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Abstract001

In an educational setting, an estimate of the dif-002
ficulty of multiple-choice questions (MCQs),003
a commonly used strategy to assess learning004
progress, constitutes very useful information005
for both teachers and students. Since human as-006
sessment is costly from multiple points of view,007
automatic approaches to MCQ item difficulty008
estimation are investigated, yielding however009
mixed success until now. Our approach to this010
problem takes a different angle from previous011
work: asking various Large Language Models012
to tackle the questions included in two different013
MCQ datasets, we leverage model uncertainty014
to estimate item difficulty. By using both model015
uncertainty features as well as textual features016
in a Random Forest regressor, we show that un-017
certainty features contribute substantially to dif-018
ficulty prediction, where difficulty is inversely019
proportional to the number of students who020
can correctly answer a question. In addition021
to showing the value of our approach, we also022
observe that our model achieves state-of-the-art023
results on the BEA publicly available dataset.024

1 Introduction025

Multiple-Choice Questions (MCQs) are commonly026

used as a form of assessment across educational027

levels. This is not surprising, as they are trivial to028

grade and can effectively assess a student’s knowl-029

edge, as long as they are designed well (Gierl et al.,030

2017). Naturally, an aspect that significantly affects031

an MCQ’s quality is its difficulty. Intuitively, items032

that are too easy do not sufficiently challenge stu-033

dents, while very difficult items lead to frustration034

and demotivation (Papoušek et al., 2016) impair-035

ing the learning process. However, estimating an036

item’s difficulty is not trivial. In fact, students, and037

especially teachers, are not great at estimating how038

many of the test-takers will select the correct an-039

swer, given a question (van de Watering and van040

der Rijt, 2006). While field-testing question items041
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Figure 1: Approach overview: Predicting difficulty of
Multiple-Choice Question items using textual features
and uncertainty of LLM test-takers.

is a viable solution, it is usually expensive, both in 042

terms of time and resources. 043

Computational methods, including Large Lan- 044

guage Models (LLMs), have had some success in 045

assessing the difficulty of MCQs (AlKhuzaey et al., 046

2024). At the same time, the task remains chal- 047

lenging, as shown by a recent shared task on au- 048

tomated difficulty prediction for MCQs (Yaneva 049

et al., 2024), where most submitted systems per- 050

formed barely above some simple baselines. The 051

goal of the current work is to tackle the task of item 052

difficulty estimation using a minimal experimental 053

setup showcasing the usefulness of model uncer- 054

tainty for this task. We do this by obtaining a score 055

for the uncertainty LLMs exhibit when answer- 056

ing a variety of MCQs and use it, in combination 057

with basic text and semantic features, to train an 058

interpretable regressor model. This expands on pre- 059

vious findings which showed a correlation between 060

model and student perceived difficulty (Zotos et al., 061

2024), paired with the intuition that both syntac- 062

tic and semantic features are integral to this task 063

(AlKhuzaey et al., 2024). We focus on factual 064

MCQs, as this type of assessment is less subjec- 065

tive compared to open-ended questions, while still 066

offering more complexity than simple True/False 067
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questions1. Lastly, this choice is also motivated by068

dataset availability, as explained in Section 3.069

It is worthwhile explicitly mentioning that in070

the current work, the term "uncertainty" is used to071

encompass both 1st token probability and choice-072

order probability metrics (see Section 4.2 for de-073

tails.) These measures are taken to broadly repre-074

sent the inverse of model confidence. While accu-075

rately determining the uncertainty of an LLM is an076

open field of research, previous research suggests077

that both 1st token probability (Plaut et al., 2024)078

and choice order probability (Zotos et al., 2024)079

correlate well with model correctness in the MCQs080

setup. These findings also hold in the current ex-081

perimental setup, as shown in Appendix A.082

Our Contribution The contribution of our work083

is twofold. First, thanks to extensive experiments084

with a variety of LLMs and feature analysis using085

an interpretable model (Random forest Regressor),086

we showcase that model uncertainty is a useful087

proxy for item difficulty estimation on two different088

question sets assessing factual knowledge. Second,089

as a byproduct of our experiments investigating090

model uncertainty we yield a model which achieves091

best results to date on the BEA 2024 Shared Task092

dataset. This model, together with all experimental093

code, is made available to the community for repli-094

cability and future extensions. We believe that our095

conceptual insight (model uncertainty as a useful096

signal for item difficulty), as well as our practical097

contribution in terms of an existing modular sys-098

tem, will foster further improvements in the task099

of MCQ automatic difficulty estimation, which is100

core in the educational setting.2101

2 Related work102

The task of estimating the difficulty of MCQ items103

has been explored from various viewpoints in the104

literature (AlKhuzaey et al., 2024). Most com-105

monly this task is tackled by training a model on a106

set of syntactic (Perkins et al., 1995; Ha et al., 2019,107

e.g.,) and/or semantic features (Xue et al., 2020;108

Hsu et al., 2018, e.g.,). Furthermore, the majority109

of studies focus on the field of Language learning110

(Bi et al., 2021; He et al., 2021, e.g.,) which is111

inherently different to factual knowledge examina-112

tions. While the task of difficulty estimation has113

1In True/False questions, a statement needs to be assessed
as correct or incorrect, with a random chance of 50%. In
contrast, MCQs can follow various formulations and the dis-
tractors play a significant role.

2Code will become available upon acceptance.

been widely explored, it remains challenging as 114

was also seen in the recent "Building Educational 115

Applications" (BEA) shared task on "Automated 116

Prediction of Item Difficulty and Item Response 117

Time", where simple baselines were overall only 118

marginally beaten (Yaneva et al., 2024). In this task, 119

a variety of approaches were explored with the fo- 120

cus ranging from architectural changes to data aug- 121

mentation techniques. Notably, the best performing 122

team (EduTec) used a combination of model opti- 123

misation techniques, namely scalar mixing, ratio- 124

nal activation and multi-task learning (leveraging 125

the provided response time measurements also pro- 126

vided in the BEA dataset) (Gombert et al., 2024). 127

Most similar to our work is the study by Logi- 128

nova et al. (2021), who also explore the use of 129

confidence of language models to estimate ques- 130

tion difficulty. While similarities exist, the cur- 131

rent research deviates considerably from this study. 132

Their focus is on language comprehension, which 133

differs from our emphasis on factual knowledge 134

assessment. Furthermore, while their focus is on 135

Encoder-Only models, ours is on Decoder-Only 136

models, which incorporate greater amounts of fac- 137

tual knowledge as a byproduct of their language 138

modeling objective (Zhao et al., 2023). 139

More broadly, there is an emerging "LLM-as-a- 140

judge" field of research, which, in general terms, 141

explores the possibility of using powerful LLMs 142

as a substitute for human annotation (Zheng et al., 143

2023; Pan et al., 2024). For the task of question dif- 144

ficulty estimation, this paradigm has been explored 145

in the context of language comprehension by Raina 146

and Gales (2024) with some success. However, our 147

preliminary research suggests that this approach 148

does not perform well for the two datasets used in 149

the current study (see Appendix B), thereby moti- 150

vating further exploration in novel approaches. 151

The present work directly builds on the work 152

by Zotos et al. (2024), where a variety of analyses 153

showed promising results on correlating human and 154

machine perceived difficulty. We take this one step 155

further, by testing a battery of different LLMs on 156

item difficulty estimation using their uncertainty 157

as a signal, focusing on two distinct question sets 158

assessing factual knowledge. 159

3 Data 160

The two factual knowledge MCQ datasets that we 161

use in our experiments are described more in detail 162

in the following subsections. The first is a dataset 163

2



on the domain of Biopsychology that is not pub-164

licly available, while the second is the publicly165

available dataset used in the BEA 2024 Shared166

Task (Yaneva et al., 2024). For brevity, we refer to167

the "Biopsychology" and "BEA" datasets respec-168

tively. Our choice is driven by the requirement169

of having question-sets along with students selec-170

tion rates (serving as proxies for item difficulty171

scores). Considering that, to the best of our knowl-172

edge, the BEA dataset is the only publicly available173

resource satisfying this requirement, we also use174

a non-publicly available dataset. This choice is175

in line with the observation by AlKhuzaey et al.176

(2024), who note that most studies tackling this177

task resort to using private datasets.178

We use first the Biopsychology dataset to extend179

the experiments in (Zotos et al., 2024), and then180

the BEA dataset to evaluate whether our approach181

generalises to a different dataset (for which many182

other systems exist and can be compared to). As183

will be explained in Sections 3.1 and 3.2, even184

though both question sets assess factual knowledge,185

they also vary in multiple aspects, for example186

question formulation, number of distractors and187

knowledge specificity. Furthermore, to facilitate188

comparison with the findings from the BEA 2024189

Shared Task, we use the train/test split as provided190

in the shared task itself (70% training and 30% test191

samples). The same proportions are also used for192

the Biopsychology dataset, as shown in Table 1.193

The item difficulty labels differ between the two194

datasets. In the Biopsychology dataset, difficulty195

is measured by the proportion of students who an-196

swered correctly (a higher value indicates an easier197

question). In contrast, the BEA dataset originally198

uses the inverse difficulty measurement, where a199

higher difficulty label signifies that fewer students200

answered correctly. Additionally, a linear transfor-201

mation is also applied on the target labels of the202

BEA dataset. While this difference does not affect203

our approach, as in both cases difficulty is conceptu-204

ally expressed by cumulative student performance,205

to allow easier interpretation of our results we have206

transformed the BEA difficulty scores to their com-207

plements such that they also reflect the proportion208

of correct responses per question.209

3.1 Biopsychology210

The Biopsychology dataset originates from a211

course taught in the 1st year of the Psychology212

undergraduate degree at a Social Sciences Faculty,213

covering content from the classic textbook "Biolog-214

Dataset Train Test Total

Biopsychology 573 246 819

BEA 466 201 667

Table 1: Train and Test splits as used in our experi-
ments. For BEA, we use the splits as provided in the
competition (Yaneva et al., 2024). For Biopsychology,
we randomly sampled the questions, keeping the same
percentage of training/testing samples as in BEA.

ical Psychology" by Kalat (2016). The dataset com- 215

prises of 819 MCQs in total, of which 451 and 368 216

have two and three distractors respectively. The 217

data was collected from fifteen examinations with 218

an average of 261 examinees (Standard Deviation 219

of 184). This dataset has not been previously made 220

public, minimising the risk of data contamination 221

(ensuring that the LLMs used have not encountered 222

the question set during training). An important fea- 223

ture of this question set is its high textual variability, 224

with questions ranging from "Fill two gaps" to "Wh- 225

questions". Two example questions are reported in 226

Table 2. Given that LLMs demonstrate sensitivity 227

to input formulation (Biderman et al., 2024), the 228

presence of such variability in the data improves 229

generalisation of our method across datasets. 230

3.2 BEA 2024 231

The BEA question set was used in the United States 232

Medical Licensing Examination (USMLE®) and 233

was developed by the National Board of Medical 234

Examiners (NBME®) and Federation of State Med- 235

ical Boards (FSMB) (Yaneva et al., 2024). It con- 236

sists of 667 MCQs, each answered by more than 237

300 medical school students. In contrast to the 238

Biopsychology dataset, the questions follow strict 239

guidelines (e.g., fixed structure, absence of mis- 240

leading or redundant information in the question) 241

and are presented with up to nine distractor choices, 242

with the majority of the questions having five (525 243

items) or six distractors (71 items). An example 244

instance is provided in Table 2. As can be seen, 245

questions of this dataset are significantly longer 246

(755 characters compared to 103 characters for the 247

Biopsychology set) and are of technical nature. 248

4 Approach 249

Given an MCQ, the task is to predict the propor- 250

tion of students that select the correct choice3. An 251

3This is also known as the p-value (van de Watering and
van der Rijt, 2006).
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Dataset Question Choices

Biopsychology Homeostasis is to ... as allostasis is to ...
a⃝ constant; variable
b⃝ constant; decreasing
c⃝ variable; constant

Biopsychology If a drug has high affinity and low efficacy, what effect does it have on
the postsynaptic neuron?

a⃝ agonistic
b⃝ antagonistic
c⃝ proactive
d⃝ destructive

BEA

A 65-year-old woman comes to the physician for a follow-up ex-
amination after blood pressure measurements were 175/105 mm Hg
and 185/110 mm Hg 1 and 3 weeks ago, respectively. She has well-
controlled type 2 diabetes mellitus. Her blood pressure now is 175/110
mm Hg. Physical examination shows no other abnormalities. Antihy-
pertensive therapy is started, but her blood pressure remains elevated
at her next visit 3 weeks later. Laboratory studies show increased
plasma renin activity; the erythrocyte sedimentation rate and serum
electrolytes are within the reference ranges. Angiography shows a high-
grade stenosis of the proximal right renal artery; the left renal artery
appears normal. Which of the following is the most likely diagnosis?

a⃝ Atherosclerosis
b⃝ Congenital renal artery hy-

poplasia
c⃝ Fibromuscular dysplasia
d⃝ Takayasu arteritis
e⃝ Temporal arteritis

Table 2: Examples questions from the Biopsychology and BEA datasets. Correct answer in green.

MCQ item consists of the stem/question, a single252

correct choice/answer and a number of incorrect253

choices/distractors (also known as “foils").254

Figure 1 illustrates our approach to this task.255

Our design is centered around a simple Random256

Forest Regressor4 which receives as input a vec-257

torised representation of the MCQ, as well the un-258

certainty of multiple LLMs answering the same259

MCQ5. We opted for a relatively simple Random260

Forest Regressor due to its interpretability com-261

pared to more complex architectures, while still262

effectively demonstrating the usefulness of model263

uncertainty in this context. As features, we use Tex-264

tual Features and Model Uncertainty, as described265

in the following sections.266

4.1 Textual Features267

Intuitively, extracting the semantic content of the268

question item is integral to assess its difficulty. To269

accomplish that, we use two fundamentally differ-270

ent methods – Term Frequency-Inverse Document271

Frequency (TF-IDF) Scores and Semantic Embed-272

dings – to encode the question and answer choices273

as numerical vectors.274

TF-IDF Scores TF-IDF Scores capture how im-275

portant a word is to a document within a collec-276

tion by balancing its frequency in that specific277

document against its rarity across all documents278

(Sparck Jones, 1972). In the current context, we279

4As provided by the Scikit-Learn Library, using the default
hyper-parameters (Pedregosa et al., 2011).

5Simple vector concatenation is used to combine the text
and uncertainty features.

consider each question item (along with its choices) 280

as a single document. To capture multi-word tech- 281

nical terms, such as "interstitial fibrosis", our analy- 282

sis considers both individual words (unigrams) and 283

two-word combinations (bigrams). Furthermore, 284

we disregard terms that appear in more than 75% of 285

documents, and only use the 1000 most important 286

features (as determined by the TF-IDF values) to 287

increase efficiency. 288

Semantic Embeddings Word embeddings are a 289

technique whereby words are encoded as dense 290

vectors in a continuous vector space, capturing se- 291

mantic relationships between words. We evaluate 292

two embedding approaches: General BERT em- 293

beddings (Devlin et al., 2019) and domain-specific 294

Bio-Clinical BERT embeddings (Alsentzer et al., 295

2019), relevant to the topics addressed in the MCQ 296

datasets we use. The Bio-Clinical BERT embed- 297

dings, previously also employed by team ITEC in 298

the BEA 2024 shared task (Tack et al., 2024), offer 299

specialized medical domain text encoding that po- 300

tentially encapsulates more accurately the semantic 301

content of each question item. Both techniques 302

yield a 768-dimensional vector representation. 303

4.2 Model Uncertainty 304

The current methodological approach is founded on 305

the premise that model uncertainty correlates with 306

student performance and thus, by extension, offers 307

a useful signal when estimating the difficulty of a 308

question item. To explore this hypothesis, we have 309

conducted experiments using two metrics that are 310
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shown to correlate well with model correctness (as311

discussed in Appendix A): 1st Token Probability312

and Choice Order Sensitivity. These uncertainty313

scores are obtained for each LLM separately and314

concatenated into a single vector, to which textual315

features are (optionally) also added. This vector is316

then fed to the regressor.317

1st Token Probability The first technique to318

measure model uncertainty is by inspecting the319

softmax probability of the 1st token to be gener-320

ated as the answer id to the given MCQ question,321

(e.g., probability of generating token "B"), in com-322

parison to the probabilities of the alternatives (e.g.,323

probability of generating token "A" or "C"). As324

the 1st token probabilities can be influenced by the325

order in which the choices are provided in the prob-326

lem set (Wei et al., 2024; Wang et al., 2023, 2024;327

Zheng et al., 2024), we create ten random differ-328

ent orderings for each question and let the model329

answer each MCQ ten times6. This way, we calcu-330

late the average probability per MCQ choice. We331

then consider the average probability for the correct332

answer as the uncertainty metric of the LLM.333

Furthermore, as different tokens might be gen-334

erated to represent the same answer (e.g., "A", "335

A", "a ", see details on prompting and answer elici-336

tation in Section 4.3 below) and different models337

might attribute higher likelihood for specific tokens,338

the token representing each choice with the highest339

probability is selected. For example if for a given340

model the probability of generating token "C" is341

higher than the probability of token "c", the for-342

mer is considered for that model. Lastly, the three343

extracted mean probabilities of all orderings are344

normalised in the range of 0− 1 such that they can345

be more easily compared to the difficulty scores,346

which – being calculated as proportions of the stu-347

dent populations – are in the same range.348

Choice Order Sensitivity Pezeshkpour and Hr-349

uschka (2023) observed that choice order sensitiv-350

ity correlates with error rate. In other words, when351

LLMs consistently select a choice regardless of its352

position, that choice is more likely to be correct.353

Based on this observation, we leverage this corre-354

lation to measure uncertainty. Specifically, for all355

evaluated choice orderings, we measure the prob-356

ability of the correct choice being selected. Thus,357

this probability is not based on token probabilities358

but rather on the eventual choice.359

6For questions with only 3 choices, we instead consider all
six different choice orderings.

Instruction Prompt for the LLM

Below is a multiple-choice question.
Choose the letter which best answers the
question. Keep your response as brief as
possible; just state the letter corresponding
to your answer with no explanation.
Question:
[Question Text]
Response:

Figure 2: Instruction phrasing used for all models and
experiments. [Question Text] is replaced by the item
stem followed by the answer choices, each prepended
with the corresponding letter A to J.

4.3 Choice of Models and Prompting 360

In this work, we focus on decoder-only models, as 361

they are considered to have incorporated greater 362

amounts of factual knowledge as a byproduct of 363

their language modelling objective (Zhao et al., 364

2023), compared to Encoder-Only or Encoder- 365

Decoder models. Moreover, as the internal logit 366

probabilities of the 1st token to be generated are 367

needed to measure the uncertainty of each model, 368

we focus on nine open-sourced models of different 369

parameter sizes and families. Additionally, we con- 370

strict our choice to instruction-tuned models and 371

use 4-bit quantisation for increased efficiency.7 To 372

adapt them for the task of MCQ answering, we use 373

the instruction prompt in Figure 2 based on (Plaut 374

et al., 2024) and (Zotos et al., 2024). 375

5 Results 376

Our experiments are aimed at evaluating the use- 377

fulness of model uncertainty as a signal for MCQ 378

item difficulty as well as discovering which specific 379

textual and uncertainty features are most relevant 380

for our trained Regressor. We first focus on the per- 381

formance of our setup using different feature sets 382

(Section 5.1), followed by an in-depth analysis of 383

the importance of individual features (Section 5.2). 384

5.1 Performance on Difficulty Estimation 385

To evaluate the performance of our trained models 386

we use the Root Mean Squared Error (RMSE) met- 387

ric from Python’s Scikit-learn library (Pedregosa 388

et al., 2011), as used in the BEA 2024 Shared task. 389

As previously mentioned, we use a Random Forest 390

7Details of the models used are in Table 6 in Appendix C.
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Biopsychology BEA

Dummy Regressor 0.1670 0.3110
Best BEA 2024 Competition Result (Team EduTec) - 0.2990

Only Text Features
TF-IDF 0.1479 0.3092
BERT Embeddings 0.1498 0.3066

Only Model Uncertainty Features
1st Token Probabilities 0.1539 0.2960
Choice Order Sensitivity 0.1582 0.3178
1st Token Probability & Choice Order Sensitivity 0.1538 0.2968

Text and Model Uncertainty Features
TF-IDF BERT TF-IDF BERT

First Token Probability 0.1365 0.1385 0.2851 0.2854
Choice Order Sensitivity 0.1309 0.1411 0.2951 0.2961
1st Token Probability & Choice Order Sensitivity 0.1371 0.1388 0.2856 0.2846

Table 3: Root Mean Squared Error (RMSE, the lower the better) on the test set using different sets of features.
Lowest achieved RMSE per dataset is shown in boldface. All results are averaged over ten repetitions, with the
standard deviation not exceeding 0.002.

Regressor tasked to predict the difficulty of a ques-391

tion item, given as input a vectorised representation392

of the MCQ as well as the uncertainty of multiple393

LLMs answering the same MCQ. This creates a394

modular setup that allows easy manipulation of395

the input feature set. We present the feature sets396

along with their performance on the two datasets397

in Table 3. For brevity, we report the results ob-398

tained using Bio-Clinical BERT Embeddings in399

Appendix D, as they were found to lead to simi-400

lar, yet consistently slightly worse RMSE scores401

compared to the general BERT embeddings.402

An important first observation is that the RMSE403

difference between experiments is minimal. This404

is in-line with the findings from the BEA 2024405

shared task, where the lowest achieved RMSE was406

only 0.012 lower than the baseline. However, even407

though the margins are narrow, there are consistent408

differences between the experimental setups. Most409

importantly for this research, it is clear that using410

the uncertainty of the models, combined with text411

features yields significantly lower RMSE for both412

datasets, even beating the best score achieved dur-413

ing the BEA competition by a margin of 0.0125. In414

fact, providing the Random Forest Regressor only415

with LLMs’ uncertainties also surpasses the best416

BEA competition result, albeit by a narrower mar-417

gin of 0.003, further underscoring the potential of418

using model uncertainty for this task. Furthermore,419

in our exploration we did not find a consistent supe- 420

riority for one of the two model uncertainty metrics 421

(1st Token Probability or Choice Order Sensitivity) 422

or text vectorisation methods (TF-IDF or BERT 423

embeddings), though there seemed to be a gen- 424

eral advantage in using TF-IDF scores over BERT 425

Embeddings. Still, the observed scores for this 426

subset of results are within the observed standard 427

deviation of 0.002 between repetitions. Lastly, the 428

usefulness of the model uncertainty features is espe- 429

cially clear in the experiments where the Random 430

Regressor did not use any text features: except 431

where only Choice Order Sensitivity is used in the 432

BEA dataset, the performance is consistently better 433

than the respective Mean Regressor baselines. 434

5.2 Importance of Different Features 435

In order to better understand which features drive 436

the predictions of the Random Forest Regressor, 437

we use Shapley additive explanations as provided 438

by the SHAP Python library (Lundberg and Lee, 439

2017). To maintain conciseness, we present SHAP 440

summary plots for a selected subset of experiments 441

that we found to be the most insightful. Additional 442

analyses are presented in Appendix E. 443

Before exploring the analysis regarding model 444

uncertainty, we examine the contribution of the 445

most impactful uni/bi-grams from the text-only ex- 446

periment using the Biopsychology dataset. This 447

analysis relies on TF-IDF scores, as BERT embed- 448
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Figure 3: Biopsychology Dataset. SHAP summary plot showing the contribution of the top ten uni/bi-gram features
to the Random Forest’s predictions, highlighting their importance and impact direction. Features are ranked by their
average influence, with dots representing individual question items and colour indicating TF-IDF scores. Results
averaged over ten repetitions.

dings cannot directly be traced back to individual449

words. Figure 3 shows the ten most impactful fea-450

tures, along with their effect on the Regressors’ pre-451

diction for each MCQ item. High TF-IDF scores,452

highlighted in red, indicate that an MCQ item is453

predicted to be more difficult (i.e., fewer students454

answer it correctly). For instance, questions con-455

taining the unigram "visual" prompted the Random456

Forest model to predict greater difficulty. Interest-457

ingly, this analysis also demonstrates that questions458

where a gap (represented by an underscore "_")459

needs to be filled (e.g., "fill-the-gap" or sentence460

completion) are predicted to be easier.461

While this analysis gives some insights on im-462

portant text features, we are mostly interested in463

the contribution of features related to model un-464

certainty. Figures 4a and 4b present the effect of465

the most impactful features for the feature sets that466

lead to the best performance (using TF-IDF scores467

for the text encoding and model uncertainty) for the468

Biopsychology and BEA datasets, respectively. In469

both instances, the Random Forest Regressor heav-470

ily relies on model uncertainties to predict item dif-471

ficulty. As hypothesised, the higher the model cer-472

tainty (in terms of either 1st Token or Choice-Order473

Probability) the more students are predicted to an-474

swer the question correctly. In terms of models, we475

observe that the confidence of Qwen2.5-14B-chat476

is especially useful for both datasets (as can be seen477

by its 1st and 2nd place in Figures 4a and 4b respec-478

tively). This observation also highlights the core479

challenge of our approach: having a model that is480

sufficiently capable of answering the MCQs but 481

not so complex that it answers them with complete 482

confidence. In our work, this challenge is partially 483

addressed using an ensemble of models, leaving it 484

up to the Random Forest Regressor to determine 485

their usefulness. 486

6 Discussion and Conclusion 487

We explored how model uncertainty can be used as 488

a proxy for item-difficulty using two MCQ datasets 489

focusing on factual knowledge. We demonstrate, in 490

a simple experimental setup, that while both textual 491

features (e.g., encoding using TF-IDF Scores or 492

BERT embeddings) and model uncertainty features 493

are useful for the task, the trained Random For- 494

est Regressor performed significantly better when 495

model uncertainty features were included. 496

Our results suggest that aspects of a question 497

item that challenge students similarly impact LLMs. 498

A factor that could explain this alignment is repre- 499

sentation: Knowledge that is well represented in 500

an LLM’s training data is likely to be more foun- 501

dational (e.g., “What is a neuron"), compared to 502

specialised knowledge (e.g., a medical diagnosis). 503

By extension, using model uncertainty for this task 504

requires a model of appropriate size/capabilities. 505

Our methodological design is intentionally sim- 506

ple, serving as a proof of concept for this approach. 507

This simplicity stems from various design choices. 508

Firstly, our definition of item difficulty is simply 509

the number of students answering an MCQ cor- 510

rectly. This is in contrast to finer-grained metrics 511

7



(a) Biopsychology Dataset

(b) BEA Dataset

Figure 4: SHAP summary plots for the Biopsychology and BEA datasets showing the contribution of the top ten
features to the Random Forest’s predictions. Higher First Token Probability and Order Probability metrics indicate
greater model certainty. Results averaged over ten repetitions.

such as Item Response Theory (Lord and Novick,512

2008) which however require individual students’513

responses that are unavailable in our datasets. Sec-514

ondly, we use a variety of LLMs without plac-515

ing great emphasis on their uncertainty behaviour.516

Specifically, while we ensure that the measured517

model uncertainty aligns with model correctness518

(as shown in Appendix A), we do not focus on cali-519

brating the LLMs. Instead, we rely on the Random520

Forest Regressor to select and weight the uncer-521

tainties of the various models. Thirdly, we limited522

this research to only the necessary features for the523

purpose of our study (assessing the contribution524

of model uncertainty), namely text and model un-525

certainty. In order for yet further improvements526

to be obtained on the actual task of difficulty es-527

timation, more complex features can be explored528

and incorporate. For example, building on the intu-529

ition that the nature of the distractors plays a role 530

in the question’s difficulty, we experimented with 531

a choice similarity metric, defined (per MCQ) as 532

the average cosine similarity between each distrac- 533

tor and the correct answer choice, similar to the 534

approach by (Susanti et al., 2020). Incorporating 535

this information in our model yields an RMSE of 536

0.2841 on the BEA dataset, the lowest observed 537

sofar. This improvement is only observed when 538

this feature is combined with model uncertainty.8 539

Shifting into a broader perspective, our findings 540

incentivise further research into better understand- 541

ing which methods capturing model uncertainty, 542

ranging from analysing model internals to studying 543

model output (e.g., related to prompt sensitivity) 544

are most beneficial for this task. 545

8Experimental details and full results for this additional
feature are presented in Table 8 in Appendix F.
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Limitations546

Indisputably, the central limitation of our approach547

is the reliance on (un)certain LLMs. As seen in Sec-548

tion 5, model uncertainty is beneficial only when549

the model can answer the question without being550

overly confident. As a result, limits the usefulness551

of our approach, especially given the rapid devel-552

opment of LLMs in terms of their capabilities. We553

hypothesise that this limitation can at least partially554

be resolved by using calibrated LLMs, which we555

leave for future work.556

Similarly, our approach is not expected to per-557

form as well on MCQs designed to test knowledge558

at lower education levels (e.g., primary school ge-559

ography exams), as even small LLMs are now ca-560

pable of confidently answering such questions. At561

the same time, using less proficient LLMs intro-562

duces different challenges, particularly regarding563

linguistic ability: Smaller LLMs are more strongly564

affected by linguistic perturbations (e.g., question565

formulation, choice order) and have greater limi-566

tations in instruction-following capabilities (Bider-567

man et al., 2024; Sclar et al., 2023).568

Lastly, due to dataset availability, we evaluated569

our approach solely on factual knowledge examina-570

tions. It remains unclear whether model uncertainty571

could also be beneficial for assessing the difficulty572

of examinations of other skill sets, such as language573

comprehension or mathematical reasoning.574

Ethics Statement575

In this study, we used a dataset of multiple-choice576

questions from the "Biopsychology" course at the577

Behavioural and Social Sciences Faculty of our in-578

stitution. The data was aggregated across multiple579

students and anonymised, ensuring that individual580

student performance cannot be traced.581
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A Model Correctness and Uncertainty790

Table 4 presents the performance of each model791

on the two question sets, as well as the relation792

between model certainty and model correctness.793

In line with the results of Plaut et al. 2024, it is794

clear that both tested metrics correlate well with795

model correctness: For all models, on average, the796

mean certainty is significantly higher for the cor-797

rectly answered question items. This suggests that798

the two metrics indeed capture an aspect of model799

certainty.800

B LLM-as-a-Judge Approach801

In this section we briefly explore the possibility of802

using a strong LLM, Llama3.1-70B-Chat, to tackle803

the task of MCQ item difficulty estimation. Specif-804

ically, for each of the two datasets we instruct the805

LLM to predict the number of students correctly806

answering the given question, using the prompt pre-807

sented in table 5. This approach results in RMSEs808

of 0.2881 and 0.3565 for the Biopsychology and809

BEA datasets respectively, which is significantly810

worse than the mean regressor baseline.811

C Large Language Models Used812

Table 6 presents the collection of Large Language813

Models used in our experiments involving model814

uncertainty.815

D Use of Bio_Clinical Bert Embeddings 816

Table 7 presents the performance of our setup us- 817

ing the Bio_clinical Bert Embeddings (Alsentzer 818

et al., 2019). The results using BERT embeddings 819

(Devlin et al., 2019) are repeated to facilitate com- 820

parison. In our experiments, using the Bio_clinical 821

Bert Embeddings consistently led to worse perfor- 822

mance (higher RMSE) for all experiments. 823

E Additional SHAP analyses 824

In this section we present a collection of additional 825

analyses using the Shapley additive explanations 826

(Lundberg and Lee, 2017). 827

E.1 Only Using TF-IDF Features using BEA 828

Dataset 829

Figure 5 presents the effect of the ten most im- 830

pactful uni/bi-grams on the trained Random For- 831

est’s difficulty prediction. Questions containing the 832

words "physician" and "examination" are generally 833

predicted to be easy, while the other impactful fea- 834

tures lead to the Random Forest predicting higher 835

difficulty (lower proportion of students selecting 836

the correct answer). 837

E.2 TF-IDF Features and All Model 838

Uncertainty Features 839

Figure 6 shows the SHAP summary plot when both 840

model uncertainty feature-sets are given to the Ran- 841

dom Forest Regressor, along with the text encoded 842

as TF-IDF scores. Here, we observe that overall 843

1st Token Probabilities are preferred over Choice- 844

Order Probabilities as a proxies for difficulty. 845

F Using Semantic Similarity Between 846

Answer Choices 847

While the central goal of our study is to showcase 848

that model uncertainty is a useful signal for MCQ 849

item difficulty, in this section, we show that ad- 850

ditional features have the potential to further the 851

performance of our setup. More in detail, we use 852

a choices similarity metric, defined (per MCQ) as 853

the average cosine similarity between each distrac- 854

tor and the correct answer choice, similar to the 855

approach by (Susanti et al., 2020). This is opera- 856

tionalised using the Sentence Transformer library 857

(Reimers and Gurevych, 2019) with one of two 858

models: "all-MiniLM-L6-v2"9 (general efficient 859

9https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Dataset Model Overall Correctness Mean Probability

1st Token Choice Order

Biopsychology

phi3_5-chat 0.302 0.448 / 0.232 0.532 / 0.240
Llama3_2-3b-chat 0.707 0.733 / 0.247 0.853 / 0.196
Qwen2_5-3b-chat 0.799 0.864 / 0.200 0.883 / 0.192
Llama3_1-8b-chat 0.824 0.683 / 0.266 0.860 / 0.236
Qwen2_5-14b-chat 0.902 0.972 / 0.136 0.975 / 0.115
Qwen2_5-32b-chat 0.932 0.968 / 0.154 0.978 / 0.121

Yi-34b-chat 0.852 0.878 / 0.234 0.907 / 0.215
Qwen2_5-72b-chat 0.937 0.964 / 0.175 0.984 / 0.139
Llama3_1-70b-chat 0.933 0.946 / 0.209 0.980 / 0.160

BEA

phi3_5-chat 0.193 0.368 / 0.158 0.426 / 0.152
Llama3_2-3b-chat 0.645 0.607 / 0.183 0.782 / 0.153
Qwen2_5-3b-chat 0.510 0.676 / 0.148 0.752 / 0.123
Llama3_1-8b-chat 0.654 0.441 / 0.194 0.758 / 0.169
Qwen2_5-14b-chat 0.741 0.905 / 0.163 0.915 / 0.150
Qwen2_5-32b-chat 0.805 0.912 / 0.170 0.936 / 0.151

Yi-34b-chat 0.651 0.748 / 0.175 0.802 / 0.155
Qwen2_5-72b-chat 0.855 0.916 / 0.195 0.953 / 0.169
Llama3_1-70b-chat 0.892 0.845 / 0.181 0.945 / 0.144

Table 4: Model correctness and answer probability in terms of Mean 1st Token and Choice Order Probability in
the Biopsychology and BEA question sets. “Overall Correctness" indicates the proportion of correctly answered
questions, while the probabilities in green and red indicate the mean model certainty for correctly and incorrectly
answered questions respectively. As can be seen, on average, model certainty is significantly higher for questions
that are answered correctly.

Instruction Prompt

Below is a multiple-choice question. Out of 100 students, how many do you think answered
correctly? Answer with a number between 0 and 100 and do not include an explanation or any other
text.
Question:
[Question Text]
Number of students (out of 100) answering correctly:

Table 5: Instruction phrasing used for the LLM-as-a-Judge exploratory experiment. [Question Text] is replaced by
the item stem followed by the answer choices, each prepended with the corresponding letter A to J.

Model Source

phi3_5-chat https://huggingface.co/unsloth/Phi-3.5-mini-instruct-bnb-4bit
Llama3_2-3b-chat https://huggingface.co/unsloth/Llama-3.2-3B-Instruct-bnb-4bit
Qwen2_5-3b-chat https://huggingface.co/unsloth/Qwen2.5-3B-Instruct-bnb-4bit
Llama3_1-8b-chat https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
Qwen2_5-32b-chat https://huggingface.co/unsloth/Qwen2.5-32B-Instruct-bnb-4bit
Qwen2_5-14b-chat https://huggingface.co/unsloth/Qwen2.5-14B-Instruct-bnb-4bit
Yi-34b-chat https://huggingface.co/unsloth/yi-34b-chat-bnb-4bit
Qwen2_5-72b-chat https://huggingface.co/unsloth/Qwen2.5-72B-Instruct-bnb-4bit
Llama3_1-70b-chat https://huggingface.co/unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit

Table 6: LLMs used in the experiments
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Biopsychology BEA

Only Text Features
Bio_Clinical BERT 0.1518 0.3094
BERT 0.1498 0.3066

Text and Model Uncertainty Features
Bio_Clinical BERT BERT Bio_Clinical BERT BERT

First Token Probability 0.1396 0.1385 0.2908 0.2854
Choice Order Sensitivity 0.1426 0.1411 0.3035 0.2961
1st Token Probability & Choice Or-
der Sensitivity

0.1392 0.1388 0.2909 0.2846

Table 7: Comparison of results using Bio_Clinical BERT or default BERT embeddings in terms of RMSE on the
test set. All results are averaged over ten repetitions, with the standard deviation not exceeding 0.002.

Figure 5: BEA Dataset. SHAP summary plot showing the contribution of the top ten uni/bi-gram features to the
Random Forest’s predictions, highlighting their importance and impact direction. Features are ranked by their
average influence, with dots representing individual question items and colour indicating TF-IDF scores. Results
averaged over ten repetitions.

embeddings) and "S-PubMedBert-MS-MARCO"10860

(medical/health text domain embeddings). The two861

setups are henceforth refered to as "General Simi-862

larity" and "Medical Similarity" respectively.863

Table 8 presents the achieved RMSE using text864

features, model uncertainty and choice similarity865

in the two datasets.866

10pritamdeka/S-PubMedBert-MS-MARCO
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(a) Biopsychology Dataset

(b) BEA Dataset

Figure 6: SHAP summary plots for the Biopsychology and BEA datasets showing the contribution of the top ten
features to the Random Forest’s predictions provided TF-IDF scores and all model uncertainty features. Higher
First Token Probability and Order Probability metrics indicate greater model certainty. Results averaged over ten
repetitions.

RMSE

Best Result without Choice Similarity
Biopsychology: TF-IDF & Choice-Order Sensitivity 0.1309
BEA: BERT Embeddings, 1st Token Probability & Choice-
Order Sensitivity

0.2846

Biopsychology BEA
Only Choice Similarity Features
General Similarity 0.1895 0.3567
Medical Similarity 0.1883 0.3432
Text, Model Uncertainty and Choice Similarity Features

TF-IDF BERT TF-IDF BERT
1st Token Probability, Choice Order Sensitivity & General
Similarity

0.1386 0.1389 0.2850 0.2841

1st Token Probability, Choice Order Sensitivity & Medical
Similarity

0.1378 0.1381 0.2856 0.2844

Table 8: Performance of Random Forest Regressor using text, model uncertainty and choice similarity features. Best
score per dataset indicated in boldface. All results are averaged over ten repetitions, with the standard deviation not
exceeding 0.002.
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