
Pay-as-you-go Population of an Automotive Signal
Knowledge Graph

Yulia Svetashova1, Lars Heling2, Stefan Schmid1, and Maribel Acosta3

1 Bosch Corporate Research, Robert Bosch GmbH, Germany
2 Institute AIFB, Karlsruhe Institute of Technology, Germany

3 Center of Computer Science, Ruhr University Bochum, Germany

Abstract. Nowadays, cars are equipped with hundreds of sensors that support
a variety of features ranging from basic functionalities to advanced driver as-
sistance systems. The communication protocol of automotive signals is defined
in DBC files, yet, signal descriptions are typically ambiguous and vary across
manufacturers. In this work, we address the problem of extracting the semantic
data from DBC files, which is then managed in an Automotive Signal Knowledge
Graph (ASKG). We developed a semi-automatic tool that automatically extracts
signals from DBC files and computes candidate links to the ontology. These can-
didates can then be revised by experts who can also extend the ontology to accom-
modate new signal types in a pay-as-you-go manner. The knowledge provided by
the experts is stored in the ASKG and exploited by the tool thereafter. We con-
ducted an evaluation of the tool based on a targeted experiment with automotive
experts and report on the first lessons learned from the usage of the tool in the
context of the Bosch automotive data lake. The results show that our solution can
correctly populate the ASKG and that the expert effort is reduced over time.

1 Introduction

In automotive engineering, signal processing technologies enable the communication
between electronic control units (ECUs) in the car. The ECUs and sensors involved
in the communication over the Controller Area Network (CAN) of a car are defined
in DBC files4 A variety of applications rely on logs of the messages transmitted on the
CAN bus to analyze and improve the interaction of the ECUs. Therefore, understanding
the meaning of the data from DBC files is crucial for subsequent analyses over this data.
Moreover, a machine-processable representation of the data semantics facilitates data
integration and process automation, which are key requirements for Bosch [14].

Nonetheless, the effective processing of DBC files is not straightforward. The first
challenge is associated with the type of identifiers used in DBC files. These identifiers
are usually composed of short, abbreviated terms that are difficult to disambiguate. An
example of such identifiers is ACC Status, which could refer to the status of the Adap-
tive Cruise Control or the Automatic Climate Control component. In turn, the process of
extracting the semantics from these identifiers is a challenging task. The second chal-
lenge is associated with the heterogeneity of the identifiers. Typically, manufacturers

4 Vector Informatik GmbH. DBC Communication Database for CAN, https://www.vector.com/.

https://www.vector.com/

2 Y. Svetashova et al.

use different identifiers to represent the same signals, which makes it difficult to gener-
alize the techniques developed for a specific DBC file.

In this work, we present a novel tool, called CANNOTATOR, which implements a
pay-as-you-go approach that combines automatic techniques with human interaction to
represent automotive signals defined in DBC files in an Automotive Signal Knowledge
Graph (ASKG). At the core of the ASKG is the Vehicle Signal Specification Ontol-
ogy [8] (VSSo), which is populated and extended with the signals captured in DBC
files. CANNOTATOR implements an entity extraction component, that expands the sig-
nal identifiers and computes candidate links to the signal classes defined in the ontology.
These candidates may be revised by automotive experts before they are added to the
ASKG. The goal of ASKG is to establish a Knowledge Base of automotive signals that
supports a variety of processes and tools at Bosch in the future. These use cases range
from semantic search of datasets in our automotive data lake to entity recognition and
linking for NLP in requirements management tools. CANNOTATOR is currently used
and evaluated in two pilot projects in different business divisions: Bosch Powertrain
and Chassis Systems Control Solutions, prior to a widespread rollout at Bosch.

In this paper, we evaluate CANNOTATOR in the context of the Bosch automotive
data lake [14], where we manage in the order of 105 automotive sensor signals from
many different projects and test scenarios at Bosch. With CANNOTATOR, experts are
able to expand their domain ontology in a pay-as-you-go manner as the need for new
concepts arises – without the need of consulting one of the scarce ontology experts.
The tool automatically learns from the interactions with the experts and captures their
domain knowledge. This continuously improves the tool in being able to process more
signals automatically and in assisting experts by providing better recommendations.
Our results show that CANNOTATOR effectively assists engineers to expand both the
ontology model and the instance data (i.e., signals) in the ASKG.

The remainder of the paper is organized as follows. Section 2 introduces the prelim-
inaries. Our approach is presented in Section 3 and evaluated in Section 45. Section 5
discusses related work and we conclude in Section 6 with an outlook to future work.

2 Preliminaries

First, we describe the automotive signal data used as input to construct the ASKG. Then,
we present the Vehicle Signal Specification Ontology as the schema of the ASKG.

Automotive Signal Data. The Controller Area Network (CAN) is a vehicle bus sys-
tem used in the majority of today’s cars to enable communication between electronic
control units (ECUs) that support a variety of features in the car. For the development
of complex CAN networks, car manufacturers and their suppliers commonly use the
DBC File Format to describe CAN messages. The central object types in a DBC file are
nodes (i.e., the ECUs), message, and signals. Listing 1.1 shows an example CAN bus
message definition. A message definition starts with the keyword BO and is followed
by the message identifier (380), message name (POWERTRAIN DATA), message size (8

5 Developed semantic artifacts, the detailed setup of the evaluation experiment and its results
are available at https://github.com/YuliaS/cannotator.

https://github.com/YuliaS/cannotator

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 3

Listing 1.1: Example: Message description for steering sensor from a DBC file.
1 BO_ 380 POWERTRAIN_DATA: 8 PCM
2 SG_ PEDAL_GAS : 7|8@0+ (1,0) [0|255] "" EON
3 SG_ ENGINE_RPM : 23|16@0+ (1,0) [0|15000] "rpm" EON
4 SG_ GAS_PRESSED : 39|1@0+ (1,0) [0|1] "" EON
5 SG_ ACC_STATUS : 38|1@0+ (1,0) [0|1] "" EON
6 SG_ BRAKE_SWITCH : 32|1@0+ (1,0) [0|1] "" EON
7 SG_ BRAKE_PRESSED : 53|1@0+ (1,0) [0|1] "" EON
8 SG_ CHECKSUM : 59|4@0+ (1,0) [0|15] "" EON

bytes) and the node emitting this message (PCM). In the following lines (Line 2 to Line
8), the signals that constitute the message are defined. The signal definition starts with
the keyword SG and is followed by details about the signal. For example, on Line 3
the signal name (ENGINE RPM) is defined which is followed by additional information,
including the starting bit (23) in the message, signal size 16, byte order (0), value type
(+), value range ([0|15000]), the unit (rpm) and the intended receiver (EON).

The example reveals some of the syntactic and semantic challenges when trying to
automatically match the natural language names to a corresponding semantic model.
Engineers use different syntax to delimit words, such as underscores (ENGINE RPM),
hyphens (ENGINE-RPM) or camel-casing (EngineRpm, or EngineRPM). Moreover, they
apply different abbreviation methods, such as disemvoweling (PWR = power), acronyms
(PCM = powertrain control module) or shortenings (Req = request).
Vehicle Signal Specification Ontology. We use the Vehicle Signal Specification On-
tology (VSSo) [8] for modeling the ASKG. This ontology is an extension to the Vehicle
Signal Specification (VSS),6 modelled with constructs from the Web Ontology Lan-
guage (OWL) [11] to express relationships and restrictions. VSSo relies on the SOSA
ontology7 to represent sensors and observations. In this work, we distinguish three main
concepts in the VSSo ontology:
Branch. In this context, a branch corresponds to a car part. Branches may be struc-
tured in hierarchies using rdfs:subClassOf. Examples of top branches in VSSo are
Body, ADAS, and Cabin. Branches are associated with signals. These associations are
modelled with owl:Restriction on the branch property vsso:hasSignal.
Signal. VSSo classifies signals into observable and actuable signals. According to the
VSSo specification, the choice of making a signal observable or actuable is based on
the existence of the sensor and actuator entries of each VSS signal. In VSSo, signals
may be annotated with an abstract definition of the unit using the QUDT8 ontology, e.g.,
Length Unit. In addition, VSSo includes human-readable descriptions with the predi-
cates rdfs:label and rdfs:comment. Also, the URIs defined in the VSSo ontology
are created with camel case strings for the term at the end.
Sensor or actuator. A sensor is a car component that measures a physical variable. An
actuator consumes the outcome of sensors to perform actions in the car. In VSSo, the
classes sensor and actuator are not necessarily disjoint. Sensors and actuators are asso-
ciated with signals through restrictions on the signal property sosa:isObservedBy.

6 https://github.com/GENIVI/vehicle_signal_specification
7 http://www.w3.org/ns/sosa/
8 https://qudt.org

https://github.com/GENIVI/vehicle_signal_specification
http://www.w3.org/ns/sosa/
https://qudt.org

4 Y. Svetashova et al.

DBC
Files

Automatic Entity
Construction

Interactive Schema and
Entity Construction

Automotive Signal Knowledge Graph (ASKG)

Update

Domain Expert

Input

Interactive Entity
Construction

Input

Query UpdateQuery

External Sources
(WordNet, Wikidata, …)

Fig. 1: Overview of the CANNOTATOR architecture

3 Automotive Signal Knowledge Graph Population

Given the VSSo as initial schema and a set of DBC files, the problem addressed in
this work is to extract the semantics from the signal descriptions provided in the DBC
files to populate a knowledge graph (i.e., ASKG) of classes and instances of automotive
signals. The ASKG population comprises (i) extending the schema by creating new
classes and linking them to existing concepts in the KG, and (ii) creating instances for
signals from the DBC file descriptions according to the schema.

We propose a novel semi-automatic tool called CANNOTATOR (cf. Figure 1), which
combines automatic techniques with domain expert input to accurately populate an
ASKG from the data encoded in DBC files. Our tool processes automotive signal de-
scriptions with the following three main components:

1. Automatic Entity Construction: Extracts information from the signal description
texts and predicts the signal class of the entity to be added to the ASKG.

2. Interactive Entity Construction: Consults experts to create a new signal entity, in
the case that a reliable signal class candidate could not be determined automatically.

3. Interactive Schema Construction: Extends the ASKG schema with the help of a
domain expert, assisted by an adequate Graphical User Interface (GUI).

The central goal of our approach is to minimize the interactions with the domain experts
during the ASKG population process. For this, CANNOTATOR operates in a pay-as-
you-go fashion such that information provided by the experts is learned by the tool and
considered when processing signal descriptions subsequently.

3.1 Automatic Entity Construction

This component aims at automatically populating the ASKG by constructing new signal
entities from signal description using the existing schema. For a given signal, the meta-
data for constructing a new entity is obtained from the descriptions in the DBC File. The
component first implements lightweight NLP techniques to the signal name and its unit
text to obtain a set of potential expansions, which then map to concepts in the ASKG.
Finally, the component uses a complete signal description to identify the corresponding
signal class in the KG. During this process, existing information from the KG as well
as external data sources are used to aid automatic signal class identification.

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 5

Expanding Signal Names. The signal names in the DBC files are often composed of
several abbreviations or acronyms, which are concatenated using different separators
such as camel casing, underscores, or hyphens. Therefore, our tool first splits a given
signal name string s into a set of tokens Ts. For example, s = “ENGINE RPM” is split
into Ts = {ENGINE, RPM}. For each of the resulting tokens, this component expands
the original signal names into full words which can then be matched to identifiers in the
ASKG. The expansion relies on knowledge acquired from external sources and that is
encoded in the ASKG. Formally, an expanded token is defined as follows.

Definition 1 (Expanded Token). Given a token t, an expanded token e for token t is a
3-tuple e := (t, exp, u) with a token string t, an expansion of the token string exp, and
the IRI of the source for the expansion u.

To obtain expanded tokens, CANNOTATOR leverages the KG which contains map-
pings from abbreviations to expansions that have been created or confirmed by domain
experts before. Each mapping in the ASKG is annotated with the IRI of the source.
We scraped data on common automotive abbreviations from the Web as the initial ab-
breviation expansions for the KG. For example, we processed abbreviations provided
in Wikipedia9 and added the expansions to the ASKG. In our example, we obtain the
mapping RPM to “revolutions per minute” from Wikipedia and, therefore, we have an ex-
panded token e1 = (RPM, revolutions per minute, <https://en.wikipedia.org/>).
Since not all tokens are abbreviations but potentially regular words, e.g. ENGINE, we
also leverage the WordNet KG10 to determine whether a token is a word, i.e., exp = t.
When querying WordNet, we apply lowercasing, lemmatization, and stemming to the
token, to increase the chances of finding a correct match.

Since there might be several expansions in the ASKG for an abbreviation, the tool
keeps all options for a given token t in a set of expanded tokens Et. For example, a sec-
ond expansion for RPM might be provided by another source as e2 = (RPM, rotations per
minute, <http://example.org/car abbreviations>) and hence, Et = {e1, e2}.
Note that, keeping several possible expansions may increase the chances of finding
the corresponding signal class in the KG in the later processing steps. However, if the
number of possible expansions is large, it can also become overwhelming and time
consuming for domain experts if their input is required. To overcome this, the sources
are annotated with trust scores. Formally, we define the trust score as a partial func-
tion τ : I 7→ [0, 1] that maps an IRI to a trust score value. A higher trust score value
indicates higher trustworthiness of the source associated with the IRI and reflects the
likelihood of an expansion to be correct. The domain experts can provide feedback on
the correctness of these expansions to improve the trustworthiness of the expansions.
In this case, the source provenance information is updated to the IRI identifying the
domain expert which will have a higher trust score than the Web sources. The experts
can also add new expansions to the KG that will be considered when processing future
signal names. Lastly, if no expansion could be found, the token itself is considered the
expansion and no source is associated with this information,i.e. , Et = {(t, t, null)}.
For example, signal names frequently contain numeric identifiers, which do not need

9 From the article: https://en.wikipedia.org/wiki/Automotive_acronyms_and_abbreviations
10

http://wordnet-rdf.princeton.edu/

https://en.wikipedia.org/wiki/Automotive_acronyms_and_abbreviations
http://wordnet-rdf.princeton.edu/

6 Y. Svetashova et al.

to be expanded. Once this process has been applied to all tokens of a signal name, we
construct complete expansions for the entire signal name.

Definition 2 (Expanded Signal Name). Given a signal name s, an expanded signal
name S = {e | e ∈ Et, ∀t ∈ Ts} is a set of token expansions for all tokens of the
signal name Ts. Further, we denote the set of all possible signal name expansions that
can be obtained for a signal as S = {S1, . . . , Sn}.

In other words, an expanded signal name S is a combination of expansions for each
token in the signal name. The set of all possible such combinations for a given signal
name is given by S . For our previous example the expansions are11 S = {

S1 = {(ENGINE, engine, <wn>), (RPM, revolutions per minute, <wp>))},
S2 = {(ENGINE, engine, <wn>), (RPM, rotations per minute, <ex>))}}

Furthermore, the trust score of an expanded signal name can be defined as the average
trust score values of the sources that contributed to the token expansions.

Definition 3 (Expanded Signal Name Trust Score). Given an expanded signal name
S, the trust score T for S is given as T(S) := 1

|S|
∑

(t,exp,u)∈S∧u 6=null τ(u).

Unit Linking. After processing the name of the signal, the tool aims at matching the unit
of the signal description to the corresponding unit instance in the QUDT ontology. This
allows for a better candidate selection later when trying to map the signal to an exist-
ing signal class in the KG, as the unit information can help to select the corresponding
class. Moreover, in the case that no automatic mapping can be found, this additional
information is passed to the experts. Since a variety of unit texts can be encountered
and the units in the QUDT ontology typically only have one label (e.g., “Kilometer per
Hour” for qudt:KiloM-PER-HR), the tool resorts to the Wikidata SPARQL endpoint12

to retrieve more candidate units. This is possible, since Wikidata links most of the unit
instances to QUDT with the “QUDT Unit ID” property (wd:P2968) and provides sev-
eral labels for a single unit (e.g., “km/h”,“kmh”, “kph”, “Kilometer per Hour”, etc.).

Signal Class Linking. Given a set of expanded signal names and links to QUDT unit
instances, the approach computes matches for the corresponding signal class in the
ASKG schema. This process is detailed in Algorithm 1. The input is a set of signal
name expansions S and a similarity threshold θ. The algorithm iterates over all ex-
panded signal names in S (Lines 2-15); for each expanded token in a given expanded
signal name, a set of candidates from the KG is computed (Line 5). This candidate se-
lection uses a SPARQL query to retrieve the URI (U) and the text label (L) of all signal
classes where the expanded to token exp is either a sub-string of the URI or text label
(rdfs:label or rdfs:comment) from the KG schema. For example, for the expanded
signal name S2 = {(ENGINE, engine, <wn>), (RPM, rotations per minute, <ex>)}, we
would obtain several candidates for the token “engine” such as vsso:EngineLoad,
vsso:EngineOilTemperatur, vsso:RotationSpeed, etc. For each candidate, we
then determine a normalized string similarity (δ ∈ [0, 1]) based on the iterative Lev-
enshtein distance between exp and the candidate URI13 δU (Line 7) and the text label
11 wn, wp, ex stand for the IRIs of WordNet, Wikipedia, and the example source, respectively.
12 https://query.wikidata.org/
13 For hash-URIs/slash-URIs we consider the text after the hash/last slash.

https://query.wikidata.org/

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 7

Algorithm 1: Signal Class Linking
Input: Expanded Signal Names S , Similarity Threshold θ

1 M = ∅
2 for S ∈ S do
3 D = empty dictionary
4 for (t, exp, u) ∈ S do
5 C = candidatesFromKG(exp)
6 for (U,L) ∈ C do
7 δU = similarity(U, exp)
8 δL = similarity(L, exp)
9 δ = max{δU , δL}

10 if δ > θ then
11 D[U] = D[U] ∪ {(exp, δ)}
12 for (key U , value V) ∈ D do
13 if |V | > 1 then
14 δ̄ = 1

|V |

∑
(exp,δ)∈V

δ

15 M = M ∪ {(S, U, δ̄,T(S))}
16 returnM

δL (Line 8). If the maximum of the similarity values (δ) exceeds the predefined sim-
ilarity threshold (θ), we consider the candidate an option for the token and add it to
a dictionary D that maps the candidate URI to the expanded token and the similarity
value (Line 11). After all tokens of an expanded signal name have been processed, we
determine whether the same candidate URI has been selected for more than one token
(Lines 13-15). The idea is as follows: if several tokens of an expanded signal name map
to the same signal class and the computed similarity is high, then it is very likely that
this is a correct match. The output of the algorithm is a set M of signal class from the
ASKG schema that matches one signal name expansion S ∈ S . Each match consists
of the expanded signal name S, the URI of the candidate instance U , the confidence
of the match δ̄ and the trust score of the signal name expansion T(S). In our example,
both tokens “engine” and “rotations per minute” map to vsso:RotationSpeed due to
the match with the rdfs:comment “Engine speed measured as rotations per minute”.
Thus, the signal class vsso:RotationSpeed is considered a match and is added to M .

After all possible classes have been determined for a signal, they are ordered by
decreasing similarity δ̄. We use the trust score as a tie-breaker if two matches yield the
same similarity. If the similarity exceeds a predefined threshold, we automatically add
an instance to the signal class in the KG. Otherwise, the information is passed to the In-
teractive Entity Construction component. In our example, ENGINE RPM is automatically
added to the ASKG using the vsso:RotationSpeed class as shown in Listing 1.2.

Listing 1.2: Instance for vsso:RotationSpeed and resulting axioms. vsso-ext are
annotations by the CANNOTATOR to represent the signal in the ASKG

1 @prefix askg: <http://www.bosch.com/ns/askg#>.
2 @prefix vsso-ext: <http://www.bosch.com/ns/vsso-ext#> .
3

4 askg:s002 a vsso:RotationSpeed ;
5 rdfs:label "Engine Revolutions Per Minute";
6 qudt:unit unit:RevolutionsPerMinute;
7 vsso-ext:dbcFileName "bmw_i8kk09.dbc";
8 vsso-ext:originalSignalName "ENGINE_RPM";
9 vsso-ext:expandedSignalName "Engine Revolutions Per Minute"@en;

10 vsso-ext:messageName "380Powertrain Data"@en.

8 Y. Svetashova et al.

1 2

Fig. 2: CANNOTATOR GUIs: 1) Interactive Entity Construction. 2) Interactive Schema
Construction generated from Template User Interface (TUI) ontology descriptions

3.2 Interactive Entity Construction

The domain experts are only involved to process signals for which no corresponding
signal class could be identified automatically. In this case, the experts provide struc-
tured input that is added to ASKG through a GUI (cf. Figure 2 (1)). At the top, the
original signal name and corresponding message name are displayed as well as the sug-
gested expanded signal name. Below, if there are signal class candidates that match the
given expanded signal name (i.e., |M | > 0), they are displayed with the correspond-
ing VSSo signal class name and mapping’s similarity score. If a correct signal class
has not been automatically added due to a similarity score below the threshold θ, the
domain expert can directly create the new signal instance by pressing the “Add Signal
Instance” button. Further below, there are three expandable sections that can be used by
the domain experts to enrich the information about a signal by (i) adding links between
tokens of the signal name and other types of classes in the schema (such as branches),
(ii) providing expansions for abbreviations, and (iii) providing the correct tokenization
of a signal name. With the “Submit” button, the experts can add this additional infor-
mation to the KG which triggers a re-processing of the current signal description. As a
result, new signal class candidates might be generated, so that the signal can be either
added automatically to the KG or displayed to the domain expert for further manual
processing.

3.3 Interactive Schema Construction

If no candidate classes are found in the schema, domain experts can create a new sig-
nal class. The Interactive Schema Construction component allows for extending the
VSSo through a Graphical User Interface (GUI) with new classes, which are imme-
diately accessible for annotating new instances. The GUIs are generated automatically
with an ontology-driven process: Ontology Patterns→ Reasonable Ontology Templates
(OTTR)→ Template User Interface (TUI) ontology→ GUI with Input Validation.
Ontology Patterns. This component is based on ontology design patterns, defined as
“modelling solutions to solve a recurrent ontology design problem” [5]. We use an
extended notion of patterns to indicate recurring patterns of axioms in an ontology [9].

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 9

Listing 1.3: Pattern Observable Signal
1 ?classIRI rdf:type owl:Class;
2 rdfs:label ?label ;
3 rdfs:comment ?comment ;
4 rdfs:subClassOf vsso:ObservableSignal,
5 [rdf:type owl:Restriction;
6 owl:onProperty qudt:unit;
7 owl:allValuesFrom ?unit],
8 [rdf:type owl:Restriction;
9 owl:onProperty sosa:isObservedBy;

10 owl:allValuesFrom ?sensor].

Listing 1.4: Class vsso:RotationSpeed
1 vsso:RotationSpeed rdf:type owl:Class;
2 rdfs:label "Speed"@en;
3 rdfs:comment "Rotations per minute."@en;
4 rdfs:subClassOf vsso:ObservableSignal,
5 [rdf:type owl:Restriction;
6 owl:onProperty qudt:unit;
7 owl:allValuesFrom qudt:AngularVelocityUnit],
8 [rdf:type owl:Restriction;
9 owl:onProperty sosa:isObservedBy;

10 owl:allValuesFrom vsso:RotationalSpeedSensor].

Listing 1.5: OTTR Template for Observable Signal
1 vsso-template:ObservableSignal [owl:Class ?classIRI ,
2 rdf:Literal ?label , rdf:Literal ?comment ,
3 owl:Class ?unit , owl:Class ?sensor] :: {
4 ottr:Triple(?classIRI, rdfs:label, ?label),
5 ottr:Triple(?classIRI, rdfs:comment, ?comment),
6 o-owl:SubClassOf(?classIRI, vsso:ObservableSignal),
7 o-owl:SubObjectAllValuesFrom(?classIRI,qudt:unit,?unit),
8 o-owl:SubObjectAllValuesFrom(?classIRI,
9 sosa:isObservedBy, ?sensor) }.

Listing 1.6: OTTR Instance
1 vsso-template:ObservableSignal (
2 vsso:RotationSpeed,
3 "Rotation Speed"@en,
4 "Rotations per minute."@en,
5 qudt:AngularVelocityUnit,
6 vsso:RotationalSpeedSensor
7).
8

9

The VSSo is both, pattern-inspired and densely interlinked by several recurrent ax-
iom patterns. Firstly, it relies on patterns from the SOSA ontology for modeling sensors,
actuators, and observations [8]. Secondly, VSSo was auto-generated from the Vehicle
Signal Specification through instantiations of the repetitive axiom structures to define
certain types of information (signals, branches, sensors). For example, all signals are de-
fined as subclasses of vsso:ObservableSignal and value restrictions on properties
sosa:isObservedBy and qudt:unit. Listing 1.3 shows the pattern for observable
signals; leading question marks denote variable elements in the patterns. In our exam-
ple, vsso:RotationSpeed can be instantiated by this pattern as shown in Listing 1.4.

Repetitive structures in VSSo can be captured by seven patterns: Observable Sig-
nal, Actuable Signal, Observable and Actuable Signal, Branch, Sensor, Actuator, and
Unit. We derived these patterns by abstracting from how various classes with the same
frequent super-classes are defined in VSSo. To guarantee uniformity and consistency
of schema construction, new classes should also become the instantiations of patterns.
CANNOTATOR enables that by exposing patterns as templates.

OTTR Templates. A template is an abstraction over the underlying pattern. Users of
templates create instances from templates by providing values to the parameters. These
values can be named classes, object and datatype properties, individuals, and plain lit-
erals. A template is instantiated by the replacement of its parameters by the provided
values. For CANNOTATOR, we used the OTTR [15] OWL vocabulary to record tem-
plates and their instances and the instance expansion tool Lutra15.

Listing 1.5 shows the OTTR template for the Observable Signal pattern and the
instance of this template for our example class vsso:RotationSpeed. Each argu-
ment in the instance corresponds to a parameter in a template (e.g., ?classIRI ←

10 Y. Svetashova et al.

Bo

rdfs:labelvss
o-
ex
t:

me
ssa
ge
Na
me

vsso-ext:

dbcFileName

qudt:unit

A1 rdfs:subClassOf

B1 @en B2 @en B3 @en

A2

rdf:type

vsso:ObservableSignal

Yo

X2 vsso:Branch vsso:Signal

X3 vsso:Sensor

sosa:isObservedBy

owl:Restriction

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdf:type

rdf:type

owl:onProperty

owl:a
llVal

uesFr
om

owl:onProperty

owl:allValuesFrom

rdfs:subClassOf

owl:unionOf

rdfs
:lab

el
Y1 @en

rdfs:comment

Y2 @en

Fig. 3: Template to add new signal classes and instances (indicated in gray) to VSSo

vsso:RotationSpeed). The replacement of parameters in a template by instance ar-
guments will generate the class definition given above in the Listing 1.4.

In total, we constructed eight templates: seven – to create classes in the schema ac-
cording to the mentioned patterns in VSSo and one template to instantiate DBC signal
entities (see Fig. 3). For the latter template, the automated entity linking component pro-
vides the values for its parameters. For the interactive schema construction, we actively
involve the domain experts. Addressing this, we developed a new module of CANNO-
TATOR with a graphical user interface that assists the users in completing the templates
in a user-friendly and intuitive way based on their domain expertise.

Template User Interface Ontology and GUI Generation. Figure 2 (2) shows the graph-
ical user interface of CANNOTATOR with an example of the form for the Observable
Signal template. Each form element corresponds to a parameter of an OTTR template.
The schema-construction process is straightforward: the expert fills in the form, either
providing values into text fields or selecting the values from the drop-down menus.

CANNOTATOR implements an ontology-driven generation of this graphical user
interface. To this extent, we propose the Template UI (TUI) ontology which maps the
elements of the GUI to elements of the OTTR templates. We distinguish three main
types of parameters depending on how users interact with them. For FreeParameters,
users can freely provide values. For BoundParameters, a user selects values from a
list. HiddenParameters are not shown to users and their values are derived from other
parameter values. In Figure 3, we denote bound parameters with circles and variables
Xi, and free parameters with rectangles and variables Yj . Listing 1.7 shows a fragment
of the Observable Signal UI template: Line 5 represents a hidden parameter for a signal
URI, whose value is derived from the class label parameter defined in Line 7. Parameter
in Line 12 will be used to select a unit of measurement for this signal from a list.

The parameter descriptions are used to render the GUI form for a template. A field
can be either a ui:TextField for Free parameters or a ui:Classifier. For the fields
of type ui:Classifier, TUI defines the specializations tui:SingleDropDown and
tui:MultipleDropDown, which provide a list of options generated dynamically by
evaluating SPARQL queries over the ASKG (e.g., see Line 16 in Listing 1.7).

To minimize the effort of domain experts, CANNOTATOR automatically fills in
some of the form fields by exploiting the dependencies between parameters specified by
the property tui:dependsOn (see, e.g., Line 18 in Listing 1.7). Thus, if a unit of mea-

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 11

Listing 1.7: Template UI description for Observable Signal template
1 @prefix ui: <http://www.w3.org/ns/ui#>.
2 @prefix tui: <http://www.bosch.com/ns/tui#> .
3 @prefix vsso-tui: <http://www.bosch.com/ns/vsso-tui#> .
4

5 vsso-tui:ObservableSignalIRI a tui:HiddenParameter ;
6 tui:processingDirective [vsso-tui:ObservableSignalName, func:mintIRI] .
7 vsso-tui:ObservableSignalName a tui:FreeParameter ;
8 tui:validationFunction func:notEmpty ;
9 tui:parameterGuiFormType ui:TextField ;

10 tui:parameterGuiFormLabel "Provide a name for this observable signal" .
11 vsso-tui:ObservableSignalDescription a tui:FreeParameter .
12 vsso-tui:ObservableSignalUnit a tui:BoundParameter ;
13 tui:validationFunction func:notNull ;
14 tui:parameterGuiFormType tui:SingleDropDown ;
15 tui:parameterGuiFormLabel "Select unit of measurement for this signal" ;
16 tui:parameterFormFillerQuery "SELECT * WHERE {?s rdfs:subClassOf qudt:Unit .}".
17 vsso-tui:ObservableSignalSensor a tui:BoundParameter ;
18 tui:dependsOn vsso-tui:ObservableSignalUnit .
19 vsso-tui:ObservableSignal a tui:Template;
20 tui:parameters (vsso-tui:ObservableSignalIRI, vsso-tui:ObservableSignalName,
21 vsso-tui:ObservableSignalDescription, vsso-tui:ObservableSignalUnit,
22 vsso-tui:ObservableSignalSensor) ;
23 tui:ottrTemplate vsso-template:ObservableSignal.

surement was selected, the system re-runs a SPARQL query for sensors and pre-selects
a corresponding sensor in a drop-down list based on the query evaluation result.

Lastly, CANNOTATOR can change the type of a parameter defined in the TUI de-
scriptions of templates. It happens, for example, if the automated entity generation com-
ponent obtains a similarity score that exceeds a threshold for the linked sensor or unit
entities. Then the parameter’s type is set to Hidden and its form field is not rendered.

Expert Input Validation and Triple Generation. CANNOTATOR validates the expert in-
put based on the validation functions specified in the TUI templates. These validations
can check for empty mandatory fields (e.g., Line 8, Listing 1.7), formatting (date, num-
ber, etc.), and potential inconsistencies generated from the data provided by the experts.
If the validation fails, CANNOTATOR communicates the reason to the user and asks for
correct input. After validation, the tool checks for duplicate concepts by evaluating
SPARQL queries against the ASKG. If there exist classes with identical names, labels,
or values of restrictions on properties in their class definitions, the user is asked to either
(1) confirm that the existing class can fully suit the purpose of signal description (and
discard the new class), or (2) change the name or definition of the new class.

For tui:HiddenParameters, CANNOTATOR generates their values by applying
processing functions to their source parameters. In our example, it passes the value of
the parameter vsso-tui:ObservableSignalName to a function func:mintIRI (see
Line 6 in Listing 1.7), which outputs the IRI.

Finally, CANNOTATOR constructs an OTTR instance and runs Lutra to generate
triples that are added to the ASKG. In this step, the tool will also extend the ASKG by
adding the corresponding signal entity associated with the newly created signal class.
The updated ASKG is immediately available to other users or other components.

Learning from Expert Input. CANNOTATOR is designed to learn from the input pro-
vided by experts with the interactive components. The VSSo extension and the addition

12 Y. Svetashova et al.

of signal instances to the ASKG, as well as recorded interactions of domain experts with
the tool, lead to a continuous improvement of the Automatic Entity Construction com-
ponent. After each feedback iteration, we say that CANNOTATOR has been trained, as
more linguistic cues for finding matching signal instances and class candidates become
available. In consequence, the manual steps that require a domain expert’s attention
are naturally reduced over time. In the following section, we will evaluate the usage of
CANNOTATOR and focus specifically on the learning aspect.

4 Evaluation

We evaluate CANNOTATOR in a controlled setting to empirically study its performance.
In a user study, we investigated the usability with 12 experts at Bosch: 5 software engi-
neers with a background in Semantic Technologies and 7 domain experts with a back-
ground in automotive engineering. We focused on the following core questions:

Q1 How well does the template-based schema construction support experts?
Q2 What percentage of signal names can be handled in a fully automated manner?
Q3 How does the performance of the system improve over time by learning?

Input Data. We randomly selected 200 English signal descriptions out of the 31017
signals from the 82 DBC of different car manufacturers provided by opendbc14. We
excluded object detection data and metadata signals, such as checksums or counters.
Two domain experts annotated these 200 signals using our system. Then we selected
the 150 signals with the highest inter-rater agreement score as the ground truth. The
agreement meant the selection of the same VSSo term for a signal name by both experts
or the usage of the same options (superclass, sensor, unit) in the template when the term
was missing in VSSo.
Initial vs. Trained System. We prepared two CANNOTATOR instances to evaluate the
improvement of a Trained System over an Initial System. The Initial System, contained
only default knowledge sources in the automated entity construction component and the
initial knowledge graph with the VSSo and the QUDT Unit ontology. The Trained Sys-
tem contained the input provided by the domain expert from annotating 100 signals of
the ground truth dataset. During the annotation process, the KG was extended with the
expansions, token relations, alignments, signal instances, and 132 new classes provided
by the experts. The KG statistics for both CANNOTATOR systems are shown below.

System Triples Classes Instances

Initial 20569 304 0
Trained 32155 436 100

For the experiments with the users, we created 24 DBC files with 5 signals in each
file. The signals for the 12 files to be annotated with the Initial System were randomly
sampled from the ground truth set of 150 signals. The signals to be annotated with the
Trained System were sampled at random from the subset of 50 signals not used for
training.
14 https://github.com/commaai/opendbc, retrieved on Jul 27, 2020

https://github.com/commaai/opendbc

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 13

Expert Annotations. Each participant of the experiment was provided with a short in-
troduction to the concept of ontologies, the structure of VSSo, the specifics of the data,
and the tool itself. Thereafter, the participants used CANNOTATOR to annotate two
DBC files with 5 signal names each. For the first file, they used the Initial System, and
for the second the Trained System. After assessing the candidates provided by the tool,
the participants annotate the signals by (1) picking a candidate to align the signal, or (2)
creating a class to extend the ontology using the interactive schema construction com-
ponent. Note that the input was different for all users because we randomly sampled
signals from the subset of the ground truth, which was not used for training the system.

Evaluation Metrics. We measured correctness, calculated as the percentage of success-
fully completed tasks, as the metric for the effectiveness of our approach. Absolute cor-
rectness for our tasks is not attainable due to the complexity of the automotive domain
and the diversity of CAN-bus data. As the metric for efficiency, we used the time users
spent on a task. We report the results for the annotation and the extension separately
because the time needed to perform these tasks is different. In summary, we report on
the following metrics: (1) TimeAlign, mean time a user needed to annotate a signal
where the decision was to accept the suggested alignment; (2) TimeExt, mean time a
user needed to annotate a signal where the decision was to create a new signal class;
(3) TimeAnnot, mean time a user needed to annotate a signal; (4) CorrAlign, per-
centage of correctly aligned signals (w.r.t. the ground truth); (5) CorrExt, percentage
of correctly chosen options in the schema construction form; (6) CorrAnnot, percent-
age of correctly annotated signals (aligned or constructed). We compute these metrics
separately for the annotations obtained by the Initial System and the Trained System.

4.1 Performance Results

As a result of our evaluation, we obtained 10 annotations from each participant. An
annotation could either be an alignment when the user pointed to a VSSo class corre-
sponding to a DBC signal name or a schema extension when the user created a new
schema element. The submitted input was compared with the ground truth.

Figure 4 and Table 1 show the performance results for all metrics. As expected, the
time for alignment annotations (TimeAlign) is considerably lower than for extensions
(TimeExt). For the Initial System state, the mean time (in seconds) needed for the align-
ments was 51s; extensions took 183.5s. These averaged into 107s per annotation. The
mean correctness was 97% for the aligned signals. Schema extensions resulted in 92%
correct choices; the correctness of decisions on the level of the signal set was also 92%.
In the Trained System, the majority of the annotations corresponded to alignments; the
mean time per alignment was 43s (TimeAlign) as well as per annotation in general
(TimeAnnot). Only in one case, the user decided to extend the schema, which took 75s
(left out from Figure 4); this is considerably faster than the average reported for the Ini-
tial System state. Correctness was 100% for aligned signals in the Trained System. Note
that we could not compute this metric for the extensions as the ground truth since for
the single extensions provided by the domain expert was modeled as an alignment in
the ground truth. Yet, this decreased the overall correctness for the annotations to 97%.

14 Y. Svetashova et al.

User 2 User 5 User 6 User 10 User 12 User 1 User 3 User 4 User 7 User 8 User 9 User 11
0

50

100

150

200

250

T
im

e
[s

]

Semantics experts Domain experts

Initial : TimeAlign Initial : TimeExt Initial : TimeAnnot Trained : TimeAlign Trained : TimeAnnot

Fig. 4: Time spent by each user in the annotations

System State

Metric Initial Trained

TimeAlign [s] 50.92 42.75
TimeExt [s] 183.50 75.00
TimeAnnot [s] 107.25 43.33

CorrAlign [%] 97.25 100.00
CorrExt [%] 91.67 NA
CorrAnnot [%] 91.67 97.25

Table 1: Summary of results

The time spent on schema extensions and their correctness provide insights into Q1:
in the case that a signal class was not yet present in our ASKG, the experts provided
correct template-based schema extensions in a time-efficient manner.

Moreover, our experiment showed that CANNOTATOR effectively learns with ex-
pert input: on average, the Initial System found alignment candidates for 68% of the
signals (for the rest, the users created schema extensions) and the Trained System for
100% of the signals. With respect to Q2, 28% of the candidates generated by the Ini-
tial System had similarity scores above 90%, which could potentially be handled fully
automatically. In comparison, candidates provided by the Trained System had higher
average similarity scores with 69% above 90% similarity. Yet, human involvement was
needed as the tool generated multiple candidates with a high similarity score; in this
case, expert input ensures that correct signal instances are added to the ASKG.

Regarding Q3, our experiments showed that CANNOTATOR provided more auto-
mated alignments in the trained state and, therefore, fewer schema extensions were
needed. Overall, the users were two times faster and provided more accurate results
using the Trained System instead of the Initial System.

5 Related Work

Data and Metadata Management Solutions. Various solutions have been proposed for
the large-scale data management of the enterprise data, which offer such functionalities
as metadata management and mapping-based data integration (Karma [6], Sansa [10],
Ontop [1], or Silk [16]). To the best of our knowledge, none of the existing systems
implement schema extension by non-experts combined with the automated mapping
candidate generation. These aspects were addressed by several standalone tools and
frameworks, which CANNOTATOR builds on.
Abbreviation Expansion. The automatic expansion of abbreviations and acronyms has
been studied by a variety of works [2,13,19]. Such approaches typically rely on either
large corpora to discover abbreviations or leverage the abbreviation’s context to deter-
mine its expansion. Since the textual data of signal descriptions in DBC files is limited
in size and barely provides context, we rely on predefined acronyms and abbreviations
which can be extended by the domain experts such that our system improves over time.
Template-based Ontology Extension Tools and GUIs. Our system adopts ontology tem-
plates to involve domain experts in the schema and entity construction process. Frame-

Pay-as-you-go Population of an Automotive Signal Knowledge Graph 15

works and software tools relevant for our approach were developed in the biomedical
domain [3,7,12,18]. We could reuse none of the tools directly due to their high domain
specificity and limited interaction capabilities. Therefore, we rely on a general template
framework called Reasonable Ontology Templates (OTTR) [15] and the tool Lutra15

for axiom generation. We build template-based GUIs, which is similar to recent works
on Web form generation for the interaction with knowledge graphs such as [17] or Shex
Form16. In contrast to these works that focus on instance data, CANNOTATOR allows
for consistently extending the schema of the ASKG.

Automotive Ontologies. A variety of ontologies have been developed for the automotive
domain. Feld and Müller [4] propose a high-level ontology to describe users, vehicles,
and the current driving situation to support Human-Machine Interfaces. Moreover, the
W3C Automotive Ontology Community Group17 proposes vocabularies to improve the
interoperability of data in the automotive domain on the Web. However, as these ontolo-
gies do not allow for describing ECUs and automotive signals, we use the Vehicle Signal
and Attribute Ontology (VSSo) [8] as the schema of the ASKG. The VSSo, which is
derived from the Vehicle Signal Specification (VSS)6, provides a formal model of car
signals to improve the interoperability for car development applications.

6 Conclusions

We presented a novel tool that assists automotive experts at Bosch in extracting and
managing the semantics of CAN signals in an Automotive Signal Knowledge Graph
(ASKG). For this, CANNOTATOR implements an entity construction component that
automatically extracts signals from DBC files and computes candidate links to the on-
tology. Experts can then revise these candidates and if necessary extend the schema of
the ASKG on-the-fly to accommodate new signal types in a pay-as-you-go manner.

As we have demonstrated through our experiment, CANNOTATOR is capable of
learning from the interactions with the domain experts and using this knowledge to
improve its assistance capabilities. The results showed that the tool, after some usage
by the domain experts, is able to process more signals fully automatically, and also
provides higher quality recommendations to the experts. Both lead to a significant re-
duction in the time that is required by the human experts.

A key lesson learned while designing the automatic entity construction component
was the observation that, at first, few restrictions (low threshold) should be applied to
the candidate selection. For example, we started by using SPARQL queries with basic
string matching filters to obtain candidates from the VSSo, because we found that too
restrictive queries (i.e., queries with more triple patterns and constants) would lead to
no matches. As the KG grows, the candidates increased, and therefore, the queries can
be more restrictive by taking for instance the unit or the branch of a signal into account.

Another lesson learned is that existing template frameworks based on simple tabular
interfaces to create template instances [7,15] are not suitable for interactive schema

15 https://gitlab.com/ottr/lutra/lutra
16 https://github.com/ericprud/shex-form
17 https://www.w3.org/community/gao/

https://gitlab.com/ottr/lutra/lutra
https://github.com/ericprud/shex-form
https://www.w3.org/community/gao/

16 Y. Svetashova et al.

extension by domain experts. Firstly, they are not capable of providing assistance to
the users and involve the experts interactively in the process (e.g. to validate a system
recommendation). Secondly, they do not allow to pre-fill the templates with results from
the automatic entity construction component or prior input from experts.

Finally, the usage of CANNOTATOR revealed current shortcomings to be addressed
in future work: (1) some experts tend to extend the schema instead of spending more
time assessing the candidates, and (2) experts sometimes chose inadequate signal classes
instead of extending the schema. The key to address these issues is to improve both the
ranking of the automatically generated suggestions as well as the usability of the GUIs
allowing users to explore the current schema of ASKG during extension.

References

1. D. Calvanese et al. Ontop: Answering SPARQL queries over relational databases. Semantic
Web, 8(3):471–487, 2017.

2. D. Chopard and I. Spasić. A deep learning approach to self-expansion of abbreviations based
on morphology and context distance. In SLSP, pages 71–82. Springer, 2019.

3. H. Dietze et al. Termgenie-A Web-Application for Pattern-Based Ontology Class Genera-
tion. Journal of Biomedical Semantics, 5, 2014.

4. M. Feld and C. A. Müller. The automotive ontology: managing knowledge inside the vehicle
and sharing it between cars. In AutomotiveUI, pages 79–86. ACM, 2011.

5. A. Gangemi and V. Presutti. Ontology design patterns. In Handbook on ontologies. 2009.
6. S. Gupta et al. Karma: A System for Mapping Structured Sources Into the Semantic Web. In

ESWC, 2012.
7. S. Jupp et al. Webulous and the Webulous Google Add-On-A Web Service and Application

for Ontology Building From Templates. Journal of Biomedical semantics, 7, 2016.
8. B. Klotz, R. Troncy, D. Wilms, and C. Bonnet. Vsso: The vehicle signal and attribute ontol-

ogy. In SSN@ ISWC, pages 56–63, 2018.
9. A. Ławrynowicz, J. Potoniec, M. Robaczyk, and T. Tudorache. Discovery of emerging de-

sign patterns in ontologies using tree mining. Semantic web, 9(4):517–544, 2018.
10. M. N. Mami et al. Semantic Data Integration for the SMT Manufacturing Process using

SANSA Stack. In ESWC, 2020.
11. B. Motik et al. Owl 2 web ontology language: Structural specification and functional-style

syntax. W3C recommendation, 27(65):159, 2009.
12. M. J. O’Connor, C. Halaschek-Wiener, and M. A. Musen. M2: A language for mapping

spreadsheets to owl. In OWLED, volume 614, 2010.
13. S. Pakhomov, T. Pedersen, and C. G. Chute. Abbreviation and acronym disambiguation in

clinical discourse. In AMIA. AMIA, 2005.
14. S. Schmid, C. Henson, and T. Tran. Using knowledge graphs to search an enterprise data

lake. In European Semantic Web Conference, pages 262–266. Springer, 2019.
15. M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and H. Forssell. Practical ontology pattern in-

stantiation, discovery, and maintenance with reasonable ontology templates. In ISWC 2018.
16. J. Volz et al. Silk-A Link Discovery Framework for the Web of Data. LDOW, 538, 2009.
17. J. Wright, S. J. R. Méndez, A. Haller, K. Taylor, and P. G. Omran. Schimatos: a shacl-based

web-form generator for knowledge graph editing. In ISWC, pages 65–80. Springer, 2020.
18. Z. Xiang et al. Ontorat: Automatic Generation of New Ontology Terms, Annotations, and

Axioms Based on Ontology Design Patterns. Journal of Biomedical Semantics, 6, 2015.
19. W. Zhang, Y.-C. Sim, J. Su, and C.-L. Tan. Entity linking with effective acronym expansion,

instance selection and topic modeling. In IJCAI. Citeseer, 2011.

	Pay-as-you-go Population of an Automotive Signal Knowledge Graph

