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ABSTRACT

Forecasting how 3D medical scans evolve over time is important for disease pro-
gression, treatment planning, and developmental assessment. Yet existing models
either rely on a single prior scan, fixed grid times, or target global labels, which
limits voxel-level forecasting under irregular sampling. We present CRONOS, a
unified framework for many-to-one prediction from multiple past scans that sup-
ports both discrete (grid-based) and continuous (real-valued) timestamps in one
model, to the best of our knowledge the first to achieve continuous sequence-to-
image forecasting for 3D medical data. CRONOS learns a spatio-temporal ve-
locity field that transports context volumes toward a target volume at an arbitrary
time, while operating directly in 3D voxel space. Across three public datasets
spanning Cine-MRI, perfusion CT, and longitudinal MRI, CRONOS outperforms
other baselines, while remaining computationally competitive. We will release
code and evaluation protocols to enable reproducible, multi-dataset benchmark-
ing of multi-context, continuous-time forecasting.

1 INTRODUCTION
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Figure 1: Task and benchmark comparison (a) Task setup Forecasting a target 3D scan from
multiple past volumes in two regimes. Discrete: acquisitions lie approximately on a regular grid, but
may contain missing frames (dotted boxes). Continuous: acquisitions occur at irregular, real-valued
timestamps and are used directly without grid alignment. Many-to-one task ({I;}7;, tureer) —
Liarger- (b) Efficiency and performance Left: GPU memory scaling of single forward pass with
sequence length 7' shows CRONOS to be substantially more memory-efficient than alternatives.
Right: Average SSIM across two datasets, where CRONOS outperforms baselines and LCI.

Longitudinal medical imaging is central to monitoring disease progression, assessing treatment
response, and modeling anatomical development across time (Suter et al., 2022; Rivail et al.,
2019; Bernard et al.,, 2018). Some modalities are inherently spatio-temporal, such as ultra-
sound (US), cine-MRI, videos, or perfusion Computer Tomography (CT). Beyond these, re-
peated clinical acquisitions form temporal sequences that may span over months or years and
are used for clinical decision making. In ophthalmology, for instance, longitudinal OCT vol-
umes are central to monitoring progression of age-related macular degeneration and predicting
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treatment response (Rivail et al., 2019). Works such as using surgical video streams (Li et al.,
2024), which are also increasingly leveraged for diverse tasks, or in (Gomes et al., 2022),
where longitudinal US sequences are used, show the overall breadth of spatio-temporal imaging.
Beyond individual modalities, there
is also a massive and growing amount

of video and longitudinal data across Category Method a2 c
clinical contexts (Farhad et al., 2023), BrLLP X v v v
including applications such as treat- Med. Gen LociDiffCom X v v X
ment response prediction in oncology ImageFlowNet X 4 X v
(Suter et al., 2022). Vid. Gen  MCVD S v/ X X
Despite its importance, spatio- SimVP % X % X
temporal learning in  medical ViViT JSOX v X
imaging is centered mostly on single STL ConvLSTM SOX v X
time-point (image-to-image) analy- NODE+LSTM OOX /v
sis. Some approaches rely on global

labels e.g. Yoon et al. (2024), while Med. STL.  CRONOS (ours) v v v/ /

many reduce to image-to-image

preidction with a single context scan Table 1: Technical comparison of spatio-temporal pre-
(Zhang et al., 2025a)). Ohters in- diction methods. Columns denote Challenges (C#): C1:
troduce task-specific prior or remain Multiple Inputs, C2: high fidelity, C3: 3D imaging, C4:
tied to one disease (e.g. Puglisi et al. continuous-time modeling. Our proposed CRONOS satis-
(2025). In particular, Alzheimer’s fies all four criteria, whereas existing medical and natural
Disease (AD) has attracted a dis- imaging baselines lack one or more. STL stands for spatio-
proportionate share of longitudinal temporal learning.

imaging research (Petersen et al.,

2010; Marti-Juan et al., 2020; Chen et al., 2025), whereas other domains remain comparatively
underexplored.

CRONOS addresses these challenges by introducing a unified spatio-temporal flow framework for
medical sequence-to-image prediction that: !

¢ Supports both discrete and continuous timestamps, leveraging multiple past scans
jointly on 3D medical imaging data.

¢ Avoids disease-specific assumptions, enabling application to any medical longitudinal
task.

¢ Consistently outperforms prior approaches, including standard sequence models and the
Last Context Image (LCI) baseline, which is a surprisingly simple and competitive heuristic
(NRMSE, PSNR, and SSIM), due to slowly changing medical images.

2 RELATED WORK

Medical Imaging Prior work in longitudinal medical imaging focuses heavily on one-to-one, or
one-to-many video prediction. While approaches like diffusion models (Litrico et al., 2024; Zhu
et al.; Puglisi et al., 2025) and Neural ODEs (Lachinov et al., 2022; Liu et al., 2025) have been
applied to medical imaging, these are image-to-image, and thus cannot canonically capture multi-
input longitudinal evolution. For example, Bai & Hong (2024) propose a continuous-time model,
but they predict sequences from single images. In contrast, works that jointly leverage multiple
observations show improved prediction accuracy (Fang et al., 2021). The single-context nature
makes these aforementioned works not sufficient for our setting. There are also interpolation-
based methods (Zhu et al., 2024) which predict intermediate frames between two acquisitions, but
this restricts their use to filling missing intervals rather than forecasting. Overall, existing medical
approaches are all technically restricted; be it only single-image input, disease specific priors, limited
to 2D, or not being able to forecast to arbitrary times as shown in 1.

!Code will be released at github . com/anonymous.
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Figure 2: CRONOS method overview: Left: Discrete CRONOS treats time implicitly, interpo-
lating between context frames and a fixed target along a normalized flow step ¢ € [0, 1]. Right:
Continuous CRONOS explicitly conditions on real-valued timestamps t¢;, allowing each context I;
to transport toward the target via its own interpolation ¢;. This enables predictions at arbitrary target
times while preserving the true temporal geometry.

By contrast, our work focuses on continuous-time modeling across full spatio-temporal sequences
without restricting to specific modalities or diseases.

Natural Imaging and Video Prediction Spatio-temporal modeling has been extensively stud-
ied in video prediction. Early approaches such as ConvLSTM (SHI et al., 2015) introduced re-
current sequence-to-sequence architectures and remain widely used. Subsequent methods such as
SimVP (Gao et al., 2022) replaced recurrence with purely convolutional designs. Transformer-based
models like ViViT (Arnab et al., 2021) extended attention mechanisms to the video domain and have
become a backbone in many imaging domains. More recent efforts have explored generative mod-
eling, including video diffusion (Voleti et al., 2022; Ye & Bilodeau, 2023; Yan et al., 2021), and
continuous-time formulations such as Neural ODEs (Chen et al., 2019), extended to videos in (Park
et al., 2021). While these approaches are powerful, they have primarily been developed for dense
2D natural video sequences with large-scale training data. Accordingly, they transfer poorly to 3D
medical images with small datasets and sparse sequences , thus motivating our work.

Flow Matching Flow Matching (FM) has recently emerged as a generative modeling
paradigm (Lipman et al., 2023; 2024), and has been adapted to irregular time series, e.g. in (Zhang
et al., 2025b), though only for low-dimensional data rather than full image sequences. Our extension
therefore is: while classical FM learn a single flow from (most often) raw noise X, ~ p to samples
X, ~1 along steps 7 € [0, 1], we re-cast

Xo= [117--->IT]7 X1 :Larget = [Itargetw--vltarget}a 1

interpreting p as the context sequence, and ¢ as a broadcast stack of Jiyge; ( defined the stack as
Ziarger» to make dimension explicit). This temporal broadcasting turns FM into sequence-to-image
transport: a shared velocity field vy simultaneously moves all T' context volumes toward the target,
effectively T" per-frame transports under shared parameters. We refer to this framework as Contin-
uous RecOnstructioNs for medical 10ngitudinal Series (CRONOS).
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3 METHODS

Algorithm 1 CRONOS Continuous: Training and Inference

Require: Patients P and initial network vy
1: while training do
2: Sample {[Z, Iiarget], [t1;- -
Sample 7 ~ 1/(0,1)
Itarget — [Itarget7 e 7Itarget]
7;/ A (1 - T) [tla . ~7tn] + Tttargct
X A =7)T 4 TLiarget +0(7) €
L+ Hv@('TT/,XT) - (Z‘carget *I)Hz
8: Update 6 < AdamW (VL)
9: return vy
10: if inference then
11: Initialize Xy < Z
12: Define integration grid {70 =0, ..., 7y = 1} with N steps
13: 7;/: (1_7—) [tla-“atn]"_Tttarget
14: Xo.n « ODEInt(vg, Xo, {7¢,..., T{})

St targed } ~ P(X) > pick a random patient
> random flow step

> repeat target 7' times
> interpolate timestamps
> linear interpolation

> velocity loss

A

> numerical integration

15: return X y
3.1 PROBLEM SETUP
Let P = { ({I i("), tg") iT:(;), tg:r)gem It(:r)get) }Z _, denote a dataset of p patient sequences. Each

(patient) sequence consists of a set of 7' context volumes Z = {Iy, ..., I7}, with [; € REXP*xW
(for shorthand S = H x D x W), acquired at associated timestamps {t1,...,t7} C R.
We consider two regimes. Discrete: Ac-
quisitions lie on a uniform time grid; some
frames may be missing, yielding sparse se-
quences (e.g., natural video, cine-MRI, perfu-
sion CT). Continuous: Acquisitions occur at
irregular, real-valued times that do not easily
align to any grid (typical in longitudinal clin-
ical scans). For continuous series, forcing a
frame grid either explodes sequence length with
empty slots or loses temporal precision. For in-
stance, daily-resolution for timepoints over sev-

Figure 3: Qualitative comparison on the ACDC
dataset. Ground truth (GT), Last Context Image
(LCD), our method (CRONOS), and SimVP. Up-
per row: prediction, lower row: residuals.

Lrarget, We aim to learn

f({l'uti};?r:la ttarget) — Itarget-

eral years would yield 7" in the thousands, yet
in practice only a handful of scans are ever ac-
quired. In both discrete and continuous series,
T is small relative to natural video.

Target Task. Given the set of context images
and time{([;,t;)}~, as well as a target time

@

The discrete setting uses a fixed grid (with optional zero-tensors for missing context volumes); the
continuous setting uses the observed context only, without padding.

3.2 FLOW MATCHING (FM)

Flow Matching Lipman et al. (2023) learns a ordinary differential equation (ODE), linking the equal

dimensional distributions p and ¢ via

d

%lﬁ-r(x) = ur (Y- (7)),

X1:Xo+/

1
ur(X,)dr, 3

0
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with Xo~p, X;~q. A convenient coupling is obtained by sampling X, as
X, =(1-7)Xo+7X1+0(7)e, (@)

where € ~ N(0, I') denotes random gaussian noise and o (7) its intensity, which is sampled around
the straight path. The corresponding ground-truth velocity along this path is therefore constant:
d
’U,.,—(X.,-) = diX‘r = Xl - XO' (5)
T
Consequently, to approximate the ground truth velocity, we train a neural network vg(X,,7) €
RT*S using:

2
Lorm = Ex,y xy 7 ||vo(X7,7) *UT(XT)HT (6)
Using vg, we can then infer using equation 3 via an approximate ODE solver.

3.3 CONTINUOUS AND DISCRETE RECONSTRUCTIONS FOR MEDICAL IMAGE TIME SERIES
(CRONOS)

We introduce CRONOS, a spatio-temporal flow model that learns continuous trajectories from lon-
gitudinal scans. It comes in two complementary variants: discrete and continuous.

Temporal broadcasting for sequence-to-image flows To enable flow between a sequence of con-
text images and a single target, we define Xy ~ p as the stack of context images (with variant-
specific handling for continuous vs. discrete), and X; ~ ¢ as the target image broadcast to the same
shape

Xl = [Itarget» ) [target]- (7)
This broadcasting ensures that X, and X; share the same dimensionality, allowing us to define a
valid flow between them.

Discrete CRONOS. On a regular grid with missing scans, we first embed each sequence onto the
grid of a resolution g using a binning operator Sg“d, which assigns each I; to the closes grid index
matching t; (proper definition in A.1.1). Missing slots are then handled by a last-observed carry-

forward operator FOCF  which fills empty positions with the most recent available scan. In short,
we define Lok y . . .
X(): (JT ‘ [e] gé; )({(I’L?tl)}zzl) = [Il,...,IK]. (8)
fill bin to grid

This pre-processing ensures X is well-defined on a uniform grid. Furthermore, LOCF handles
spatial missingness: missing frames are zero-initialized and replaced by the most recent observation
(Appendix A.1.2). This setup stabilizes optimization and preserves grid order while enabling many-
to-one sequence transport within FM. Finally, we train on the linear interpolation X, = (1—7)Xo+
7X7 using equation 6, where temporal order is captured implicitly by the flow step 7 and the frame
index. Additionally, we set 0 = 0 during training and inference, ablations on nonzero noise levels
are reported in Table 7.

Continuous CRONOS Our continuous modeling strategy extends on the discrete case by con-
ditioning on real-valued timestamps while evolving along a scalar flow parameter 7 € [0,1]. We
construct spatio-temporal tensors (using mild abuse of notation): Time enters the network only as
conditioning on real timestamps. We interpolate the conditioning timestamps along the interpolated
time vector 7. X is then defined as in equation equation 7, without embedding it to the grid, nor
performing LOCEF as in discrete CRONOS. We define the shifted time vector as

Tr = (1 = 7) tetx + T brarget- ©9)
The formulation in equation 9 lets flow step 7 carry real temporal information, without adding extra

complexity. The conditional trajectory is then

1
X, = Xo+ / wo(X,, T,) dr, (10)
0

where vy is the predicted velocity field and 7 is the flow step (usually called time, we avoid it due
to avoiding confusion). Prediction is then done via approximate solution of equation 3, solver
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details found in C.1. This formulation lets CRONOS model continuous image evolution grounded
in actual scan times, supporting interpolation or forecasting without regular sampling or artificial
frame filling. It avoids zero-padding, leading to reduced computational burden compared to the
discrete variant. Both variants use the same 3D U-Net backbone, further details are provided in
Appendix C.3, and the training/inference procedure appears in Algorithm 1.

Time Encoding. Flow steps and continuous times are mapped to Fourier embeddings us-
ing (Tancik et al., 2020), which were used e.g. in (Rombach et al., 2022): ~(t) =
[sin(27 fit), cos(27 fi,t)] X, using frequencies fx. To preserve dimensional consistency across
variable-length input sequences for the continuous setting, we compute the time embedding as

1 T
Enc(t) = = > _(t). (11)
=1

This embedding is then added to each residual layer via FILM. The loss is then calculated via
equation 6, and inference via equation 10.

4 DATA AND EXPERIMENTAL DESIGN

4.1 DATASETS

ACDC (Bernard et al., 2018) is a cardiac MRI dataset
capturing different heart phases. The context tensor is
reshaped to [T, H, D,W] = [11,32,128,128], and the
target is a single image with the same spatial size. We
split ACDC into 80 training, 20 validation and 50 test im-
ages. This dataset served for method development; abla-
tions were conducted on the validation split.

ISLES (Riedel et al., 2024) consists of perfusion CT im-
age time series from stroke patients. From the normalized
series, we sample 7 consecutive points, take the last as the
target, and randomly mask the remaining context frames.
The resulting context tensor has shape [T, H, D, W] =
[7,16,128,128]. We use a split of 92 training, 23 valida- Figure 4. Qualitative comparison on
tion and 34 test images. For both the ACDC and dataset, the LUMIERE dataset. Ground truth
we randomly mask out time points (see Appendix C.2). (GT), Last Context Image (LCI), our
Lumiere (Suter et al., 2022) is a longitudinal glioma method (CRONOS), and SimVP base-
MRI dataset with 3D scans. Images are reshaped to line.  Lumiere is particularly chal-
[T,H,D, W] = [7,96,96,64]. Because some patients lenging due the very small dataset.
have few acquisitions, we prepend zeros to standardize highlighting the benefit of explicit
pre-processing across cases. The split is 48 training, 12 continuous-time conditioning under ex-
validation and 14 test images. treme data scarcity.

CRONOS (ours)
rcorcion ssi: 0895 PR 236

4.2 EXPERIMENTAL SETTINGS

Reproducibility details can be found in Section C.

Discrete Setting: As mentioned in the data section, input data has dimension 7', while some frames
may be missing. We apply both variants of CRONOS, noting that the continuous version can also
operate in this regime with a smaller context window, since missing images do not need to be
explicitly represented. The lower context window also leads to a lower computational demand.
Therefore, the underlying tensors remain uniform, with some time points masked. For validation
and testing we ensure that the missingness pattern is fixed across epochs, as otherwise the choice of
best checkpoint would be ill-posed (further details in Appendix C.2).

Continuous Setting: As an additional ablation and experiment, we simulate a continuous setup on
ACDC to highlight the gains from explicit timestamp conditioning. While no public dataset provides
plenty of continuous acquisition protocols, this sub-sampled variant shows that CRONOS benefits
from real-valued time even beyond irregular masking. Specific details of how we subsampled ACDC
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can be found in C.1. Importantly, both the discrete and continuous formulations remain applicable
to discrete grids.

Table 2: Discrete Time: Quantitative Evaluation on Many-to-One Sequences: Reported values
are mean (standard deviation) over three runs. Metrics include normalized root M SE, NRMSE,
structural similarity index (SSIM[%)]) and peak signal-to-noise-ratio PSNR. *ViViT OOM on
a 40 GB GPU, despite having a smaller batch size and the lowest possible feature size. Standard
deviation of LCI omitted for visual clarity. Blue row: only method to beat LCI and our proposed
CRONOS. Computational requirements on ACDC in A

Dataset  Model NRMSE [1072]] SSIM [%]+ PSNR [dB]*
ACDC LCI 448 92.79 28.918
ConvLSTM 11.20 £ 0.48 5044 +1.53 19.123+0.312
SimVP 9.27 £0.29 49.08 £4.01 20.715+0.267
NODE + LSTM 11.59 £0.18 36.41+£294 18.946 +0.186
ViViT 13.90 + 2.66 17.06 £ 8.60 17.252 +1.738
CRONOS discrete  3.97 +1.23 94.51 £ 0.79 30.510 £ 1.560
CRONOS cont. 3.74 +0.21 94.34 +0.45 29.750 + 0.528
ISLES LCI 5.25 96.29 29.002
ConvLSTM 19.31+£0.18 39.92+0.66 17.644+0.014
SimVP 13.06 £ 0.19 48.82+1.60 20.799 +£0.112
ViViT 16.54 +0.30 36.76 £ 1.49 18.671 £0.134
NODE + LSTM 15.10 £ 0.87 40.55+7.15 19.481 £0.515
CRONOS discrete  4.50 +0.76 97.33+0.93 30.542 + 1.540
CRONOS cont. 4.38 + 0.48 97.31+0.38 30.809 + 1.099
Lumiere LCI 8.38 88.35 21.631
ConvLSTM 34.79 £ 0.67 9.21 £2.81 9.217 £0.171
SimVP 71.03 £0.89 -1.92+£0.51 2.989+0.109
ViViT* OOM OOM OOM
NODE+LSTM 13.07 £ 1.03 48.66 +2.26 17.742 +0.659
CRONOS discrete  7.92 +0.92 91.43 +1.84 22.427 +0.969
CRONOS cont. 7.55 £ 0.86 89.32 +1.83 22.551 +0.979

Baselines We compare CRONOS against established spatio-temporal learning methods. As a clin-
ically motivated heuristic, the Last Context Image baseline (LCI) simply reuses the last available
image and serves as a lower bound. Among sequence models, we include ConvLSTM (SHI et al.,
2015), SimVP (Gao et al., 2022), and ViViT (Arnab et al., 2021) as representative recurrent, convo-
lutional, and transformer backbones. For continuous-time sequence modeling, we further evaluate
an ODE-LSTM (Lechner & Hasani, 2020) baseline. For the flow matching library we use Tong
et al. (2024b;a); Tong (2025). Together, these methods provide a spectrum of spatio-temporal ar-
chitectures against which we benchmark CRONOS. Computational requirements are described in
detail in the appendix.

Continuous vs. Discrete. We report results in two regimes: an discrete setting, which allows direct
comparison to existing spatio-temporal baselines, and a continuous setting on ACDC, designed as
an ablation to test the benefit of explicit timestamp conditioning.

5 RESULTS AND DISCUSSION

5.1 TOWARDS UNIFIED BENCHMARKING FOR MEDICAL 3D SEQUENCE-TO-IMAGE
FORECASTING

We are among the first to propose an experimental setup for the sequence-to-image task, evaluating
CRONOS under two complementary regimes. The first uses discrete input sequences, where some
context images are missing but but acquisitions lie on a regular grid. This setting enables comparison
against established spatio-temporal baselines. The second uses ACDC with resampled acquisitions
to mimic continuous input, allowing us to assess the benefit of explicit timestamp conditioning.
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For completeness, we include an image-to-image (not sequence-to-image) diffusion baseline on
ACDC (details in B.5) This required a two-stage training setup, first pretraining an autoencoder and
then training the diffusion module for 1000 denoising steps, which already made the approach far
more computationally demanding than all other baselines. Iterative denoising leads to an order-of-
magnitude longer inference time for a single image-to-image step and several orders of magnitude
higher training cost, while not surpassing the simple LCI heuristic. 2

5.2 CRONOS 1S STATE-OF-THE-ART FOR SPATIO-TEMPORAL 3D MEDICAL IMAGE
FORECASTING

Table 2 reports the quantitative results
across all three datasets. We observe
that both variants of CRONOS substan- _Method SSIMT PSNRT NRMSE |

tially outperform the competing spatio-  LCI 93.27 29.77 0.0349

temporal baselines, as well as LCI. We
L . NODE + LSTM 57.50 22.87 0.0728
also note that individually, CRONOS is CRONOS discr. 93.27 29.77 0.0348

better than LCI on each individual val-
idation rm. On LUMIERE, which is _—hoNoscont.  93.86  30.09 0550

characterized by very sparse and hetero-
geneous tumor trajectories, it iS surpris-
ing that CRONOS is even able to outper-
form LCI. These results demonstrate that
CRONOS is effective across different tem-
poral regimes: the discrete formulation al-
ready yields strong performance, while the continuous formulation provides further gains when
timestampts are informative. CRONOS runs within the same computational budget during in-
ference (see Figure 1b) and in similar orders of magnitude (VRAM and wall-clock time) during
training as natural imaging baselines (see 8). Further ablations are provided in A, confirming that
CRONOS is stable across variations in feature size, training noise, and integration settings. While
small differences appear, they are not substantial, indicating that our network is highly robust to
hyperparameter choices.

Table 3: Continuous ACDC, where discrete CRONOS
lacks explicit timestamp conditioning, and therefore
fails to outperform LCI. Additional experiments in B
and in Table 9

5.3 CRONOS ENABLES EFFICIENT FLOW-BASED CONTINUOUS MEDICAL MODELING

Table 3 demonstrates that incorporating explicit time embeddings improves forecasting quality when
scans occur at irregular intervals. This shows that the continuous formulation of CRONOS is not
only feasible but also beneficial in realistic clinical settings, where images are often irregularly
sampled. In fact, if we fully remove the timestamp information entirely, performance differences
increase significantly, and the continuous variant clearly outperforms the discrete one 9. Together,
these results highlight that modeling real-valued timestamps can provide a measurable advantage
over treating sequences as grid-aligned. However, in Table 2, we see that using the discrete variant
remains highly competitive. Although any irregular series can in principle be quantized to a grid
via Sgrid, doing so without loss requires increasingly fine grids. This becomes computationally
inefficient, whereas the continuous variant scales with the number of context images and not with
the grid range K - A (see equation 12). This is reflected in Table 8 and Figure 1b, where continuous
CRONOS is both more memory-efficient and faster to train than the discrete formulation. It also
highlights a broader limitation of the field: the scarcity of diverse spatio-temporal datasets in which
real timing information is critical.

5.4 CRONOS PRODUCES SHARPER RECONSTRUCTIONS WIT LOWER RESIDUALS

Figures 3, 6 and 4 highlight qualitative comparisons, as well as dataset examples. The LCI baseline
often appears visually close to the target, largely because many longitudinal scans exhibit only
subtle changes. However, e.g. SimVP tends to introduce artifacts and blur anatomical details. In
contrast, CRONOS yields sharper reconstructions and consistently lower residuals compared to LCI,
highlighting its ability to capture fine-grained temporal progression.

2On our setup, a naive auto-regressive image-to-image latent-diffusion pipeline applied across 11 context
times per subject requires ~5-6 hours per validation step; see Appendix A for details.
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Figure 5: Network Flows: Top: input images at the first five timestamps. Middle: ground-truth
voxel-wise differences (|1; — Jiarge|. Bottom: predicted velocity fields vy (Xg, 0), overlaid on the cor-
responding inputs. The highlighted regions coincide with the areas of the largest temporal changes
(primarily the ventricular cavities and myocardial boundaries).

5.5 FUTURE WORK: UNLOCKING GENERAL SPATIO-TEMPORAL MEDICAL FORECASTING

While voxel-wise fidelity metrics such as NRMSE, PSNR, and SSIM remain the community stan-
dard, they do not fully capture clinically relevant trajectory modeling. As highlighted in recent ef-
forts on image analysis validation Maier-Hein et al. (2024), such metrics may not always align with
actual domain interest. Developing metrics for spatio-temporal forecasting is therefore an important
future direction. In parallel, the scarcity of longitudinal and spatio-temporal datasets (beyond the
ones we used in this study), poses a broader challenge for robust evaluation. Encouragingly, our re-
sults on LUMIERE suggest that progress is possible even under severe data limitations, and we hope
to motivate further work on curating larger and more diverse publicly available cohorts. Finally, the
absence of large-scale foundation models for medical imaging, particularly in the spatio-temporal
domain, remains a major bottleneck. We view our work as a keystone contribution: establishing a
unified flow-based framework for continuous spatio-temporal medical volumetric forecasting that
can both benefit from, and motivate, future developments in medical imaging.

6 CONCLUSION

In this work, we presented CRONOS
(Continuous RecOnstructioNs for med- aT |
ical 10ngitudinal Series), a unified
spatio-temporal framework that fore-
casts 3D medical volumes at arbitrary
target times by combining multiple con-
text scans with explicit real-valued time
conditioning. Unlike single-image or
time-agnostic methods, CRONOS han-
dles both grid-aligned and continu-
ous timestamps within one architecture,
and makes no disease-specific assump-
tions, it is among the first methods
to demonstrate continuous sequence-to-

CRONOS (ours) SimVP

NAMSE 0.0028 NRMSE 0.0016 NAMSE 00751

HiFHhAERRAT
naaannan

...mnl%
i

: : : Figure 6: Zoomed-in qualitative comparison on the
fi ting for 4D medical data.
e e s O e O 9% ISLES dataset. Ground truth (GT), Last Context Im-
Across three publicly available datasets . .
(Cine-MRI, perfusion CT, longitudi- age (LCI), our method (CRONOS), and SimVP baseline.
’ ’ Shown here for visibility is a zoomed in patch of the qual-
itative results of the ISLES dataset.

nal MRI), it outperforms baselines-
including the strong Last Context Image
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(LCI)-and remains robust under hyper-

parameter changes while remaining computationally competitive. By resolving the aforementioned
limitations, our method enables clinically specific studies and advances patient-level forecasting for
personalized precision medicine.

BROADER IMPACT

Longitudinal modeling of medical images has the potential to improve patient care by enabling ear-
lier detection of disease progression, monitoring of treatment response, and improved personaliza-
tion of therapy. By explicitly modeling continuous temporal evolution, our approach could support
clinicians in making more informed decisions. However, there are also risks: mispredictions may
lead to incorrect clinical conclusions if models are deployed without careful validation and without a
human in the loop. Biases in training data (e.g., underrepresentation of certain populations or imag-
ing modalities) may propagate to predictions, raising concerns about fairness and generalizability,
which is a common problem in medical imaging. We emphasize that our method is a research con-
tribution intended to advance especially technical methodology. Clinical deployment would require
extensive validation, regulatory approval, and integration into existing workflows. We believe that
by releasing code and benchmarks, this work will support the community in building transparent,
reproducible, and safe spatio-temporal models for healthcare. But by proposing this method, we
hope to support a general-purpose foundation for medical spatio-temporal and longitudinal model-
ing, which could massively propel this area forward.
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