worker does not require any modulation, it applies reverse
operations and decompresses the received gradient. In master-worker formalization, LEGACY can be
used for uplink and downlink bidirectional compression.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10 2 10 1 100

Relative Avg. Data Volume

0.60

0.65

0.70

0.75

0.80

0.85
Ac

cu
ra

cy

0.18 0.20 0.220.80

0.82

0.84

(a) AlexNet (CIFAR10)

10 2 10 1 100

Relative Avg. Data Volume

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

0.18 0.20 0.220.90

0.92

(b) ResNet 9 (CIFAR10)

10 2 10 1 100

Relative Avg. Data Volume

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

0.0020 0.00250.60

0.62

(c) ResNet 18 (CIFAR100)

10 2 10 1 100

Relative Avg. Data Volume
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

HR
@

10

0.0019 0.0020 0.00210.84

0.85

0.86

(d) NCF (Movielens-20m)

10 2 10 1 100

Relative Avg. Data Volume

50

100

150

200

250
Pe

rp
le

xi
ty 0.018 0.020 0.022

120

140

160

(e) Transformer-XL (WikiText-103)

10 2 10 1 100

Relative Avg. Data Volume

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0.018 0.020 0.0220.50

0.55

0.60

(f) ResNet 50 (ImageNet)

Figure 3: Layer-size and training epoch dependent Top-k and uniform Top-k (denoted by only δcompression)
— Relative average data volume vs. model quality.

4 CONVERGENCE GUARANTEE

Inspired by Sahu et al. (2021); Stich & Karimireddy (2020), we establish the nonconvex convergence
of distributed SGD with δt-compression operators, Ct. Ideally, we want the compressed stochastic
gradient steps to be as close as possible to the full gradient and the descent on the optimization
objective to be as close as possible to that of the one without compression. This implies we are
interested in minimizing E

[∥∥ 1
n (
∑n

i=1 Ct(gi,t)−
∑

i=1 ∇fi,t)
∥∥2 |xt

]
. We measure this deviation

in the following result. Denote βt := (1 − δt)(M + 1) +M , where M,σ2 ≥ 0 are constants such
that for all xt ∈ Rd, the stochastic noise, ξi,t follows E[∥ξi,t∥2 | xt] ≤ M∥∇fi,t∥2 + σ2; see
Assumption 5. The constants appearing in our results are due to the general Assumptions in §A.1.
Lemma 3. (Compression variance) Let Ct be δt-compressors for all t ∈ [T ], and let F follow
Assumption 6, and the stochastic noise follow Assumption 5. We have

E
[∥∥ 1

n (
∑n

i=1 Ct(gi,t)−
∑n

i=1 ∇fi,t)
∥∥2 |xt

]
≤ βt

n

(
2A(Ft − F⋆) +B + ∥∇Ft∥2

)
+ (2−δt)σ

2

n .

Using the previous Lemma, the following theorem gives the complexity results, which are similar
to the classical complexity results for compressed SGD type of algorithms; see Dutta et al. (2020);
Stich & Karimireddy (2020); Sahu et al. (2021). See the detailed proof in §A.3.
Theorem 1. (Nonconvex convergence) Let Assumptions 1, 5, and 6 hold. Let Ct be δt-compressors

for all t ∈ [T ]. For a stepsize η ≤ min

(
1

L
2 +

L(2M+1)
n

,
(

AL(2M+1)T
n

)− 1
2

)
we have:

mint=0,1,···T−1 E∥∇Ft∥2 ≤ 3

Tη(1−Lη
2 −Lη

n )
(F0 − F⋆) +

Lη(B(2M+1)+2σ2)
2n(1−Lη

2 −Lη(2M+1)
n )

.

5 BENCHMARKING AND EVALUTAION

Environment and Configuration. We run our experiments on 4 NVIDIA A100-SXM4 GPUs (2
GPUs for AlexNet, ResNet-9, and ResNet-18 training, and 4 GPUs for Transformer-XL, NCF, and
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Figure 4: Layer-size and training epoch dependent Top-k and uniform Top-k (denoted by only δ) — Through-
put vs. model quality, where experiments with similar global compression ratios are linked with a dotted line;
see Legend in Figure 3.
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Figure 5: Comparison with the state-of-the-art adaptive compressors in training ResNet9 on CIFAR10.

ResNet-50 training) with 80GB memory and interconnected with 400 GBps bandwidth. LEGACY is
built on Dutta et al. (2020); Sahu et al. (2021); for Transformer-XL, we utilized the NVIDIA Training
Examples benchmark Nvidia with reduced steps; tests on CIFAR10, CIFAR100, and NCF were
implemented using Dutta et al. (2020), Sahu et al. (2021), and Nvidia, respectively. We used 30
epochs for AlexNet, ResNet-9, and NCF training, 300 epochs for ResNet18 training, and 4,500
steps for the Transformer training. For ImageNet, we employed PyTorch and train ResNet-50 for 50
epochs; see Tables 2 and 3 in §B for a detailed summary. For experimental reproducibility see §B.5.

LEGACY Setup. We split the training into two phases: beginning B (first half of the total epochs) and
end E (rest of the total epochs); each phase uses a different compression level. For layer sizes, we
categorize layers into two groups: small layers, S with fewer than 104 elements, and large layers,
L with 104 elements or more. With this formalization, Sδ1Lδ2 means small layers are compressed
with compression factor, δ1 and large layers compressed with compression factor, δ2, and Bδ1Eδ2
denotes two-phase training, beginning phase with compression factor, δ1, and end phase with δ2.

5.1 MODEL QUALITY VS. TRANSMITTED DATA VOLUME

Figure 3a shows the accuracy of AlexNet on CIFAR-10; uniform Top-k compression with k =
0.1%d (corresponding to the δ0.1) results in an accuracy of 75.7%. However, using Top-k as base
compression in LEGACY, the strategy, B0.15E0.05, which starts with a compression ratio of 0.15%
for the first half of the epochs and then switches to an aggressive compression ratio of 0.05%,
achieves a higher accuracy of 79.18%. Notably, the reverse strategy B0.05E0.15 results in a lower
accuracy of 73.6%. When we compress smaller layers at 1% while keeping the larger layers at the
0.1% ratio, S1L0.1, the accuracy improves by 5.14% over the uniform compression. Figures 3b
– 3f show similar results across different DNN models and challenging, larger datasets including
ImageNet and WikiText, with accuracy improvements up to 7-11% on ImageNet compared to the
uniform compression strategy. For language model in Figure 3e, the perplexity improves ∼ 26%,
from 253.57 with uniform δ0.1 to 188.8 with adaptive compression S10L0.1.

Takeaways. In general, sending more data leads to a better-trained model. However, for (almost)
equally transmitted data volume, the results reveal that beginning the training with no to mild com-
pression and transitioning to a more aggressive compression, yields better performance than using
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a uniform or inverse compression strategy. DNN models retain more crucial information during the
initial training phases starting with a mild compression and gradually increasing the compression
ratio. This strategy allows the model to learn effectively from the data, leading to improved accu-
racy compared to a uniform compression strategy, or when aggressive compression is applied first
and eased off. Gradually increasing the compression factor balances the need for sufficient data in
the early stage and gains efficiency from higher compression in the later stage. Similar conclusions
hold for layer size-dependent adaptive compression. Leaving small layers uncompressed or lightly
compressed results in a minor increase in transmitted data volume while improving perplexity by
26% on WikiText-103 and accuracy by 7% on ImageNet.

5.2 MODEL QUALITY VS. TRAINING THROUGHPUT

Figure 4 shows the impact of compression on model quality as a function of the relative throughput.
Test cases with a similar average compression ratio (±10%) are connected with dotted lines. The
throughput from compression is inferior to the no-compression baseline as we use a limited number
of workers in a data center connected by fast network bandwidth, and the overhead of compres-
sion could be higher relative to the network throughput. Analyzing the groups (connected by the
dotted lines), we observe that the average compression ratio influences the model performance and
throughput; sending more data results in higher model quality but lower throughput. For a similar
average compression ratio, applying moderate compression during the initial training phase and to
smaller layers yields better performance. In Figure 4a, for ResNet9, a uniform Top-0.1% compres-
sion results in 75% accuracy, and 50.29% relative throughput. However, our epoch-based strategy,
B0.15E0.05 in LEGACY, yields similar relative throughput but improved accuracy, reaching 79.18%.
Meanwhile, the layer size-based adaptive strategy, S1L0.1 in LEGACY, achieves better throughput
at 53.16% and higher accuracy of 80.85% achieving a 5.7% gain in throughput and 6.6% gain in
accuracy compared to the uniform compression. We observe similar findings in Figures 4b and
4c. Generally, the adaptive strategies in LEGACY (denoted by ’+’ for epoch-based and ’×’ for layer
size-based) for linked points are positioned either above (indicating better accuracy) or to the right
(indicating better throughput) of the uniform case for AlexNet and ResNet9. For the Transformer-
XL, LEGACY strategy points are located to the right of or below the uniform case, under similar
average compression ratios, indicating a better perplexity, with improvements of up to ∼26% in
perplexity and ∼4.5% in throughput compared to uniform compression.

Takeaways. Our layer-based strategy can increase accuracy and throughput compared to the uni-
form or inverse approaches, although the throughput gains are limited due to the high-speed network
in the data center. For the layer size-based approach, not compressing small layers eliminates the
computational overhead. For the epoch-based approach, sending more data at the beginning appears
to balance out the aggressive communication towards the end, yielding similar throughput while
leveraging the early training stages to achieve better accuracy.

5.3 ADDITIONAL BENCHMARKING AND DISCUSSIONS

We use Random-k as the base compressor in LEGACY and provide accuracy vs. data volume results;
see in §B, Figure 7. In §B Table 4, we report the average Top-1 test accuracy of ResNet9 and AlexNet
on CIFAR10, derived from 15 independent runs; the results are in agreement with §5.1. By using
Top-k as the base compressor (with and without error feedback) in LEGACY, we provide the model
quality vs. wall clock time results in §B.3. See the limitations and social impact in §C.

5.4 COMPARISON WITH ADAPTIVE GRADIENT COMPRESSORS

We evaluate our approaches, Bδ1Eδ2 and Sδ1Lδ2 , using the Top-k compression in LEGACY against
three state-of-the-art adaptive compression methods (Adacomp Chen et al. (2018a), variance-based
compression Tsuzuku et al. (2018), and CAT Khirirat et al. (2021)) in terms of the trained model
quality and the training time. From Figures 5a and 5b we observe the superior performance of
our scheduler in terms of accuracy at similar exchanged data volumes. Although we experience
slower training compared to Adacomp, as Adacomp is based on thresholding and 2× faster than
the uniform Top-k and our strategies, we have a 12% accuracy gain than Adacomp by sending
slightly over 75Mb more data; see Figure 5c. Variance-based compression requires access to per-
sample gradients, which are not supported by most deep learning frameworks; obtaining these values
using a batch size of one is extremely slow. We used OPACUS Yousefpour et al. (2021) to get
faster per-sample gradients. Still, it remains ∼ 6× slower than our approaches with a 15% lower
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Figure 6: Training ResNet18 on CIFAR10 in a FL Environment; δ100 is no compression baseline.

accuracy. CAT requires testing many values at each iteration before choosing the sparsity, resulting
in 11× slower performance, sending around 575Mb data, and incurring 25% lower accuracy than
our approaches. Our strategies are robust as they choose the compression ratios and control the total
and per-iteration data volume. In contrast, except Accordion, other adaptive methods can neither
be applied to different compressors nor provide an estimate of the data volume. We also found that
at the core, these methods exhibit similar behavior to our strategies, confirming the effectiveness of
our approach, which does not require additional computation.

5.5 FEDERATED TRAINING OF RESNET-18 ON CIFAR-10

High network bandwidth generally does not harvest the benefit of compression Xu et al. (2021a);
bandwidth-limited federated training is an authentic area in assessing our strategies.

Testbed and setup. We emulate an environment of 50 workers connected via 1Gbps network operat-
ing on Intel Xeon Platinum 8276 CPUs, instead of GPUs. Additionally, we partitioned the CIFAR10
dataset into 50 subsets using a Dirichlet distribution with parameter α = 10, to mimic a non-i.i.d.
data distribution among the workers. We use Top-k as the base compressor in LEGACY and com-
pare the results with no compression baseline and Accordion Agarwal et al. (2021a). We use Gloo
AllGather for internodal communication. This configuration more accurately reflects the limita-
tions encountered in a real-world FL environment, characterized by heterogeneous data, constrained
networks, and computational resources.

Result. We do not accumulate gradients at local nodes but communicate immediately to test the
resilience of training when the slow network is burdened with heavy communication. Our strategies
are robust in FL and outperformed the uniform Top-1.3% and Accordion compressors, achieving
a 16%-35% gain in accuracy, while being 6× faster than the no-compression baseline; see Fig-
ure 6b. The test accuracy of our layer-based policy is almost similar to the no-compression base-
line, while the epoch-based policy outperforms the uniform Top-1.3% compression. The adaptive
policies in LEGACY significantly lower the communicate data volume overhead in FL deployments;
B2E0.6 and S15L1.2 communicate only 1.3% and 1.23% of the data, respectively, compared to the
no-compression baseline (Figure 6c); also, see total communicated data volume during training in
Figure 8c. Together, this indicates the high quality of the trained model, consistent with the findings
in data center training, and validates our claim that the simple yet efficient principles in LEGACY are
beneficial for federated deployments.

6 CONCLUSION

This paper introduces a lightweight, adaptive gradient compression framework or LEGACY for dis-
tributed deep neural network training. LEGACY is open-source and can be seamlessly integrated into
any ML framework. In contrast to the compute-intensive, parameter-heavy adaptive compressors,
LEGACY operates based on two fundamental factors in DNN training, the layer size of the DNNs
and their training phases, and provides a simple yet efficient adaptive scheduler for any compres-
sors to guide their compression parameters selection. Our benchmarking of LEGACY using Top-k
and Random-k as base compressors shows consistent performance gains compared to the uniform
Top-k, Random-k, and four other state-of-the-art adaptive compressors across large and challeng-
ing datasets, including ImageNet and WikiText-103. Finally, in the bandwidth-constrained federated
training, we profile the efficacy of LEGACY and establish the need of a simple, adaptive scheduler.
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A.1 ASSUMPTIONS

We make the following general assumptions.
Assumption 1. (Smoothness) The loss function fi : Rd → R at each node i ∈ [n] is L-smooth, i.e.
fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L

2 ∥y − x∥2 for all x, y ∈ Rd.

Assumption 2. (µ-strongly convex) The loss function fi : Rd → R at each node i ∈ [n] is µ-
strongly convex, i.e. fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ µ

2 ∥y − x∥2 for all x, y ∈ Rd.
Remark 1. The above two assumptions together imply that F is L-smooth and µ-strongly convex.
Assumption 3. (Global minimum) There exists x⋆ such that, F (x⋆) = F⋆ ≤ F (x), for all x ∈ Rd.

Assumption 4. (Polyak-Lojasiewicz Condition) The function F satisfies Polyak-Lojasiewicz (PL)
condition with parameter µ ≥ 0 if for all x ∈ Rd the following holds:

1

2
∥∇F (x)∥ ≥ µ(F (x)− F∗).

Assumption 5. ((M,σ2) bounded noise) There exist constants M,σ2 ≥ 0, such that for all xt ∈
Rd, the stochastic noise, ξi,t follows

E[∥ξi,t∥2 | xt] ≤ M∥∇fi,t∥2 + σ2.

Remark 2. The above implies, E[∥gi,t∥2 | xt] ≤ (M + 1)∥∇fi,t∥2 + σ2.
Assumption 6. (Bounded variance of gradients) There exist constants A,B ≥ 0 such that, for all
x ∈ Rd, the variance of gradients among nodes follow

1
n

∑
i∈[n]∥∇fi(x)−∇F (x)∥2 ≤ 2A(F (x)− F⋆) +B.

We impose the following extra assumption on the expected direction of the compressed gradient for
biased compressors. A similar assumption was made in Dutta et al. (2020) and it has been validated
by several classic biased compressors, such as Topk-k.

Let C be a biased δ-compressor such that there exists 0 < α ≤ 2 and β > 0 such that if g ∈ Rd, is
an unbiased estimator of ∇f then

E
[
C(g)⊤∇f |∇f

]
≥ βE∥∇f∥α +R,

where R is a small scalar residual which may appear due to the numerical inexactness of some
operators or due to other computational overheads.
Remark 3. The above assumption is general and one can characterize many compressors with this.
For instance, for Top-k, we have α = 2, β = k/d and R = 0. In this paper, for simplicity and
without loss of generality, we consider α = 2, β = 1, and R = 0. Under these simplifications, the
previous assumption aligns with the unbiasedness assumption of the compressor and the stochastic
gradient g. Therefore, the convergence analysis is based on this assumption.

A.1.1 INEQUALITIES USED

1. If a, b ∈ Rd then we use a relaxed version of Peter-Paul inequality:

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. (4)

2. If a, b ∈ Rd then the following holds:

2⟨a, b⟩ ≤ 2∥a∥2 + 1

2
∥b∥2. (5)

3. For x1, . . . , xn ∈ Rd we have:

∥
n∑

i=1

xi∥2 ≤ n

n∑
i=1

∥xi∥2. (6)

4. If X is a random variable then:

E∥X∥2 = ∥E[X]∥2 + E[∥X − E[X]∥2]. (7)
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Lemma 4. Let C(·) : Rd → Rd be a δ-compressor. We have E∥C(g)∥2 ≤ (2− δ)∥g∥2.

Proof. Recall for δ-compressors, we have E∥g − C(g)∥2 ≤ (1− δ)∥g∥2. Since E(C(g)) = g, from
equation 7 we have,

E∥C(g)∥2 By equation 7
= E∥g − C(g)∥2 + ∥g∥2≤(1− δ)∥g∥2 + ∥g∥2 = (2− δ)∥g∥2.

Lemma 5. Let F follow Assumption 6. Then we have for all t ≥ 0,

1

n

n∑
i=1

∥∇fi,t∥2 ≤ 2A(Ft − F⋆) +B + ∥∇Ft∥2. (8)

Proof. The proof follows from the fact that 1
n

∑n
i=1 ∥∇fi,t∥2 = 1

n

∑n
i=1 ∥∇fi,t − ∇Ft + ∇Ft∥2

and Ft :=
1
n

∑n
i=1 fi,t for all t ≥ 0. Therefore,

1

n

n∑
i=1

∥∇fi,t∥2 =
1

n

n∑
i=1

∥∇fi,t −∇Ft +∇Ft∥2

=
1

n

n∑
i=1

∥∇fi,t −∇Ft∥2 + ∥∇Ft∥2

By Assumption 6

≤ 2A(Ft − F⋆) +B + ∥∇Ft∥2.
Hence the result.

A.2 CONVERGENCE OF GD

This section provides the convergence proofs GD on strongly convex and nonconvex functions with
PL conditions as given in Lemma 1 and Lemma 2.

A.2.1 CONVERGENCE OF GD ON STRONGLY CONVEX FUNCTIONS

Lemma 1. (Gradient descent with unbiased compressor) Let F follow Assumptions 1 and 2. Then
with stepsize η ≤ 1

(2−δt)L
, the sequence of iterates, {xt}t≥0 of compressed GD updates satisfy

ECt
(∥xt+1 − x⋆∥2) ≤

(
1− 2µη + η2µL(2− δt)

)
∥xt − x⋆∥2. (9)

Proof. From the GD update in equation 2, we have

xt+1 − x⋆ = xt − x⋆ − ηCt(∇F (xt)).

Squaring both sides and expanding we have

∥xt+1 − x⋆∥2 = ∥xt − x⋆∥2 − 2ηCt (∇Ft)
T
(xt − x⋆) + η2∥Ct(∇Ft)∥2.

By taking expectation on the randomness of the compressors Ct we get:

ECt

(
∥xt+1 − x⋆∥2

)
= ∥xt − x⋆∥2 − 2η∇FT

t (xt − x⋆) + η2ECt
∥Ct(∇Ft)∥2

By Assumption 2

≤ ∥xt − x⋆∥2 + 2η (F⋆ − Ft)− µη∥xt − x⋆∥2

+η2(2− δt)∥∇Ft∥2
By Assumption 1

≤ ∥xt − x⋆∥2 + 2η (F⋆ − Ft)− µη∥xt − x⋆∥2

+2η2L(2− δt)(Ft − F⋆)

≤ (1− µη)∥xt − x⋆∥2 + 2η (ηL(2− δt)− 1) (Ft − F⋆)
By Assumption 2

≤ (1− µη)∥xt − x∗∥2 + µη (ηL(2− δt)− 1) ∥xt − x∗∥2

≤
(
1− 2µη + η2µL(2− δt)

)
∥xt − x⋆∥2.

This completes the proof.
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A.2.2 CONVERGENCE OF GD ON NONCONVEX FUNCTIONS WITH PL CONDITION

Lemma 2. (Gradient descent with unbiased compressor) Let F follow Assumptions 1 and 4. Then
with stepsize η = 1

L , the sequence of iterates, {xt}t≥0 of compressed GD updates satisfy

ECt
(Ft+1)− F⋆ ≤

(
1− δtµ

L

)
(Ft − F⋆). (10)

Proof. Using the L-smoothness of F as in Assumption 1 we have

Ft+1 ≤ Ft + ⟨∇Ft, xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

By equation 2

≤ Ft − η⟨∇Ft, Ct(∇F (xt))⟩+
η2L

2
∥Ct(∇F (xt))∥2.

By taking the expectation on the randomness of Ct and by using the GD updates from equation 2 we
have

ECt(Ft+1) ≤ Ft −
1

L
∥∇Ft∥2 +

1

2L
ECt∥Ct(∇(Ft))∥2

By Lemma4

≤ Ft −
(
1

L
− 2− δt

2L

)
∥∇Ft∥2

≤ Ft −
δt
2L

∥∇Ft∥2

By Assumption4

≤ Ft −
δt
2L

2µ(Ft − F⋆).

Finally, subtracting F⋆ from both sides we get

ECt(Ft+1)− F⋆ ≤
(
1− δt

L
µ

)
(Ft − F⋆).

This completes the proof.

A.3 CONVERGENCE PROOFS FOR NONCONVEX DISTRIBUTED SGD

In this section, we provide the convergence proofs of compressed distributed SGD on nonconvex
functions. We start with the key inequalities used in our proofs.

Lemma 3. (Compression variance) Let Ct be a δt-compressor for all t ∈ [T ], and let F follow
Assumption 6, and the stochastic noise follow Assumption 5. Then we have

E

∥∥∥∥∥ 1
n

(
n∑

i=1

Ct(gi,t)−
n∑

i=1

∇fi,t

)∥∥∥∥∥
2

|xt

 ≤ (11)

1

n

(
(1− δt)(M + 1) +M

)(
2A(Ft − F⋆) +B + ∥∇Ft∥2

)
+

(2− δt)σ
2

n
.

Proof. We note that the compression operator, Ct, and the stochastic noise, ξi,t are independent of
each other. Therefore, while taking expectation on the randomness of the compression operator,
Ct we condition on the other source of randomness, and vice versa. We use ECt

to denote the
expectation taken on the randomness of the compression operator, Ct, and conditioned on other
sources of randomness. So, taking expectation on the randomness of the compression operator, Ct
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we have

ECt

∥∥∥∥∥ 1
n

(
n∑

i=1

Ct(gi,t)−
∑
i=1

∇fi,t

)∥∥∥∥∥
2

ECt (Ct(gi,t))=gi,t
=

1

n2

n∑
i=1

ECt
∥Ct(gi,t)−∇fi,t∥2 +

2

n2

∑
i ̸=j

⟨gi,t −∇fi,t, gj,t −∇fj,t⟩

gi,t=∇fi,t+ξi,t
=

1

n2

n∑
i=1

ECt
∥Ct(gi,t)− gi,t + ξi,t∥2 +

2

n2

∑
i ̸=j

⟨gi,t −∇fi,t, gj,t −∇fj,t⟩

ECt (Ct(gi,t))=gi,t
=

1

n2

n∑
i=1

(
ECt

∥Ct(gi,t)− gi,t∥2 + ECt
∥ξi,t∥2

)
+

2

n2

∑
i ̸=j

⟨gi,t −∇fi,t, gj,t −∇fj,t⟩

≤ 1

n2

n∑
i=1

(
(1− δt)∥gi,t∥2 + ∥ξi,t∥2

)
+

2

n2

∑
i̸=j

⟨gi,t −∇fi,t, gj,t −∇fj,t⟩.

Taking expectation conditioned on xt, and by using the tower property of expectation we get

E

ECt

∥∥∥∥∥ 1
n

(
n∑

i=1

Ct(gi,t)−
∑
i=1

∇fi,t

)∥∥∥∥∥
2
 |xt

 ≤ 1

n2

n∑
i=1

(
(1− δt)E[∥gi,t∥2|xt] + E[∥ξi,t∥2|xt]

)
.

The equality holds as E(gi,t|xt) = ∇fi,t and E(gj,t|xt) = ∇fj,t, for all i ̸= j, i, j ∈ [n]. By using
Assumption 5, write the above expression as

1

n2

n∑
i=1

(
(1− δt)E[∥gi,t∥2|xt] + E[∥ξi,t∥2|xt]

)
≤ 1

n2

n∑
i=1

(
(1− δt)(M + 1)∥∇fi,t∥2 + (1− δt)σ

2 +M∥∇fi,t∥2 + σ2
)

By Lemma 5

≤ 1

n
((1− δt)(M + 1) +M) (2A(Ft − F⋆) +B + ∥∇Ft∥2) +

1

n
(2− δt)σ

2.

Hence the result.

Based on the previous Lemma, the next lemma quantifies the quantity E
∥∥ 1
n

∑n
i=1 Ct(gi,t)

∥∥2 .
Lemma 6. Let Ct be a δt-compressor for all t ∈ [T ]. Let F follow Assumptions 3, 6, and the
stochastic noise follow Assumption 5. Then

E

∥∥∥∥∥ 1
n

n∑
i=1

Ct(gi,t)

∥∥∥∥∥
2

≤ 2Aβt

n
(Ft − F⋆) +

(
1 +

βt

n

)
∥∇Ft∥2 +

Bβt

n
+

(
2− δt
n

)
σ2,(12)

where βt := (1− δt)(M + 1) +M .

Proof. Taking expectation on the randomness of the compression operator, Ct, we have

ECt

∥∥∥∥∥ 1
n

n∑
i=1

Ct(gi,t)

∥∥∥∥∥
2

= ECt∥ 1
n

n∑
i=1

Ct(gi,t)−∇Ft +∇Ft∥2

= ECt

∥∥∥∥∥ 1
n

n∑
i=1

Ct(gi,t)−∇Ft

∥∥∥∥∥
2

+ ∥∇Ft∥2 + 2⟨ 1n
n∑

i=1

gi,t −∇Ft,∇Ft⟩

By Lemma 3

≤ 1

n
((1− δt)(M + 1) +M) (2A(Ft − F⋆) +B + ∥∇Ft∥2) +

1

n
(2− δt)σ

2

+∥∇Ft∥2 + 2⟨ 1n
n∑

i=1

gi,t −∇Ft,∇Ft⟩. (13)
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Finally, we note that E(gi,t|xt) = fi,t. By using the tower property of expectation, we denote
E∥ 1

n

∑n
i=1 Ct(gi,t)∥2 = E(ECt

∥ 1
n

∑n
i=1 Ct(gi,t)∥2|xt). Taken together, from 13, we have

E∥ 1
n

n∑
i=1

Ct(gi,t)∥2

≤ 1

n
((1− δt)(M + 1) +M) (2A(Ft − F⋆) +B + ∥∇Ft∥2) +

1

n
(2− δt)σ

2 + ∥∇Ft∥2.

Hence the result.

Finally, we can quote the non-convex descent lemma for compressed distributed SGD.

Lemma 7. (Non-convex descent lemma) Let Assumptions 1 , 5, and 6 hold, and let Ct be a δt-
compressor for all t ∈ [T ]. Then

E(Ft+1)− F⋆ ≤
(
1 +

ALη2t βt

n

)
(E(Ft)− F⋆)− ηt

(
1− Lηt

2
− Lηtβt

n

)
E∥∇Ft∥2

+
Lη2t
2

(
Bβt

n
+

(
2− δt
n

)
σ2

)
.

Proof. By using the L-smoothness of F we have

Ft+1≤ Ft − ⟨∇Ft, xt+1 − xt⟩+ L
2 ∥xt+1 − xt∥2.

By using the update rule xt+1 − xt = −ηt

n

∑n
i=1 Ct(gi,t) the above becomes

Ft+1≤ Ft − ⟨∇Ft,
ηt

n

∑n
i=1 Ct(gi,t)⟩+

Lη2
t

2 ∥ 1
n

∑n
i=1 Ct(gi,t)∥2. (14)

Taking expectation with respect to the randomness of Ct on the above expression for all t ∈ [T ], we
find

ECt(Ft+1)≤ Ft − ⟨∇Ft,
ηt

n

∑n
i=1 gi,t⟩+

Lη2
t

2 ECt∥ 1
n

∑n
i=1 Ct(gi,t)∥2.

Taking expectation conditioned on xt we have

E(Ft+1|xt) ≤ E(Ft|xt)− ηtE∥∇Ft∥2 +
Lη2t
2

E

(
∥ 1
n

n∑
i=1

Ct(gi,t)∥2|xt

)
.

By using Lemma 6 on the above we find

E(Ft+1|xt) ≤ E(Ft|xt)− ηtE∥∇Ft∥2

+
Lη2t
2

(
2Aβt

n
(Ft − F⋆) +

(
1 +

βt

n

)
∥∇Ft∥2 +

Bβt

n
+

(
2− δt
n

)
σ2

)
.

Taking the final expectation, by using the tower property of expectation, and rearranging the terms,
we have

E(Ft+1)− F⋆ ≤
(
1 +

ALη2t βt

n

)
(E(Ft)− F⋆)− ηt

(
1− Lηt

2
− Lηtβt

n

)
E∥∇Ft∥2

+
Lη2t
2

(
Bβt

n
+

(
2− δt
n

)
σ2

)
. (15)

Hence the result.

NONCONVEX CONVERGENCE RESULTS

The next Lemma is instrumental in proving the nonconvex convergence of distributed SGD with
δ-compressors.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma 8. Mishchenko et al. (2020) Let for 0 ≤ t ≤ T the following holds:
pt+1 ≤ (1 + a)pt − bqt + c, (16)

where {pt}Tt=0 and {qt}Tt=0 are non-negative sequences and a, b, c ≥ 0 are constants. Then

min
t=0,1,···T−1

qt ≤
(1 + a)T

bT
p0 +

c

b
. (17)

Proof. Dividing both sides of equation 16 by (1 + a)t+1 and summing from t = 0, 1, · · · , T we
have

T∑
t=0

1

(1 + a)t+1
pt+1 ≤

T∑
t=0

1

(1 + a)t
pt −

T∑
t=0

b

(1 + a)t+1
qt +

T∑
t=0

c

(1 + a)t+1
,

which after rearranging is
t∑

t=0

b

(1 + a)t+1
qt ≤ p0 −

1

(1 + a)T+1
pT+1 +

T∑
t=0

c

(1 + a)t+1
.

Noting
∑T

t=0
1

(1+a)t+1 ≤ 1
1− 1

1+a

− 1 = 1
a , we have

min
t=0,1,···T

qt

T∑
t=0

1

(1 + a)t+1
≤

T∑
t=0

1

(1 + a)t+1
qt ≤

p0
b

+
c

ab
. (18)

Hence the result.

Finally, we are all set to prove Theorem 1.
Theorem 1. (Nonconvex convergence) Let Assumptions 1 , 5, and 6 hold, and let Ct be a δt-

compressor for all t ∈ [T ]. For a fixed stepsize ηt := η ≤ min

(
1

L
2 +

L(2M+1)
n

,
(

AL(2M+1)T
n

)− 1
2

)
we have:

min
t=0,1,···T−1

E∥∇F (xt)∥2 ≤ 3

Tη
(
1− Lη

2 − Lη
n

) (F0 − F⋆) +
Lη
(
B(2M + 1) + 2σ2

)
2n
(
1− Lη

2 − Lη(2M+1)
n

) .
Proof. From Lemma 7 we have

E(Ft+1)− F⋆ ≤
(
1 +

ALη2t βt

n

)
(E(Ft)− F⋆)− ηt

(
1− Lηt

2
− Lηtβt

n

)
E∥∇Ft∥2

+
Lη2t
2

(
Bβt

n
+

(
2− δt
n

)
σ2

)
.

The above inequality satisfies the condition of equation 16 with a = ALη2(2M+1)
n , b =

η
(
1− Lη

2 − Lη(2M+1)
n

)
, c = Lη2

2

(
B(2M+1)

n + 2σ2

n

)
. Therefore, we obtain

min
t=0,1,···T−1

E∥∇F (xt)∥2 ≤

(
1 + ALη2(2M+1)

n

)T
Tη
(
1− Lη

2 − Lη(2M+1)
n

) (F0 − F⋆) +

Lη2

2

(
B(2M+1)

n + 2σ2

n

)
η
(
1− Lη

2 − Lη(2M+1)
n

) . (19)

Using that x+1 ≤ expx and with η ≤
(

AL(2M+1)T
n

)− 1
2

in the first term of the RHS of equation 19,
we get (

1 +
ALη2(2M + 1)

n

)T

≤ exp

(
ALη2(2M + 1)T

n

)
≤ exp(1) ≤ 3.

Finally, using the above in the the inequality (19), we have

min
t=0,1,···T−1

E∥∇F (xt)∥2 ≤ 3

Tη
(
1− Lη

2 − Lη
n

) (F0 − F⋆) +
Lη
(
B(2M + 1) + 2σ2

)
2n
(
1− Lη

2 − Lη(2M+1)
n

) .
Hence the result.
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B SUPPLEMENTARY NUMERICAL RESULTS

In this section, we provide additional experimental details and benchmarking results, which we were
unable to discuss in the main paper due to limited space.

Table 2: Summary of the benchmarks and quality metrics used in this work.

Task Model Dataset Training
parameters

Quality
metric

Baseline
quality Optimizer

Image
Classification

AlexNet CIFAR-10 2,255,296 Accuracy 84.99% SGD Robbins & Monro (1951)
ResNet9 CIFAR-10 6,573,120 Accuracy 92.07% SGD Robbins & Monro (1951)
ResNet18 CIFAR-100 11,220,132 Accuracy 73.43% SGD-M Nesterov (2013)
ResNet50 ImageNet 25,559,081 Accuracy 59.43% SGD Robbins & Monro (1951)

Recommendation NCF Movielens-20m 31,832,577 HR@10 95.53% ADAM Kingma & Ba (2015)

Language
Modelling Transformer-XL WikiText-103 191,950,298 Perplexity 39.47 LAMB You et al. (2020)

Federated
Learning ResNet18 CIFAR-10 11,173,962 Accuracy 85.37% SGD-M Nesterov (2013)

B.1 PERFORMANCE OF RANDOM-k IN LEGACY AS BASE COMPRESSOR: ACCURACY VS.
DATA VOLUME

We provide additional tests following the configuration described in Section 5, using the Random-
k as the base compressor in LEGACY. Figure 7 displays the accuracy versus relative average data
volume throughout training for AlexNet, ResNet-9, and Transformer-XL.

B.2 AVERAGE OF INDEPENDENT RUNS

In Table 4, we report the accuracy of ResNet-9 and AlexNet, including standard deviations ob-
tained through independent runs using Top-k and Random-k as base compressors in LEGACY. Top-k
demonstrates superior performance relative to Random-k. The tests conducted reveal comparable
findings to those discussed in Subsection 5.1, further validating the importance of small layers and
the initial training phase in improving compression efficiency.

B.3 MODEL QUALITY VS. RUN TIME

We performed our previous experiments on high-performance GPUs in a data center, connected
by a fast network, and constituting a limited number of workers. To simulate more constrained
environments, we now simulate scenarios with more restricted resources.

Testbed and setup. We trained ResNet-18 on CIFAR10 using 50 workers, sharing a 1Gbps network
bandwidth, with every worker operating on an Intel Xeon Platinum 8276 CPU instead of a GPU. In
this part, we integrated error feedback (EF) in our tests; the implementation of EF is based on Sahu
et al. (2021). Figure 8 profiles the accuracy per wall clock time for 4100 seconds, which is the time
required for compressors to complete 30 epochs. For the compression parameters of each method,
we employed the following so that all methods transmit (almost) equal average data volume:

Table 3: Dataset and training configuration.

Dataset Training
Name Size Workers used Time (min) Independent Runs Performed

CIFAR10 Krizhevsky et al. (2009) 160MB 2 5 15

CIFAR100 Krizhevsky et al. (2009) 160MB 2 20 15

ImageNet Deng et al. (2009) 140GB 4 2100 1

Movielens-20m Harper & Konstan (2015) 190MB 4 2 10

WikiText-103 Merity et al. (2017) 500MB 4 190 4
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Figure 7: Layer-size and training epoch dependent Random-k compression, where Sδ1Lδ2 means
small layers(≤ 105) compressed with compression factor, δ1 and large layers compressed with com-
pression factor, δ2, and Bδ1Eδ2 denotes two-phase training, beginning phase (half of the total train-
ing epoch) with compression factor, δ1 and ending phase with compression factor δ2.

Table 4: Comparison of average compression ratios vs. mean accuracy with standard deviation
derived from 7 runs.

ResNet9 AlexNet
Method Compression ratio Average ratio Accuracy Average ratio Accuracy

Baseline N/A 100% 92.07 ± 0.13 100% 84.98 ± 0.34

Topk 0.1% 0.1% 75.72 ± 1.07 0.1% 65.53 ± 0.86
Topk-epoch B0.05E0.15 0.1% 73.65 ± 0.16 0.1% 59.85 ± 4.9
Topk-epoch B0.15E0.05 0.1% 79.18 ± 0.26 0.1% 66.25 ± 0.62
Topk-layer S10L0.1 0.12% 82.94 ± 0.79 0.13% 70.27 ± 0.91

Randomk 0.1% 0.1% 50.04 ± 0.8 0.1% 43.58 ± 0.45
Randomk-layer S10L0.1 0.12% 68.67 ± 0.53 0.13% 62.13 ± 0.45

• Top-k: 1.7% uniform compression.
• Accordion: Set low and high compression ratio to klow = 0.1% and khigh = 10%, respec-

tively, achieving an average compression ratio of 1.98%.
• Top-k Epoch-based: The total training duration of 30 epochs was divided into four seg-

ments: three segments of 8 epochs each, followed by a final segment of 7 epochs. Compres-
sion ratios were set to 5%, 1%, 0.5%, and 0.1% for each segment, respectively, resulting in
an average compression ratio of 1.75%.

• Top-k Layer-based: Layers were categorized based on size into five groups: very small (≤
100), small (≤ 600), medium (≤ 105), large (≤ 106), and very large (≥ 106). Assigned
compression ratios were 80%, 50%, 20%, 5%, and 0.1% for each group respectively, trans-
mitting 1.77% of the gradients.

Results. Although the no-compression baseline achieves the highest accuracy, the time required is
also large in environments with limited and weak resources. In this test, the baseline needed more
than 6 hours to complete 30 epochs, while the compression tests took ≈ 4100 seconds, thereby
achieving the best return for time. From Figure 8a, we can observe that the Epoch-based Top-k
strategy achieves the best performance in the first 1000 seconds, which is expected as the method is
running through a light compression of 5% during this period, compared to the other compressors
that are using around a 1.7% compression ratio. The uniform compressors required approximately
double the time (≈ 2000s) to reach this level of accuracy. On the other hand, the Top-k strategy
based on layer size, stands out with the best accuracy when the layer size groups are more refined,
creating more groups helps in controlling the compression for sensitive and small layers to achieve
better accuracy.

Takeaways. In resource-limited environments, the strategies in LEGACY perform better in terms of
obtaining a better accuracy faster. The initial mild compression phase of the epoch-based strategy
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Figure 8: In (a) and (b), we show accuracy vs. wall clock time of training ResNet-18 on CIFAR10,
with and without EF, respectively. In (c), we show the total communicated data volume in ResNet-
18 on CIFAR10 training in an FL environment; see legend in Figure 6.

allows it to benefit from the early training phase and outperform other methods, which take signif-
icant time to match its performance, even after the epoch strategy enters the aggressive phase. On
the other hand, applying light compression to small layers enhances model performance. In both
strategies, creating more groups aids in refining the compression more effectively to achieve better
performance.

B.4 TIME COMPLEXITY

The time complexity of LEGACY is equivalent to the time complexity of the base compressor used
in it. LEGACY does not involve any back-of-the-hand calculation in choosing the adaptive version of
the compressor.

B.5 REPRODUCIBILITY

We implement the sparsifiers in PyTorch. Tables 5, 6, 7, 8, and 9 provide the experimental details
for each of the tasks. We used the default hyperparameters provided in the mentioned repositories
for each task.

Table 5: CIFAR-10 experiments

Dataset CIFAR-10
Architecture AlexNet, ResNet-9
Repository Layer-Wise-AAAI20 Dutta et al. (2020)

See https://github.com/sands-lab/layer-wise-aaai20
License MIT

Number of workers 2
Global Batch-size 256 × 2

Optimizer vanilla SGD
LR scheduler piecewise-linear function that increases the

learning rate from 0 to 0.4 during the first 5 epochs
and then decreases to 0 till the last epoch

Number of Epochs 30
Repetitions 15, with different seeds

C LIMITATION, FUTURE DIRECTION, AND ETHICS STATEMENT

Although adapting compression ratios according to layer size and training phase can significantly
improve model performance, it requires an additional set of hyperparameters. These parameters
determine the number of layer groups to create, when to adjust compression levels (start new phase),
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Table 6: CIFAR-100 experiments

Dataset CIFAR-100
Architecture ResNet-18
Repository rethinking-sparsification Sahu et al. (2021)

See https://github.com/sands-lab/rethinking-sparsification
License MIT

Number of workers 2
Global Batch-size 256 × 2

Optimizer SGD with Nesterov Momentum
Momentum 0.9

Post warmup LR 0.1 × 16
LR-decay /10 at epoch 150 and 250

LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300

Weight decay 10−4

Repetitions 15, with different seeds

Table 7: Language modelling task

Dataset WikiText103
Architecture Transformer-XL
Repository NVIDIA Deep Learning Examples Nvidia

See https://github.com/NVIDIA/DeepLearningExamples
License Apache

Number of workers 4
Global Batch-size 256

Optimizer LAMB
LR-decay Cosine schedule from 0.01 to 0.001

LR-warmup Linearly within 1,000 iterations, reaching 0.01
Number of training steps 4500

Weight decay 0
Repetitions 4, with different seeds

Table 8: Recommendation task

Dataset Movielens-20M
Architecture NCF
Repository NVIDIA Deep Learning Examples Nvidia

See https://github.com/NVIDIA/DeepLearningExamples
Number of workers 2
Global Batch-size 220

Optimizer ADAM
ADAM β1 0.25
ADAM β2 0.5
ADAM LR 4.5× 10−3

Number of Epochs 30
Weight decay 0

Dropout 0.5
Repetitions 10, with different seeds

License Apache
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Table 9: ImageNet experiments

Dataset ImageNet
Architecture ResNet-50
Repository PyTorch Examples PyTorch

See https://github.com/pytorch/examples
License BSD 3-Clause

Number of workers 4
Global Batch-size 256

Optimizer SGD
Momentum 0.9
LR-decay LR decayed by 10 every 30 epochs

Number of Epochs 50
Weight decay 10−4

Repetitions 1

and which compression ratios to apply for each group during each training phase. We note that
choosing these hyperparameters does not require any rigorous setup compared with other state-of-
the-art adaptive compressors. Regardless, in the following, we discuss some test cases. In the future,
we plan to make these choices more robust.

In our experiments, we followed a simple approach for grouping layers that involves sorting the
model’s layers by their sizes and identifying any significant differences to establish new groups. De-
termining optimal compression ratios for each group is less straightforward but can be managed by
incrementally adjusting the aggressiveness for larger layers and redistributing the gain among other
groups. E.g., shifting from a uniform 10% to using S70L9.9 achieves similar average compression
ratios: 10.075%, 10.003%, 10.032%, 9.917%, and 9.24% for AlexNet, ResNet9, ResNet18, NCF,
and Transformer-XL, respectively. Deciding when to start a new training phase is also challenging.
For simplicity, one can evenly divide the total number of training epochs into the desired number of
phases.

We run some proof of concept experiments using error feedback, or memory compensation. How-
ever, investigating the effect of error feedback further into our LEGACY is non-trivial both empirically
and theoretically, and is left for future work.

Potential Negative impact. Gradient compression techniques have been widely adopted since their
introduction to the machine learning community. The strategies used in developing our adaptive
compression scheduler in this work theoretically and empirically demonstrate their capability of
achieving better accuracy in DNN training in a distributed and federated setup. Overall, the present
work is theoretically driven and experiments corroborate the theoretical claims. Therefore, we do
not find any foreseeable harm it can pose to human society. However, it is always possible that
some individual or an organization can use this idea to devise a technique that can appear harmful to
society and bear evil consequences. As authors, we are absolutely against any detrimental usage, re-
gardless, by any individual or an organization, under profit or non-profitable motivation, and pledge
not to support any detrimental endeavors concerning our idea therein.
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